
Topics in IRIX Programming

Document Number 007-2478-001

Topics in IRIX Programming
Document Number 007-2478-001

CONTRIBUTORS

Written by Arthur Evans, Wendy Ferguson, and Jed Hartman
Edited by Christina Cary
Production by Laura Cooper and Lorrie Williams
Engineering contributions by Ivan Bach, Greg Boyd, Bill Mannell, Huy Nguyen, and

Paul Mielke
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX, CASEVision, IRIS IM,
IRIS Showcase, Impressario, Indigo Magic, Inventor, IRIS-4D, POWER Series,
RealityEngine, CHALLENGE, Onyx, and WorkShop are trademarks of Silicon
Graphics, Inc. UNIX is a registered trademark of UNIX System Laboratories. OSF/
Motif is a trademark of Open Software Foundation, Inc. The X Window System is a
trademark of the Massachusetts Institute of Technology. Ada is a registered
trademark of Ada Joint Program Office, U.S. Government. Post-It is a registered
trademark of Minnesota Mining and Manufacturing. PostScript is a registered
trademark and Display PostScript is a trademark of Adobe Systems, Inc. NFS is a
trademark of Sun Microsystems, Inc. Speedo is a trademark of Bitstream, Inc.

iii

Contents

List of Examples xiii

List of Figures xv

List of Tables xvii

About This Manual xix
What This Manual Contains xix
What You Should Know Before Reading This Manual xix
Suggestions for Further Reading xx
Conventions Used in This Manual xxi

1. Inter-Process Communication 1
Types of Inter-Process Communication Available 1

iv

Contents

System V IPC 2
System V IPC Overview 2
System V Messages 2

Message Queues 3
Message Operations Overview 5
Getting Message Queues with msgget() 6
Example Program 9

Controlling Message Queues: msgctl() 12
Example Program 13

Operations for Messages: msgsnd() and msgrcv() 18
Sending a Message 19
Receiving Messages 20
Example Program 21
msgsnd 23
msgrcv 24

System V Semaphores 29
Using Semaphores 32
Getting Semaphores with semget() 35
Example Program 38
Controlling Semaphores with semctl() 41
Example Program 43
Operations on Semaphores: semop() 52
Example Program 54

System V Shared Memory 58
Using Shared Memory 59
Getting Shared Memory Segments with shmget() 62
Example Program 65
Controlling Shared Memory: shmctl() 69
Example Program 70
Operations for Shared Memory: shmat() and shmdt() 76

Contents

v

IRIX IPC 82
Initializing the Shared Arena 83

Syntax 83
Using Shared-Arena Semaphores 84

Syntax 84
Changing the Values of Shared-Arena Semaphores 84
Syntax 84

Using Spinlocks 85
Syntax 86
Syntax 86
Syntax 86

Using Barriers 87
Syntax 87

Using IRIX Shared Memory 87
Syntax 87

Exchanging the First Datum 88
Syntax 88
Syntax 89

2. File and Record Locking 95
An Overview of File and Record Locking 95
Terminology 96
File Protection 97

Opening a File for Record Locking 98
Setting a File Lock 99
Setting and Removing Record Locks 101
Getting Lock Information 105
Deadlock Handling 107

Selecting Advisory or Mandatory Locking 108
Mandatory Locking 109
Record Locking Across Multiple Systems 110

Conclusion 110

vi

Contents

3. Working With Fonts 113
Font Basics 113

Terminology 114
How Resolution Affects Font Size 115
Font Names 117
Writing Programs That Need to Use Fonts 118

Using Fonts with the X Window System 119
Getting a List of Font Names and Font Aliases 119
Viewing Fonts 120
Getting the Current X Font Path 122
Changing the X Font Path 122

Installing and Adding Font and Font Metric Files 122
Installing Font and Font Metric Files 123
Adding Font and Font Metric Files 123

Adding a Bitmap Font 124
Adding a Font Metric File 127
Adding an Outline Font 128

Downloading a Type 1 Font to a PostScript Printer 130

4. Internationalizing Your Application 135
Overview 136

Some Definitions 137
Locale 137
Internationalization (I18n) 137
