
The IRIXpro Administrator’s Guide

Document Number: 007-2446-001

The IRIXpro Administrator’s Guide
Document Number: 007-2446-001

CONTRIBUTORS

Written by Jeffrey B. Zurschmeide
Edited by Christina Cary
Production by Lorrie Williams
Written Contributions by Susan Ellis, Margaret-Anne Halse, John C. Stearns, Jean-

Dominique Gascuel and Jan Newmarch.
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz
Engineering contributions by Kevin Conry, Victor Mitnick, Anurag Narula, Paul

Robins, and John Schimmel

© Copyright 1994, 1995 Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX, IRIXpro, CASEVision,
and Tracker are trademarks of Silicon Graphics, Inc. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open
Company, Ltd. Raima and Raima Data Manager are trademarks of Raima
Corporation.

iii

Contents

List of Figures xi

List of Tables xv

About This Guide xvii
Contents of This Guide xvii

Audience For This Guide xviii
Additional Resources xviii

Typographical Conventions xviii
Product Support xix

1. The IRIXpro System Administration Tools 1
Introduction to IRIXpro 2

The IRIXpro Components 3
propel 3
proclaim 3
provision 3
problema 3

The IRIXpro Databases 4
The Host Database 4
The Collection Database 6

Running snmpd on Your Network 7
User Interface Terminology 8
Common User Interface Operations 10

Using Scroll Bars 10
Entering and Removing Text in a Field 11
Using Option Buttons 11
Using a File Prompter 12
Using Online Help 13

iv

Contents

2. Software Distribution, User and Host Management With propel 15
propel Installation Instructions 16

Initializing the Host Database 16
Automatically Loading the Host Database 17
Creating the Collection Database 19
Populating the User and Group Databases 20
Loading the File Database 20
The propel License Manager (lm_tcp) 20
propel and rdist 21
Server/Client Security 22

How to Use propel 22
The propel Management System 22
How propel Works 24
Using propel to Manage a Domain 26

Distributing Silicon Graphics Software With propel 26
Internal Data Distribution With propel 27
Installing Free Software Packages With propel 27
Host Information Management With propel 27
User Information Management With propel 28
Localizing propel 28

Contents

v

Using the propel Databases 29
The Host Database 29

Editing the Host Database 30
Inserting a Host Entry 32
Updating a Host Entry 32
Querying the Host Database 32
Parsing System Files Into the Host Database 33

The Collection Database 33
Editing the Collection Database 33
Adding a Collection of Hosts to the Collection Database 35
Updating a Collection Database Entry 41

The File Database 41
Editing the File Database 42
Adding a File to the File Database 43
Updating a File Database Entry 45
Querying the File Database 45

The Distribution Rule Database 45
Editing the Rule Database 46
Adding a Distribution Rule to the Rule Database 47
Updating a Rule Database Entry 49
Querying the Rule Database 49

The User Database 49
Editing the User Database 50
Adding a User to the User Database 52
Updating a User Entry 52
Querying the User Database 52

The Group Database 53
Editing the Group Database 53
Adding a Group of Users to the Group Database 55
Updating a Group Database Entry 60

Additional Database Query Techniques 60
Query Keywords and Glob Expressions 62
Query Shortcuts 64

vi

Contents

Using the dbredit Utility 65
Running propel 68

Running propel From a Shell Command 68
Running propel Through cron(1M) 68

The propel File Generation System 69

3. Dynamic Network Configuration With proclaim 71
The proclaim Dynamic Network Configuration System 71
Installing proclaim 72

Installing proclaim on a Server 72
Files Modified by proclaim 73
Starting proclaim 73
Stopping proclaim 73

Installing proclaim on a Client 74
Configuring proclaim 74

Configuring proclaim on the Server 74
The Standard Configuration File 74
Sample Configuration File 78
The dhcp_bootp.options File 79

Limitations and Restrictions of This Release 80

4. Distributed System Monitoring With provision 81
The provision Monitoring System 81
Installing and Configuring provision 83
Using provision 86

The provision Graphical Interface 86

Contents

vii

Using pvcontrolpanel 87
Using the pvcontrolpanel Menu Bar 88
The Available Variable and Script Window 91

The Default provision Scripts 93
Adding Custom Scripts to provision 99

Custom Script Reply Format 99
Custom Script Argument List Format 100
Custom Script sgitcl Routine Locations 100
Custom Script sgitcl Extensions 100

The pvcontrolpanel Hosts Area 100
The pvcontrolpanel Items to Monitor Area 101
The pvcontrolpanel Script Configuration Area 101
Creating a Log File With pvcontrolpanel 101

Using pvcontrol 102
Creating a Log File with pvcontrol 107

Using pvgraph 107
The pvgraph File Menu 108
The pvgraph Graphs Menu 109
The pvgraph Help Menu 110
The New Graph Window 111
Working With Graphs 113

Working With Graph Alarms 113
Selecting a Graph 114
The Graph Parameters Window 115
The Graph Style Window 116

The provision Configuration File 117
Using pvgraph to View a Log 119

viii

Contents

The MIB Browser 121
SNMP Agents 122

Enabling SNMP Agents 123
Authorizing Browsing 124

Starting Browser 125
Browser Main Window 125
Browser Subtree and Table Windows 127

Subtree Windows That Show Subtrees 128
Subtree Windows That Show Variables and Tables 130
Browser Table Windows 131

Navigating the SNMP Containment Tree 132
Navigation Using the Buttons in the Main Window 132
Navigation Using the Navigate Menu 133
Navigation Using Buttons in the Subtree and Table Windows 134

Obtaining Descriptions of Variables 134
Obtaining, Setting, and Saving Variable Values 135

Obtaining and Setting Values Using the Variable Window 135
Obtaining and Setting Values Using the Edit Menu of a Subtree
Window 137
Obtaining and Setting Values Using the Edit Menu of a Table
Window 137

Browser File Menu 138
Browser Example 139
SNMP Management Glossary 142

Agent 143
Network Management Protocol 143
Simple Network Management Protocol (SNMP) 143
Management Information Base (MIB) 143
SNMP Containment Tree 143
Subtree 143
MIB-II 144
Managed Object 144
Variable 144

Contents

ix

Object Identifier (Object ID) 144
Enterprise MIBs 144
Community String 144

5. System Administration Request Management With problema 145
The problema Request Management System 146

problema, miproblema, and suproblema 146
The problema Tracking Process 148

Installing and Configuring problema 149
Installing problema on the Server 150
Installing problema on Client Systems 150
The User irixpro 151
Configuration Files 151

miproblema.pdl 152
problema.pdl 152
suproblema.pdl 152
problemagen 152
categories.h 153
vendor_categories.h 153
vendor_names.h 153
vendor_priorities.h 153
vendor_status.h 153
/usr/IRIXpro/problema/tools/lib/problema_notify 154
/usr/lib/X11/app-defaults/Miproblema, Problema and
Suproblema 154

Making Configuration Changes 154

x

Contents

Using problema 157
Main Window Anatomy 160

Menu Bar 161
Control Bar 162
Query Results Area 164
Request Form Area 165

Setting Dates in problema 168
Query Operations 169
General Operations 170

Procedure for Performing General Operations 171
Specific Procedure for Submitting a Request 172
Setting the Default Field Editor 173

Assigning and Resolving Requests 173
No Action Commands 174
Assignment Commands 174
Forwarding a Request to Silicon Graphics 174
Executing and Reopening Requests 175
Resolving and Closing Requests 175
Deleting Requests 175
Overdue Requests 176

A. The hp-ux_sgi MIB 177

Index 213

xi

List of Figures

Figure 1-1 The IRIXpro Directory View 2
Figure 1-2 Window Terms 8
Figure 1-3 More Window Terms 9
Figure 1-4 A Horizontal Scroll Bar 11
Figure 1-5 An Entry Field 11
Figure 1-6 An Option Button and an Option Button Menu 12
Figure 1-7 A File Prompter Window 13
Figure 1-8 A Help Menu and a Help Button 13
Figure 2-1 The propel Directory View 23
Figure 2-2 The Host Database Editor 31
Figure 2-3 The Collection Manager 34
Figure 2-4 The Add Collection Window 35
Figure 2-5 A Populated Collection Manager Window 36
Figure 2-6 A Collection Display Window 37
Figure 2-7 The Add Host Window 38
Figure 2-8 The Add Host Query Window 39
Figure 2-9 A Populated Collection 40
Figure 2-10 The File Database Editor 43
Figure 2-11 A List of Source Files in the File database 44
Figure 2-12 The Distribution Rules Editor 47
Figure 2-13 An Prepared Distribution Rule 48
Figure 2-14 The User Database Editor 51
Figure 2-15 The Group Manager 54
Figure 2-16 The Add Group Window 56
Figure 2-17 A Populated Group Manager Window 57
Figure 2-18 A Group Display Window 58
Figure 2-19 The Add User Window 59

xii

Figure 4-1 The provision Window 86
Figure 4-2 The pvcontrolpanel Window 87
Figure 4-3 The Available Variables and Scripts Window 91
Figure 4-4 Description Window for the sysDescr Variable 92
Figure 4-5 The pvgraph Window 108
Figure 4-6 The New Graph Window 111
Figure 4-7 The pvgraph Window With One Graph 113
Figure 4-8 A Graph With an Alarm Showing 114
Figure 4-9 The Graph Parameters Window 115
Figure 4-10 The Graph Style Window 116
Figure 4-11 A File Selection Window 118
Figure 4-12 The New Graph Window with Log File Information 120
Figure 4-13 SNMP Agents and Browser 123
Figure 4-14 Browser Main Window 125
Figure 4-15 Node Entry Field 126
Figure 4-16 Community Entry Field 126
Figure 4-17 Timeout Interval Entry Field 126
Figure 4-18 Number of Retries Entry Field 126
Figure 4-19 mib-2, enterprises, and experimental Buttons 127
Figure 4-20 Variable... Button 127
Figure 4-21 Subtree Window Showing Subtree Objects 128
Figure 4-22 Node Entry Field 128
Figure 4-23 Object ID and Name Entry Fields 129
Figure 4-24 Object in a Display Area 129
Figure 4-25 Read At Line 129
Figure 4-26 Set At Line 129
Figure 4-27 Close This Window When Opening a Subwindow Check

Box 130
Figure 4-28 Subtree Window Showing Variables and a Table 130
Figure 4-29 Variable Line in a Subtree Display Area 131
Figure 4-30 Table Line in a Subtree Display Area 131
Figure 4-31 Browser Table Window 132
Figure 4-32 Navigate Menu 133

xiii

Figure 4-33 Description Window 134
Figure 4-34 Variable Window 135
Figure 4-35 Object ID Entry Field 136
Figure 4-36 Example Browser Main Window 139
Figure 4-37 Navigate Rollover Menus for cisco.local.lsystem 140
Figure 4-38 Subtree Window for cisco.local.lsystem 141
Figure 4-39 Subtree Window With Values for cisco.local.lsystem 142
Figure 5-1 The problema Request Life Cycle 148
Figure 5-2 The suproblema Main Window 158
Figure 5-3 The problema Main Window 159
Figure 5-4 The miproblema Main Window 160
Figure 5-5 The Menu Bar 161
Figure 5-6 The Control Bar 162
Figure 5-7 The Query Results Area 164
Figure 5-8 The miproblema Request Form Area 165
Figure 5-9 The problema Request Form Area 166
Figure 5-10 The suproblema Request Form Area 167

xv

List of Tables

Table 5-1 Logical Operators 169

xvii

About This Guide

This guide describes the IRIXpro software package of advanced system
administration applications for the Silicon Graphics family of graphical
workstations and servers. These applications have been designed and
developed to provide the large-site administrator with tools to automate
many tasks that have previously been performed by hand on each
individual host system, and to maintain records of the tasks performed.
Below is a description of each chapter and its contents.

Contents of This Guide

• Chapter 1, “The IRIXpro System Administration Tools” gives a brief
overview of IRIXpro and its component applications.

• Chapter 2, “Software Distribution, User and Host Management With
propel,” provides information about the propel software distribution
and host database management application. Using propel, you can
keep all your host systems installed with the correct software in a
dynamic environment.

• Chapter 3, “Dynamic Network Configuration With proclaim,”
describes the proclaim automatic network configuration application.
With proclaim, you can automatically assign hostnames and IP
addresses to new systems as they are installed on your network.

• Chapter 4, “Distributed System Monitoring With provision,” discusses
the provision distributed system monitoring system. The provision
application allows you to monitor all your systems’ running statistics
from a single workstation.

• Chapter 5, “System Administration Request Management With
problema,” provides a mechanism to automate the system
administration request process. This application provides a standard
form to all your users and automatically tracks the status of each
request.

xviii

About This Guide

• Appendix A, “The hp-ux_sgi MIB,” is a reprinting of the default MIB
shipped with IRIXpro.

Audience For This Guide

This guide is written for the system administrator who will be directly using
and administering the IRIXpro applications. It is assumed that you have
installed InSight or have access to the IRIX Advanced Site and Server
Administration Guide and the Personal System Administration Guide and are
familiar with their contents.

Additional Resources

The primary resources for system administrators are the IRIX Advanced Site
and Server Administration Guide and the Personal System Administration Guide.
These guides explain the basic tasks and responsibilities of system
administrators. Also, the IRIX Reference Pages, available online through the
man(1) command, are an important resource for system administrators.

Typographical Conventions

As you read this guide, you will notice that special fonts are used for certain
words.

typewriter font
indicates system output, such as responses to commands
that you enter and the text of messages that appear in
Warning and other informational windows. This font is also
used for examples of the contents of files, filters and filter
components, examples of network addresses, Management
Information Base (MIB) object names, and example
workstation and network names and addresses.

typewriter bold font
 indicates text you must enter, such as command lines and
filter expressions. Names of nonprinting keys on the
keyboard, such as the <Enter> key, also appear in
typewriter bold and are surrounded by angle brackets.

Product Support

xix

bold font designates literal options to commands.

italic font indicates filenames, command names, and reference page
names. Lowercase italic words also represent variables—
text strings that you must specify. References to other
documents, button names, inst(1M) subsystem names, user
IDs, and group names are also in italics.

Product Support

Silicon Graphics provides a comprehensive product support and
maintenance program for its products.

If you are in the U.S. or Canada and would like support for your Silicon
Graphics-supported products, contact the Technical Assistance Center
at 1-800-800-4SGI.

If you are outside of the U.S. or Canada, contact the Silicon Graphics
subsidiary or authorized distributor in your country.

1

Chapter 1

1. The IRIXpro System Administration Tools

This chapter provides a brief overview of the individual software
components of IRIXpro, and other information to help you use this guide.
The following sections are provided in this chapter:

• “Introduction to IRIXpro” on page 2 provides a general overview of the
IRIXpro component applications.

• “The IRIXpro Databases” on page 4 describes the databases used in
common by the IRIXpro applications.

2

Chapter 1: The IRIXpro System Administration Tools

Introduction to IRIXpro

IRIXpro has been designed to be used in the Indigo Magic™ desktop
environment provided on all Silicon Graphics workstations and graphics
servers. The standard directory view of the /usr/IRIXpro directory, where the
tools, applications, and many of the configuration files are installed, is
available by issuing the command:

irixpro

The directory view looks similar to this:

Figure 1-1 The IRIXpro Directory View

For information on using the directory view and the Indigo Magic
environment, see the IRIS Essentials guide in your InSight™ online
documentation, or “User Interface Terminology” on page 8 in this chapter.

The following sections provide a short introduction to the components of
IRIXpro. Each piece of component software is described completely in a
separate chapter in this book.

Introduction to IRIXpro

3

The IRIXpro Components

IRIXpro is made up of four related and interacting applications, and the SQL
database query language. All of IRIXpro was written using the sgitcl
programming language, and IRIXpro is completely configurable and
extensible by the user.

Below is a brief description of the four IRIXpro applications.

propel

The propel distributed system management application provides a
convenient graphical interface to several databases, including the Host and
Collection database described in this chapter. Support is also included for
using these databases to disseminate software and system configuration file
changes across your network. Using propel, you can automatically keep host
systems updated to the correct revision level of applications or system
software, and manage your system configuration files with ease. The propel
application is described in Chapter 2, “Software Distribution, User and Host
Management With propel.”

proclaim

The proclaim network host ID management system allows you to
dynamically assign and reclaim network IP addresses on an as-needed basis
for your entire network and to configure a new system’s networking
parameters. The proclaim application is described in Chapter 3, “Dynamic
Network Configuration With proclaim.”

provision

The provision distributed system monitoring tools allow you to monitor the
essential statistics and system states of each machine on your network from
a central monitoring server. The provision application is described in
Chapter 4, “Distributed System Monitoring With provision.”

problema

The problema system administration request management application allows
your users to submit requests for system administration services, and allows

4

Chapter 1: The IRIXpro System Administration Tools

you to track each request. The problema application is described in Chapter 5,
“System Administration Request Management With problema.”

The IRIXpro Databases

The applications that compose IRIXpro each maintain various databases to
hold and query the information specific to the application’s needs. The Host
and Collection databases, however, are used by all the IRIXpro applications.

The Host Database

The Host database holds the following information about each host on your
network:

Hostname This field holds the name that uniquely identifies a system
within an administrative domain. For example, the name of
the system might be Wilmer. This should match the system
hostname in /etc/sys_id. The system named in this field is
called the named system in all descriptions of other fields in
the IRIXpro databases.

Domain This field contains the NIS/BIND domain name of the
named system.

Aliases This field contains a list of alternative names for the named
system. These names must each also be unique within the
administrative domain. For example, an alias for the named
system might be labfileserver.

IP Addresses This field holds a list of software IP addresses for the named
system. For example, software IP addresses have the form
123.45.67.890. If the named system has more than one
network connection (as in the case of a network gateway or
hub), then this field should contain all the addresses used
by the machine.

Lease This field is not used by the editor, but exists for the use of
the proclaim application. The field holds information about
the expiration time of the system’s IP address provided by
proclaim.

Location This field holds the location of the named system. For
example, the location of a system might be “Upstairs Lab.”

Introduction to IRIXpro

5

Mail Exchangers
This field holds the list of system names that can receive
mail and hold it for the named system. For example, the list
of mail exchanger systems might be: stuart.eng, gordon.eng

MAC Addresses
This field holds the network hardware addresses of the
host. For example, this field might contain information
similar to 00:00:A7:10:91:03. As with IP addresses, there is a
different network hardware address for each interface on
the machine.

Manufacturer This field describes the named system by the name of the
hardware manufacturer. For example: SGI. The purpose of
this field is to allow you to query the database and locate all
machines by a given manufacturer for software update or
inventory.

Model This field contains the manufacturer’s model designation of
the named system. For example: Indy. The purpose for this
field is to allow you to query the database and locate all
machines of a given model.

OS Release This field specifies the operating system software revision
level on the named system. For example: IRIX 5.1. The
purpose of this field is to allow you to locate all machines
(perhaps of a given manufacturer and model) at the same
operating system software revision level. You do not
necessarily have to enter the operating system revision level
in this field; you could also use it to track the revision level
of any software you choose.

Owner This field names the person who is responsible for the
named system. For workstations, this person is usually the
primary user, and for servers the usual person is the
administrator who acts as a point of contact for the server
users (for example, Wilmer McLean).

Server This field identifies the slave distribution server system that
distributes new software to the named system with the
propel software distribution facilities. (For example, the
slave server might be called distmachine.)

6

Chapter 1: The IRIXpro System Administration Tools

System ID This field contains the serial number of the system
hardware.

Comment This is an open field that can be used for any purpose. It can
be useful in queries to further categorize systems that are
administered in a similar manner, such as development or
test systems.

The standard system host databases, such as /etc/hosts, /etc/ethers, and the
named maps in /var/named can all be generated using the Host database as
input. Under IRIXpro, administrators need only maintain one list of host
information for the entire network. Individual system data files can be
generated from this list, thus simplifying large domain host administration.
See “The propel File Generation System” on page 69 for complete
instructions.

The Collection Database

The Collection database holds records defining collections of hosts from
your Host database. These can be arbitrary groupings, or groups generated
by querying the Host database. The following fields are used in the
Collection database:

name The name of the collection of hosts. Make this name unique
from any hostname. For example, if you wish to make a
collection describing all Silicon Graphics machines on your
network, you might select the name sgihosts.

collection The query parameters to define the collection. You can
query on any field or fields in the Host database. For a
complete set of instructions on forming a database query,
see the section titled “Additional Database Query
Techniques” in Chapter 2.

comment Any notes you wish to make about the collection. This is an
open field that can be used for any purpose.

Information on creating, modifying, and querying entries in the Host and
Collection databases is found in “The Host Database” on page 29 and in
“The Collection Database” on page 33.

Introduction to IRIXpro

7

Running snmpd on Your Network

In order to use many of the utilities and features of IRIXpro, each system on
your network should be running the snmpd daemon. This daemon provides
support for SNMP (Simple Network Management Protocol) and allows
other systems to query the host for information about its configuration. This
daemon is described in the section titled “The MIB Browser” in Chapter 4.

To obtain SNMP support, the IRIXpro distribution packages to install on
each station are:

snmpd 01/04/95 SNMP Daemon with HP MIB Support

snmpd.sw 01/04/95 SNMP Daemon with HP MIB Support

snmpd.sw.agent 01/04/95 SNMP Daemon with HP MIB Support

To configure a workstation so that snmpd is started automatically when the
system is rebooted, install the packages listed above, and enter this
command on the system while logged in as root:

chkconfig -f snmpd on

To check to see if the daemon is already running, enter this command:

ps -e | grep snmpd

If there is no output from this command, snmpd is not running. Become root
and enter this command to start snmpd:

snmpd &

8

Chapter 1: The IRIXpro System Administration Tools

User Interface Terminology

Figure 1-2 and Figure 1-3 show examples of windows, with the window
terms used in this guide noted.

Figure 1-2 Window Terms

The mouse buttons have these functions:

left Perform most basic tasks: click buttons, select an entry field
to type into, select menu choices, select items in a display,
select text to modify, and so on.

middle Reposition windows and icons.

right Access pop up menus. Pop up menus appear when you
press the right mouse button in certain locations on the
screen.

Window menu button

Title bar

Menu bar

Minimize button

Scroll bar

Pulldown menu

Slider

User Interface Terminology

9

Figure 1-3 More Window Terms

This guide uses the following terms to describe the use of the mouse:

press Hold down a mouse button.

drag Move the mouse while a mouse button is pressed.

click Press a mouse button and immediately release it without
moving the mouse.

double-click Press and release a button twice in quick succession without
moving the mouse.

select The term “select” is used in the following ways:

• Click the left mouse button on an item to highlight it.

Radio button

Option button

Check box

Entry field

Display area

Button

10

Chapter 1: The IRIXpro System Administration Tools

• Press the left mouse button in an entry field, drag the
cursor across some or all of the text, and release the
mouse button. The text becomes highlighted.

• Press the left mouse button on a menu title in a menu
bar, move the cursor to a menu choice, and release the
mouse button while a menu choice is highlighted.

• To select a traffic line, node, or network in the NetLook
main window, double-click it.

deselect Click a highlighted item to turn off the highlighting.

Common User Interface Operations

The graphical IRIXpro tools have a common look and feel for consistent
operation and easy switching between tools. This guide assumes that you
are familiar with using the mouse, working with windows, and using
pulldown and rollover menus. These operations are described in the IRIS
Essentials manual.

The sections below explain how to use additional components of the user
interface that are common to several of the tools.

Using Scroll Bars

You can use scroll bars (see Figure 1-4) to change the area and scale of a
viewing area and to display different lines or portions of lines in a display
area. The size of the slider is proportional to the amount of the total that you
are viewing. You operate scroll bars by pressing the left or middle mouse
button when the cursor is in the scroll bar. There are several ways to operate
the scroll bar:

• Press the left mouse button on the slider, drag the cursor to a new slider
position, and release the button.

• Move the slider incrementally by clicking the triangles at each end of
the scroll bar.

• Move the slider up or down by positioning the cursor in the trough
above or below the slider and clicking the left mouse button.

Common User Interface Operations

11

• Move the slider to a specific position by positioning the cursor at that
position and clicking the middle mouse button.

Figure 1-4 A Horizontal Scroll Bar

Entering and Removing Text in a Field

Editing text in the entry fields (see Figure 1-5) is the same as editing text in
the entry fields of other applications:

• Position the text insertion point by moving the mouse to the entry field
and clicking the left mouse button.

• Select (highlight) text by pressing the left mouse button at one end of
the text that you want to select and dragging to the other end.

• Select a word including a space or punctuation-delimited characters by
moving the cursor to the word and double-clicking the left mouse
button.

• Select the entire contents of an entry field by moving the cursor over the
entry field and triple-clicking the left mouse button.

• Delete selected (highlighted) text by pressing the <Backspace> key.

• Delete the character to the left of the insertion point by pressing the
<Backspace> key.

Figure 1-5 An Entry Field

Using Option Buttons

Option buttons (on the left in Figure 1-6) let you select a numeric value from
among a predefined set of choices. To use an option button, first press the

12

Chapter 1: The IRIXpro System Administration Tools

option button with the left mouse button. A menu pops up (on the right in
Figure 1-6). Move the cursor to your selection and release the mouse button.

Figure 1-6 An Option Button and an Option Button Menu

Using a File Prompter

File prompter windows (like the one in Figure 1-7) are used to specify
filenames. You can choose a filename by double-clicking a name in the
display area. You can also type the name into the filename entry field and
press <Enter> or click the Accept button to complete your filename selection.
You can change directories to the parent of the current directory by clicking
the Up button, or return to the directory where you started the tool by
clicking the Original button.

Common User Interface Operations

13

Figure 1-7 A File Prompter Window

Using Online Help

IRIXpro provides many online help files to help you as you learn to use the
tools. You access these files from the Help menu in the menu bar of many
IRIXpro windows (shown in Figure 1-8 on top) and from the Help button that
appears in some IRIXpro windows (on the bottom in Figure 1-8).

Figure 1-8 A Help Menu and a Help Button

When you choose “Help...” from a menu or click a Help button, a Showcase
window appears and displays the first help card.

14

Chapter 1: The IRIXpro System Administration Tools

Some help files contain several cards. Page through these cards using the
<Page Up> and <Page Down> keys in the cluster of six keys just to the right
of the <Backspace> key or click the left mouse button on the arrows at the
bottom of the pages. Make sure the cursor is in the Help window when you
press these keys.

When you’re finished reading a help file, you can close the Help window just
as you close any other window, for instance, by double-clicking the Window
menu button in the upper left corner of the window or by selecting “Quit”
from the Window menu.

15

Chapter 2

2. Software Distribution, User and Host
Management With propel

The propel distributed system management application provides a
convenient graphical interface to several system information databases.
Support is also included for using these databases to disseminate software
and system configuration file changes across your network. Using propel,
you can automatically keep host systems updated to the correct revision
level of applications or system software, and manage your system
configuration files with ease.

This chapter describes the propel software package. The following topics are
covered:

• Installation tips for propel. See “propel Installation Instructions” on
page 16.

• The propel system overview. See “The propel Management System” on
page 22.

• An overview of the way propel operates. See “How propel Works” on
page 24.

• The propel databases, which hold information about the systems that
receive files and the files themselves, as well as the rules that govern the
distribution. See “Using the propel Databases” on page 29.

• The Host database editor. See “The Host Database” on page 29.

• The Collection manager. See “The Collection Database” on page 33.

• The File database editor. See “The File Database” on page 41.

• The Distribution rule editor. See “The Distribution Rule Database” on
page 45.

• The User database editor. See “The User Database” on page 49.

• The User Group database editor. See “The Group Database” on page 53.

16

Chapter 2: Software Distribution, User and Host Management With propel

• Using advanced techniques to query the propel databases. See
“Additional Database Query Techniques” on page 60.

• Using the propel databases from a command line program. See “Using
the dbredit Utility” on page 65.

• Information necessary to run the propel program automatically or from
the command line. See “Running propel” on page 68.

• The propel file generation system to dynamically generate files for
distribution. See “The propel File Generation System” on page 69.

The purpose of propel is to allow the site administrator to maintain a master
set of system configuration and software distribution files on a single server
(or graphics workstation), and to distribute those files to other systems
throughout a heterogeneous network. The propel package consists of two
main parts:

• A set of databases that hold information about users, network host
machines, files that are to be distributed, and the set of rules that
governs the distribution.

• A set of commands to maintain and modify the propel databases and
execute the distribution.

propel Installation Instructions

Use the standard Silicon Graphics installation utility inst(1M) to install the
IRIXpro software, including the propel application. Your system must be
running IRIX version 5.3 or later for the IRIXpro installation to succeed.

The propel application includes a database and programs to edit the
database. Plus, a number of sample scripts are included to load the databases
by parsing system files. Individual sites will want to change these scripts to
fit their configuration.

Initializing the Host Database

When you install propel, the host database is initialized automatically. If you
wish to reinitialize the database at any time, enter the following command
while logged in as root:

propel Installation Instructions

17

dbredit host init

Remember that this command will eliminate all current entries in your Host
database.

Automatically Loading the Host Database

All systems using the propel software must have a record in the propel Host
database. The easiest way to place all your systems in the database is to parse
the standard system files /etc/hosts and /etc/ethers, and load the system names
directly into the database. There are a pair of scripts provided with the propel
software that parse these files and load the database. The first is a perl script,
/usr/IRIXpro/sample/propel/host_parser that reads through these system files,
and outputs one line for each system name that it finds. The output format
is that of a TCL keyed list, which can be inserted into the host database using
the dbredit command. Running the script /usr/IRIXpro/sample/propel/add_hosts
works for many sites. You may edit the host_parser script to make changes to
fit your local needs.

The propel database has one entry for each “host,” but each host can have
multiple network interfaces, and therefore multiple entries in the hosts file.
The standard host_parser script recognizes the extra interfaces of hosts if they
have a comment of the format GATE(hostname) or if the primary name for
these interfaces is of the form gate3-hostname. The test for such names is
clearly marked within the script and can be changed to fit local conventions.

The most useful script available for populating your propel Host database is
/usr/IRIXpro/sample/propel/find_hosts. Invoked with an IP subnet number (in
the form 123.45.67) as an argument, this script sends an ICMP echo (ping)
request to each possible node (0-255) on the specified subnet. When a remote
host responds, it sends an SNMP request to the remote host and creates a
record in the Host database with any data that is returned.

Once a record exists in the Host database for each host, it is a good idea to
fill in the remaining information for each host. This can be done by
completing each entry in an editor, or as a batch update. There is a very
simple script that attempts to attach to each machine using the rsh(1)
command, and reading information from the uname(1) command to glean
the standard information. This script is /usr/IRIXpro/sample/propel/host_info,
and it outputs a line for each machine that successfully completes the

18

Chapter 2: Software Distribution, User and Host Management With propel

process. There is a simple perl wrapper program, /usr/IRIXpro/sample/propel/
batch_update, that takes a file of host_info output lines and performs the
updating in the Host database. A more powerful script, /usr/IRIXpro/sample/
propel/update_hosts, updates the records of each host in the database by
parsing the result of an SNMP request for the sysDescr variable. If you are
running SNMP on the client hosts then this script should provide the best
automatic updating.

If you are administering a network of Silicon Graphics systems, the
following steps will initialize and populate your Host database. If you are
administering a heterogeneous network, not all hosts may be located and
entered in the database through this process. If this happens, you may need
to edit the databases with the hostedit editor, as described in “Editing the
Host Database.” Follow these steps to populate your database:

1. Certify that the entire IRIXpro distribution has been installed on your
master server system and log in as root or as a member of the user
group irixpro.

2. Obtain a basic listing of the hosts on your network from the /etc/hosts
and /etc/ethers files with the command:

/usr/IRIXpro/sample/propel/add_hosts

3. Next, use the command

hostedit

to view and edit the Host database entries for completeness and
correctness. You may wish to create a collection (see “The Collection
Database” on page 33 for more information about creating collections)
of all your Silicon Graphics systems at this time if you need to
distribute the SNMP agent software to them.

4. Certify that an SNMP agent (snmpd) is running on each host on the
network. On each host, enter the command:

ps -ef | grep snmpd

5. If Silicon Graphics systems need to have snmpd installed, use the /usr/
IRIXpro/sample/propel/snmp_push script. This script adds File database
records for all files needed to run snmpd and hpsnmp on a host.

After running the snmp_push script, you can enter the command

runpropel snmp-5.3 ‘os=”IRIX 5.3”’

propel Installation Instructions

19

to push SNMP to all Silicon Graphics systems running IRIX 5.3 or later.
You can use any host query to select the correct hosts in your domain.

For non-Silicon Graphics systems, you must make sure that a
compatible SNMP daemon is running. Consult your documentation for
each system to determine how to obtain an SNMP daemon.

6. Finally, use the command

update_hosts

to use SNMP to obtain any remaining fields from your SNMP hosts.

You can also use the /usr/IRIXpro/sample/propel/find_hosts script, which
performs many of the same functions. This script searches your network for
other hosts and populates the database using SNMP responses. Obviously
this command is only useful when the SNMP daemon is running on all your
systems. The command has the syntax:

find_hosts subnet

The script pings each possible address on the given subnet. For example, if
given the subnet argument 127.0.0, find_hosts returns the following:

Trying: 127.0.0.1
Address 127.0.0.1 pings, but is not in database.
Does not answer SNMP request.

Trying: 127.0.0.2
Trying: 127.0.0.3
Trying: 127.0.0.4

And so on up to address 127.0.0.255. IP address 127.0.0.1 is the standard
loopback interface. The ping response received was from the local host.
When this command is used on a valid subnetwork, the database is
populated using the SNMP responses from the hosts. You must be logged in
as root to use find_hosts.

Creating the Collection Database

Once you have populated your Host database, you should create your first
set of collections of hosts. Instructions for creating and modifying collections
are found in the section titled “The Collection Database” on page 33.

20

Chapter 2: Software Distribution, User and Host Management With propel

Populating the User and Group Databases

The script used to automatically populate both the User and Group
databases at once is /usr/IRIXpro/sample/propel/add_users. This script parses
the /etc/passwd and /etc/group files to build these databases. The script is
sophisticated enough to bypass NIS entries in these files, but does generate
entries for accounts such as uucp and demonstration users.

As root, enter the command:

/usr/IRIXpro/sample/propel/add_users

Loading the File Database

Initially, you must create a set of files that can be distributed to client hosts.
The creation process includes putting the files into the /var/IRIXpro/propel/
data directory, and creating a File database entry for each file. Files can also
be automatically generated before they are distributed by setting a generator
command in the File database record. Scripts are included in your propel
application for generating the files /etc/hosts, /etc/ethers, and the DNS maps,
using information from the Host database. Each of these sample scripts must
be edited to deal with local naming conventions at your site.

Files can be distributed from locations other than the /var/IRIXpro/propel/data
directory if slave servers are not used, that is, only if files are distributed
from the original server system directly to the final client systems. By
default, only the data directory can be distributed to slave servers, which
subsequently distribute the files to client systems. This behavior can be
changed, however, by editing the /usr/IRIXpro/bin/runpropel script.

The propel License Manager (lm_tcp)

The lm_tcp daemon is the propel license manager, and is controlled by
chkconfig(1M) and the /etc/init.d/propel script. When propel is installed, the
value of the chkconfig variable propel is set to on and the license manager
daemon (lm_tcp) is invoked.

propel Installation Instructions

21

Note: If you have trouble starting the database editors once you have
installed propel, you may need to explicitly start the license manager daemon
/usr/IRIXpro/bin/lm_tcp by issuing the commands:

/etc/init.d/propel stop

/etc/init.d/propel start

You must be a member of the user group irixpro. For complete information
on user groups, see the IRIX Advanced Site and Server Administration Guide.

propel and rdist

The runpropel program uses the industry standard utility rdist to distribute
files from master servers to slave servers, and from slave servers to client
hosts. The rdist utility originates from the BSD releases and is a standard
utility under most UNIX® operating systems. It is also freely available on
the Internet in source form so that it can be ported to most other systems. The
purpose in using a standard file distribution program is to make propel
useful in a heterogeneous environment. The rdist utility is distributed with
IRIXpro in the IRIXpro.sw.gifts installation package. When installed, the
source is placed in the /usr/people/4Dgifts/rdist-6.1.0 directory

The rdist program pushes files using a generalized configuration file to
control the distribution. The runpropel program generates the necessary rdist
configuration files (known as Distfiles), and then runs rdist on the Distfiles.

All propel servers and clients must have the 6.1 version of the rdistd daemon
installed, at a minimum. The propel software works with any version of rdist,
but the version shipped with propel is rdist 6.1. The use of rdist 6.1 is strongly
recommended for its extended logging, improved security, and improved
performance. There are, however, some sites that cannot build the new rdist
software but have the BSD software running. These sites must use the old
distribution software on the master, and a modified master runpropel script.
If you would like to use propel with an older version of rdist, you must first
unset the LOGERRS variable in the /usr/IRIXpro/bin/runpropel command
script. To set the LOGERRS variable, edit the runpropel command script and
change the line that reads:

LOGERRS=”-l syslog=warning,nerror,ferror:file=/usr/propel/
rdist/log.$FREQUENCY=all:stdout=warning,nerror,ferror -L
syslog=all”

22

Chapter 2: Software Distribution, User and Host Management With propel

to read as follows:

LOGERRS=””

Server/Client Security

The propel application currently uses rdist for its distribution mechanism,
which means that every client system must trust at least one other system on
the network as its server. If files are to be pushed directly from the master
server to client systems, then each client system must place the master
server’s hostname in its /.rhosts file. If a hierarchical push strategy is used
then each client must have the hostname of the slave server from which the
client will receive files in the client’s /.rhosts file, and the slave server must
have the hostname of the master server in its /.rhosts file. Files may be pushed
with the UID of a user other than root, in which case the .rhosts file in that
user’s home directory needs to include the server’s system name.

How to Use propel

The following sections explain how to get the most out of propel for various
tasks. This is not an exhaustive list. The configurability and extensibility of
IRIXpro allow you to modify and extend the software to meet the individual
needs of your installation.

The propel Management System

There are six databases that hold the information needed by propel. The
databases hold information about:

• Collections of related hosts

• Information about the files and file packages being sent and received

• Groups of users

• Hosts that send and receive files

• Information about the rules under which files and packages of files are
distributed to hosts and collections of hosts.

• User accounts

How to Use propel

23

A graphical tool and command-line interface is provided for editing each
database, as well as an example script that shows how to build the initial
Host database from the standard system files. The command

propel

brings up a standard desktop view of the propel tools. The desktop view
appears similar to this, shown in Figure 2-1:

Figure 2-1 The propel Directory View

Alternately, you can invoke each tool on its own with one of the following
commands:
/usr/IRIXpro/bin/coledit
/usr/IRIXpro/bin/fileedit
/usr/IRIXpro/bin/groupedit
/usr/IRIXpro/bin/hostedit
/usr/IRIXpro/bin/ruleedit
/usr/IRIXpro/bin/useredit

These commands bring up the graphical tools for the Collection, File, Group,
Host, Rule, and User databases, respectively.

Icons in any propel tool window can be dragged and dropped on other propel
tool windows to fill needed fields, or to other IRIXpro windows as
appropriate. For example, you may populate a collection by dragging host
icons from the Host database editor and dropping them in the appropriate
window of the Collection manager.

24

Chapter 2: Software Distribution, User and Host Management With propel

The command line interface for editing databases is dbredit(1M). This
command allows you to edit the database of your choice. The dbredit utility
is completely described in the dbredit(1M) reference page, but an overview is
also provided in this Guide in the section titled “Using the dbredit Utility”
on page 65.

How propel Works

The propel software package is highly flexible. In fact, the individual
administrator who uses propel defines virtually every parameter of the
operation. As an example, propel does not come with a preconfigured set of
rules concerning the frequency with which files are propagated. The terms
“Daily” and “Weekly” mean nothing to propel until you define them. You
enter terms as parameters in the propel databases, and then use different
commands to query the databases and execute the distributions based on
those terms. It is therefore vitally important that you plan your propel
strategy in advance to avoid confusion.

It is this flexibility that makes propel a powerful tool. Because there is not a
predefined set of rules about concerns such as the frequency of the
distribution and the naming conventions of files and packages of files, you
are not restricted in your use of propel to simple hourly, daily, or weekly
updates, though these might form the bulk of your usage.

You will probably start your propel databases by listing the host machines to
which you will distribute files. This is a straightforward process of listing the
names of the machines and their network addresses and other pertinent
information about them. This is where you start defining your propel
environment. The fields in the Host database that describe the manufacturer,
OS revision level, and other such information can be vitally important when
you wish to target a very small subset of a great number of hosts for
distribution. There are no preset entries for these fields, so you can use them
(especially the comment field) as you wish. The Fill button on the hostedit
window is provided to assist you in populating your database. If you list the
hostname or IP address of a workstation on the network and use the mouse
to click the Fill button, propel uses SNMP to query the host itself for answers
to as many of the other fields as possible.

The Collection database is used to make collections of hosts from the Host
database. This is done through making queries to the Host database. All

How to Use propel

25

hosts that match the query parameters you select will compose the
collection. To prepare for these queries, it is recommended that you fill in all
fields in each Host database record.

The User database allows you to list all the users at your site and manage
that information from a central server. Since all user information is managed
at one place, you can be sure that user names and UID numbers are not
duplicated, and that departing users will be removed from all machines at
the site. You can also use this database to provide access to new systems for
existing users. The /etc/passwd and /etc/group files can be generated for and
distributed to any system on your network by this database.

The Group database performs the same function for users that the Collection
database provides for hosts. This database allows you to make groups of
users with related needs or other common factors. The groupedit tool allows
you to edit and visualize your user groups.

The File database allows you to list the files that are to be distributed in much
the same manner that you listed your host systems and users. There is a field
in each file entry called “Package” that lists the name of a file package (a
group of related files.) There can be more than one entry in the File database
for each file you wish to distribute. You may wish to place a file in more than
one package, or you may wish to have a file generated by one program for
some hosts and another program for other hosts. In these cases, you make
two entries in the File database that both point to the same file, but with
different file-generating programs or in different packages.

The most flexible of all the tools is the Rule database. By itself, the Rule
database takes no action. The runpropel command searches the Rule database
for the parameters given on the runpropel command line and executes any
rules that match those command line parameters. Thus, you may create a
rule that says that files A and B and file package C are to be distributed to
host collection “engr” and to any client host with a hostname beginning with
the letter “Q,” and the frequency of the distribution is to be “walnuts.” That
frequency has no meaning until you assign it a meaning by the way you use
runpropel.

Typically, distributions of a regular frequency are managed through the
cron(1) facility of your workstation or server. The cron utility does define
regular time frequencies, so it is possible to simply tell cron to execute the
command

26

Chapter 2: Software Distribution, User and Host Management With propel

runpropel -f walnuts

every day at exactly 2 PM. Thus, “walnuts” means “daily at 2 PM” because
you set it up to have that meaning. This may seem like a lot of work to
perform a simple task, but the advantage comes when you want to change
the meaning of “walnuts.” You then have only to change your cron
command, and not the database entries of every rule that runs with a
frequency of “walnuts.”

Once you become comfortable with the concepts behind propel, you can
configure the software to suit your needs exactly. The graphical tools make
this configuration easy and intuitive. There is a command line interface
available through the dbredit(1M) command for server users with no
graphics capability.

Using propel to Manage a Domain

This section contains some information on using propel to simplify the
management of a large network domain.

Distributing Silicon Graphics Software With propel

Silicon Graphics currently releases all software in a proprietary format. This
format can only be installed using the inst(1) program. In the past it has been
very difficult to upgrade a large number of hosts with inst because it
required that the host be running from the miniroot, and required a great deal
of interaction with the administrator. New versions of inst support live
installations, and installations from a configuration file of preselected
options. This allows the administrator to ‘‘walk through’’ an installation on
one host, saving his or her choices into a configuration file, and then
performing identical installations on other hosts while the hosts are running,
with no interaction. If the configuration file is checked into the propel File
database and distributed to a group of machines with the inst command
specified as the exit operation, an entire network can easily be upgraded
from a central host with propel invoking inst on several hosts at the same
time, and logging errors for any installation that fails. To perform a mass
installation, distribute the inst configuration file, and specify a command
such as:

inst -a -f machine:/location_of_package -F config-file

How to Use propel

27

For information on creating an inst configuration file, see the Software
Installation Administrator’s Guide.

Internal Data Distribution With propel

For sites that develop and use in-house programs or data, propel is an
obvious choice for keeping all the hosts on a network at the same software
revision level. Since rdist is supported on nearly every version of UNIX in
existence, propel can instantly be installed and used to manage large
networks of heterogeneous systems.

Installing Free Software Packages With propel

Typically, packages obtained from public networks have the ability to install
themselves into the non-standard directory of your choice. For instance, all
of the tools from the Free Software Foundation have a DISTDIR variable in
the Makefile, which specifies the top level directory in which the software is
to be installed. For example, if you install the GNU C compiler into the
directory /var/IRIXpro/propel/data/gcc, you can add a file database record for
the directory, then distribute the directory to client systems. For example,
you could install the gcc directory onto all of your Indigo and Indy systems
by giving the command:

runpropel gcc ‘model~Ind*’

You can also keep your client systems up to date with the gcc software by
adding a distribution rule to update them weekly, and then by occasionally
deleting the old gcc package, and by installing a new version of gcc.

Host Information Management With propel

The propel application uses a full-featured database to maintain information
about hosts in your domain. The Host database is automatically locked and
unlocked during operations so that many users can update the information
concurrently, and the database deals with complicated queries quickly.
Enough information can be kept in the propel Host database that all of the
standard host files can be generated using the database, centralizing all host
management into a single location. Scripts are included to create the system
files /etc/hosts, /etc/ethers, and all of the DNS databases. The Host database
can also be used to generate and distribute the DBM databases for the
optional NIS software.

28

Chapter 2: Software Distribution, User and Host Management With propel

User Information Management With propel

The User database performs the same function for your network’s users that
the Host database performs for your hosts. Each user has an entry that can
be copied to any new system to which that user needs access. Furthermore,
you can load the User and Group databases, you can generate the /etc/passwd
and /etc/group files, and you can create user accounts with the following
scripts found in /usr/IRIXpro/sample/propel.

account Generates accounts for a list of users by using propel to push
a copy of the local guest account to the remote host, and
changing the permissions after the transfer is complete.

add_users Loads the User and Group databases by parsing the local
host’s /etc/passwd and /etc/group files.

make_group Generates a file in standard /etc/group format from the propel
Group database.

make_passwd Generates a a file in standard /etc/passwd format from the
propel User database. It takes a user query as an argument
so you can include part or all of the User database in the
generated file.

Localizing propel

The propel application is written primarily using human-readable scripts.
The editors are all created with the sgitcl programming language and an
SQL database. The user interface routines are all created using the Bourne
Shell (/bin/sh), and the sample scripts are a mixture of sgitcl, sh, and perl. The
only portions of the software that cannot be changed easily are the query
parsers, which were built with lex and yacc, and the sgitcl interpreter, which
requires a database development license.

Fields can be added easily to any of the databases, and to the editing tools by
adding a small block of code. Tools can be created to maintain system files
other than those already supported by existing propel scripts.

Using the propel Databases

29

Using the propel Databases

The following sections explain the fields in each of the propel databases and
offer specific instructions in the use of the various database editing utilities.
A section on formulating queries is also provided. A final section offers
instruction in the use of the dbredit(1M) command-line database editor.

The Host Database

The Host database contains information about all of the machines in an
administrative domain. Each record in this database contains the following
fields:

Hostname This field holds the name that uniquely identifies a system
within an administrative domain. This should match the
system hostname in /etc/sys_id. The system named in this
field is the named system in all subsequent fields. (For
example, the name of the system might be Wilmer.)

Domain This field holds the network domain name of the system, for
example, lab.eng.com.

Aliases This field contains a list of alternative alias names for the
named system. These names must each also be unique
within the administrative domain. (For example, an alias for
the named system might be labmachine.)

IP Addresses This field holds a list of software IP addresses for the named
system. (For example, software IP addresses have the form
123.45.67.890)

Lease This field is not used by the editor, but exists for the use of
the proclaim application. The field holds information about
the expiration time of the system’s IP address provided by
proclaim.

Location This field holds the location of the named system. For
example, the location of a system might be “Upstairs Lab.”

Mail Exchangers
This field holds the list of system names that can receive
mail and hold it for this host. For example, the list of
systems might be stuart.eng, gordon.eng.)

30

Chapter 2: Software Distribution, User and Host Management With propel

MAC Addresses
This field holds the network hardware address of the host.
For example, this field might contain information similar to:

00:00:A7:10:91:03

Manufacturer This field describes the named system by the name of the
hardware manufacturer. (For example: SGI.)

Model This field contains the manufacturer’s model designation of
the named system. (For example: Indigo.)

OS Release This field specifies the operating system software revision
level on the named system. (For example: IRIX 5.1.)

Owner This field names the person who should be held responsible
for the named system. For workstations, this person is
usually the primary user, and for servers the usual person is
the administrator who acts as a point of contact for the
server users. (For example, Wilmer McLean.)

Server This field identifies the slave distribution server system that
should update the named system. (For example, the slave
server might be called distmachine.eng.)

System ID This field contains the serial number of the system
hardware.

Comment This is an open field that can be used for any purpose.

The standard system host databases, such as /etc/hosts, /etc/ethers, and the
named maps in /var/named can all be generated using this database as input.
Under the propel distribution system, administrators need maintain only one
list of host information. System data files can be generated from this list, thus
simplifying large domain host administration. For more information on file
generation using propel, see “The propel File Generation System” on page 69.

Editing the Host Database

To edit the Host database, enter the command:

/usr/IRIXpro/bin/hostedit

Using the propel Databases

31

You see the following initial screen, shown in Figure 2-2:

Figure 2-2 The Host Database Editor

When you first see this screen, there are no hosts listed and only the clear
button is functional.

To add a host to your database, you must fill in the following fields (which
appear in red in the hostedit window):

32

Chapter 2: Software Distribution, User and Host Management With propel

• Hostname

• IP address (at least one)

• Domain

When there are entries in these three fields, the add, search, and fill buttons
become functional. You can see a change in their visual presentation. If
possible, you should enter all the fields. Once entered, you can use each field
as a query parameter for that record in the Host database.

Inserting a Host Entry

Once you have entered the host’s information, press the add button by
placing the cursor over the button and pressing the left mouse button. You
see the information appear in the window in a slightly different format. This
tells you your entry has been accepted into the database. If you do not know
all the information, you can also use the fill button to automatically query the
system itself for various fields, such as the MAC address and OS version
fields, before you add the entry. The fill button works only if the remote
system is running the snmpd daemon. See “Running snmpd on Your
Network” in Chapter 1 for information on starting snmpd on a remote
system.

Updating a Host Entry

To change this entry, click the entry in the window with the left mouse
button to highlight it. The information you entered appears in the fields in
the lower part of the screen. Change these entries as you wish and then press
the modify button.

Querying the Host Database

For an example of using the Host database fields as query points, you can
make a query to the database to find all machines that are owned by user
Kate and are at OS Release level 5.3. Begin by using the mouse to press the
Clear button. This clears the fields of all information. Then enter your query
parameters in the appropriate fields. In this case, enter ‘‘Kate’’ in the Owner
field and 5.3 in the OS Release field. You can use glob expressions as wild
cards to search in any field. For more information on using glob expressions
in queries, see the section titled “Additional Database Query Techniques.”

Using the propel Databases

33

When you have made your query, use the mouse to press the search button.
All hosts in your database that match the specified parameters will be
displayed in the window. If you know that there is only one system owned
by any individual, you can use the fill button to display the remaining fields.

Parsing System Files Into the Host Database

A tool is provided to allow you to quickly parse your standard system files
into the Host database. This tool is add_hosts(1) and is found in the directory
/usr/IRIXpro/propel/sample. The add_hosts command parses your system’s
existing /etc/hosts file and inserts a basic record for each host found into your
propel Host database. The update_hosts utility uses snmpd to fill in the
remaining fields for each host running snmpd. For step-by-step instructions
on filling your Host database using these programs, see “Automatically
Loading the Host Database” on page 17.

For more information on running snmpd on all your hosts, see the section
titled “Running snmpd on Your Network” in Chapter 1.

The Collection Database

Records in the Collection database have the following fields:

name The name of the collection of hosts. Make this name unique
from any hostname.

collection The query parameters to define the collection. You can
query on any field in the Host database. The field is made
up of a list of typed fields separated by newlines (<Enter>

keystrokes). The first word on each line is the type of query
that the line represents. The available types are hostname,
hostquery, and collection.

comment Any notes you wish to make about the collection.

Editing the Collection Database

The coledit utility allows you to define collections of hosts for propel. A
collection of hosts is simply a group of hosts that you have defined. Usually,
collections are made of hosts with some common factor, such as
manufacturer or usage. Since you specify the attributes of a host by using the

34

Chapter 2: Software Distribution, User and Host Management With propel

hostedit utility, you can prepare hosts to be part of a collection when you
enter them in your Host database. For example, you can enter several hosts
in your Host database with the comment “engineering lab” in the comment
field. Then, when you use coledit to create a collection, you specify the
“engineering lab” comment as the query field when creating the collection.
The syntax for these queries is described in “Additional Database Query
Techniques” on page 60. All hosts that you entered with that comment
becomes part of the collection. Then you name the collection, and use the
Rule database to specify how and when the collection should receive files.
The names of collections and the Host database queries that define the
collection are stored in the Collection database.

Once defined, the coledit utility stores the parameters of the collection in a
database. Enter the command:

/usr/IRIXpro/bin/coledit

and you see the following window, shown in Figure 2-15:

Figure 2-3 The Collection Manager

When you bring up the Collection Manager window after your database is
populated, you see an icon and a name for each collection in the database.

Using the propel Databases

35

Adding a Collection of Hosts to the Collection Database

To use the coledit tool to add a host collection to your Collection database,
place the mouse cursor inside the coledit window and use the right button of
the mouse to bring up the popup menu. There are several options:

Help Brings up a help card.

Add Collection Brings up the Add Collection window.

Add Host Adds a host to an existing collection.

Add Query Brings up the Add Host Query window, and allows you to
add an additional query parameter to select hosts for an
existing collection.

Remove Selected
Removes the selected collection.

Edit Selected Hosts
Brings up the hostedit tool with the selected host’s
information displayed. To select a host, you must have a
collection displayed in a collection display window.

Preview Shows you the list of hosts currently selected in a collection.

Select the Add Collection option to create a new collection of hosts. When
you select this option, you see the new window, shown in Figure 2-16.

Figure 2-4 The Add Collection Window

36

Chapter 2: Software Distribution, User and Host Management With propel

You must enter a name for the collection, then use the left mouse button to
press the Accept or Apply buttons to create your new collection. The Apply
button creates your new collection, and retains the Add Collection window,
so you can continue to create more collections conveniently. The Accept
button creates your collection and removes the Add Collection window. The
Cancel button cancels the operation without creating the new collection.

Once you have created the collection, you must specify hosts to be part of the
collection. You should notice that an icon has appeared in the coledit window.
If you made two collections and called one ‘‘first collection,’’ and the other
‘‘second collection,’’ the window now looks like Figure 2-17.

Figure 2-5 A Populated Collection Manager Window

Using the propel Databases

37

To add a list of hosts, a list of collections, a host query, or any combination of
these things to your new collection, double-click the left mouse button with
the mouse cursor over the icon for the new collection. You see a new window
that looks something like Figure 2-18.

Figure 2-6 A Collection Display Window

Now use the right mouse button to bring up the popup menu, and select
either the Add Host, Add Collection, or Add Query options to populate your
collection.

38

Chapter 2: Software Distribution, User and Host Management With propel

The Add Host option brings up the Add Host window, shown in Figure 2-
19, with the entire list of hosts from your Host database.

Figure 2-7 The Add Host Window

To place a host in your new collection, place the mouse cursor over the name
of the host you wish to select and double-click the left mouse button. When
you are finished selecting individual hosts, click the Accept button to secure
your changes and remove the Add Hosts window.

The Add Collection option brings up the Add Collection window,
previously shown in Figure 2-16. All your currently configured collections
are shown in this window (although in this example, you are creating your
first collection, so no collections may appear at this time). As with the Add
Host window, double-click the name of a collection you wish to add to your
new collection and complete your changes by pressing the Accept button.

Using the propel Databases

39

The Add Query option brings up the Add Host Query window, shown in
Figure 2-8.

Figure 2-8 The Add Host Query Window

This window allows you to enter a query to the Host database. You must
formulate your query according to the rules outlined in “Additional
Database Query Techniques” on page 60.

40

Chapter 2: Software Distribution, User and Host Management With propel

When you have used these various windows to populate your collection, the
collection display window looks something like the window shown in
Figure 2-9.

Figure 2-9 A Populated Collection

The collection shown in Figure 2-9 has a single host, a pair of host queries,
and another collection as its elements. This is to demonstrate the various
items that may go into a collection.

Once you have entered all the information and created your collections,
press the apply button in the Collection Manager window to place your
collections in the Collection database.

Using the propel Databases

41

Updating a Collection Database Entry

To change an entry, click the icon with the left mouse button to highlight it,
and the Collection Display window for that collection appears. Change these
entries as you would if you were making a new collection, then click the
Apply button to finalize your changes.

The File Database

The File database contains all the necessary information about the files that
are to be distributed to systems on your network.

Records in the File database have the following fields:

Source The field usually contains the name of a file in the /var/
IRIXpro/propel/data directory. The file specified in this field
becomes the named file in all subsequent fields in the
database entry. (For example, the file named might be: /var/
IRIXpro/propel/data/usr/local/bin/progname). Any file on your
system can be specified as a source file to be distributed
directly to clients, but only files from the /var/IRIXpro/propel/
data directory structure can be distributed to slave
distribution servers for further sub-distribution to clients.
Always specify the full (absolute) pathname of each source
file in this database.

Generator If this file is generated, the name of the program that
generates the file goes here.

Destination This field specifies the pathname on the remote system
where the named file will be placed (for example, this field
might contain the pathname: /usr/local/bin/progname).

Pre-OP This field specifies any commands to be run on the remote
system before the named file is installed (for example, this
field might contain the command: /etc/killall progname).

Post-OP This field specifies any commands to be run on the remote
system after the named file is installed (for example, this
field might contain the command: /usr/local/bin/progname).

42

Chapter 2: Software Distribution, User and Host Management With propel

Exit-OP This field contains any commands to be run on the remote
system after the last file in the distribution rule is
distributed. For example, if certain daemons need to be
restarted to read distributed configuration files, this field
should contain the command to restart them.

Package This field holds the name of the software package that the
named file belongs to, if such a package exists (for example,
the named file could be part of a package called: pkg.1).

Comment This field is available for any purpose.

Editing the File Database

This database contains the names of the files that are propagated to systems
in your propel network. The File database also contains instructions for
commands to be run on the client system before and after the file is
transmitted, and information about file packages of which this file is a
member.

Using the propel Databases

43

The command /usr/IRIXpro/bin/fileedit invokes this tool, and you see the
following screen, shown in Figure 2-10.

Figure 2-10 The File Database Editor

Adding a File to the File Database

To use the fileedit tool to add a file to your File database, you must enter the
following information in the fields provided:

• Source pathname

• Destination pathname

44

Chapter 2: Software Distribution, User and Host Management With propel

The remaining fields are optional, but you should fill them in, if at all
possible, for use in file queries. The source pathname field is where you list
the location of the file to be propagated. Typically, all files are located in the
directory /var/IRIXpro/propel/data. If you have many files and file packages to
propagate, this directory may have many subdirectories or may be linked to
a separate directory altogether. Only source files in this directory structure
may be distributed to slave distribution servers for further distribution to
client hosts. If you are distributing a file directly to the final client host, you
need not have the source file in this directory structure, though it is
recommended for convenience and organization.

Once you have entered the file’s information, press the add button by placing
the cursor over the button and pressing the left mouse button. You see the
information appear in the window in a slightly different format. This tells
you that your entry has been accepted into the database.

To obtain a listing of all source files, packages, or destination locations in
your database, use the right mouse button to bring up a popup window with
the cursor over the appropriate field. For example, if you choose the List
option from the popup menu over the Source field of the File database editor,
you see a window very much like that shown in Figure 2-11.

Figure 2-11 A List of Source Files in the File database

Using the propel Databases

45

Updating a File Database Entry

To change this entry, click the entry in the window with the left mouse
button to highlight it, and the information you entered appears in the fields
in the lower part of the screen. Change these entries as you wish and then
press the modify button.

Querying the File Database

For an example of using the File database fields as query points, you can
make a query to the database to find all files that are part of the package
‘’network configuration’’ and have the comment ‘’fully propagated.’’ Begin
by using the mouse to press the Clear button. This clears the fields of all
information. Then enter your query parameters in the appropriate fields.
Then use the mouse to press the search button. All files in your database that
match those two parameters will be displayed in the window.

The Distribution Rule Database

This database holds a set of rules that control the distribution of files and
packages to host systems. This file uses a very simple rule set to describe
which files should be pushed to which systems, and under what conditions
the push takes place.

The fields in this database are:

Frequency This field holds a simple term of your choice to describe
how often files and packages with this frequency are
pushed. For example, you may set your frequencies to Daily
and Weekly, and run them accordingly with cron, or you can
simply call the frequencies A, B, and C and select your own
definitions of those terms through cron or manual use of the
runpropel command. The runpropel command line that you
issue determines the actual operation; this field is merely
your tag for a frequency group that you define.

Name This field contains a name for the distribution rule.

File Query This field contains a file attribute query. Use this field to
enter keywords to find in the File database.

46

Chapter 2: Software Distribution, User and Host Management With propel

Host Query This field contains a host attribute query. Use this field to
enter keywords to find in the Host database.

Comment This is an unused text string that can be used for noting
information about a rule.

Editing the Rule Database

The ruleedit command allows you to specify which files or packages of files
are pushed out to a list of client hosts. The Rule database stores the rules you
have created with the ruleedit command. Enter the command:

ruleedit

Using the propel Databases

47

You see the following screen shown in Figure 2-12.

Figure 2-12 The Distribution Rules Editor

Adding a Distribution Rule to the Rule Database

To use the ruleedit tool to add a distribution instruction to your Rule
database, you must enter the following information in the fields provided:

Frequency of the distribution
This is a frequency parameter of your choice, as discussed
in “How propel Works” on page 24.

A Name for the rule
Every rule must have a name.

File query parameters
This must be a query formed according to the rules
described in “Additional Database Query Techniques” on
page 60.

48

Chapter 2: Software Distribution, User and Host Management With propel

Host query parameters
This must be a query formed according to the rules
described in “Additional Database Query Techniques” on
page 60.

Once you have entered the rule’s information, press the add button by
placing the cursor over the button and pressing the left mouse button. You
see the information appear in the window in a slightly different format. This
tells you that your entry has been accepted into the database.

The ruleedit window with a prepared entry looks something like the window
in Figure 2-13.

Figure 2-13 An Prepared Distribution Rule

Using the propel Databases

49

Updating a Rule Database Entry

To change an entry, click the entry in the window with the left mouse button
to highlight it. The information you entered appears in the fields in the lower
part of the screen. Change these entries as you wish and then press the modify
button.

Querying the Rule Database

To query the Rule database, begin by using the mouse to press the Clear
button. This clears the fields of all information. Then enter your query words
any field or combination of fields. Then use the mouse to press the search
button or press <Enter> . All rules in your database that match the query
parameters are displayed in the window.

The User Database

The User database contains all the necessary information about the users on
your network. For more information on users and groups and the contents
of these fields, see the IRIX Advanced Site and Server Administration Guide.

Records in the User database have the following fields:

User ID This field contains the user’s unique UID number. UID
numbers are integers from 0 to 65535. This field must be
filled for an entry to be accepted. See the IRIX Advanced Site
and Server Administration Guide for more information on
assigning User ID numbers if you are unsure about this
field.

Login This field contains the login name of the user. This login
name must be unique within your network domain.

Password This field contains the user’s encrypted password. By using
the right mouse button, you can select an option to allow
you to set the password in clear text. The password you set
will be encrypted and the encrypted text will be placed in
the field. You can also use the passwd(1) command and copy
the encrypted string from the /etc/passwd file. Be certain to
enter the encryption string exactly, or the password will not
function correctly.

50

Chapter 2: Software Distribution, User and Host Management With propel

Shell This field contains the user’s default login shell. This is
typically /bin/sh or /bin/csh.

Server This field contains the name of the user’s home system.
This home system should also be the user’s mail server.

Name This field contains the user’s full name. This field is
required for an entry to be accepted.

Groups This field contains the names of any user groups to which
the user belongs. Multiple groups may be specified in a
space-separated list. The first group listed in the user’s
primary group. This field is required for an entry to be
accepted.

Home This field contains the pathname of a user’s home directory.
(For example, this field might contain the pathname: /usr/
people/armistead).

Projects This field contains the names of any projects the user may
be associated with. Multiple projects may be specified in a
space-separated list. This field is provided as a convenient
mechanism for making collections of users through queries.
You may place any group-identifying tags in this field if you
choose.

Comment This field is available for any purpose.

Editing the User Database

This database contains the names and vital information of the users on your
network. The command /usr/IRIXpro/bin/useredit invokes this tool, and you
see the following screen.

Using the propel Databases

51

Figure 2-14 The User Database Editor

52

Chapter 2: Software Distribution, User and Host Management With propel

Adding a User to the User Database

To use the useredit tool to add a user to your User database, you must enter
the following information in the fields provided:

• User ID

• Name

• Group (at least one)

The remaining fields are optional, but you should fill them in if at all possible
for use in user queries. Any record associated with an actual user who will
be logging in should be fully filled out. The minimal requirements allow you
to reserve UID numbers without actually allocating them to specific users.
It is sometimes useful to reserve blocks of UID numbers in advance if you
wish to create future users in a certain group with consecutive UID numbers.

Once you have entered the user’s information, press the add button by
placing the cursor over the button and pressing the left mouse button. You
see the information appear in the display window in a slightly different
format. This tells you your entry has been accepted into the database.

Updating a User Entry

To change this entry, clicking on the entry in the display window with the
left mouse button highlights it, and the information you entered appears in
the fields in the lower part of the screen. Change these entries as you wish
and then press the modify button.

Querying the User Database

For an example of using the User database fields as query points, you can
make a query to the database to find all users that are part of the group
‘’networking’’ and which have the comment ‘’member of technical staff’’
Begin by using the mouse to press the Clear button. This clears the fields of
all information. Then enter your query parameters in the appropriate fields.
Then use the mouse to press the Search button. Records of all users in your
database who match those two parameters will be displayed in the window.

Using the propel Databases

53

The Group Database

Records in the Group database have the following fields:

Name The name of the group of users. Make this name unique
from any user or host name.

Group ID Number
The unique GID number associated with this group.

Query The query parameters to define the group. You can query on
any field in the User database. The field is made up of a list
of typed fields separated by newlines (<Enter> keystrokes).
The first word on each line is the type of query that the line
represents. The available types are username, userquery, and
groupname.

Comment Any notes you wish to make about the group.

Editing the Group Database

The groupedit utility allows you to define groups of users for propel. A group
of users is simply a selection of users that you have defined. Usually, groups
are made of users with some common factor, such as a common project or
organization. Since you specify the attributes of a user by using the useredit
utility, you can prepare users to be part of a group when you enter them in
your User database. For example, you can enter several users in your User
database with the comment “advanced engineering lab” in the comment
field. Then, when you use groupedit to create a group, you specify the
“advanced engineering lab” comment as the query field when creating the
group. The syntax for these queries is described in “Additional Database
Query Techniques” on page 60. All users with that comment become part of
the group. The names of individual users, User database queries, and other
groups that define the new group are stored in the Group database.

54

Chapter 2: Software Distribution, User and Host Management With propel

Once defined, the groupedit utility stores the parameters of the group in a
database. Enter the command:

/usr/IRIXpro/bin/groupedit

you see the following window, shown in Figure 2-15:

Figure 2-15 The Group Manager

When you bring up the Group Manager window after your database is
populated, you see an icon and a name for each group in the database.

Using the propel Databases

55

Adding a Group of Users to the Group Database

To use the groupedit tool to add a user group to your Group database, place
the mouse cursor inside the groupedit window and use the right button of the
mouse to bring up the popup menu. There are several options:

Help Brings up a help card.

Add Group Brings up the Add Group window.

Add User Adds a user to an existing group.

Remove Selected
Removes the selected group.

Edit Selected Users
Brings up the useredit tool. To select a user, you must have a
group displayed in a group display window.

Preview Shows you the list of users currently in a group. All User
database queries and other groups that are part of the
current group are fully expanded.

56

Chapter 2: Software Distribution, User and Host Management With propel

Select the Add Group option to create a new group of users. When you select
this option, you see the new window, shown in Figure 2-16.

Figure 2-16 The Add Group Window

You must enter a name for the group, then use the left mouse button to press
the Accept or Apply buttons to create your new group. The Apply button
creates your new group, and retains the Add Group window, so you can
continue to create more groups conveniently. The Accept button creates your
group and removes the Add Group window. The Cancel button cancels the
operation without creating the new group.

Using the propel Databases

57

Once you have created the group, you must specify users to be part of the
group. You should notice that a new icon has appeared in the groupedit
window. If you have previously used the add_user script, (described in
“Populating the User and Group Databases”) your Group Manager window
will already show many icons representing your existing user group. If you
make two new groups and call one ‘‘irixpro’’ and the other ‘‘user’’ the
window looks similar to Figure 2-17.

Figure 2-17 A Populated Group Manager Window

58

Chapter 2: Software Distribution, User and Host Management With propel

To add a list of users, a list of groups, a User database query, or any
combination of these things to your new group, double-click the left mouse
button with the mouse cursor over the icon for the new group. You see a new
window that looks something like Figure 2-18.

Figure 2-18 A Group Display Window

Now use the right mouse button to bring up the popup menu, and select
either the Add User or Add Group options to populate your group.

Using the propel Databases

59

The Add User option brings up the Add User window, shown in Figure 2-
19, with the entire list of users from your User database.

Figure 2-19 The Add User Window

To place a user in your new group, place the mouse cursor over the name of
the user you wish to select and double-click the left mouse button. When you
are finished selecting individual users, click the Accept button to secure your
changes and remove the Add User window.

The Add Group option brings up the Add Group window, previously
shown in Figure 2-16. All your currently configured groups are shown in
this window. As with the Add User window, double-click the name of a
group you wish to add to your new group and complete your changes by
pressing the Accept button.

Once you have entered all the information and created your groups, press
the apply button in the Group Manager window to place your groups in the
Group database.

60

Chapter 2: Software Distribution, User and Host Management With propel

Updating a Group Database Entry

To change a Group database entry, click the icon with the left mouse button
to highlight it, and the Group Display window for that group appears.
Change these entries as you would if you were making a new group, then
click the Apply button to finalize your changes.

Additional Database Query Techniques

The propel databases can be queried using query language rules and glob
expressions. The rules regarding glob expressions are based on the Bourne
shell glob expressions. See the section of the sh(1) reference page titled File
Name Generation for additional documentation on glob expressions.

There are two basic ways to query from the graphical utilities: direct and
indirect queries.

Direct queries are queries to the current database made through the editor
for that database. For example, to query the Host database through the
hostedit utility, you clear the screen with the Clear button on the utility, then
enter your query parameters in the appropriate fields and press the Query
button using the mouse.

Indirect queries are queries to a database other than the current database.
For example, an indirect query would happen if you are editing the Rule
database and you wish to query the Host database for a list of hosts to use in
the rule you are creating.

The principal difference between the two forms of database query is that in
the direct query, you simply fill in the desired parameter in the provided
field and press the Query button using your mouse. To make an indirect
query, you must fill in the field name from the database you are querying
and also fill in the desired parameter value. For example, a simple indirect
query in the host query field of the Rule database has the form:

fieldname = value

Any propel query menu allows you to form a query in this manner, and all
query fields have an option available from the popup menu (brought up by

Using the propel Databases

61

pressing the rightmost button on the mouse while the cursor is within the
query window) to expand the query immediately.

If you use this form to query for a host named pickett, you would form the
actual query like this:

hostname = pickett

You cannot immediately see the results of your query on an indirect query
unless you explicitly expand it. The results are not printed in the display
window of the database editor. The query takes place only when propel
executes and performs the distribution based on your query.

The advantage to this method is that you do not need to rebuild your
databases if you add a new file or host that will be subject to a query. For
example, if you have set a distribution to be sent to all hosts with the model
of “Indy” on a regular basis, you do not need to remake the distribution rule
if you add another “Indy” host. The new host is automatically selected by
the existing query. If you wish to check to see if your query parameters will
produce the desired results, use the editor for the database you are querying
indirectly or the dbredit command to make a test query using the same
parameters.

A glob expression in this type of query has the format:

fieldname ~ expression

For example, an actual query would be similar to this:

model ~ indigo*

or similar to this:

os ~ “IRIX 5.*”

You can use several query parameters at once on both direct and indirect
queries. In a direct query, simply fill in as many fields as you like before you
press the Query button on your database editor. For an indirect query, you
must form the query according to query language rules. For example, to
query for all hosts whose manufacturer is “SGI” or whose model name
begins with the characters “Ind” use the following query:

manufacturer = SGI, model ~ Ind*

62

Chapter 2: Software Distribution, User and Host Management With propel

With the above query, you have selected all hosts whose manufacturer is
listed as “SGI” as well as all hosts whose model name begins with “Ind.”
This is known as a logical ‘‘OR’’ query.

To select only those hosts whose manufacturer is listed as “SGI” and whose
model is listed as “Indy,” use the following logical ‘‘AND’’ query:

manufacturer = SGI && model = Indy

The difference is that the second query selects only those hosts that fulfill
both requirements, while the first query selects those hosts that fulfill either
requirement.

You can further expand your queries by incorporating more parameters. For
example, to select those hosts whose manufacturer is “SGI” and whose
model is “Indy,” and also the host named “callahan,” and any host with the
comment “Universal,” use the following query:

manufacturer = SGI && model = Indy, hostname = callahan,

comment = universal

Query Keywords and Glob Expressions

The query rules follow simple glob expression syntax. The following
keywords and operators are recognized:

all The all keyword returns all elements in the database. For
example, the Host database query

all && !labmachine

returns all the hostnames in the database except labmachine.

to The to keyword allows you to specify a range of records.
For example, the Host database query

iplist = 192.27.3.0 to 192.27.3.255

returns all addresses in the specified range. In the above
example, all hosts on the 3 subnet would be returned.

= The equal sign operator is the most basic operator. Given
alone, it indicates that the expression following describes
the desired query parameters.

Using the propel Databases

63

! The exclamation point operator indicates a logical “NOT”
operation. This operator negates the usual meaning of a
query parameter. For example, if you want to query for all
SGI manufactured hosts except the host “bragg,” use the
query:

manufacturer = SGI && ! hostname = bragg

!= The exclamation point negation operater followed by an
equal sign indicates “everything not equal to the following
expression.” For example, the query

manufacturer != SGI

selects all manufacturers except SGI.

> The Greater-Than operator selects all values greater than
the given expression.

>= The Greater-Than or Equal To operator selects all values
greater than or equal to the given expression.

< The Less-Than operator selects all values less than the given
expression.

<= The Less-Than or Equal To operator selects all values less
than or equal to the given expression.

&& The double ampersand operator indicates a logical “AND”
operation. It is used to indicate that both parameters in a
query must be satisfied to create a match. For example, to
select those hosts whose manufacturer is “SGI” and whose
model is “Onyx,” use the following query:

manufacturer = SGI && model = Onyx

You may use as many logical “AND” operators together as
you wish, and the meaning remains the same. All query
parameters put together with “AND” operators must be
satisfied to create a match.

|| The double pipe operator indicates a logical “OR”
operation. This means that only one query parameter needs
to be satisfied to create a match. For example, the query:

manufacturer = SGI || owner = armistead

64

Chapter 2: Software Distribution, User and Host Management With propel

matches all hosts whose manufacturer is “SGI” or that are
owned by “armistead” regardless of their manufacturer.
You may use as many logical “OR” operators together as
you wish and the meaning remains the same. Only one
query parameter in an “OR” string must be satisfied to
create a match.

() Parentheses enclose expressions that need to be evaluated
separately. For example, suppose you wish to evaluate a
query to find all hosts whose model is “Indy” except those
whose OS Release is “5.2,” and then add a query for all hosts
whose model is “Indigo.” In this case, you would use
parentheses to force the first parameters to be evaluated
before adding the last parameter. The syntax for this query
would be:

(model = Indy && ! os = 5.2), model = indigo

Query Shortcuts

Query shortcuts exist for each database. When querying the Host database,
the following shortcut rules apply:

• A single word, such as ‘‘upstairs ,’’ is assumed to indicate the name of
a collection. Thus, ‘‘upstairs ’’ is interpreted as equal to the query
‘‘collect:name = upstairs .’’

• A string of letter characters with periods interspersed is assumed to
indicate an individual hostname. Thus, ‘‘gordon.eng.biz.com ’’ is
interpreted as equal to the query ‘’hostname = gordon && domain =

eng.biz.com .’’

• A string of numeral characters with periods interspersed is assumed to
indicate an IP address. Thus, ‘‘192.27.0.1 ’’ is interpreted as equal to
the query ‘‘iplist = 192.27.0.1 .”

• A field name listed by itself matches all records where that field has an
entry. Thus, ‘‘owner ’’ returns all records where an owner is listed.

When querying the File database, the following shortcut rules apply:

• A single word, such as ‘‘newfiles ,’’ is assumed to indicate the name of
a package of files. Thus, ‘‘newfiles ’’ is interpreted as equal to the query
‘‘package = newfiles .’’

Using the propel Databases

65

• A string of letter characters with slashes (/) interspersed is assumed to
indicate a source file pathname. Thus, ‘‘/var/IRIXpro/propel/data/

etc/hosts ’’ is interpreted as equal to the query ‘’source = /var/

IRIXpro/propel/data/etc/hosts .’’

• A field name listed by itself matches all records where that field has an
entry. Thus, ‘‘source ’’ returns all records where a source filename is
listed.

When querying the Collection database, the following shortcut rules apply:

• A single word, such as ‘‘upstairs ,’’ is assumed to indicate the name of
a collection. Thus, ‘‘upstairs ’’ is interpreted as equal to the query
‘‘name = upstairs .’’

• A field name listed by itself matches all records where that field has an
entry. Thus, ‘‘name’’ returns all records where a name is listed.

When querying the Rule database, the following shortcut rules apply:

• A single word, such as ‘‘walnuts ,’’ is assumed to indicate the name of a
rule. Thus, ‘‘walnuts ’’ is interpreted as equal to the query ‘‘name =

walnuts .’’

• A field name listed by itself matches all records where that field has an
entry. Thus, ‘‘frequency ’’ returns all records where a frequency is
listed.

Using the dbredit Utility

The dbredit(1) utility is a command-line interface to the propel databases
designed for use in server environments where the graphical utilities cannot
be used. All functions that are performed by the graphical utilities can also
be performed with dbredit. Complete information on the dbredit command is
provided in the dbredit(1) reference page. The basic syntax of dbredit is:

dbredit database command information

where database is the name of the propel database to be manipulated or
queried, command is an operation corresponding to the operations
performed through the graphical editors, and information is the information
to be entered into the database or the query parameters.

66

Chapter 2: Software Distribution, User and Host Management With propel

The database variable can be one of host, file, rules, or collect. The command
variable can be one of classes, init, list, insert, query, delete, or update. The
information variable is a set of arguments specific to each command. The
arguments for each command are listed below:

classes This command prints information about all databases
currently configured.

init This command initializes the named database.

list Takes no arguments. This command returns all records in
the database. For example, to see your entire Host database,
use the command:

dbredit host list

You see output similar to the following:

{hostname {sherman}} {manufacturer {SGI}} {os
{IRIX 5.3}} {domain {engr.com}} {model {IRIS
Indigo2}} {iplist {127.0.0.1 192.999.888.7}}
{maclist {{} 08:00:69:07:94:D7}} {mxlist {{}}}

{hostname {maguire}} {manufacturer {SGI}} {os
{IRIX 5.3}} {domain {wpd.sgi.com}} {model {IRIS
Indy}} {iplist {192.555.444.2}} {maclist
{08:00:69:06:C1:95}} {mxlist {{}}}

There is one output entry per entry in your database, and
each field in the entry is listed along with its value, if any.
For example, in the above listed output, the first field reads:

{hostname {sherman}}

The first word is the field name, and the second word
(inside braces) is the field value. The whole field statement
is further enclosed in braces. Where there is no value for
the field, only the field name and empty braces are
displayed, as follows:

{mxlist {{}}}

add Takes a list of “attribute = value” arguments that
correspond to the fields in the appropriate database and
returns the entityID number of the new record. For
example, to add a typical file record, you might use the
following command:

Using the propel Databases

67

dbredit file add source=/tmp/localfile \
destination=/tmp/remotefile

search Takes a list of queries or entityID numbers, and returns the
matching records. For example, to search for all machines
manufactured by Silicon Graphics, use the command:

dbredit host query manufacturer=SGI

delete Takes a list of query strings or entityID numbers, and
returns the records that have been deleted. For example, to
delete the records for all machines manufactured by
“Tredegar,” use the command:

dbredit host delete manufacturer=Tredegar

modify Takes a list of queries or entityID numbers, and returns the
entityID numbers of the updated records. For example, to
change all of the operating system version strings for
machines running “IRIX 5.2” to “IRIX 5.3” use the
command:

dbredit host modify os=”IRIX 5.2” os=”IRIX 5.3 ”

destroy Removes all values of a named field or database. For
example, the command

dbredit host destroy owner

removes all values of the ‘‘owner’’ field from the Host
database. The command

dbredit host destroy

removes the entire Host database. After a destroy
operation, the database may be reinitialized or simply
repopulated.

names Returns the complete list of fields for the given database.
For example, the command

dbredit host names

returns all the field names in the Host database. Given with
no database name, the command returns a list of the
known databases. For example, the command:

dbredit names

returns the names of all known databases.

68

Chapter 2: Software Distribution, User and Host Management With propel

All rules about query structure and glob expressions that apply to the
graphical database editing utilities also apply to dbredit. If you have trouble
creating the correct syntax, try issuing a dbredit names command and
entering the field names exactly as they are displayed.

Running propel

The propel program can be executed automatically by the cron process, or
from a shell command at your convenience. The following sections describe
the two ways of running propel.

Running propel From a Shell Command

There is a shell command, runpropel(1M), available to force a distribution to
a host (or collection of hosts) immediately. Command line arguments are
available to specify a direct push or a periodic push of any standard
frequency. For complete information on runpropel(1M), see the runpropel(1M)
reference page.

Running propel Through cron(1M)

The runpropel command can be run by cron(1M) regularly. Each time cron
executes runpropel, the program reads and interprets the various databases
and then generates or modifies all necessary files.

An example entry from a distribution system’s crontabs file would be:

runpropel -f week

The frequency of the push is configurable at any time by changing the
command in your crontabs file and restarting cron. For complete information
on cron, see the cron(1M) reference page, as well as the section titled
“Automating Tasks with at(1), batch(1), and cron(1M)’’ in the IRIX Advanced
Site and Server Administration Guide.

The propel File Generation System

69

The propel File Generation System

The file generation system consists of a directory of scripts that are run by
propel, if needed, before the actual distribution takes place. If an entry in the
File database has a program listed in the “generator” field, propel runs the
generation program and takes the output from that program to replace the
contents of the existing file. For example, you can create an entry in the File
database in which the destination file is /etc/hosts, and the “generator” field
lists the /usr/IRIXpro/sample/propel/make_hosts command. In this case, the
make_hosts command builds an /etc/hosts file from the entries of the propel
Host database, and then distributes the resulting file to all client hosts called
for in the distribution rule, installing the new file as /etc/hosts.

Some utilities to generate files are provided with propel, though you can
always create your own file-generation utilities. By using the utilities
provided with propel, and by propagating the resulting files, you can be sure
that your entire network maintains consistent system configuration files.
There are several file-generation scripts shipped with propel in the /usr/
IRIXpro/sample/propel directory:

make_hosts Generates the /etc/hosts file from the Host database.

make_ethers Generates the /etc/ethers file from the Host database.

make_fwd_dns Generates the forward maps for named(1M) to be
distributed to the named master.

make_rev_dns Generates the reverse maps for named(1M) to be distributed
to the named master.

71

Chapter 3

3. Dynamic Network Configuration With
proclaim

This chapter describes the proclaim dynamic network configuration software
package. The following topics are covered:

• The proclaim system overview. See “The proclaim Dynamic Network
Configuration System” on page 71.

• Installing proclaim on a server. See “Installing proclaim on a Server” on
page 72.

• Installing proclaim on a client system. See “Installing proclaim on a
Client” on page 74.

• Configuring proclaim on a server system. See “Configuring proclaim”
on page 74.

• Sample entries in proclaim configuration files. See “Sample
Configuration File” on page 78.

• Information on limitations of this implementation with respect to the
DHCP software standard. See “Limitations and Restrictions of This
Release” on page 80.

The proclaim Dynamic Network Configuration System

The purpose of proclaim is to allow the site administrator to set up one or
more server systems that dynamically distribute network IP addresses and
site configuration parameters to new and requesting client systems. In this
way, a site with only a few available addresses can serve a large number of
hosts that connect to the network only occasionally, or a very large site can
manage the permanent assignment of addresses with a minimum of human
attention. The proclaim application is based on the Dynamic Host
Configuration Protocol described in IETF RFC 1541.

72

Chapter 3: Dynamic Network Configuration With proclaim

The proclaim application consists of a daemon that runs on the server or
servers, a set of configuration files for each server. The client process is
distributed with the standard IRIX operating system and can be set up to be
run through the bootup process or it can be run by hand. For more
information, see the proclaim(1) reference page.

Installing proclaim

The following sections provide information on the installation of proclaim on
servers and clients.

Installing proclaim on a Server

Like all of IRIXpro, proclaim is installed using inst(1). When you install
proclaim, you are installing the server daemon and the initialized
configuration files. (There is template information in the configuration file.)
Files are also added to the /etc/init.d directory and an option is added to your
chkconfig list.

The following list shows each file installed on your server:

/etc/config/dhcp_bootp.options
The configuration file described in “The
dhcp_bootp.options File” on page 79.

/etc/config/proclaim_server
The chkconfig(1M) file for proclaim.

/usr/IRIXpro/proclaim/config/config.Default
The default configuration file for proclaim, described in “The
Standard Configuration File” on page 74 and in the section
titled “Sample Configuration File” on page 78.

/usr/etc/dhcp_bootp
The special bootp program used by proclaim. This program
replaces the standard bootp and serves both the standard
bootp and dhcp clients.

After installing the proclaim subsystem of the IRIXpro product, you need to
perform the following steps in order:

Installing proclaim

73

1. Enter this command:

chkconfig proclaim_server on

2. Next, you must modify the /etc/inetd.conf file to use dhcp_bootp rather
than the standard bootp protocols. Place a hashmark (#) at the beginning
of the bootp entry to make that line a comment, and open a new line
below that entry. Enter the following text all on one line:

bootp dgram udp wait root /usr/etc/dhcp_bootp
dhcp_bootp -P -o /etc/config/dhcp_bootp.options

In the above example, the -P option signifies that this is a dhcp bootp
server. The -o option is used to specify a dhcp_bootp configuration file
for specifying any additional proclaim specific options.

Save and exit the inetd.conf file when you have made this entry.

3. Reboot your system for these changes to take effect.

Files Modified by proclaim

The proclaim server may modify the following files on your system:

• /etc/hosts

• /etc/ethers

• /usr/IRIXpro/proclaim/etherToIP

Starting proclaim

To start the proclaim daemon at any time on a server, log in as root and enter
this command

chkconfig proclaim_server on

Then reboot your system for the change to take effect.

Stopping proclaim

To stop the proclaim daemon on the server, log in as root and enter this
command

chkconfig proclaim_server off

74

Chapter 3: Dynamic Network Configuration With proclaim

Then reboot your system for the change to take effect.

Installing proclaim on a Client

The proclaim client software is included in the standard distribution of IRIX
versions 5.3 and later. Administrators of heterogeneous networks can find
the source code to the client daemon in /usr/people/4Dgifts/dhcp and must
port and compile the code as needed for other brands of computers.

Configuring proclaim

The following sections provide information on configuring proclaim on
servers, and on the various configuration files, and limitations of this
implementation of DHCP. If you are not comfortable with the basic concepts
of networking, IP addresses, and netmasks, read Chapters 15 through 18 of
the IRIX Advanced Site and Server Administration Guide before you continue
reading this section.

Configuring proclaim on the Server

The proclaim server implementation uses three levels of configuration
parameters based upon the subnet number of the originating client request.
The configuration files are all placed in the directory /usr/IRIXpro/proclaim/
config and are named in the form config.netnumbers. For example, the
configuration files for configuring clients on the 192.26.61 network are
named config.192.26.61.0. If the configuration file for a client request
originating on a particular subnet is not found, then the next level of
configuration is supplied in the file config.Default in the same directory. If the
default configuration file is not present or is unreadable, all clients are
supplied the same configuration as the proclaim server itself.

The Standard Configuration File

The following configuration parameters can be supplied in the standard
configuration file for each network, or the default configuration file. Host
address specification can either be in standard IP address dot notation or as

Configuring proclaim

75

a hex number prefixed with a 0x. Most of the fields may be left blank to
render them non-applicable.

pro_address_counter
This integer field specifies the host number for the next IP
address. The next address will be constructed using the
counter and checked through the range of the assignable
addresses. The first available address in the range will be
assigned.

pro_host_pfx_counter
This integer field specifies the starting number that will be
appended to the pro_host_prefix to generate a new
hostname. This counter will be incremented and a new
hostname generated until a unique unused name is found.

pro_netmask This field takes a netmask in address form (xx.xx.xx.xx). For
more information on netmasks, see the IRIX Advanced Site
and Server Administration Guide. This field specifies the
subnetmask that will be used by the client systems.

pro_lease This unsigned integer field specifies the client address lease
time in seconds. This implementation of the DHCP software
assigns only infinite leases, and thus the leases expire only
when explicitly surrendered by the client.

pro_propel_server
This field takes an IP address in address form
(xxx.xxx.xxx.xxx) and specifies the IP address of the propel
server that will be serving the clients on this subnet.
Additional information about propel can be found in
Chapter 2, “Software Distribution, User and Host
Management With propel.”

pro_host_prefix
This string field specifies the default text prefix for
generating client hostnames. For example, the prefix “iris”
directs proclaim to generate hostnames of the form iris1,
iris2, iris3, and so on.

pro_choose_name
This boolean (true or false) flag specifies whether the client
systems are allowed to choose their own hostname or
whether they must be assigned the name given to them by

76

Chapter 3: Dynamic Network Configuration With proclaim

the server. A value of 1 (true) in this field brings up a dialog
box on the client system giving the user the option of either
taking the name offered by the server or entering a
hostname of the user’s choice. If the user selects a name, the
server will allow this name if it passes basic tests for syntax
and uniqueness, otherwise the server/client dialogue will
continue until a mutually acceptable name is submitted. A
value of 0 (false) in this field indicates that the user on the
client system must accept the name provided by the server.

pro_ipaddress_range
This field takes an entry of integers using standard numeric
range rules. The entry defines the range of host number
addresses assignable by this server. For example, the form
is:

1-3, 5-7, 9

In the above example, the server would issue IP addresses
with the base address specified in the configuration
filename (such as config.192.26.61.0). Each client is issued
an IP address matching the name of the configuration file,
suffixed with the numbers 1 through 3, and 5 through 7,
and 9, but not 4 or 8.

This option is used to restrict the IP addresses offered by a
given server. This option is very useful if the administrator
wants to assign only certain block(s) of addresses using
proclaim, or in the absence of a server to server protocol,
wishes to have multiple servers serve clients on the same
subnetwork.

pro_router_addr
This field of comma-separated IP addresses specifies a list of
addresses for network routers on the client’s subnet.
Routers should be listed in the order of preference for their
use.

pro_timeserver_addr
This field of comma-separated IP addresses specifies a list of
addresses for time servers available to the client. Addresses
should be listed in the order of preference for their use.

Configuring proclaim

77

pro_dnsserver_addr
This field of comma-separated IP addresses specifies a list of
addresses for Domain Name System servers available to the
client. Servers should be listed in the order of preference for
their use.

pro_nisserver_addr
This field of comma-separated IP addresses specifies a list of
addresses indicating NIS servers available to the client.
Servers should be listed in the order of preference for their
use.

pro_dns_domain
This text field specifies the domain name that client should
use when resolving hostnames using DNS.

pro_nis_domain
This text field specifies the name of the client’s NIS domain.

pro_mtu This unsigned short integer field specifies the MTU
(maximum transmission unit) to use on the network
interface configured in this file. The minimum legal value
for the MTU is 68.

pro_allnets_local
This Boolean (true/false) field specifies whether or not the
client may assume that all other subnets of the IP network
to which the client is connected use the same MTU as the
subnet to which the client is directly connected. A value of
1 (true) indicates that all subnets share the same MTU. A
value of 0 (false) means that the client should assume that
some other subnets may have smaller MTUs.

pro_broadcast
This IP address field specifies the broadcast address in use
on the client’s subnet.

pro_domask_disc
This Boolean (true/false) ‘‘Perform Mask Discovery’’ field
specifies whether or not the client should perform subnet
mask discovery using ICMP. A value of 1 (true) means that
the client should perform mask discovery, while a value of
0 (false) indicates that the client should not perform mask
discovery.

78

Chapter 3: Dynamic Network Configuration With proclaim

pro_resp_mask_req
This Boolean (true/false) ‘‘Mask Supplier’’ field specifies
whether or not the client should respond to subnet mask
requests using ICMP. A value of 1 (true) means that the
client should respond. A value of 0 (false) in this field means
that the client should not respond.

pro_static_route
This field takes a comma-separated list of routes in the
following form:

dest_address - router_address, dest_address2 - router_address2

The static route field specifies a list of static routes that the
client should install in its routing cache. If multiple routes
to the same destination are specified, they should be listed
in descending order of priority. The routes consist of a list
of IP address pairs. The first address is the destination
address; its counterpart address, separated by a dash (-), is
the address of the router to the destination. The default
route (0.0.0.0) is an illegal destination for a static route.

Sample Configuration File

The following are the contents of a sample config.150.166.61.0 configuration
file.

pro_address_counter: 25
pro_host_pfx_counter: 5
pro_netmask: 255.255.255.0
pro_lease: 100000
pro_propel_server: 150.166.75.20
pro_host_prefix: irixpro
pro_choose_name: 0
pro_ipaddress_range: 3, 9-11, 40-75, 200-254
pro_router_addr: 150.166.61.19
pro_timeserver_addr: 150.166.61.27
pro_dnsserver_addr: 192.26.61.24
pro_nisserver_addr: 192.48.150.150
pro_dns_domain: sgi.com
pro_nis_domain: engr.sgi.com
pro_mtu: 1600
pro_allnets_local: 1
pro_broadcast: 150.166.61.255

Configuring proclaim

79

pro_domask_disc: 0
pro_resp_mask_req: 0
pro_static_routes: 192.26.80.118 - 192.26.80.10,
192.26.80.118 - 150.166.61.33

The dhcp_bootp.options File

The /etc/config/dhcp_bootp.options file may specify the following additional
options. The options may be specified on individual lines or on the same line
separated by white spaces.

-s propel_database
Directs the proclaim server to use the specified propel
database for hostname, IP address, and network hardware
address resolution. For more information on propel, see
Chapter 2, “Software Distribution, User and Host
Management With propel.”

-y The proclaim server uses the existing NIS maps for
hostname, IP address, and network hardware address
resolution. This host is required to be the NIS Master.

-h hostname Specifies the name of the host where the propel lock manager
is running if it is not running on this system.

-w hosts_map Specifies the optional location of the hosts map. Not valid
with the -s option. The default is /etc/hosts.

-e ethers_map Specifies the optional location of the ethers map. Not valid
with the -s option. The default is /etc/ethers.

-u sysname Specifies the name for an optional sysname file. The default
is /unix.

-c proclaim config dir
This flag specifies an optional proclaim server configuration
directory. The default directory is /usr/IRIXpro/proclaim/
config.

80

Chapter 3: Dynamic Network Configuration With proclaim

Limitations and Restrictions of This Release

The following restrictions and limitations are present in proclaim in this
release:

• The server must be the NIS Master if it is using NIS for hostname, IP
address, or network hardware address validation and mapping. Note
that NIS is an optional software product, and not all systems and
networks use it.

• This release of the server software assigns only infinite (meaning
roughly 10-year) address leases. A client requesting a shorter lease
must actually surrender the lease in order for the lease to be considered
expired.

• The server will not serve proclaim and standard bootp clients in the
same request packet.

• Clients requesting additional configuration parameters that are part of
RFC1533 but are not supported in this release are not served by the
proclaim server.

81

Chapter 4

4. Distributed System Monitoring With provision

This chapter describes the provision application and its use in monitoring the
status of the host systems on your network. The following sections are
provided:

• “The provision Monitoring System” provides an overview of the nature
and purposes of the provision application.

• “Installing and Configuring provision” provides detailed instructions
on installing provision and configuring it to your specific needs.

• “Using provision” provides general information on the interfaces and
different programs that make up provision.

• “Using pvcontrolpanel” provides detailed information on the
pvcontrolpanel logging and notification tool.

• “Using pvcontrol” provides detailed information on the pvcontrol text-
based notification and logging tool.

• “Using pvgraph” provides detailed information on the dynamic
pvgraph graphing tool.

• “The MIB Browser” provides detailed information on the MIB browser
and MIB tools in general.

The provision Monitoring System

The provision application allows you (the administrator) to keep track of the
running statistics of each system in your heterogeneous network from a
single location. This location may be a host workstation or server console, or
even a text-based terminal. The data provided about each system on the
network can be displayed graphically, if the administrator’s host system
allows it, or in text, or data can be stored for later analysis. Error messages
from each system can be displayed immediately on the administrator’s
console.

82

Chapter 4: Distributed System Monitoring With provision

The provision application provides three basic utilities:

• pvcontrolpanel is a graphical notification and logging utility for use on
systems with graphics capabilities, such as graphical workstations and
X-terminals.

• pvcontrol is a text-based utility for use on non-graphics servers and
ASCII terminals.

• pvgraph is a graphical tool to dynamically graph system performance
and view logs of statistics made with pvcontrol and pvcontrolpanel.

The graphical user interface provides the full power of provision to the
administrator. Information is updated in real time, and you can add or delete
variables as you wish.

The text-based user interface is a subset of the graphical interface, and is
provided for those administrators without access to graphics capability. The
text-based interface does not provide the real-time updating of information
that is featured in the graphical interface, but an interactive mode is
available to change the collection instructions.

You may also want to coordinate the use of the standard IRIX features
sysmon(1M), and syserrpanel(1M) with provision. These standard IRIX utilities
use the system log daemon (syslogd) to monitor the system status. Complete
information on sysmon and syserrpanel is available through the IRIX
reference pages.

The provision application collects its information according to programs
provided as part of IRIXpro, but you can write your own instruction sets in
the programming language of your choice to customize provision. The
provision application uses SNMP to collect information over the network.

SNMP stands for Simple Network Management Protocol. SNMP is used to
communicate with other systems that also run SNMP. The other system can
be a workstation, a router, a bridge, a hub, or a gateway—any host that has
an IP address and implements the SNMP protocol and agent. SNMP
implements an ‘‘agent.’’ An agent is an SNMP program that exchanges
information with a remote host. snmpd(1M) is the Silicon Graphics SNMP
agent. Agents for other types of nodes may be implemented in software or
firmware and are vendor-specific. There is a reference book for SNMP called
The Simple Book, An Introduction to Management of TCP/IP-Based Internets, by

Installing and Configuring provision

83

Marshall T. Rose. The book was published in 1991 by Prentice-Hall, of
Englewood Cliffs, New Jersey, USA 07632. The ISBN number of this book is
0-13-812611-9.

SNMP relays basic system information about each host to the other hosts, on
request. The information relayed comes from the Management Information
Bases (MIBs) for that host. An MIB is the specification for the virtual store of
the information supported by an agent. The standard IRIXpro MIBs are the
hp-ux_sgi MIB and the mib2 MIB, both distributed with IRIXpro in the /usr/
lib/netvis/mib directory. The hp-ux_sgi MIB is reprinted in Appendix A, “The
hp-ux_sgi MIB,” of this guide. Further information about MIBs and the MIB
browser is available in the section titled “The MIB Browser.” The browser is
designed to be used by network managers experienced in managing various
devices on the network.

You can create and add your own MIBs to your systems, or you can use MIBs
obtained from other vendors with IRIXpro. MIB textual descriptions should
be placed in the directory /usr/lib/netvis/mibs to be accessed through IRIXpro.

The reason for creating and developing this software is to allow the system
administrator of a large site with many different brands of hardware an
extensible system to monitor many heterogeneous hosts from a single
station.

Installing and Configuring provision

When you install IRIXpro, provision is automatically installed in the /usr/
IRIXpro directory structure. You must add /usr/IRIXpro/bin to your PATH
environment variable to easily use provision.

To use provision on your network, you must first propagate the snmp daemon
to all systems that may be monitored.

On the monitoring system, the following requirements must be met before
provision can run successfully. These requirements assume that you also wish
to monitor the monitoring system itself:

• IRIXpro must be correctly installed.

84

Chapter 4: Distributed System Monitoring With provision

• The provisiond daemon must be running. Place the following lines in the
following files to cause provisiond to run automatically on the
monitoring machine:

To /etc/services, add this line:

provisiond 5299/udp # IRIXpro provision daemon

To /etc/inetd.conf, add this entry (all on the same line):

provisiond dgram udp wait root /usr/IRIXpro/bin/
provisiond provisiond

Then enter the command

killall -HUP inetd

to cause inetd to restart and run the provision daemon.

• The SNMP daemon (snmpd) must be running. Enter the following
commands as root to cause snmpd to run automatically on the
monitoring machine:

chkconfig network on

/etc/init.d/network start

chkconfig snmpd on

/etc/init.d/snmp start

• The hp-ux_sgi MIB must be installed. This is installed by default with
the snmpd package of IRIXpro in /usr/lib/netvis/mibs/hp-ux_sgi.mib.

On all Silicon Graphics systems to be monitored, the following requirements
must be met before provision will successfully monitor their status:

• The SNMP daemon (snmpd) must be running. First, install the
following package from your IRIXpro distribution on each Silicon
Graphics system to be monitored:

snmpd 01/04/95 SNMP Daemon with HP MIB Support

Next, enter the following commands as root on the monitored machine
to cause snmpd to run automatically:

chkconfig snmpd on

/etc/init.d/snmp start

chkconfig network on

/etc/init.d/network start

Installing and Configuring provision

85

• The hp-ux_sgi MIB is installed by default with the snmpd package of
IRIXpro. This MIB must be installed in order for the system to be
monitored.

On all systems not manufactured by Silicon Graphics, the following
requirements must be met before provision will operate correctly. Note that if
another manufacturer’s system MIB and SNMP daemon are not fully
compatible with the distributed MIB and SNMP daemon, some scripts and
MIB variables distributed with provision may not function for those systems.
However, new MIBs and variables may be created for any or all systems:

• An SNMP agent (daemon) must be running on the system.

• An MIB must be installed on the system.

Consult your system manufacturer’s documentation for information on
fulfilling these requirements.

86

Chapter 4: Distributed System Monitoring With provision

Using provision

There are two interfaces provided for provision, the graphical and the text
interface. The graphical interface is the primary interface, since provision is
designed to provide graphical information about your systems.

The provision Graphical Interface

When you first invoke provision, you see the window shown in Figure 4-1, in
the standard Silicon Graphics desktop format. (See the section titled
“Managing Windows” in the IRIS Essentials guide for complete information
on the facilities of desktop windows.)

Figure 4-1 The provision Window

There are two main tools you can select from this window, pvcontrolpanel and
pvgraph. These tools and their subordinate tools are discussed in the sections
titled “Using pvcontrolpanel,” “Using pvcontrol,” and “The MIB Browser.”
To invoke a tool, place the cursor over the desired icon and double-click the
left mouse button. The icon changes color when you select it, and the
‘‘carpet’’ underneath the icon moves up to show that the invocation was
successful and a new tool window appears on your screen. Each of these
tools is detailed in its own section below.

Using pvcontrolpanel

87

Using pvcontrolpanel

This tool is the main controlling panel for provision. From this panel, you can
set up monitors on all systems on your network, and receive error messages
and notifications. When you invoke pvcontrolpanel, the window shown in
Figure 4-2 appears on your screen

Figure 4-2 The pvcontrolpanel Window

88

Chapter 4: Distributed System Monitoring With provision

There are four main sections of the pvcontrolpanel window. From the top of
the window to the bottom, these sections are:

Menu Bar The top bar, with the File, Hosts, Items, and Help menus.
This is discussed in the section titled “Using the
pvcontrolpanel Menu Bar.”

Hosts All the hosts and collections currently monitored by this
instance of provision and any other icons you may have
added are shown in this area. This is discussed in the section
titled “The pvcontrolpanel Hosts Area.”

Items to Monitor
All the items currently being monitored on any host are
listed in this area. This is discussed in the section titled “The
pvcontrolpanel Items to Monitor Area.”

Script Configuration
This area is where you enter information about the scripts
and hosts to be monitored. This is discussed in the section
titled “The pvcontrolpanel Script Configuration Area.”

Using the pvcontrolpanel Menu Bar

There are four menus available on the pvcontrolpanel menu bar. The menus
and their choices are listed below.

The File Menu contains options dealing with the pvcontrolpanel configuration
files and contains the options to restart and quit the session. The following
choices are provided:

• Read Config

This option reads a previously stored monitoring configuration from a
file. You can also drag an icon representing a previously stored config
file from the directory view onto the pvcontrolpanel icon to start
pvcontrolpanel with that configuration. For more information on config
files, see “The provision Configuration File.”

• Save Config

This option saves the current monitoring configuration in a file.

• Save Config as...

Using pvcontrolpanel

89

This option saves the current configuration to a different filename.

• Quit

This option ends the pvcontrolpanel session.

The Hosts Menu allows you to control the arrangement of the hosts in your
pvcontrolpanel window. The following choices are available:

• View as Icons

This option tells pvcontrolpanel to represent the hosts in your window
with large icons, arranged alphabetically left to right.

• View as List

This option tells pvcontrolpanel to represent the hosts in your window
with smaller icons in a single column alphabetized list.

• View in Columns

This option tells pvcontrolpanel to represent the hosts in your window
with smaller icons, in an evenly columnized, vertical, alphabetized list.

• Add Icon

This option adds an icon for a named host to your hosts area. You must
first enter the hostname in the script configuration area.

• Remove Icon

This option removes the selected icon from your hosts area.

Icons in the Hosts section represent each host that is currently
communicating in some way with provision. A new icon is not added for
each addition item monitored on a listed host unless it is specifically
requested with the “Add Icon” menu choice. Also, host and collection icons
can be dragged from the propel graphical tools (described in Chapter 2,
“Software Distribution, User and Host Management With propel”) or from
the IndigoMagic desktop and tools, and can be dropped into the Hosts area
of pvcontrolpanel.

The Items Menu contains options dealing with the operation of the
pvcontrolpanel activity. An Item is any configured monitoring unit, for
example, monitoring a script on a particular host at a particular interval. The
following choices are provided:

90

Chapter 4: Distributed System Monitoring With provision

• Start All Items

This option starts all currently configured monitoring.

• Stop All Items

This option stops all monitoring activity.

• Close Log File

This option closes the current log file.

• Show Available Variables and Scripts

This option brings up a window with a list of all available variables for
monitoring, and all available scripts. To select a variable or script, place
the mouse cursor over the desired list item and double-click with the
left mouse button. This window is discussed further in “The Available
Variable and Script Window.”

• MIB Browser

This option invokes the MIB browser. For more information, see the
section titled “The MIB Browser.”

• Add

This option takes the information entered in the script configuration
area and adds the entry to the Items area, and the specified host to the
Hosts area.

• Delete

This option deletes the selected item from the Items area.

• Delete All

This option deletes all items and monitoring instructions.

• Replace

This option changes the selected item by replacing it with a new item
according to the current entries in the script configuration area.

• Current Value

This option runs the selected script once and returns the current value.
The script will be run locally, although scripts can be written that
execute other scripts on remote systems.

Using pvcontrolpanel

91

The Help Menu invokes the online help utility to provide help on all aspects
of using provision.

The Available Variable and Script Window

When you select the “Show Available Variables and Scripts” choice from the
Variables menu (or from the Configure One Graph window in pvgraph), you
see the window shown in Figure 4-3.

Figure 4-3 The Available Variables and Scripts Window

This window lists available MIB variables that can be monitored in the
upper half, and all available monitoring and notification scripts in the lower

92

Chapter 4: Distributed System Monitoring With provision

half. You can monitor MIB variables not listed in this window, but they must
be specified by their full numeric Object ID (for example, the sysServices
variable has an Object ID of 1.3.6.1.2.1.1.7.0). You can also monitor any script
you have created that is not represented in this window, but it must be
specified with its full name. For example, the snmpGet script’s full name is
provision:snmpGet.

The MIB variables are described in the MIB file. To see a variable’s
description, select the MIB browser from the Add One Graph window (in
pvgraph) or select “MIB Browser” from the Variables menu in pvcontrolpanel.

 Once the browser is up, press the Variable... button and enter the name of the
variable you wish to have described in the Name field. Then, select the
“Description” menu option from the Help menu of the Variable window. A
new window appears, showing the description text. For example, Figure 4-
4 shows the description window of the sysDescr variable.

Figure 4-4 Description Window for the sysDescr Variable

This procedure is also described in the section titled “Obtaining Descriptions
of Variables” in this chapter.

Using pvcontrolpanel

93

The Default provision Scripts

The scripts shipped with provision are defined as follows:

alive This script simply sends an ICMP ECHO (ping(1M)) request
to the named remote system, and returns an error if it fails
to get a response within a reasonable time. The arguments
to this script are a test interval (in seconds) and a list of hosts
to check. The script returns true or false for each system, and
a status message if the script fails to fetch the data.

checkProcess This script reads the process table from a remote system and
checks for the existence of a particular process name. The
arguments for this scripts are a test interval (in seconds), a
list of hosts, and a process name. The script returns true or
false, and a status message if the process does not exist, or if
the script fails to get a response.

connections This script returns the number of open network connections
to a system, and an error if it is above a limit. The arguments
are a test interval (in seconds), a list of hosts to check, and
an upper bounds.

contextSwitch This procedure returns the raw number of process switches
that have occurred on a remote machine since the last boot,
or an error if the script does not receive the information. The
argument is a list of hosts.

contextSwitchPeriod
This procedure returns the number of context switches that
have occurred on a remote machine since the last check, or
an error if the script does not receive the information. The
arguments are a list of hosts, an upper limit, and a lower
limit.

cpu This script returns the average percentage of CPU
utilization on a system, or a status message if the number is
out of bounds or if the script fails to retrieve the data. The
arguments to this script are a test interval (in seconds), a list
of hosts, a lower bound, and an upper bound.

94

Chapter 4: Distributed System Monitoring With provision

hostChanged This script watches for a change in the availability of a host.
The argument to this script is a test interval (in seconds) and
a list of hosts to watch. The script returns true or false for
each host, and a status message if the status of a host
changes.

ifCollisions This procedure returns the raw network collisions that have
occurred on a remote machine, or an error if the script does
not receive the information. The argument is a list of hosts.

ifCollisionsPeriod
This procedure returns the raw number of network
collisions that have occurred on a remote machine since the
last check, or an error if the script does not receive the
information. The arguments are a list of hosts, an upper
limit and a lower limit.

ifInErrors This procedure returns the raw number of input errors that
have occurred on a remote machine, or an error if the script
does not receive the information. The argument is a list of
hosts.

ifInErrorsPeriod
This procedure returns the raw number of network read
errors that have occurred on a remote machine since the last
check, or an error if the script does not receive the
information. The arguments are a list of hosts and an upper
limit.

ifInPackets This procedure returns the raw number of packets that have
been received on a remote machine, or an error if the script
does not receive the information. The argument is a list of
hosts.

ifInPacketsPeriod
This procedure returns the raw number of network packets
that have been read in on a remote machine since the last
check, or an error if the script does not receive the
information. The arguments are a list of hosts, an upper
limit, and a lower limit.

Using pvcontrolpanel

95

ifOutErrors This procedure returns the raw number of output errors
that have occurred on a remote machine, or an error if the
script does not receive the information. The argument is a
list of hosts.

ifOutErrorsPeriod
This procedure returns the raw number of network write
errors that have occurred on a remote machine since the last
check, or an error if the script does not receive the
information. The arguments are a list of hosts and an upper
limit.

ifOutPackets This procedure returns the raw number of packets that have
been sent from a remote machine, or an error if the script
does not receive the information. The argument is a list of
hosts.

ifOutPacketsPeriod
This procedure returns the raw number of network packets
that have been written out on a remote machine since the
last check, or an error if the script does not receive the
information. The arguments are a list of hosts, an upper
limit, and a lower limit.

interrupts This procedure returns the raw number of interrupts that
have been received on a remote machine, or an error if the
script does not receive the information. The argument is a
list of hosts.

interruptsPeriod
This procedure returns the raw number of interrupts that
have occurred on a remote machine since the last check, or
an error if the script does not receive the information. The
arguments are a list of hosts, an upper limit, and a lower
limit.

load1 This procedure returns the current load average of a
machine over the previous second, and a status if the load
is out of bounds or the script does not receive the data. The
arguments are a list of hosts to check, a low boundary, and
a high boundary.

96

Chapter 4: Distributed System Monitoring With provision

load5 This procedure returns the current load average of a
machine over the previous 5 seconds, and a status if the load
is out of bounds or the script does not receive the data. The
arguments are a list of hosts to check, a low boundary, and
a high boundary.

load15 This procedure returns the current load average of a
machine over the previous 15 seconds, and a status if the
load is out of bounds or the script does not receive the data.
The arguments are a list of hosts to check, a low boundary,
and a high boundary.

memory This script returns the amount of free memory in kilobytes,
and a status message if the number is out of bounds or the
script fails to get the data. The arguments are a test interval
(in seconds), a list of hosts, a lower bound, and an upper
bound.

nfsChanged This script performs essentially the same function as
nfsCheck, but returns a status message only when the state of
a remote server changes, that is, if a host that was formerly
responding correctly ceases, or a host that was not
responding begins to respond. The argument is a list of
hosts.

nfsCheck This script checks NFS server remote systems for correct
response. The script returns a true or false value for each
host. A true value indicates a correct response, and a false
value indicates that the NFS server is not functioning
correctly. A status message is also displayed if the server is
not responding correctly or if the script fails to get the
information. The argument is a list of hosts.

pageIn This procedure returns the raw number of pages that have
been paged in on a remote machine, or an error if the script
does not receive the information. The argument is a list of
hosts.

pageInPeriod This procedure returns the raw number of pages that have
been paged in on a remote machine since the last check, or
an error if the script does not receive the information. The
arguments are a list of hosts, an upper limit and a lower
limit.

Using pvcontrolpanel

97

pageOut This procedure returns the raw number of pages that have
been paged out on a remote machine, or an error if the script
does not receive the information. The argument is a list of
hosts.

pageOutPeriod This procedure returns the raw number of pages that have
been paged out on a remote machine since the last check, or
an error if the script does not receive the information. The
arguments are a list of hosts, an upper limit, and a lower
limit.

printQueue This script checks the status of a remote printer queue. The
arguments to this script are a test interval (in seconds), a list
of hosts, and the remote printer name. The script returns
true or false for the named printer, and a status message if
the printer is down, or if the script fails to get the
information.

processChanged This script reads the process table from a system and checks
for the existence of the specified name. The script returns
a data field of true or false, and a status message if the
process used to exist but has exited, or if the process did not
exist before but has now started, or if the script fails to
retrieve the information. The arguments for this script are a
list of hosts, and a process name.

processes This script checks the number of processes on a remote
system and notifies you if the number is not in the specified
bounds, and a status message if the number is out of script
bounds, or if the script fails to get the data. The arguments
for this script are a test interval (in seconds), a list of hosts,
a low bound, and a high bound.

random This script invokes a random number generator. The
arguments are a test interval (in seconds), a list of hosts, a
lower bound, and an upper bound. This script is used for
testing purposes or demonstration.

snmpGet This is a very simple script to query a system (or a collection
of systems) for an snmp variable and return the value of the
variable. The arguments for this script are a test interval (in
seconds), a list of hosts, and a list of variables to be queried.

98

Chapter 4: Distributed System Monitoring With provision

snmpGetPeriod This is a very simple routine to query a system (or a
collection of systems) for an snmp variable and return the
change in it since the last query. The arguments for this
script are a list of hosts and a list of variables.

spaceCheck This script checks the available space on a given filesystem,
and verifies that it is between the specified bounds. The
arguments for this script are a test interval (in seconds), a
list of hosts, a filesystem name, a low bound, and a high
bound. The script returns a data field of the available space,
and a status message if the check fails the bounds check or
the script cannot get the data.

swap This script returns the amount of free swap space on a host.
The arguments are a test interval (in seconds), a list of hosts,
a lower bound, and an upper bound. The script returns the
amount of free space in kilobytes, and a status message if
the number is out of bounds or the script fails to get the
data.

swapIn This procedure returns the raw number of processes that
have been swapped in on a remote machine, or an error if
the script does not receive the information. The argument is
a list of hosts.

swapInPeriod This procedure returns the raw number of pages that have
been swapped in on a remote machine since the last check,
or an error if the script does not receive the information. The
arguments are a list of hosts, an upper limit, and a lower
limit.

swapOut This procedure returns the raw number of processes that
have been swapped out on a remote machine, or an error if
the script does not receive the information. The argument is
a list of hosts.

swapOutPeriod This procedure returns the raw number of pages that have
been swapped out on a remote machine since the last check,
or an error if the script does not receive the information. The
arguments are a list of hosts, an upper limit, and a lower
limit.

Using pvcontrolpanel

99

Adding Custom Scripts to provision

The provision application retrieves data from remote machines through
commonly used protocols including rstat and SNMP. The provisiond daemon
has an embedded sgitcl interpreter and uses sgitcl scripts to retrieve remote
information.

When a request is made for a new sgitcl script from pvgraph or pvcontrolpanel,
the provisiond daemon creates a new, private copy of the sgitcl interpreter.
The daemon then calls a predefined script called provision:wrapper to gather
the script information and return it. If the requested script is a valid SNMP
Object ID, the routine provision:snmpGet is called to do the retrieval. If the
script is a custom file you have created, provision:wrapper executes the file to
retrieve the script data. Finally, the wrapper calls the script as an internal
sgitcl routine which can be in any sgitcl tlib library.

You must create a file with a name ending in .tlib in the /usr/IRIXpro/lib
directory to hold your sgitcl script in order for provision:wrapper to locate the
new script and call it as an sgitcl routine.

Your scripts are not required to be written in sgitcl. If your new script is not
an sgitcl script, simply place the full pathname of the executable program or
script in the /usr/IRIXpro/provision/scriptDefs file.

A description of each script must be placed in the file /usr/IRIXpro/provision/
scriptDefs. This description is used to determine the type of any arguments,
and the type of the return data from the script. If a script is customized or a
new script is added, then this file must be updated. A description of each
new MIB variable must be placed in the file /usr/IRIXpro/provision/varDefs.

Custom Script Reply Format

All custom scripts must report their data back in a specific format. The
format is that of an sgitcl list of lists. There is a list for each host containing
three elements:

• the hostname

• the data

• a status string

100

Chapter 4: Distributed System Monitoring With provision

The hostname and status string are optional. The status message is a script-
generated error message that, if it exists, is sent to the selected provision
notifier.

Custom Script Argument List Format

All scripts are called with a command line of the format:

host-list [argument]. . .

The host list is a space-separated list of hostnames or addresses. All
arguments are defined in the individual script. Common arguments are low
and high bounds on the data. When data comes in that is out of bounds, a
status message is returned.

Custom Script sgitcl Routine Locations

All of the scripts provided with provision are found in the tlib file /usr/
IRIXpro/lib/provision.tlib. If a provided script does not meet your needs then
the script file can be copied and edited to create a custom script. When you
have edited the new script, restart the provisiond daemon. When the daemon
restarts, all tlib files are searched for unknown procedures, so custom scripts
should be kept in a custom script tlib file, which can include routines from
any other tlib library files as well.

Custom Script sgitcl Extensions

The sgitcl programming language provides several extensions to fetch
information. These include rstat, SNMP, and the Silicon Graphics object
management system. There are sgitcl help pages for each call in these three
extensions and a reference page on each library.

The pvcontrolpanel Hosts Area

This area of the pvcontrolpanel main window lists all hosts and collections
currently being monitored by or otherwise known to your provision session.
An icon appears with each host’s name. You can double-click a host icon and
a dialogue window appears showing the items currently being monitored
and any alarms received for the host or collection.

Using pvcontrolpanel

101

When an alarm comes in on a monitored host or collection, the object icon
turns red to show you that an alarm has been received. When you double
click the icon to view the alarm, the icon turns orange to show the alarm has
been noted. If you then click the Clear Alarms button on the dialogue
window, the icon returns to its default color.

The pvcontrolpanel Items to Monitor Area

All the items currently being monitored on any host are listed in this area.
You can select which item is displayed in the Script Configuration Area and
start and stop any item by clicking the provided buttons for each item being
monitored.

The pvcontrolpanel Script Configuration Area

The script configuration section of the pvcontrolpanel window is functionally
identical to the script configuration window used with pvgraph. This
window is discussed in the section titled “The New Graph Window.” Some
key differences are:

• A button is provided for you to specify logging for the script or
variable.

• A button and command window are provided for you to specify
notification and a notification command.

• A regulation time selector is provided if you choose notification. This
controls the frequency with which you will be notified if the specified
limit is reached. For example, if you have set a notification alarm if the
free disk space is under 10000 blocks and you have specified a
monitoring interval of 30 seconds, you can specify a regulation time of
10 minutes and you will only be notified at that time interval, rather
than every 30 seconds.

Creating a Log File With pvcontrolpanel

To create a log file with pvcontrolpanel click the button labeled log when you
configure a variable or script. The name of the log file used appears at the top
of the Items to Monitor section.

102

Chapter 4: Distributed System Monitoring With provision

When you wish to review the log you must select the Close Log File menu
option from the Items menu or stop the actual logging . In order to stop all
logging, close the log file, and not open a new log file, you must stop
monitoring all items currently configured, delete all the items currently
configured, and select the Close Log File menu option.

Alternately, you can select Close Log File from the Items menu, and the log
file for the selected item will be closed and a new one opened. You can then
review the log that was closed. This method is recommended.

Note: If you change the host or parameter being logged with a modify
command, the log file will not be restarted, nor will it register this change in
any way. Thus, when the log is viewed it will be presented as if the
parameters had not changed, and any information collected after the change
is attributed to the initial configuration.

Using pvcontrol

The provision package offers a text-based interface that replicates the
functions of the pvcontrolpanel graphical logging and notification tool. The
text-based interface to provision can be run on any shell window, X-terminal,
or character-based terminal. As root or as a member of the user group
irixpro, enter the command:

pvcontrol

When you enter the command, you see the following prompt:

pvcontrol>

To see a list of commands, type pvhelp (or simply h) and press <Enter> at
the pvcontrol prompt. You see the following list:

Provision commands:

list [log | notify] - list currently monitored items
listAlarms hostName - list alarms reported for specified
 host
clearAlarms hostName - clear alarms for specified host
getCurrentValue hostName scriptName args
 - get the value of the specified
 script or variable

Using pvcontrol

103

add hostName scriptName interval notifyCommand
regulationTime notify|nonotify log|nolog args
 - add item to monitor
modify itemID hostName scriptName interval notifyCommand
regulationTime notify|nonotify log|nolog args
 - modify an item that is being
 monitored
delete all - delete all items
delete itemID - delete item with specified itemID

start all - start monitoring all items
stop all - stop monitoring all items
start itemID - start monitoring specified item
stop itemID - stop monitoring specified item

showAvail - list all available variables and
 scripts
browser - start the snmp browser
closeLog - close the log file
logStatus - check the status of the log file
readConfig fileName - read specified configuration file
saveConfig - save configuration file
saveConfigAs fileName - save configuration file to new name
pvhelp - display this help
quit - quit

pvcontrol>

The commands have the following meanings:

list [log | notify]

This command prints a list of items currently being logged
or monitored for notification along with the itemID
numbers. The itemID number is provided to allow more
convenient manipulation of each specific item.

listAlarms hostName

This command directs pvcontrol to list any alarms reported
for the specified host.

clearAlarms hostName

This command directs pvcontrol to clear all received alarms
for the specified host.

104

Chapter 4: Distributed System Monitoring With provision

getCurrentValue hostName scriptName args

This command directs pvcontrol to get the current value of
the specified script or variable.

add host scriptName interval notifyCommand
regulationTime notify|nonotify log|nolog args

This command adds a new item to the list. You must
supply an entry for each argument shown. When your new
item is accepted, the itemID is displayed along with the
parameters you used. For example, the command

add myhost interrupts 1 “mail dhhill” 1
nonotify log

produces this response:

4 off myhost interrupts 1 off on - mail dhhill 1

The itemID in the displayed response is 4.

In this command and in the modify command:

• The interval is the frequency with which the script is
run or the variable is checked.

• The Notify Command is the shell command to run to
notify you if the limit (set on a per-script basis in the
arguments) is reached.

• The regulation time specifies how frequently you are
notified if the script is chronically past the limits you
have specified.

• The notify and log switches specify notification and
logging.

• The arguments required vary based on the script or
variable you select.

Note that the script is not actually being monitored or
logged until you enter the command start all or start itemID.

modify itemID host scriptName interval notifyCommand
regulationTime notify|nonotify log|nolog args

Using pvcontrol

105

This command modifies an item being monitored. You
provide the itemID of the item, and the new values for the
item. For example, to change the item used above, you
might enter the command:

modify 4 myhost connections 5 “mail dhhill” 1
nonotify nolog 50

With this command you have changed the script to
connections, the interval to 5, stopped logging the results,
and changed the argument to 50. The new parameters of
the item are displayed for you.

In this command and in the add command:

• The interval is the frequency with which the script is
run or the variable is checked.

• The Notify Command is the shell command to run to
notify you if the limit (set on a per-script basis in the
arguments) is reached.

• The regulation time specifies how frequently you are
notified if the script is chronically past the limits you
have specified.

• The notify and log switches specify notification and
logging.

• The arguments required vary based on the script or
variable you select.

Using flags to the modify command, you can modify
individual parameters of an item. The following flags are
recognized:

-h [hostname] – indicates new host name

-r [regulation time] – specifies a regulation time

-s [scriptname] – indicates new script

-i [interval] – indicates new interval

-n [on | off] – turns notification on or off

-c [notify command] – specifies a notification command

-l [on | off] – turns logging on or off

106

Chapter 4: Distributed System Monitoring With provision

-a [arguments] – indicates new arguments

Use the following command syntax with flags:

modify itemID flag flag

delete all This command deletes all items currently configured.

delete itemID

This command deletes only the item with the specified
itemID.

start all This command starts monitoring all currently configured
items.

stop all This command stops monitoring all currently monitored
items.

start itemID This command starts monitoring the specified item.

stop itemID This command stops monitoring the specified item.

showAvail This command lists all available variables and scripts in
text. The list of variables is quite long, and definitions of the
variables can be obtained only through the SNMP Browser
on a graphics system. Descriptions of the available scripts
are in the section titled “The Available Variable and Script
Window.”

browser This command starts the SNMP browser. The browser is a
graphical-only tool, and so cannot display on a non-
graphics system. The browser is described in the section
titled “Obtaining Descriptions of Variables.”

closeLog This command directs pvcontrol to close the log file. A new
log file is opened immediately.

logStatus This command checks and reports the status of the log file.

readConfig fileName

This command directs pvcontrol to read the specified
configuration file and use the monitoring and logging
settings found in it.

saveConfig This command saves the current configuration in the
default configuration file.

Using pvgraph

107

saveConfigAs fileName

This command saves the current configuration to a new
configuration file.

help This command displays the list of available commands.

quit This command quits pvcontrol.

The commands available through pvcontrol are substantially similar to those
available through the graphical pvcontrolpanel, and the description of that
utility provides further helpful information.

Creating a Log File with pvcontrol

To create a log file with pvcontrol you must select logging as a command line
option when you use the add or modify commands to select a variable or
script. The name of the log file used is displayed in the following manner:

The log file is:/usr/IRIXpro/provision/Logs/0.950201-22:34:26

When you wish to review the log you can stop all monitoring action by
deleting all items and entering the closeLog command at the pvcontrol
prompt to stop all monitoring and logging, or you can simply enter the
closeLog command and the current log file will be closed and a new one
opened.

Note: If you change the host or parameter being logged with a modify
command, the log file will not be restarted, nor will it register this change in
any way. Thus, when the log is viewed it will be presented as if the
parameters had not changed, and any information collected after the change
is attributed to the initial configuration.

Using pvgraph

The second tool available directly from the provision window is pvgraph. This
tool allows you to select command scripts and graph the values of certain
variables and system statistics in a window. When you first bring up pvgraph,
you see the following window (shown in Figure 4-5):

108

Chapter 4: Distributed System Monitoring With provision

Figure 4-5 The pvgraph Window

The pvgraph window is blank when it comes up on your screen, and you
create graphs by selecting options from the menu bar. The menu bar has
three menus: File, Graphs, and Help. The options available in these menus
are listed below.

The pvgraph File Menu

The File menu has the following choices:

Read Config...
This option reads a configuration file that specifies a set of
graphs to run. You can also drag an icon representing a
previously stored config file from the directory view onto
the pvgraph icon to start pvgraph with that configuration.

Save Config This option saves the current graphing configuration to a
file.

Using pvgraph

109

Save Config As...
This option saves the current graphing configuration to a
new filename.

Quit Quits pvgraph and ends all graphing.

The pvgraph Graphs Menu

The Graphs menu has the following choices:

Add A Graph
Use this choice to add a new graph. This choice brings up
the New Graph window, described in the section titled “The
New Graph Window.”

Modify Selected Graph
Use this choice to change an existing graph. This choice
brings up the Edit Selected Graph window with the
parameters of the selected graph displayed in the fields for
modification.

Delete Selected Graph
This choice deletes the selected graph.

Change Style of Selected Graph
This choice brings up the Graph Styles window. This
window is described completely in the section titled “The
Graph Style Window.”

Change Parameters of All Graphs
This choice brings up the Graph Parameters window. This
window is described completely in the section titled “The
Graph Parameters Window.”

Show Alarms This choice shows all received provision alarms for the
graphed items. See “Working With Graph Alarms” for more
information.

Clear Alarms This choice clears all received provision notification alarms.
See “Working With Graph Alarms” for more information.

Start Selected Graph
This choice starts a previously stopped graph.

110

Chapter 4: Distributed System Monitoring With provision

Stop Selected Graph
This choice stops a selected graph.

Start All Graphs
This choice starts all previously stopped graphs.

Stop All Graphs
This choice stops all graphing.

The pvgraph Help Menu

The Help menu offers online help with pvgraph.

Using pvgraph

111

The New Graph Window

When you select the menu choice to add a graph to your pvgraph window,
you see the new window shown in Figure 4-6.

Figure 4-6 The New Graph Window

This window has several fields for you to fill in the parameters of the graph
you wish to make. There are also other fields that may appear as you enter
information. Certain scripts require more parameters than others, and if you
enter the name of such a script in the Script field, additional fields appear
below the basic fields. The fields require the following kinds of information:

Host Field This field takes the name of a host. The host must be
connected with the local system by the network, and the
host must be running the snmpd daemon.

Script Field This field takes a script or variable name. If you do not
know the name of the script or variable you wish to use,
press the Show Available Vars button at the bottom of the
window and the Available Variable and Script window will
appear. This window is described in the section titled “The
Available Variable and Script Window.” All distributed
scripts are described in that section of this chapter.

112

Chapter 4: Distributed System Monitoring With provision

Interval Field This field is where you specify the time interval (in seconds)
at which the script will run and the results will be
displayed. For example, if you enter 1, the script will run
and the graph will be updated every second.

Arguments Fields
These fields are where any necessary arguments to the
script are specified. When you enter a variable or script,
appropriate fields appear for each needed argument. If the
script or variable is not known to provision, a field titled
arguments appears to receive any arguments required. To
make a new script or variable known to provision, an entry
must be placed in the /usr/IRIXpro/provision/scriptDefs or /
usr/IRIXpro/provision/varDefs file.

At the bottom of the New Graph window, there are five buttons, labeled
Show Available Vars, MIB Browser, Apply, Accept, and Cancel. The Show
Available Vars button brings up the Available Variable and Script window,
described in the section titled “The Available Variable and Script Window.”
The SNMP Browser button brings up the Browser, described in the section
titled “The MIB Browser.” Use the Apply button to add your graph and leave
the New Graph window on the screen, or the Accept button to add the new
graph and remove the New Graph window. The Cancel button removes the
New Graph window without applying your changes.

If you add additional graphs, the window is subdivided for each graph.
When you have more graphs than can fit on the window, you must enlarge
the window to accomodate the new graphs.

Using pvgraph

113

Working With Graphs

When you have applied your graph to the pvgraph main window, the center
of the window looks something like that shown in Figure 4-7.

Figure 4-7 The pvgraph Window With One Graph

Note that there is a check box and a slider present at the bottom of the
pvgraph window. When you begin your graph, the check box has a check
mark, indicating that the graph being made is using data as it is collected in
real time. The slider is grayed-out and inoperable. At any time you can click
on this check box and the entire history of the graph is made available to you.
The slider bar becomes active and you can use it to review your graph. When
you wish to return to live graphing, simply click the check box again and the
graph is updated. No data is lost during your review operation.

Working With Graph Alarms

When the script results or variable values being graphed exceed the low and
high limits you specified when you added or modified the graph, an alarm

114

Chapter 4: Distributed System Monitoring With provision

is set off for you. This alarm is a visual cue to check the item being graphed.
When the value of the script or variable has gone out of bounds, the graph
turns red, as shown in Figure 4-8.

Figure 4-8 A Graph With an Alarm Showing

To clear alarms, select the Clear Alarms menu option from the Graphs menu.
If you select the Show Alarms option, a window appears with a log of all
alarms received since the last Clear Alarms command, or since the beginning
of the pvgraph session.

Selecting a Graph

You can select a graph for further operations by placing the mouse cursor in
the window section of the graph and clicking the left mouse button. The
background of the selected graph turns yellow. Only one graph may be
selected at a time. You may perform the following operations from the
Graphs menu on selected graphs:

Using pvgraph

115

Modify Selected Graph
This choice brings up the Modify Selected Graph window
with the parameters of the selected graph displayed in the
fields for modification. This window is identical to the New
Graph Window except for the title.

Delete Selected Graph
This choice deletes the selected graph.

Change Style of Selected Graph
This choice brings up the Graph Style window. This
window is described completely in the section titled “The
Graph Style Window.”

Stop Selected Graph
This choice stops the selected graph.

Start Selected Graph
This choice starts the selected graph.

The Graph Parameters Window

When you select the “Change Parameters of All Graphs” menu item from
the pvgraph Graphs menu, you see the new window shown in Figure 4-9.

Figure 4-9 The Graph Parameters Window

What you are changing is the period of graph-time that is displayed in the
window at any given moment. The parameters you can change are the graph
width value and the time unit. The width value is simply the number of
increments of the selected time unit. In the above example, the width value
is 1 and the time unit is minutes for a width of 1 minute. You may select 1, 2,
5, 10, 20, or 30 for the width value, and one of seconds, minutes, hours, days, or
weeks for the time unit.

116

Chapter 4: Distributed System Monitoring With provision

Once you have made your selections, you may press the Apply button to
apply the change and leave the Graph Parameters window on the screen, or
the Accept button to apply the changes and remove the Graph Parameters
window. The Cancel button removes the window without applying your
changes. The Help button invokes provision’s online help utility.

The Graph Style Window

If you select the “Change Style of Selected Graph” menu item from the
Graphs menu in pvgraph, you see a new window on your screen, as shown
in Figure 4-10.

Figure 4-10 The Graph Style Window

This window allows you to select and modify the way the selected graph is
presented in pvgraph. When the polling interval arrives on a graph, the new
value of a variable (or the value of the output of the script being graphed) is

Using pvgraph

117

placed on the graph as a point, and a line is drawn between the new point
and the previous point. You may select the shape of the point marker, its size
and color, and the style, width, and color of the connecting line. Click the
style of marker and line you prefer. Any valid X color or value may be
named in the Color field, and you can use the arrow buttons to increase or
decrease the size of the line or marker.

When you have made your selection, press the Apply button to apply the
new format to your graph, or the Cancel button to discard your unapplied
changes.

The provision Configuration File

At any time during your pvcontrolpanel or pvgraph session, you can save the
current graphing and/or monitoring selections in a configuration file. The
options are in the File menu in both utilities:

Read Config...
Save Config
Save Config as...

118

Chapter 4: Distributed System Monitoring With provision

When you first save your current state, use the “Save Config as...” option.
When you select this option, you see a file selection window for your current
working directory, such as that shown in Figure 4-11.

Figure 4-11 A File Selection Window

Select a new filename for your configuration file and click the OK button
when you are satisfied with your selection. Your current state is now saved.
If you wish to save your current selections again later, using the “Save
Config” option from the Files menu of pvcontrolpanel or pvgraph will
automatically bring up the file selection window with the most recently used
config file specified. You can, however, change the name so as not to
overwrite the existing config file. Using config files, you can create templates
for commonly used monitoring and graphing scenarios. For example, you
can have preset configuration files to monitor all systems’ network traffic or
the swap rates on your servers.

Using pvgraph

119

Each provision configuration file is written in clear text and looks similar to
the following example:

provision config file written Mon Feb 6 14:29:52 PST 1995
by pvcontrolpanel
off on off random provision:random wookie 1 {} -1 0 {200}
off on off ifInOctets_1 1.3.6.1.2.1.2.2.1.10.1 wookie 1
{} 10 0 {2} {3}
off on off ifOutOctets_1 1.3.6.1.2.1.2.2.1.16.1 wookie 1
{} 10 0 {2} {3}
off on off random provision:random irixpro 5 {} 600 0
{100}

Using pvgraph to View a Log

You can view log files created with pvcontrol or pvcontrolpanel using pvgraph.
For more information on log files and how they are created, see “Creating a
Log File With pvcontrolpanel” on page 101 or “Creating a Log File with
pvcontrol” on page 107 in this chapter. A log file is simply a file containing a
series of values for a script or variable accumulated over a period of time.
The provision application stores the log files in the log directory /usr/IRIXpro/
provision/Logs. A log file is actually contained in two filenames in that
directory. For example, a log might be placed in filenames similar to
0.950201-21:18:33.Desc, and 0.950201-21:18:33.Data. Filenames ending in
.Desc contain information about what was logged, and filenames ending in
.Data contain the actual log information.

To view a log as a graph, use the command syntax

pvgraph filename

to invoke pvgraph in log file mode. The filename argument can be any of the
three filenames that refer to the desired log. For example, using the example
filenames as shown above, you could invoke pvgraph in these ways:

pvgraph 0.950201-21:18:33

pvgraph 0.950201-21:18:33.Desc

pvgraph 0.950201-21:18:33.Data

120

Chapter 4: Distributed System Monitoring With provision

Each of the above commands results in the same action by pvgraph. By
default, pvgraph looks for the given filename in /usr/IRIXpro/provision/Logs,
but you can specify any log file in any directory by issuing the pathname of
the file on the command line.

When you invoke pvgraph with a log file name as a command line argument,
pvgraph does not connect with the provisiond daemon as usual. Instead, the
named log file is loaded. The log is not displayed as a graph, though, until
you use the Add A Graph menu option from the Graphs menu. When you
use this command, you see a different New Graph window, similar to
Figure 4-12.

Figure 4-12 The New Graph Window with Log File Information

When you view a log file, it does not scroll by as usual; you must use the
slider at the bottom of the window to move forward and back throughout
the log.

If you are invoking pvgraph from the desktop or directory view rather than
as a shell command, you can drag the file icon for the log you wish to view
and drop it on the pvgraph icon and pvgraph will come up with the log
loaded.

The MIB Browser

121

The MIB Browser

The MIB Browser is available through either pvcontrolpanel or pvgraph. The
browser enables you to select a node on your network and view and change
the contents of one or more Management Information Bases (MIBs) for that
node. Browser communicates with a node that you select using Simple
Network Management Protocol (SNMP). The node can be a workstation,
router, bridge, hub, or gateway—any device that has an IP address and
implements the SNMP protocol and agent.

Browser enables you to walk the tree of information represented by the MIBs
and the SNMP Containment Tree, and to get the values of MIB variables.
While you are using Browser, you can save the variable values that you
receive to a file. You can set MIB variables if the SNMP and MIB
implementations on the node you are browsing allow it and the community
string you provide authorizes it.

Several MIB specifications are provided with Browser. The supplied MIB
specifications are:

• hp-ux_sgi

• mib-2

• rmon

Browser is designed to be used by network managers experienced in
managing various devices on the network. This section assumes that you are
familiar with SNMP management terminology and technology, especially
the MIBs for different devices. If you are not familiar with this terminology,
the section titled “SNMP Management Glossary” on page 142 defines the
basic terms.

122

Chapter 4: Distributed System Monitoring With provision

This section explains how to

• start Browser

• use the Browser File menu

• use the Browser main window to specify the node you want to browse
and begin navigating the SNMP Containment Tree

• navigate the SNMP Containment Tree to view subtrees, tables, and
variables

• get descriptions of variables

• get and set the values of variables

In addition, an example of using Browser is provided. For complete
information on Browser command line options, see the browser(1M)
reference page.

Note: To enable Browser to get and set MIB variables on a Silicon Graphics
workstation, that workstation must be running the SNMP daemon
snmpd(1M), and your Display Station must be authorized in the file /usr/etc/
snmpd.auth on that workstation. See “Authorizing Browsing” for details.

Caution: With proper authorization, Browser lets you change some MIB
variable values on devices you browse. Because MIB variable values can be
critical to the operation of a device and your network, do not change values
unless you understand the effects of your changes.

SNMP Agents

Browser uses Simple Network Management Protocol (SNMP) agents to
obtain information. The SNMP agent for Silicon Graphics workstations is
snmpd(1M). Vendor-specific SNMP agents are used to obtain information
about other types of nodes (see Figure 4-13). For more information on SNMP
see the section titled “SNMP Management Glossary.” For information on
enabling SNMP agents, see “Enabling SNMP Agents.”

The MIB Browser

123

Figure 4-13 SNMP Agents and Browser

Enabling SNMP Agents

Browser must communicate with the SNMP agent on each node you wish to
browse. SNMP agents and the procedures for enabling them are vendor-
specific. The procedure for enabling the SNMP agent on Silicon Graphics
workstations is described below. For other types of nodes, contact the system
administrator for that node for help in enabling SNMP on that node.

The Silicon Graphics SNMP agent is snmpd(1M). The SNMP agent software
is distributed with IRIX, and the hp-ux_sgi MIB and agent are distributed
with IRIXpro. To configure a workstation so that snmpd is started
automatically when the system is rebooted, copy the snmpd executable file
to the workstation, and enter this command on the workstation as root:

chkconfig -f snmpd on

To see if the daemon is already running, enter this command:

ps -e | grep snmpd

If there is no output from this command, snmpd is not running. Enter this
command as root to start snmpd:

Network

Browser SNMPsnmpd
agent

SNMP requests

(Remote browsing)

(Local browsing)

Local host Remote node

SNMP requests

124

Chapter 4: Distributed System Monitoring With provision

snmpd

Authorizing Browsing

No special authorization other than a valid community string is required to
browse on nodes other than Silicon Graphics workstations. (See “Browser
Main Window” and “SNMP Management Glossary” for more information
about community strings.)

If you want to get and set MIB variables on a Silicon Graphics workstation
using Browser, you must perform several setup steps in addition to
providing a valid community string while using Browser: confirm that the
workstation you are browsing has SNMP agent software running; start it if
necessary (see “Enabling SNMP Agents,” in this chapter); and authorize
your Display Station to browse on that workstation.

To be authorized to browse a Silicon Graphics workstation, the Display
Station’s host name must be specified in the file /usr/etc/snmpd.auth on the
workstation you are browsing. You must be superuser (root) to read or write
/usr/etc/snmpd.auth. For security reasons, the owner and permissions of this
file should not be changed.

As an example, suppose that you want to browse a Silicon Graphics
workstation named tahoe . Your workstation’s name is sequoia . First,
confirm that snmpd is running on tahoe :

rsh guest@tahoe 'ps -e | grep snmpd'

Assuming that it is running, log onto tahoe as superuser and add this line
to /usr/etc/snmpd.auth:

accept sequoia:*

This line authorizes anyone using your workstation to browse the
workstation tahoe when they give any community string. These users can
perform both get and set operations.

By default, /usr/etc/snmpd.auth contains this authorization line:

accept *:public/get

This line authorizes any user from any host who provides the community
public to get variable values for this workstation.

The MIB Browser

125

See the snmpd(1M) reference page and the file for more information about
the syntax used in this file.

Starting Browser

To start Browser, click the browser button from a provision window.

The Browser main window appears. An example is shown in Figure 4-14.

Figure 4-14 Browser Main Window

Browser Main Window

The entry fields in the Browser main window enable you to specify the node
you wish to browse, a community string, a time-out value for accessing the
SNMP agent on the node, and the number of retries to make when
attempting to access a remote node.

When you invoke Browser, the entry field shown in Figure 4-15 contains the
name of your workstation. You can replace it with the name or address of the
node you want to browse. A blank entry field is the same as specifying the
name of your workstation.

126

Chapter 4: Distributed System Monitoring With provision

Figure 4-15 Node Entry Field

The Community entry field shown in Figure 4-16 contains the community
string that is to be used in the SNMP packets sent to the node. The
community string is an authorization password for the node you browse on.
On Silicon Graphics workstations, valid community strings and other
authorization information is specified in the file /usr/etc/snmpd.auth. The
default community string on Silicon Graphics workstations is “public”. For
other types of nodes, such as routers and bridges, the community string is
specified for each device by a system administrator. A valid community
string must be supplied in order to use Browser to view MIB information.

Figure 4-16 Community Entry Field

If Browser doesn’t receive a reply from the SNMP agent on the specified
node within the time-out value, it will try again. The default time-out value,
shown in Figure 4-17, is 5 seconds.

Figure 4-17 Timeout Interval Entry Field

The Number of retries entry field, shown in Figure 4-18, specifies the
number of retries when there has been no reply from the node. The default
is 3.

Figure 4-18 Number of Retries Entry Field

The mib-2, enterprises, and experimental buttons in the Browser main window,
shown in Figure 4-19, provide quick ways to specify what you want to
browse: the mib-2 MIB, or the enterprises or experimental nodes in the

The MIB Browser

127

SNMP Containment Tree, respectively. When you click these buttons, a
Subtree window appears. Subtree windows and Table windows are
described in the next section. These buttons are grayed out if no MIB
specifications in that portion of the SNMP Containment Tree are available to
Browser. The term ‘‘grayed out’’ means that the button title is gray at that
moment, rather than black. This indicates that the function or service
represented by that button is unavailable.

Figure 4-19 mib-2, enterprises, and experimental Buttons

When you click the Variable... button, shown in Figure 4-20, a Variable
window appears. This window is used to get and set the values of specific
MIB variables. It is explained in detail in “Obtaining and Setting Values
Using the Variable Window” in this chapter.

Figure 4-20 Variable... Button

Browser Subtree and Table Windows

To display MIB information, Browser uses two types of windows: Subtree
windows and Table windows. For every nonleaf node in the SNMP
Containment Tree, Browser displays one of these types of windows:

• a Subtree window showing the subtrees of that node

• a Subtree window showing the variables and/or tables of that node

• a Table window showing the array of table variables in that table

The remainder of this section discusses examples of these windows.

128

Chapter 4: Distributed System Monitoring With provision

Subtree Windows That Show Subtrees

Figure 4-21 shows the Subtree window for mib-2 . It is an example of a
Subtree window for a subtree that contains other subtrees.

Figure 4-21 Subtree Window Showing Subtree Objects

The Node entry field, shown in Figure 4-22, contains the node name or
address you specified in the Browser main window.

Figure 4-22 Node Entry Field

The Object ID and Name entry fields, shown in Figure 4-23, contain two
different representations of the name of the subtree displayed in the

The MIB Browser

129

window. The Object ID entry field contains the numeric representation of the
name (dot separated object numbers) and the Name entry field contains the
text string representation (dot-separated object names).

Figure 4-23 Object ID and Name Entry Fields

The scrolling display area in the center of the window contains one line for
each object in the subtree, such as the udp line shown in Figure 4-24. The line
begins with the object’s number in curly braces followed by its object name.
Clicking the Open group... button brings up a Subtree window for the object
on this line. Its use is described more fully in “Navigation Using Buttons in
the Subtree and Table Windows” in this chapter. A grayed-out button means
there are no variables under this object in the MIB.

Figure 4-24 Object in a Display Area

The Read At line provides status information during a “Get” operation (see
“Obtaining, Setting, and Saving Variable Values” in this chapter), which is
replaced by the current time after the operation is completed. An example is
shown in Figure 4-25.

Figure 4-25 Read At Line

The current time is displayed on the Set At line after a “Set” operation (see
“Obtaining, Setting, and Saving Variable Values” in this chapter). An
example is shown in Figure 4-26.

Figure 4-26 Set At Line

130

Chapter 4: Distributed System Monitoring With provision

Checking the “Close this window when opening a subwindow” check box,
shown in Figure 4-27, specifies that you want this Subtree window to be
closed when a new Subtree or Table window for a node in this subtree is
opened. By default, each of the Subtree or Table windows you open for
subtrees or tables within this subtree will have the same setting.

Figure 4-27 Close This Window When Opening a Subwindow Check Box

Subtree Windows That Show Variables and Tables

Figure 4-28 shows the Subtree window for mib-2.udp . It is an example of a
Subtree window that shows the variables and/or tables of that subtree (in
MIB terminology, this type of subtree is called a group).

Figure 4-28 Subtree Window Showing Variables and a Table

The MIB Browser

131

Most portions of this type of Subtree window are the same as the Subtree
windows described in “Subtree Windows That Show Subtrees” in this
chapter. However, the display area of this type of Subtree window contains
entry fields and Open table... buttons rather than Open group... buttons.

Variables in the subtree are shown in the display area as an object number,
an object name, and an entry field, as shown in Figure 4-29. When the object
number (in braces) is appended to the object ID at the top of the window, it
forms the complete object ID for the object. The entry field is gray for
variables whose values are defined as read-only in the MIB and pink for
variables that are defined as read-write or write-only in the MIB. If the entry
field is pink, you can set the value of that variable (see “Obtaining and
Setting Values Using the Edit Menu of a Subtree Window,” in this chapter).

Figure 4-29 Variable Line in a Subtree Display Area

Tables in the subtree have lines that include their object number, their name,
and the Open table... button, as shown in Figure 4-30. When you click an Open
table... button, a Table window, described in the next section,
appears.

Figure 4-30 Table Line in a Subtree Display Area

Browser Table Windows

Figure 4-31 shows the default Table window for mib-2.udp.udpTable .
When a Table window appears, the display area contains only the names of
the table variables. Entry fields appear for the variables as you retrieve their
values with “Get next row” in the Edit menu. (See “Obtaining and Setting
Values Using the Edit Menu of a Table Window,” in this chapter.)

132

Chapter 4: Distributed System Monitoring With provision

Figure 4-31 Browser Table Window

Navigating the SNMP Containment Tree

With Browser you can open a Subtree window for each subtree in an MIB
that you want to browse and a Table window for each table in an MIB that
you want to browse. Browser buttons and menus enable you to specify the
subtree or table you want to view. When you use these buttons and menus,
you are “navigating” the MIB Tree. The three navigation methods are
described in the following sections.

Navigation Using the Buttons in the Main Window

The mib-2, enterprises, and experimental buttons in the Browser main window
provide three starting points for browsing the SNMP Containment Tree.
Clicking the mib-2 button brings up a Subtree window for the MIB-II MIB.
Clicking the enterprises and experimental buttons brings up Subtree windows
for the Enterprises and Experimental subtrees, respectively.

The MIB Browser

133

Navigation Using the Navigate Menu

To use the Navigate menu from any window, follow these steps:

1. Press the left mouse button on Navigate in the menu bar.

In the menu that appears, each choice except the last is the name of a
subtree or table that is an object in the subtree in the window. Choices
are highlighted as you move the cursor on them; if they have a rollover
menu, it appears automatically. Figure 4-32 shows an example of the
Navigate menu at the mib-2 subtree with the cursor on udp .

Figure 4-32 Navigate Menu

2. To view one of the subtrees of the subtree in the window, select one of
the choices on the Navigate menu (not on a rollover menu).

If you make the subtree selection shown in Figure 4-32, the window
shown in Figure 4-28 appears.

3. To view subtrees or tables farther down in the hierarchy, move the
cursor to a choice on a rollover menu and release the mouse button. In
this way you can traverse the entire width and length of the subtree in
the window.

4. To view the parent of the current subtree, select the last choice on the
Navigate menu. It is the name of the parent of the subtree in the
window.

134

Chapter 4: Distributed System Monitoring With provision

Navigation Using Buttons in the Subtree and Table Windows

Figure 4-21 shows an example of Open group... buttons in the display area of
the mib-2 Subtree window. When you click one of these buttons, a new
Subtree window appears for this object. It is equivalent to choosing this
subtree from the Navigate menu.

In Figure 4-28, udpTable is a table and has an Open table... button. Clicking
an Open table... button is equivalent to choosing the table from the Navigate
menu. Figure 4-31 shows the Table window for udpTable that appears when
you click this button.

Obtaining Descriptions of Variables

To get a description of each of the objects in a subtree or each of the variables
in a table, select “Description” from the Help menu of the Subtree or Table
window. A Description window appears. Figure 4-33 shows an example.

Figure 4-33 Description Window

The MIB Browser

135

Obtaining, Setting, and Saving Variable Values

Browser enables you to obtain the values of MIB variables and set them if
you have write access. (Write access is determined by the type of the variable
and by your community. See “Authorizing Browsing” and “SNMP
Management Glossary.”) Three types of Browser windows can be used to get
and set variables:

• The Variable window enables you to get and set individual variables.
The Variable window is described in “Obtaining and Setting Values
Using the Variable Window,” in this chapter.

• Subtree windows enable you to get and set variables that aren’t part of
tables. “Obtaining and Setting Values Using the Edit Menu of a Subtree
Window” in this chapter describes how to do this.

• Table windows enable you to get and set variables that are part of
tables. “Obtaining and Setting Values Using the Edit Menu of a Table
Window,” in this chapter, describes how to do this.

Obtaining and Setting Values Using the Variable Window

Follow the steps below to use the Variable window to get and set variable
values.

1. Click the Variable... button in the Browser main window. The window
shown in Figure 4-34 appears.

Figure 4-34 Variable Window

136

Chapter 4: Distributed System Monitoring With provision

2. If you want to specify a variable by object identifier, fill in the Object ID
entry field with the object identifier and append the following:

.0

The “dot zero” specifies that you want the value of the object; if you
forget to use .0, Browser adds it automatically. For example, to specify
mib-2.ip.ipForwarding (1.3.6.1.2.1.4.1), the Object ID entry field should
look like the one shown in Figure 4-35.

Figure 4-35 Object ID Entry Field

3. To specify a variable in a table, enter its object identifier in the Object ID
entry field. To construct its object identifier, you can use the object
identifier of the table and append:

.1.x.y

The column number is represented by x (beginning with 1), and y is the
value of index for the row you want. For example, the object identifier
for the ifDescr variable (column 2) in the first row (index value of 1) of
the mib-2.interfaces.ifTable (1.3.6.1.2.1.2.2) table is
1.3.6.1.2.1.2.2.1.2.1 . If the table you are using has more than one
index column, create y by specifying each index value in order and
separating them with periods. For example, if the value of index1 is
127.1.9 and the value of index2 is 7, y is 127.1.9.7 .

4. If you want to specify the variable by name, fill in the Name entry field.
You need not type in the complete hierarchical name, just the last
component. Adding .0 to the name is optional. If the Object ID and the
name you fill in don’t match, the Object ID is used.

5. To obtain the value of the variable, click the Get button. The value of the
variable appears in the Value entry field. The Name entry field is
automatically modified so that it contains the complete hierarchical
name.

6. To set the value of a variable, enter the value in the Value entry field
and click the Set button.

The MIB Browser

137

7. To obtain the value of the next variable, click the Get next button.
Depth-first search is used to determine the next variable, so the right-
most component of the object identifier varies fastest as the tree is
traversed with Get next.

8. Continue obtaining and setting variables as necessary by modifying the
Object ID, Name, and/or Value entry fields and using the Get, Get next,
and Set buttons.

Obtaining and Setting Values Using the Edit Menu of a Subtree Window

You can obtain and set the values of variables from a Subtree window using
the Edit menu:

1. Bring up the Subtree window that contains the variable whose value
you want to obtain or set (see “Navigating the SNMP Containment
Tree” in this chapter).

2. Select “Get” from the Edit menu to obtain the values of all of the
variables. The current time is displayed on the Read At line.

3. Make changes in the entry fields for any variables whose values you
want to change. Only variables whose entry fields are pink may be
changed.

4. Select “Set” from the Edit menu to change variable values. The current
time is displayed on the Set At line.

Obtaining and Setting Values Using the Edit Menu of a Table Window

You can obtain and set the values of variables in a table from its Table
window using the Edit menu:

1. Bring up the Table window for the table you are interested in (see
“Navigation Using the Navigate Menu” in this chapter).

2. To obtain the first row of variables in the table, select “Get next row”
from the Edit menu. The current time is displayed on the Read At line.

3. To obtain other rows for the table, select “Get next row” from the Edit
menu as many times as necessary.

138

Chapter 4: Distributed System Monitoring With provision

4. Make changes in the entry fields for any variables whose values you
want to change.

5. Select “Set” from the Edit menu to change variable values. The current
time is displayed on the Set At line.

Browser File Menu

The File menu in each window gives you one or more of the window
management and quitting choices listed below.

“Save MIB Values”
Save MIB values for this subtree for all nodes in the subtree
that have open windows to a file. The values are appended
to the file that you last specified with “Save MIB Values
As...”.

“Save MIB Values As...”
Save MIB values for this subtree for all nodes in the subtree
that have open windows to a file. When you select this
choice, a file prompter appears. Use it to specify a filename
The filenames are sorted by object identifier.

“Pop Main Window”
Display the Browser main window. This is useful if you
have many windows open and want to locate the Browser
main window quickly.

“Close Lower Level Windows”
Close the windows for all subtrees and tables below the
subtree in this window. (You can close windows
automatically as new windows are opened, using the check
box “Close this window when opening a subwindow.” See
“Subtree Windows That Show Subtrees,” in this chapter.)

“Close” Close this window.

“Quit” Quit Browser (available only from the File menu in the
Browser main window).

The MIB Browser

139

Browser Example

This section contains an example Browser session on a network that contains
a Cisco router with IP address 192.26.51.27 .

To begin this session, invoke Browser through provision.

The Browser main window is placed on the screen. To browse the MIB for
the Cisco router, first fill in the entry fields in the Browser main window:

Node Enter the Cisco router’s IP address, 192.26.51.27 .

Community Enter the community string your workstation is authorized
to use. In this example, the string public is used.

Time-out interval
Use the default value, 5 seconds, for the time-out interval. If
the Browser doesn’t receive a reply from the Cisco SNMP
agent in 5 seconds, it will try again.

Number of retries
Use the default number of retries, which is 3. This entry field
specifies the number of times that Browser tries again if no
reply is received from the Cisco agent within the time-out
interval.

Figure 4-36 shows the Browser main window after you’ve filled in the entry
fields.

Figure 4-36 Example Browser Main Window

140

Chapter 4: Distributed System Monitoring With provision

Suppose you want to get the values for the lsystem group in the Cisco MIB.
To display the variables in this group, use the Navigate rollover menus to
navigate through the MIB hierarchy to lsystem , as shown in Figure 4-37.

Figure 4-37 Navigate Rollover Menus for cisco.local.lsystem

When you release the mouse button, the cisco Subtree window shown in
Figure 4-38 appears:

The MIB Browser

141

Figure 4-38 Subtree Window for cisco.local.lsystem

To get the values for these variables, select “Get” from the Edit menu. The
entry fields for the variables are filled in with their current values, and the
current time is indicated at the bottom of the window. Figure 4-39 shows an
example:

142

Chapter 4: Distributed System Monitoring With provision

Figure 4-39 Subtree Window With Values for cisco.local.lsystem

Use the right scroll bar to adjust the display area so that you can examine the
values of the variables that don’t fit in the default-size display
area.

SNMP Management Glossary

This section describes some basic terms used in the SNMP management
framework. It begins with basic concepts. Later definitions build on terms
defined previously. Terms in italics are defined elsewhere in this section.

The MIB Browser

143

Agent

Software or firmware that gathers the information important to the device
on which it resides. It also implements a protocol that exchanges that
information with a network management station. snmpd(1M) is an example of
an SNMP agent.

Network Management Protocol

The protocol used to convey management information between an agent and
a network management application. The protocol used by Browser to query
information from various agents is SNMP.

Simple Network Management Protocol (SNMP)

The network management protocol used by Browser to talk to agents on remote
managed nodes. For Silicon Graphics workstations, the SNMP agent is
snmpd(1M). Agents for other types of nodes may be implemented in
software or firmware and are vendor-specific.

Management Information Base (MIB)

The specification for the virtual store of the information supported by an
agent. Some MIBs have RFC status, which means they have been approved
by the IETF.

MIBs are defined in SMI format. For instance, a router MIB is a collection of
important information about a router defined in SMI format. An SNMP
agent typically implements two MIBs, MIB-II and a device-specific MIB (an
Enterprise MIB). However, the agent may not implement all of the objects
defined in each MIB.

SNMP Containment Tree

A hierarchical tree of information gathered by agents about devices.

Subtree

A node with children in the SNMP Containment Tree.

144

Chapter 4: Distributed System Monitoring With provision

MIB-II

The Internet-standard MIB (RFC 1213). This MIB has managed objects that are
important for managing the TCP/IP suite of protocols.

Managed Object

A managed object is also known as a variable.

Variable

A leaf node in the SNMP Containment Tree is called a variable. In the SMI
definition for each MIB, each variable is defined to be read-write, read-only,
or write-only.

Object Identifier (Object ID)

An object identifier is a name in a dot notation that uniquely identifies an
object (subtree or managed object) in the MIB. For example, the object ID for
sysContact is 1.3.6.1.2.1.1.4 .

Enterprise MIBs

MIBs defined by different vendors for managing their devices. They can be
specific to one device or vendor. For example, the CISCO MIB has objects for
the Cisco router.

Community String

A password used by an SNMP agent for authentication purposes. The
default string for Silicon Graphics workstations is “public”. Community
strings are usually defined by system administrators.

145

Chapter 5

5. System Administration Request Management
With problema

This chapter describes the problema software package. The following topics
are covered:

• An overview of the problema system and its interfaces in “The problema
Request Management System.”

• Instructions on installing and configuring problema are provided in
“Installing and Configuring problema.”

• A description of the actions and processes that problema users and
administrators are likely to use in “Using problema.”

• A specific description of the user-level facilities of problema is provided
in “General Operations.”

The problema system administration request tracking service is based on the
successful CASEVision/Tracker™ application, and brings the power and
ease-of-use of that software to the system administrator. The configurability
of Tracker has been maintained in problema, while custom-tailoring the
application to the system administrator’s needs. The Tracker product must
be installed in order to use problema successfully.

Much of the in-depth documentation provided with Tracker is also accurate
for problema, and should therefore be considered a valuable resource for
understanding this product.

The problema request tracking software uses the same database software
technology used in Tracker and in the rest of the IRIXpro suite of system
administration tools. However, the problema application uses the dml
language, as opposed to sgitcl in the rest of IRIXpro. Sample dml scripts are
provided in the /usr/IRIXpro/sample/problema directory that are designed to
be run as root and irixpro cron(1) jobs. The script problemaDBclean removes
the requests marked as DELETED from the database. The problemaDBdue
script lists the requests that are not closed and past their expected due date.

146

Chapter 5: System Administration Request Management With problema

The problema application has been designed to offer a convenient way for
users to request system administration services and to offer administrators
a convenient way to track those requests. A clear record is kept of each
request, and the administrator is free to prioritize and assign each request in
the most efficient way. With this system, the best interests of the user and the
administrator are served by clarifying a process that is often handled
informally.

The problema Request Management System

The problema request tracking system includes a database to hold system
administration requests and graphical interfaces to that database. Online
help is available at all times through the graphical interface windows,
providing detailed instructions on the request filing, tracking, resolution and
querying processes.

problema, miproblema, and suproblema

The problema application consists primarily of a database and three very
similar interfaces to the information in the database. The difference between
the interfaces is primarily in the level of detail and number of fields offered.
The first interface is the one most users see regularly, called miproblema. This
interface provides only the most basic fields necessary to submit a request to
the administrators. The second interface is problema, which is also designed
for users, but which provides a more complete interface to the database. The
third interface is reserved for the system administrators or managers who
make decisions and take action on the requests submitted by the users. This
administrator’s interface is called suproblema. The suproblema window
contains some fields and options not available on the problema user-level
version. All these interfaces are described and shown in the section titled
“Using problema” on page 157.

In the course of this chapter, except where otherwise stated, all information
is true for all problema interfaces. The suproblema interface is a superset of the
problema interface, and the problema interface is a superset of the miproblema
interface. The term problema is used in general to describe the database and
its interfaces, rather than strictly the user’s interface.

The problema Request Management System

147

In addition to the functions available through the miproblema and problema
interfaces, the suproblema interface to the problema database allows the
administrator or manager to track a request that has been forwarded to a
known vendor, and to add a technical description of the user’s problem. It
offers more action options than are available through the user’s interfaces.

Typically, the suproblema interface is installed only on the host where the
system administrators maintain the problema database and have regular
access. Hosts that serve users generally have the miproblema and problema
interfaces. However, you are free to install suproblema wherever you like and
allow whomever you choose to use it, as best suits your needs.

148

Chapter 5: System Administration Request Management With problema

The problema Tracking Process

This section describes the problema process in terms of the life cycle of a
request in the system. The data flow diagram in Figure 5-1 illustrates the
request tracking process.

Figure 5-1 The problema Request Life Cycle

A request can go through many different states during its life cycle. The
request tracking process has four major stages:

Installing and Configuring problema

149

1. A user submits a request into the problema database. At this point the
request is in the AWAITING_RESPONSE state.

2. The request is assigned to an owner to perform the work. If no action is
required (for example, if the request is already resolved, must be
deferred, or is a duplicate), the request is tagged appropriately and then
returned to the database in the CLOSED or AWAITING_RESPONSE
state for later action.

3. Assigned requests are then executed by their owners. The owner may
also elect to defer, resolve, or tag the request as a duplicate, or the
request may be forwarded to an outside vendor for attention.

4. Finally, the request is resolved when the work is done and the request is
moved to the CLOSED state. If the work was not done correctly, the
original requesting user can reopen the request, if need be, or submit a
new request.

Installing and Configuring problema

The problema application is ready to run when you install IRIXpro on your
system. All basic files necessary for standard usage are installed and
configured for you. To use problema as it is distributed, you must have a
CaseVision/Tracker user’s license installed as well.

The problema application can be configured to match your needs and
methods of administration. All necessary files for customization are
installed with the application. To customize problema or create your own
custom application, you must have a CaseVision/Tracker designer’s license
installed.

You can configure problema to accept the selected priorities, categories, and
individuals who are authorized to execute problema operations. But first, you
must install problema on each client system and the server, and run the
application generation tools.

150

Chapter 5: System Administration Request Management With problema

Installing problema on the Server

Follow these steps to install problema on your server:

1. Log in to your server as root.

2. Use the inst(1) program to install the Tracker 2.0 product and the
appropriate licenses on your server.

3. Execute the command /usr/IRIXpro/problema/problemainstall. This
command puts the problema commands in /usr/local/bin and the problema
app-defaults file in /usr/lib/X11/app-defaults, and initializes your database.
This process also adds problema online help to your sgihelp system.
When this is done, problema is installed on your server.

4. Put /usr/local/bin in your PATH environment variable, if it is not already
there.

5. Execute the suproblema command.

Installing problema on Client Systems

Follow these steps to install problema on your client systems:

1. Log in to your client as root.

2. Use the inst(1) program to install the Tracker 2.0 product and the
appropriate licenses on your client.

3. Using either inst, NFS, propel, rcp, or media-based transfer, install the
following parts of your problema software distribution on your client:

• /usr/IRIXpro/problema/problema.pdl

• /usr/IRIXpro/problema/tools

• /usr/IRIXpro/problema/problemainstall

4. Make sure your system has the /usr/local/bin directory, or create it if
needed.

5. Execute the command /usr/IRIXpro/problema/problemainstall. This
command puts the problema commands in /usr/local/bin, the problema
app-defaults file in /usr/lib/X11/app-defaults, and determines the locations

Installing and Configuring problema

151

of the server database. This process also adds problema online help to
your sgihelp system. When this is done, problema is installed on your
client.

6. Put /usr/local/bin in your PATH environment variable, if it is not already
there. If you do not wish to use the /usr/local/bin location, the problema
application can be started from the icon in the IRIXpro directory view,
as can all IRIXpro applications.

7. Execute the miproblema or problema command.

The User irixpro

You must create a user called irixpro on your system if you wish to delete
request records from your problema database when they have been closed, or
if you wish to access Silicon Graphics Electronic Services.

Create the user irixpro according to the instructions in Chapter 5 of the
Personal System Administration Guide or according to the instructions in
Chapter 3 of your IRIX Advanced Site and Server Administration Guide. You
may use any available UID for this account.

Configuration Files

The configurable parameters of problema are stored in the following files.
Each file is described below:

• /usr/IRIXpro/problema/miproblema.pdl

• /usr/IRIXpro/problema/problema.pdl

• /usr/IRIXpro/problema/suproblema.pdl

• /usr/IRIXpro/problema/problemagen

• /usr/IRIXpro/problema/categories.h

• /usr/IRIXpro/problema/vendor_categories.h

• /usr/IRIXpro/problema/vendor_names.h

• /usr/IRIXpro/problema/vendor_priorities.h

• /usr/IRIXpro/problema/vendor_status.h

152

Chapter 5: System Administration Request Management With problema

• /usr/IRIXpro/problema/tools/lib/problema_notify

• /usr/lib/X11/app-defaults/Miproblema

• /usr/lib/X11/app-defaults/Problema

• /usr/lib/X11/app-defaults/Suproblema

miproblema.pdl

This is the configuration file for the miproblema view of the application. This
is a plain text file, editable with any text editor. You must be logged in as root
to edit this file. The file is extensively commented and you can alter it to
change miproblema as you see fit. There is extensive documentation on
modifying PDL files in Chapter 2 of the CASEVision/Tracker Design Guide,
titled ‘’Using the Process Description Language.’’

problema.pdl

This is the configuration file for the problema view of the application. This is
a plain text file, editable with any text editor. You must be logged in as root
to edit this file. The file is extensively commented and you can alter it to
change problema as you see fit. There is extensive documentation on
modifying PDL files in Chapter 2 of the CASEVision/Tracker Design Guide,
titled ‘’Using the Process Description Language.’’

suproblema.pdl

This is the primary configuration file for all of problema. This file specifically
defines the suproblema application as it is distributed. This is a plain text file,
editable with any text editor. You must be logged in as root to edit this file.
The file is extensively commented to help you make your configuration
choices. There is also extensive documentation on modifying PDL files in
Chapter 2 of the CASEVision/Tracker Design Guide, titled ‘’Using the Process
Description Language.’’ This file is where you set the allowable categories of
requests, the allowable priorities, and the acceptable entries for each field.

problemagen

This script takes the changes made to the suproblema.pdl file and effects the
changes in the problema database. If you use problema to create a custom

Installing and Configuring problema

153

application with its own database, use this file to specify the location of the
database and the PDL file for the new application.

categories.h

The categories.h file controls the available categories for requests through
problema. You may customize this file as you see fit, and you can select a
default owner for each category of requests if you so choose. The format is:

Category // Owner

Misc, // jschmoe

Each category and owner pair are separated by two slash characters. On all
but the final line, a comma (,) must follow the category name. Instructions
are provided in the text of this file. This is a plain text file, editable with any
text editor. You must be logged in as root to edit this file.

vendor_categories.h

This file controls the available vendor categories for request forwarding.
Each category should correspond to an appropriate outside vendor.

vendor_names.h

This file names the available outside vendors for request forwarding. Each
line in the file names a vendor.

vendor_priorities.h

This file names the available vendor priorities for request forwarding. Each
line in the file names a possible priority.

vendor_status.h

This file controls the various options for the vendor’s status on a request. The
default values should cover most scenarios, but this file is configurable.

154

Chapter 5: System Administration Request Management With problema

/usr/IRIXpro/problema/tools/lib/problema_notify

This file controls the e-mail process whereby users and other parties are
notified of request transitions. This file is configurable.

/usr/lib/X11/app-defaults/Miproblema, Problema and Suproblema

These files control the X resources and general display characteristics for
miproblema, problema and suproblema. It is not generally necessary to change
these files. As distributed, they are all identical to each other.

Making Configuration Changes

The primary means of configuring the problema functionality is by editing
the suproblema.pdl file, the miproblema.pdl file, and the problema.pdl file. These
files are extensively commented, and written in the Process Description
Language, which is described in detail in Chapter 2 of the CASEVision/Tracker
Design Guide. Specific information regarding PDL syntax can be found in
that guide.

The problema software is completely configurable for your site and
organizational needs. The Process Description Language allows you to work
within a basic framework of data structures and concepts to define:

• your request states

• the transitions between those states

• the fields that will make up each request record

• the allowable values for those fields

The Process Description Language also allows you to set up rules regarding
the use of the data structures you have defined and to define new
applications or new views of the problema database. Finally, you can use the
PDL files to have problema execute IRIX shell commands of your choice as
part of transitions, make field values available to your users as shell
environment variables, and generally tailor the interaction between problema
and other system utilities or applications.

The following list offers suggestions and ideas about custom uses for
problema and the Process Description Language. The example used for

Installing and Configuring problema

155

customizing is a system administration group with special needs for quick
response:

Request States Given the definition of the problema application as a
database product, you can define your own states for
requests. For example, if your organization submits results
back to the requesting party for final approval, you can
create a state defined as AWAITING_APPROVAL.

Request Transitions
If you have defined custom states for your problema
requests, you may also want to define the transition
commands between those states. You can create action-
based transitions, and those transitions can do more than
simply change the state of a request. A transition may
involve the notification of various parties, the execution of
IRIX shell commands, or the generation of hardcopy
reports. For example, if a system administration group must
move quickly, the ASSIGN transition can be modified to use
an e-mail pager to notify the request owner.

New Fields Different organizations have different information they
wish to track in the life cycle of a request. The problema
application allows you to create and define request
description fields as you see fit.

New Field Values
When you have defined a new field, you can also define the
type of information and the possible values the field may
have. There is a list (published in Table 2-1 of the
CASEVision/Tracker Design Guide) of the available field
types. You may set the parameters for acceptable values. For
example, you may use a boolean type field to hold true-or-
false information about the request.

New Rules You can define rules about who in your organization may
make transitions (each transition can have its own
customized rules) and about which fields must be filled in
for transitions to take place. For example, there can be
transition commands restricted to certain users, or the
vendor forwarding transitions can cause e-mail to be sent
directly to the outside vendor.

156

Chapter 5: System Administration Request Management With problema

New Applications
You can use the Process Description Language to create
your own custom applications. Once you have defined a set
of fields, transitions, states, and rules, you can set up a
separate command name to execute the problema code and a
separate database location, and your new application is
complete. Once you have created the application, you must
place the name of the application in the problemagen file and
execute the file to generate the application.

New Views You can create, in the same manner as with a new
application, a custom view of the database. For example,
you may wish to create a view of the database that allows
only request submission. To do this, begin with a copy of the
problema.pdl file and modify it to suit your needs.
Information that is confidential or irrelevant may be
screened from the view provided to different users.

IRIX Command Execution
As part of a transition command, you can direct problema to
execute IRIX shell commands. A direct example of this is the
list of people who are notified by e-mail when a transition
takes place. However, any command you place in the PDL
file can be executed if you create a rule to do so.

Environment Sharing
You can make shell environment variables available for
users through the PDL files. For example, you may want to
cause the ASSIGN transition command to make an
environment variable available to the new owner of a
request. The field names, their values, and the current
transition as well as a list of modified fields at any transition
can be made available as shell environment variables. You
cannot, though, arbitrarily create environment variables or
arbitrary data.

Application Interface
If you create your own custom applications, you can also
choose to allow the various problema databases you have
created to interact. For example, if you have created a
separate problema application to handle your user service
requests and one to handle requests for new hardware, you

Using problema

157

can link the two so that certain transitions (such as when
hardware is installed) cause both applications to be updated
at once.

The Process Description Language imposes very few rules on the
application developer. The language works within the paradigm of the
database, and actions are defined in terms of field values, request states, and
transitions, and in terms of views of the database records beyond these
limitations (which can more correctly be termed specializations), you are
free to define the services problema renders to you and your users.

Using problema

The following sections describe the form and use of suproblema, miproblema,
and problema. First, there is a description of each part of the interface window
and information on using the features in the window. Then information is
provided on using other features of problema. Finally, specific sections
detailing operations on the server and client systems are provided.

158

Chapter 5: System Administration Request Management With problema

The suproblema main window is shown in Figure 5-2.

Figure 5-2 The suproblema Main Window

Using problema

159

The problema main window is shown in Figure 5-3:

Figure 5-3 The problema Main Window

160

Chapter 5: System Administration Request Management With problema

The miproblema window is shown in Figure 5-4:

Figure 5-4 The miproblema Main Window

Main Window Anatomy

All the problema main windows have four parts:

menu bar Lets you access the window menus.

control bar Lets you display a list of requests and perform operations
on individual requests.

query results area
Displays lists of requests that result from queries.

request form area
Lets you enter or display detailed information about a
single request.

Using problema

161

Each part of the problema main windows is described in detail in the sections
below.

Menu Bar

The menu bar in each problema main window is shown in Figure 5-5.

:

Figure 5-5 The Menu Bar

The menu bar offers you four menus. The menus are:

File menu Lets you print a file or exit the window.

Edit menu Provides editing commands that you can apply to all fields
as a group:

• “Reuse” takes the fields from a selected entry in the
query results area and fills out the request form fields
with those values.

• “Revert” restores the request form fields to their saved
values after changes have been made.

• “Clear” clears all request form fields.

Query menu Lets you reuse query selection criteria by making the
following settings:

• “Save...” stores the current set of criteria.

• “Load...” enters a saved set of criteria into the
appropriate fields.

• “Save as Default” saves your current criteria and
reuses it as a default when you start up problema.

• “Case Sensitive Matches” toggles case sensitivity on or
off when you are querying for a string match in a field.

Help menu Lets you get product version information, summary
information for the window, context information for
components of the window, and an index of help topics for
the system.

162

Chapter 5: System Administration Request Management With problema

Control Bar

The control bar of each problema window is shown here in Figure 5-6, with
the Query mode selected from the Modes menu

:

Figure 5-6 The Control Bar

The Modes menu on the left displays the actions that you can perform on
requests in the database. At any given time, some actions may be disabled if
they are not available for the request being acted upon. For example, if you
are examining a closed request, the “resolve” action is not available.

The actions available from the miproblema Modes menu are:

• QUERY

• DISPLAY

• SUBMIT_REQUEST

The actions available from the problema Modes menu are:

• QUERY

• DISPLAY

• SUBMIT_REQUEST

• RESOLVE

• NOTIFYME

• EDIT

• REOPEN

The actions available from the suproblema Modes menu are:

• QUERY

• DISPLAY

• SUBMIT_REQUEST

• RESOLVE

Using problema

163

• NOTIFYME

• EDIT

• REOPEN

• FORWARD_TO_VENDOR

• UPDATE_FROM_VENDOR

• ASSIGN

• DEFER

• DUPLICATE

• DELETE

When you select a command from the Modes menu, the information
displayed in the rest of the window changes, as does the read/write
permission on the fields below in the request form area. To the right of the
Modes menu, the apply command button changes to reflect the command you
selected from the Modes menu.

Commands have two categories: inspection commands that review requests
and transition commands that can change the state of a request. The
inspection commands, Query and Display, let you look up requests, either in
a list of summaries or individually in detail. The transition commands
change either the status of the request or the fields in the report. Any field
required for a specific transition is highlighted, indicating that an entry is
necessary. If no entry is made, then the command cannot be applied.

The list control buttons on the right of the control bar are:

• First

• Next

• Previous

• Last

These buttons let you choose a request from the query results area list for
display in the request form area.

164

Chapter 5: System Administration Request Management With problema

Query Results Area

The problema query results area is shown below in Figure 5-7. It is shown
empty, as it is when the interface is first brought up.

:

Figure 5-7 The Query Results Area

The number of requests in the current query is displayed at the top of the list
area. When a query is made, the requests selected are listed in the grey area.
If you use any of the list controls (buttons or menu items) to display a request
in the request form area, the list in the grey area will scroll to the displayed
request.

Two small icons that may appear to the left of a list entry in the grey area also
help to track the status of a request:

• A small rectangle indicates that the request has been displayed in the
form area at least once since its submission.

• A check mark indicates that the request has been edited at least once.

The query results area is divided into six columns, each with a title. The text
in each column lines up under the title. Next to each title is a radio button.
When you click one of these buttons, the button is highlighted and the list of
requests is sorted accordingly. For example, if you click the ID# button, the
list is sorted in ascending order according to the request identification
number. You can sort only one characteristic at a time.

Using problema

165

Request Form Area

The request form area contains fields for entering and displaying data. A
blank miproblema request form area is shown here in Figure 5-8:

Figure 5-8 The miproblema Request Form Area

166

Chapter 5: System Administration Request Management With problema

A blank problema request form area is shown in Figure 5-9:

Figure 5-9 The problema Request Form Area

Using problema

167

The request form area for suproblema has certain extra fields dealing with
outside vendor forwarding and technical description, as shown here in
Figure 5-10:

Figure 5-10 The suproblema Request Form Area

168

Chapter 5: System Administration Request Management With problema

In all of the problema interfaces, fields change colors and take on highlighting
according to your current operation. If a field has a red border, it is required
to be completed before the operation can be applied. Fields may also have a
red border if they are incorrectly entered. In either case, a highlighted field
blocks the operation. If a field is the same color as the window background
color, then it is writable, but optional. If the field turns black, it is not writable
during this operation.

To display a popup menu containing options for any field, hold down the
right mouse button while the cursor is over the field. At minimum, the menu
contains the items Reuse (for using the last value displayed in this field),
Revert (for returning to the saved value), and Clear (for blanking out the
field). If predefined values are available for the field, they are displayed on
the cascading menu attached to the Values item. The cascading menu
features a tear-off perforation at the top. If you click the perforation, the
menu is displayed in its own window.

The menu for fields that accept long text descriptions such as the Description
and Resolution fields have an option called Edit... that lets you enter the text
through your editor of choice. The editor default depends on your
environment variable setting and defaults to vi(1) if no variables are set. See
“Setting the Default Field Editor” on page 173 for more information.

The History of Changes field is automatically updated by problema each time
an action is taken on a request.

Setting Dates in problema

The problema software provides a wide variety of date input formats. Dates
can be supplied with as little information as the year or month, or specified
to the nearest second.

Special formats allow dates to be supplied as a base time point plus or minus
a time interval, and also as relative to the current year, month, day, hour or
second. Date field values specify a point in time to the nearest second. You
cannot, however, represent a time interval such as ‘’in six seconds’’ or ‘’in
two days.’’

Date values are ordered from a starting point (the lowest value) and
increasing toward later dates. Therefore, a date that occurs after a specified

Using problema

169

date will have a higher value. This enables you to use comparison operators
such as < (before) and > (after).

When you use dates in transitions, you always enter a specific point in time.
When you are using dates in queries, you can enter a range or condition as
well as a specific time.

Setting a date and time in problema is handled in the same manner as
CASEVision/Tracker, and Chapter 3 of the CASEVision/Tracker User’s Guide
offers a complete explanation of all date and time functions.

Query Operations

To query the problema database, perform the following steps:

1. Select Query from the Modes menu if it is not already selected. All
fields in the window become writable.

2. Enter the desired selection criteria in the appropriate fields.

3. Click the apply command button to perform your query. All appropriate
requests appear in summary form in the query results area.

Leaving all fields blank brings all requests in the database into the list,
with the first few displayed in the query results portion of the window.
Entering one or more fields displays those requests with matching
fields. Entering multiple fields has the effect of selecting only those
requests that match all listed criteria. You can also use the operators in
Table 5-1 to refine your queries. When you use these operators, you
should enclose all values inside quotation marks (““).

Table 5-1 Logical Operators

Operator Description

=range entry equal to

<> not equal to

< less than

<= less than or equal to

> greater than

170

Chapter 5: System Administration Request Management With problema

The less-than (<) and greater-than (>) operators can be used with dates
to mean before and after, respectively. For example, >June 25 means
after June 25.

4. To display the detailed information for any request in the query results
area, you can double-click the request directly, or you can click one of
the list control buttons: First, Next, Prev, and Last.

When you display a request, a small rectangular icon appears to the left
of the request line in the query results area. If you modify the request, a
check mark will appear next to the request as well. If you make a
subsequent query, the icons will be cleared.

General Operations

All user operations can be performed from miproblema or problema, and all
information in the database can be viewed from problema.

>= greater than or equal to

=match regular expression match

contains contains specified value (list fields only)

contains any contains any of the specified values (list
fields only)

contains only contains only the specified values (list
fields only)

= null unset or non-existent test

<> null set or existing test

[startrange:endrange] range entry

Table 5-1 Logical Operators

Operator Description

Using problema

171

Procedure for Performing General Operations

For most problema operations, follow these steps:

1. Enter the command

problema

to invoke the application. The problema window is displayed.

2. Select the desired command from the Modes menu in the control bar.
The problema window immediately enters the selected mode for
performing the command. Note that the command is not executed until
you click the apply command button, which is to the right of the Cancel
button in the control bar. Depending on the command selected, the
window makes these changes:

• Fields become writable or read-only.

• The command name now appears on the Modes menu button and
on the apply command button.

• All fields required for the command are highlighted in red.

3. Fill in the request form fields with the appropriate information.
Remember that holding down the right mouse button displays a menu
with some or all of these items:

Values Lets you select any valid predefined value.

Clear Clears the field.

Reuse Inserts the value from the previous request (if any).

Revert Restores the original value of the field for that request.

As the required fields are entered, the highlight disappears. If a field is
entered incorrectly, according to the rules for that field, it remains
highlighted and must be corrected for the transition to take place. If you
don’t know the field’s requirements, check online help.

4. Click the apply command button to perform the operation.

Note that the apply command button is sensitive only when all required
fields are filled in. Clicking the button performs the operation and
changes the window and database (if affected) accordingly. Any default
fields are filled in automatically. The command mode may change as
well; for example, after a query, the window switches to display mode.

172

Chapter 5: System Administration Request Management With problema

In addition, e-mail notifications are made to the owner, project
manager, submitter, and any other parties indicated in the Notify field.
The general format for a “SUBMIT_REQUEST” notification is:

Field czar set to: root.
Field category set to: Backup.
Field ENTITY_ID set to: 8.
Field STATE set to: AWAITING_RESPONSE.
Field summary set to: I’d like to schedule regular
backups of my /work file system..
Field bboard set to: root.
Field last_update set to: Thu Jul 7 16:24:53 PDT 1994.
Field due_date set to: Tue Jul 12 16:24:45 PDT 1994.
Field submit_date set to: Thu Jul 7 16:24:45 PDT 1994.
Field submitter set to: grant.
Field notify_list set to: (root, grant).

New value of history:
==========
Date: Mon Jul 04 16:24:53 1994
User: grant@vicksburg
==========

SUBMIT_REQUEST

New value of description:
I’d like to schedule regular backups of my /work file
system.

TRANSITION = SUBMIT_REQUEST
EXECUTING /bin/true

Specific Procedure for Submitting a Request

To submit a request:

1. From problema, select SUBMIT_REQUEST from the Modes menu on the
control bar.

The window makes these changes:

• The Report # and Status fields turn read-only, since these are set
automatically by the system.

Using problema

173

• The Description field is highlighted in red, indicating that it is
required.

• The apply command button changes to read SUBMIT_REQUEST,
although the button is not yet enabled.

2. Fill in the Description field, which is required, and any other fields
needed to provide as much request information as possible.

After you make an entry in the Description field and move the cursor
out of it, the highlighting is removed. At this point, the apply command
and Cancel buttons are enabled, since you have fulfilled the Description
requirement. Click the apply command button to submit your request.

Setting the Default Field Editor

Use one of the following methods to set your default editor for fields in any
problema interface:

• The environment variable $WINEDITOR (for editors like jot(1) that
bring up their own windows).

• The environment variable $EDITOR (for editors like vi(1) that do not
supply their own windows).

• The editorCommand setting in your home directory’s .Xdefaults file.

If none of these are set, the editor defaults to vi(1).

Assigning and Resolving Requests

Each new request should be reviewed using suproblema on the problema
server, and resolved, deferred, or assigned to an owner. When the assigned
requests have been fulfilled by their owners, they are closed (with the
RESOLVE command) on the server.

The following options are available only from the suproblema Modes menu:

• FORWARD_TO_VENDOR

• ASSIGN

• DEFER

• DUPLICATE

174

Chapter 5: System Administration Request Management With problema

• DELETE

Only authorized users can screen requests. The authorized users are
specified in the “suproblema.pdl” file. You begin screening by querying and
displaying requests, and you can then apply different transitions after the
selected request displays.

Screening requests follows all the steps mentioned in the section “Procedure
for Performing General Operations” on page 171. The difference is that you
deal only with requests in the AWAITING_RESPONSE state.

No Action Commands

The screener has three transition commands for turning down requests:

DEFER If work on the request is to be performed at a later date. This
requires an entry in the Reopen Date field. When this
command is used, problema automatically reopens the
request on the specified date, switching its status from
CLOSED to AWAITING_RESPONSE.

DUPLICATE A request on the same topic has been previously submitted.

RESOLVE The request has already been performed or is moot.

Assignment Commands

The ASSIGN command lets the screener specify the owner who will be
executing the request. The ASSIGN command requires that the Owner field
be changed.

The FORWARD_TO_VENDOR command indicates that the problem has
been forwarded to an outside vendor of hardware or software for further
action.

Forwarding a Request to Silicon Graphics

To automatically forward requests to Silicon Graphics, you must be an
authorized Silicon Graphics Support Advantage customer, and you must
have the electronic services package installed on your problema server. If
these services are installed, problema uses the /usr/IRIXpro/lib/problematoes

Using problema

175

script to contact Silicon Graphics when the FORWARD_TO_VENDOR
action is taken and Silicon Graphics is the specified vendor.

When forwarding and updating requests, the user performing the actions is
expected to be irixpro. See “The User irixpro” on page 151 for more
information. This operation is synchronous, which means that suproblema
waits on the request until it returns from Silicon Graphics or until the request
action fails.

When forwarding requests, the key field is the Technical Description field.
All pertinent information must be listed in this field.

Executing and Reopening Requests

After a request has been assigned, it is turned over to the owner for
implementation. (If the owner performed the assignment, there is no
turnover.) In addition to new requests, the owner may receive rejected
resolutions (REOPEN requests). The owner then performs the requested
work and when finished, closes the request by making a RESOLVE
transition.

Resolving and Closing Requests

To resolve an existing request, you first have to bring it up with a query, as
discussed in “Query Operations” on page 169.

When the request is displayed, perform these steps:

1. Select RESOLVE from the Modes menu. The Resolution field is
highlighted.

2. Enter the explanation of the fix in the Resolution field.

3. Click the apply command button, which now reads RESOLVE. The status
changes from AWAITING_RESPONSE to CLOSED.

Deleting Requests

If your database is growing too large for convenient use, you can use the
DELETE command to mark closed requests for deletion. The deletion itself
can be carried out any time at the administrator’s convenience through the
use of the script: /usr/IRIXpro/sample/problema/problemaDBclean. This script is

176

Chapter 5: System Administration Request Management With problema

designed to be run as a job in a non-peak use time through the cron(1) utility.
It is suggested, however, that you make an archive copy of your database
before deleting any closed requests. You can also use the delete operation to
mark duplicate requests or mistaken requests that have been closed. The
DELETE transition works only on requests with a CLOSED status.

 You must be logged in as the user irixpro to perform DELETE transitions.
See the section in this chapter titled “The User irixpro” on page 151 for
complete information on creating the user irixpro. Note that you cannot
simply use the command:

su irixpro

to log yourself in momentarily as irixpro to perform this transition. You
must use one of the following commands:

su - irixpro

or

login irixpro

Overdue Requests

Each request submitted with any problema interface receives an automatic
due date by which it is expected to be closed. The script /usr/IRIXpro/sample/
problemaDBdue generates a list of these overdue requests. This script is
designed to be run as a job in a non-peak use time through the cron(1) utility.
You must be logged in as the user irixpro to use this script. See the
instructions in the section titled “Deleting Requests” on page 175 for more
information on logging in as irixpro and the section titled “The User irixpro”
on page 151 for more information on creating the irixpro user account.

177

Appendix A

A. The hp-ux_sgi MIB

The following is a copy, for reference, of the hp-ux_sgi MIB distributed with
the snmpd package of IRIXpro in the file /usr/lib/netvis/mibs/hp-ux_sgi.mib:

-- HP-UNIX DEFINITIONS ::= BEGIN

-- --
-- -- Hewlett-Packard definitons for unix agents
-- -- @(#) hp-unix $Date: 1994/11/02 01:03:49 $
-- -- $Revision: 1.3 $
-- -- --
-- -- This MIB was editied by SGI to
-- -- specify which MIB objects
-- -- are supported in the SGI agent.
-- -- Only the object descriptions
-- -- were changed. No objects were removed or added.
-- -- Silicon Graphics, Inc., October 1994
-- -- --
-- --

--IMPORTS
--enterprises, NetworkAddress, IpAddress, Counter, Gauge,
-- TimeTicks
-- FROM RFC1155-SMI
-- OBJECT-TYPE
-- FROM RFC-1212
-- DisplayString
-- FROM RFC1213-MIB;
--
hp OBJECT IDENTIFIER ::= { enterprises 11 }
nm OBJECT IDENTIFIER ::= { hp 2 }
system OBJECT IDENTIFIER ::= { nm 3 }
interface OBJECT IDENTIFIER ::= { nm 4 }
icmp OBJECT IDENTIFIER ::= { nm 7 }
snmp OBJECT IDENTIFIER ::= { nm 13 }
openView OBJECT IDENTIFIER ::= { nm 17 }

178

Appendix A: The hp-ux_sgi MIB

general OBJECT IDENTIFIER ::= { system 1 }
hpux OBJECT IDENTIFIER ::= { system 2 }
hpsun OBJECT IDENTIFIER ::= { system 10 }
sparc OBJECT IDENTIFIER ::= { hpsun 1 }
computerSystem OBJECT IDENTIFIER ::= { general 1 }
fileSystem OBJECT IDENTIFIER ::= { general 2 }
processes OBJECT IDENTIFIER ::= { general 4 }
cluster OBJECT IDENTIFIER ::= { general 5 }
ieee8023Mac OBJECT IDENTIFIER ::= { interface 1 }
trap OBJECT IDENTIFIER ::= { snmp 1 }
snmpdConf OBJECT IDENTIFIER ::= { snmp 2 }
authfail OBJECT IDENTIFIER ::= { snmp 4 }
openViewTrapVars OBJECT IDENTIFIER ::= { openView 2 }

-- -- sysObjectId definitions.
-- -- These values are returned in the
-- -- .iso.org.dod.internet.mgmt.mib-2.system.sysObjectID.0
-- -- variable

hp386 OBJECT IDENTIFIER ::= { system 8 }
hp9000s300 OBJECT IDENTIFIER ::= { hpux 2 }
hp9000s800 OBJECT IDENTIFIER ::= { hpux 3 }
hp9000s700 OBJECT IDENTIFIER ::= { hpux 5 }
hpOpenView OBJECT IDENTIFIER ::= { openView 1 }
sun4 OBJECT IDENTIFIER ::= { sparc 1 }
sun5 OBJECT IDENTIFIER ::= { sparc 2 }

-- -- the ComputerSystem Group

computerSystemUpTime OBJECT-TYPE
 SYNTAX TimeTicks
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Time since the last boot.
 Supported by SGI.”
 ::= { computerSystem 1 }

179

computerSystemUsers OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of users logged on to system.
 Supported by SGI.”
 ::= { computerSystem 2 }

computerSystemAvgJobs1 OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Average number of jobs in the last 1
 minute * 100.
 Supported by SGI.”
 ::= { computerSystem 3 }

computerSystemAvgJobs5 OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Average number of jobs in the last 5
 minutes * 100.
 Supported by SGI.”
 ::= { computerSystem 4 }

computerSystemAvgJobs15 OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS andatory
 DESCRIPTION
 “Average number of jobs in the last 15
 minutes * 100.
 Supported by SGI.”
 ::= { computerSystem 5 }

180

Appendix A: The hp-ux_sgi MIB

computerSystemMaxProc OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Maximum number of processes allowed in
 system.Implemented with Extensible SNMP
 Agent. Supported by SGI.”
 ::= { computerSystem 6 }

computerSystemFreeMemory OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Free memory. SunOS - not implemented.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { computerSystem 7 }

computerSystemPhysMemory OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Physical memory. SunOS - not implemented.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { computerSystem 8 }

computerSystemMaxUserMem OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Maximum user memory.SunOS-not implemented.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { computerSystem 9 }

computerSystemSwapConfig OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION

181

 “Swap space configured.SunOS-not implemented.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { computerSystem 10 }

computerSystemEnabledSwap OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Enabled via swapon.SunOS - not implemented.
 Implemented with Extensible SNMP Agent.
 Not supported by SGI because not
 applicable.”
 ::= { computerSystem 11 }

computerSystemFreeSwap OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Currently free swap space.SunOS - not
 implemented.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { computerSystem 12 }

computerSystemUserCPU OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “CPU used by users. SunOS - not implemented.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { computerSystem 13 }

182

Appendix A: The hp-ux_sgi MIB

computerSystemSysCPU OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “CPU used by system.SunOS - not implemented.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { computerSystem 14 }

computerSystemIdleCPU OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “CPU idle. SunOS - not implemented.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { computerSystem 15 }

computerSystemNiceCPU OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “CPU nice. SunOS - not implemented.
 Implemented with Extensible SNMP Agent.
 Not supported by SGI.”
 ::= { computerSystem 16 }

-- -- The FileSystem Group

fileSystemMounted OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The number of file systems mounted.
 Supported by SGI.”
 ::= { fileSystem 1 }

183

-- -- The FileSystem Table

fileSystemTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FileSystemEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “File system table.
 Supported by SGI.”
 ::= { fileSystem 2 }

fileSystemEntry OBJECT-TYPE
 SYNTAX FileSystemEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “Each entry contains objects for a
 particular file system.
 Supported by SGI.”
 INDEX { fileSystemID1, fileSystemID2 }
 ::= { fileSystemTable 1 }

FileSystemEntry ::= SEQUENCE {
 fileSystemID1
 INTEGER,
 fileSystemID2
 INTEGER,
 fileSystemName
 DisplayString,
 fileSystemBlock
 INTEGER,
 fileSystemBfree
 INTEGER,
 fileSystemBavail
 INTEGER,
 fileSystemBsize
 INTEGER,
 fileSystemFiles
 INTEGER,
 fileSystemFfree
 INTEGER,
 fileSystemDir
 DisplayString
}

184

Appendix A: The hp-ux_sgi MIB

fileSystemID1 OBJECT-TYPE
 SYNTAX INTEGER (SIZE (0..4294967295))
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “First file system ID.
 Supported by SGI.”
 ::= { fileSystemEntry 1 }

fileSystemID2 OBJECT-TYPE
 SYNTAX INTEGER (SIZE (0..4294967295))
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Second file system ID.
 Supported by SGI. Always set to 1.”
 ::= { fileSystemEntry 2 }

fileSystemName OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Name of mounted file system.
 Supported by SGI.”
 ::= { fileSystemEntry 3 }

fileSystemBlock OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Total blocks in file system.
 Supported by SGI.”
 ::= { fileSystemEntry 4 }

fileSystemBfree OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Free blocks in file system.
 Supported by SGI.”
 ::= { fileSystemEntry 5 }

185

fileSystemBavail OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Free blocks avail to non-superuser.
 Supported by SGI.”
 ::= { fileSystemEntry 6 }

fileSystemBsize OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Fundamental file system block size.
 Supported by SGI.”
 ::= { fileSystemEntry 7 }

fileSystemFiles OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Total file nodes in file system.
 Supported by SGI.”
 ::= { fileSystemEntry 8 }

fileSystemFfree OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Free file nodes in file system.
 Supported by SGI.”
 ::= { fileSystemEntry 9 }

fileSystemDir OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “File system path prefix.
 Supported by SGI.”
 ::= { fileSystemEntry 10 }

186

Appendix A: The hp-ux_sgi MIB

-- -- The Processes Group

processNum OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The number of processes running.
 Supported by SGI.”
 ::= { processes 1 }

-- -- The processes table

processTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ProcessEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “Processes Table.
 Implemented with Extensible SNMP Agent.
 Supported by SGI.”
 ::= { processes 2 }

processEntry OBJECT-TYPE
 SYNTAX ProcessEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “Each entry contains information about a
 process running on the system.
 Supported by SGI.”
 INDEX { processPID }
 ::= { processTable 1 }

ProcessEntry ::= SEQUENCE {
 processPID
 INTEGER,
 processIdx
 INTEGER,
 processUID
 INTEGER,
 processPPID
 INTEGER,
 processDsize
 Gauge,

187

 processTsize
 Gauge,
 processSsize
 Gauge,
 processNice
 Gauge,
 processMajor
 INTEGER,
 processMinor
 INTEGER,
 processPgrp
 INTEGER,
 processPrio
 INTEGER,
 processAddr
 INTEGER,
 processCPU
 Gauge,
 processUtime
 TimeTicks,
 processStime
 TimeTicks,
 processStart
 TimeTicks,
 processFlags
 INTEGER,
 processStatus
 INTEGER,
 processWchan
 INTEGER,
 processProcNum
 INTEGER,
 processCmd
 DisplayString,
 processTime
 INTEGER,
 processCPUticks
 Counter,
 processCPUticksTotal
 Counter,
 processFss
 INTEGER,
 processPctCPU
 Gauge,

188

Appendix A: The hp-ux_sgi MIB

 processRssize
 Gauge,
 processSUID
 INTEGER,
 processUname
 DisplayString,
 processTTY
 DisplayString
}

processPID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The process ID (pid).
 Supported by SGI.”
 ::= { processEntry 1 }

processIdx OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Index for pstat() requests.SunOS -
 not implemented.
 Not supported by SGI.”
 ::= { processEntry 2 }

processUID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process User ID.
 Supported by SGI.”
 ::= { processEntry 3 }

processPPID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Parent process ID.
 Supported by SGI.”

189

 ::= { processEntry 4 }

processDsize OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process data size.
 Not supported by SGI in this release.”
 ::= { processEntry 5 }

processTsize OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process text size.
 Not supported by SGI in this release.”
 ::= { processEntry 6 }

processSsize OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process stack size.
 Not supported by SGI in this release.”
 ::= { processEntry 7 }

processNice OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process nice value.
 Supported by SGI.”
 ::= { processEntry 8 }

processMajor OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process tty major number.
 SunOS - not implemented.

190

Appendix A: The hp-ux_sgi MIB

 Supported by SGI.”
 ::= { processEntry 9 }

processMinor OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process tty minor number.
 SunOS - not implemented.
 Supported by SGI.”
 ::= { processEntry 10 }

processPgrp OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process group of this process.
 Supported by SGI.”
 ::= { processEntry 11 }

processPrio OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process priority.
 Supported by SGI.”
 ::= { processEntry 12 }

processAddr OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Address of process (in memory).
 Supported by SGI.”
 ::= { processEntry 13 }

191

processCPU OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Processor utilization for scheduling.
 Supported by SGI.”
 ::= { processEntry 14 }

processUtime OBJECT-TYPE
 SYNTAX TimeTicks
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “User time spent executing.
 Supported by SGI.”
 ::= { processEntry 15 }

processStime OBJECT-TYPE
 SYNTAX TimeTicks
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “System time spent executing.
 Supported by SGI.”
 ::= { processEntry 16 }

processStart OBJECT-TYPE
 SYNTAX TimeTicks
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Time Process started.
 Supported by SGI.”
 ::= { processEntry 17 }

192

Appendix A: The hp-ux_sgi MIB

processFlags OBJECT-TYPE
 SYNTAX INTEGER {
 incore(1),
 sys(2),
 locked(4),
 trace(8),
 trace2(16)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Flags associated with process.
 SunOS - values found in
 /usr/include/sys/proc.h.
 Supported by SGI.”
 ::= { processEntry 18 }

processStatus OBJECT-TYPE
 SYNTAX INTEGER {
 sleep(1),
 run(2),
 stop(3),
 zombie(4),
 other(5),
 idle(6)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The process status.
 SunOS - sleep(1), wait(2), run(3),
 idle (4), zombie(5), stop(6)
 Supported by SGI.”
 ::= { processEntry 19 }

processWchan OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “If processStatus is sleep,
 value sleeping on.
 Supported by SGI.”
 ::= { processEntry 20 }

193

processProcNum OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Processor this process last run on.
 SunOS - not implemented.
 Not supported by SGI in this release.”
 ::= { processEntry 21 }

processCmd OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Command the process is running.
 Supported by SGI.”
 ::= { processEntry 22 }

processTime OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Resident time for scheduling.
 Not supported by SGI.”
 ::= { processEntry 23 }

processCPUticks OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Ticks of cpu time.
 Supported by SGI.”
 ::= { processEntry 24 }

194

Appendix A: The hp-ux_sgi MIB

processCPUticksTotal OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Total ticks for life of process.
 SunOS - not implemented.
 Supported by SGI.”
 ::= { processEntry 25 }

processFss OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Fair Share Schedular Group.
 SunOS - not implemented.
 Not supported by SGI.”
 ::= { processEntry 26 }

processPctCPU OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Percent CPU * 100 for this process.
 Supported by SGI.”
 ::= { processEntry 27 }

processRssize OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Resident Set Size for process
 (private pages).
 Supported by SGI.”
 ::= { processEntry 28 }

195

processSUID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “saved UID.
 Supported by SGI.”
 ::= { processEntry 29 }

processUname OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “User name.
 Supported by SGI.”
 ::= { processEntry 30 }

processTTY OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Process TTY. SunOS - not implemented.
 Not supported by SGI in this release.”
 ::= { processEntry 31 }

-- -- The Ieee8023Mac Group
-- -- This group is not implemented on Solaris.
-- -- This group is not implemented on SGI platforms.

-- -- The Ieee8023Mac Table

ieee8023MacTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Ieee8023MacEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “A list of IEEE 802.3 Interface entries.
 Not applicable to SGI.”
 ::= { ieee8023Mac 1 }

ieee8023MacEntry OBJECT-TYPE
 SYNTAX Ieee8023MacEntry
 ACCESS not-accessible

196

Appendix A: The hp-ux_sgi MIB

 STATUS mandatory
 DESCRIPTION
 “Each entry contains statistics for
 ieee 802.3 interfaces.
 Not applicable to SGI.”
 INDEX { ieee8023MacIndex }
 ::= { ieee8023MacTable 1 }

Ieee8023MacEntry ::= SEQUENCE {
 ieee8023MacIndex
 INTEGER,
 ieee8023MacTransmitted
 Counter,
 ieee8023MacNotTransmitted
 Counter,
 ieee8023MacDeferred
 Counter,
 ieee8023MacCollisions
 Counter,
 ieee8023MacSingleCollisions
 Counter,
 ieee8023MacMultipleCollisions
 Counter,
 ieee8023MacExcessCollisions
 Counter,
 ieee8023MacLateCollisions
 Counter,
 ieee8023MacCarrierLostErrors
 Counter,
 ieee8023MacNoHeartBeatErrors
 Counter,
 ieee8023MacFramesReceived
 Counter,
 ieee8023MacUndeliverableFramesReceived
 Counter,
 ieee8023MacCRCErrors
 Counter,
 ieee8023MacAlignmentErrors
 Counter,
 ieee8023MacResourceErrors
 Counter,
 ieee8023MacControlFieldErrors
 Counter,
 ieee8023MacUnknownProtocolErrors
 Counter,

197

 ieee8023MacMulticastsAccepted
 Counter
}

ieee8023MacIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The index value that uniquely identifies the
 interface to which this entry is
 applicable. The interface identified by a
 particular value of this index is the same
 interface as identified by the
 same value of ifIndex.
 Not applicable to SGI.”
 ::= { ieee8023MacEntry 1 }

ieee8023MacTransmitted OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The number of frames successfully
 transmitted.
 Not applicable to SGI.”
 ::= { ieee8023MacEntry 2 }

ieee8023MacNotTransmitted OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The number of frames not transmitted.
 Not applicable to SGI.”
 ::= { ieee8023MacEntry 3 }

198

Appendix A: The hp-ux_sgi MIB

ieee8023MacDeferred OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The number of frames deferred because the
 medium was busy.
 Not applicable to SGI.”
 ::= { ieee8023MacEntry 4 }

ieee8023MacCollisions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Total number of transmit attempts that were
 retransmitted due to collisions. SunOS
 with Intel 82586
 Ethernet driver - total number of
 collisions.
 Not applicable to SGI.”
 ::= { ieee8023MacEntry 5 }

ieee8023MacSingleCollisions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of transmit attempts that
 are involved in a
 single collision and are
 subsequently transmitted
 successfully. SunOS - this is always 0.
 Not applicable to SGI.”
 ::= { ieee8023MacEntry 6 }

199

ieee8023MacMultipleCollisions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of transmit attempts that
 are involved in between 2 and 15
 collision attempts and are
 subsequently transmitted successfully.
 SunOS with Intel 82586 is always 0.
 SunOS with AMD 7990 LANCE driver -
 number of transmit attempts that are
 involved in between 1 and 15 collision
 attempts and are subsequently
 transmitted successfully.”
 ::= { ieee8023MacEntry 7 }

ieee8023MacExcessCollisions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of transmit attempts that are
 involved in more than 15 collision
 attempts and are subsequently
 transmitted successfully. SunOS with
 Intel 82586 Ethernet driver - this is
 always 0.”
 ::= { ieee8023MacEntry 8 }

ieee8023MacLateCollisions OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of transmit attempts aborted
 because a collision occurred after the
 allotted channel time had elapsed.”
 ::= { ieee8023MacEntry 9 }

200

Appendix A: The hp-ux_sgi MIB

ieee8023MacCarrierLostErrors OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of times that carrier sense was lost
 when attempting to transmit.”
 ::= { ieee8023MacEntry 10 }

ieee8023MacNoHeartBeatErrors OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of times no heart beat was indicated
 after a transmission.”
 ::= { ieee8023MacEntry 11 }

ieee8023MacFramesReceived OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of frames successfully received.”
 ::= { ieee8023MacEntry 12 }

ieee8023MacUndeliverableFramesReceived OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of frames received that were not
 delivered because the software buffer was
 overrun when frames were sent faster than
 they could be received.”
 ::= { ieee8023MacEntry 13 }

ieee8023MacCRCErrors OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of Cyclical Redundancy
 Check (CRC) errors detected.”
 ::= { ieee8023MacEntry 14 }

201

ieee8023MacAlignmentErrors OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of frames received that were both
 misaligned and had bad CRC.”
 ::= { ieee8023MacEntry 15 }

ieee8023MacResourceErrors OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of frames received that were lost
 due to lack of resources.”
 ::= { ieee8023MacEntry 16 }

ieee8023MacControlFieldErrors OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of frames received with errors in
 the control field. SunOS - this is always 0.”
 ::= { ieee8023MacEntry 17 }

ieee8023MacUnknownProtocolErrors OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of frames dropped because
 the type field or sap field referenced
 an invalid protocol. SunOS - this is
 always 0.”
 ::= { ieee8023MacEntry 18 }

202

Appendix A: The hp-ux_sgi MIB

ieee8023MacMulticastsAccepted OBJECT-TYPE
 SYNTAX Counter
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Number of accepted multicast addresses.”
 ::= { ieee8023MacEntry 19 }

-- -- The Icmp Group

icmpEchoReq OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The number of milliseconds it takes for an
 ICMP echo request to respond. IcmpEchoReq is
 -1 if there is an internal error,
 -2 if the echo request timed out,
 -3 if the echo reply is not the correct
 reply,
 -4 if the packet size is too large, and
 -5 if the timeout is invalid.

 To request the ICMP response time for IP
 address a1.a2.a3.a4 with a timeout of t
 and a packet size of s, send a request for
 icmpEchoReq.s.t.a1.a2.a3.a4.

 For example, suppose one wanted to find out
 the number of milliseconds it took to ping
 15.2.112.113, with time out of 8 seconds,
 and packet size of 75. Accordingly,
 icmpEchoReq.75.8.15.2.112.113 would identify
 the number of milliseconds.
 Not supported by SGI in this release.”
 ::= { icmp 1 }

203

-- -- The Trap Group

trapDestinationNum OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The number of trap destinations.
 Supported by SGI.”
 ::= { trap 1 }

-- -- The Trap Destination Table

trapDestinationTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TrapDestinationEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “List of addresses to which
 the agent sends traps.
 Supported by SGI.”
 ::= { trap 2 }

trapDestinationEntry OBJECT-TYPE
 SYNTAX TrapDestinationEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “Each entry contains the address of
 a management station.
 Supported by SGI.”
 INDEX { trapDestination }
 ::= { trapDestinationTable 1 }

TrapDestinationEntry ::= SEQUENCE {
 trapDestination
 NetworkAddress
}

204

Appendix A: The hp-ux_sgi MIB

trapDestination OBJECT-TYPE
 SYNTAX NetworkAddress
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Address to which the agent sends traps.
 Supported by SGI only as read-only since
 SGI offers more granularity to specify
 where traps should be sent. It gives the
 entries found in /etc/snmpd.trap.conf”
 ::= { trapDestinationEntry 1 }

-- -- The SnmpdConf Group

snmpdConfRespond OBJECT-TYPE
 SYNTAX INTEGER {
 true(1),
 false(2)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “The SNMP agent was configured to
 respond to all objects if
 snmpdConfRespond is true. HP-Internal
 use only.
 Not supported by SGI.”
 ::= { snmpdConf 1 }

snmpdReConfigure OBJECT-TYPE
 SYNTAX INTEGER {
 reset(1)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “The agent will re-configure itself if
 snmpdReConfigure is set to reset(1)
 Not supported by SGI since the hpsnmpd
 subagent has no configuration file per se,
 except for the trapDestinationTable which
 will be supported as read-write in the
 next release.”
 ::= { snmpdConf 2 }

205

snmpdFlag OBJECT-TYPE
 SYNTAX INTEGER {
 removetrap(1),
 netwareproxy(2)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Indicates the capability of the agent.
 Supported by SGI as returning 1 always.”
 ::= { snmpdConf 3 }

snmpdLogMask OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “The agent’s log mask.
 Supported by SGI.
 Corresponds to the -l command
 line option passed to hpsnmpd.”
 ::= { snmpdConf 4 }

snmpdVersion OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The agent’s version number.
 Supported by SGI. Version 1.0.0 (100)
 in this release.”
 ::= { snmpdConf 5 }

snmpdStatus OBJECT-TYPE
 SYNTAX INTEGER {
 up(1),
 down(2)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 “Indicates the status of the agent. Setting
 the agent to down will kill it.
 Supported by SGI.”
 ::= { snmpdConf 6 }

206

Appendix A: The hp-ux_sgi MIB

snmpdSize OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The amount of memory the
 agent has allocated.
 Supported by SGI. Unit is in pages.
 Each page is 4096 bytes.”
 ::= { snmpdConf 7 }

snmpdWhatString OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The what string of the agent.
 Supported by SGI.”
 ::= { snmpdConf 9 }

-- -- The Cluster Group
-- --
-- -- This group is not implemented on SunOS/Solaris.
-- -- This group is not implemented on SGI platforms.

isClustered OBJECT-TYPE
 SYNTAX INTEGER {
 standalone(1),
 rootserver(2),
 cnode(3)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “Describes whether machine
 is clustered or not.”
 ::= { cluster 1 }

clusterTable OBJECT-TYPE
 SYNTAX SEQUENCE OF ClusterEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “List of nodes on the cluster.”

207

 ::= { cluster 2 }

clusterEntry OBJECT-TYPE
 SYNTAX ClusterEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “Each entry contains information
 about the clustered node.”
 INDEX {clusterID }
 ::= { clusterTable 1 }

ClusterEntry ::= SEQUENCE {
 clusterID
 INTEGER,
 clusterMachineID
 OCTET STRING,
 clusterType
 DisplayString,
 clusterCnodeName
 DisplayString,
 clusterSwapServingCnode
 INTEGER,
 clusterKcsp
 INTEGER,
 clusterCnodeAddress
 IpAddress
}

clusterID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The cnode id.”
 ::= { clusterEntry 1 }

clusterMachineID OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The cnode machine id.”
 ::= { clusterEntry 2 }

208

Appendix A: The hp-ux_sgi MIB

clusterType OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The cnode type (r or c).”
 ::= { clusterEntry 3 }

clusterCnodeName OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The cnode name.”
 ::= { clusterEntry 4 }

clusterSwapServingCnode OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The swap serving cnode.”
 ::= { clusterEntry 5 }

clusterKcsp OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “KCSP.”
 ::= { clusterEntry 6 }

clusterCnodeAddress OBJECT-TYPE
 SYNTAX IpAddress
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The cnode IP Address.”
 ::= { clusterEntry 7 }

209

clusterCnodeID OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The machine’s cnodes id”
 ::= { cluster 3 }

-- -- The AuthFail Group

authFailTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AuthFailEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “List of managers that caused
 an authentication failure.
 This list has a maximum size.
 Supported by SGI.”
 ::= { authfail 1 }

authFailEntry OBJECT-TYPE
 SYNTAX AuthFailEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “Each entry contains the ip
 address of the management station.
 Supported by SGI.”
 INDEX { authIpAddress }
 ::= { authFailTable 1 }

AuthFailEntry ::= SEQUENCE {
 authIpAddress
 NetworkAddress,
 authTime
 TimeTicks,
 authCommunityName
 OCTET STRING
}

authIpAddress OBJECT-TYPE
 SYNTAX NetworkAddress
 ACCESS read-only
 STATUS mandatory

210

Appendix A: The hp-ux_sgi MIB

 DESCRIPTION
 “The ip address of the management
 station that sent a
 request to the agent with
 an incorrect community name.
 Supported by SGI.”
 ::= { authFailEntry 1 }

authTime OBJECT-TYPE
 SYNTAX TimeTicks
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The time since the agent received
 the un-authenticated request.
 Supported by SGI.”
 ::= { authFailEntry 2 }

authCommunityName OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 “The community name used in the request
 Supported by SGI.”
 ::= { authFailEntry 3 }

211

-- -- the OpenView trap variables Group
-- -- These object ID’s cannot be retrieved
-- -- from the SNMP Agent, but
-- -- instead document the objects sent
-- -- with OpenView SNMP traps
-- --
-- -- This group is not implemented on SGI platforms.

openViewSourceId OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “The identifier of the software generating
 the trap/event. This number is used by HP
 OpenView software when it sends an event to
 trapd. It identifies which software
 component sent the event. This object
 cannot be retrieved from the SNMP agent.”
 ::= { openViewTrapVars 1 }

openViewSourceName OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “The source of the event (may not be the
 machine upon which the event was
 generated). This string is used by HP
 OpenView software when it sends an event.
 It identifies for which source (node) the
 event is generated. This object cannot be
 retrieved from the SNMP agent.”
 ::= { openViewTrapVars 2 }

212

Appendix A: The hp-ux_sgi MIB

openViewObjectId OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “The OpenView object identifier associated
 with the source of the trap/event. This
 object cannot be retrieved from the SNMP
 agent.”
 ::= { openViewTrapVars 3 }

openViewData OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “Any miscellaneous data sent with an
 OpenView trap/event. This object cannot
 be retrieved from the SNMP agent.”
 ::= { openViewTrapVars 4 }

openViewSeverity OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “The OpenView event severity associated with
 the trap/event.This object cannot be
 retrieved from the SNMP agent.”
 ::= { openViewTrapVars 5 }

openViewCategory OBJECT-TYPE
 SYNTAX OCTET STRING
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 “The OpenView event category associated with
 the trap/event. This object cannot be
 retrieved from the SNMP agent.”
 ::= { openViewTrapVars 6 }

END

213

Variable window, 135

C

clear alarms command
provision, 114

coledit
adding a record, 35, 55
command, 23, 34, 54
picture, 34
updating records, 41, 60

Collection database, 33, 53
description, 6
editing, 33, 53

commands
add_hosts, 18
batch_update, 18
coledit, 23, 34, 54
dbredit, 24, 65
fileedit, 23
find_hosts, 17, 19
groupedit, 23
host_info, 17
host_parser, 17
hostedit, 23, 30
lm_tcp, 20
make_hosts, 69
problema, 146
problemainstall, 150
propel, 23
provision, 86

A

add_hosts command, 17, 18
agents, 143
authorizing hosts, 124

B

batch_update command, 18
Browser

authorization, 124
community strings, 126, 144
default MIBs, 121
Enterprises browsing, 132
example, 139-142
Experimental browsing, 132
getting variable values, 135-138
main window, 125-127, 132
managing windows in, 138
MIB-II browsing, 132
navigating MIBs, 132-134
object identifiers, 128, 131, 136
quitting, 138
saving variable values, 138
setting variable values, 135-138
SNMP agents, 122, 143
SNMP Containment Tree navigating, 132
starting, 125
Subtree windows, 127-131
Table windows, 131
variable descriptions, 134

Index

214

Index

pvcontrol, 102
pvcontrolpanel, 87
pvgraph, 107
rdist, 21
ruleedit, 23, 46
runpropel, 25, 68
snmp_push, 18
suproblema, 146
update_hosts, 18
useredit, 23

community strings, 126, 144
configuration files, provision, 117
configuring problema, 154
customizing

MIBS, 83
propel, 28
provision, 82

D

databases
Collection, 33, 53
File, 41
Host, 29
Rule, 45

dbredit command, 24, 65
DHCP

client software, 74
description, 71
sample configuration file, 78

distributing software with propel, 26
Distribution Rule database, 45
documentation conventions, xviii

E

Enterprise MIBs, 132, 144

entry fields, using, 11
Experimental MIBs, 132

F

File database, 41
editing, 42
loading, 20

fileedit
adding a record, 43
command, 23
picture, 43
querying the database, 45
updating records, 45

file prompter windows, using, 12
find_hosts command, 17, 19

G

glossary
snmp management, 142

grayed out
definition of term, 127

groupedit
command, 23

H

host_info command, 17
host_parser command, 17
Host database, 29

description, 4
initialization, 18
initializing, 16
loading, 17
populating, 18

215

Index

hostedit
command, 23, 30
insterting records, 32
parsing system files, 33
picture, 31
querying, 32
updating records, 32

host management with propel, 27
hp-ux_sgi MIB, 83

I

installation
propel, 16

irixpro command, 2

L

lm_tcp command, 20
localizing propel, 28
LOGERRS variable, and rdist, 21
log file

creating, 101, 107
viewing, 119

M

make_hosts command, 69
managed object, definition, 144
Management Information Base. See MIBs
MIBs

browsing, 121-142
creating custom, 83
default Silicon Graphics, 83
definition, 83, 143
Enterprise, definition, 144

getting and setting values, 135-138
hp-ux_sgi, 83
MIB-II definition, 144
saving current values, 138
supplied with NetVisualyzer, 121
using Browser to navigate, 132-134
variables, 144

MIB terms glossary, 142

N

network management protocol, 143

O

object identifiers, 144
options buttons, using, 11

P

problema
and suproblema, 146
configuration files, 151
configuring, 154
description, 3, 145
general operations, 171
installation, 150
picture, 159
query options, 169
setting dates, 168
submit request, 172
using, 157

proclaim
client software, 74
configuration files, 72
description, 3, 71
dhcp_bootp.options file, 79

216

Index

installation, 72
network configuration, 71
sample configuration file, 78
server configuration, 74

product support, xix
propel

and cron, 68
and LOGERRS variable, 21
and rhosts file, 22
and trusted hosts, 22
command, 23
customizing, 28
description, 3
distributing software, 26
file generation system, 69
host management, 27
installation, 16
installing shareware, 27
running, 68
scheduling, 24

protocols
SNMP, 143

provision
clear alarms command, 114
command, 86
configuration files, 117
customizing, 82
default MIB, 83
description, 3, 81
directory view, 86
installation, 83
picture, 86
scripts, 93
show alarms command, 114

provisiond daemon installation, 84
pvcontrol

command, 102
pvcontrolpanel

command, 87
picture, 87

pvgraph
command, 107
creating log files, 101, 107
picture, 107
viewing log files, 119

Q

querying
advanced techniques, 60
keywords and regular expressions, 62
problema, 169
propel databases, 60
Rule database, 49
shortcuts, 64

R

rdist
LOGERRS variable, 21
source for heterogeneous networks, 21
utility, 21

rhosts file and propel, 22
Rule database, 45
ruleedit

adding a record, 47
command, 23, 46
picture, 47
updating records, 49

runpropel command, 25, 68

S

scheduling propel, 24
scroll bars, using, 10
setting up

authorizing browsing, 124

217

Index

enabling SNMP agents, 123
shareware, distributing with propel, 27
show alarms command

provision, 114
SNMP

agents, 122, 123
Containment Tree, 143
description, 7, 82
management terms, 121, 142

snmp_push command, 18
snmpd

daemon installation, 84
description, 7, 82
installation on remote hosts, 18
running on all systems, 7
SNMP agent, 7, 122, 123

snmpd.auth file, 124
snmp management glossary, 142
subtrees

browsing, 132
definition, 143

suproblema
picture, 158

T

trusted hosts and propel, 22

U

update_hosts command, 18
useredit

command, 23
user interface operations, 10
user interface terms used in this guide, 8, 10

W

window terms used in this guide, 8, 10

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2446-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

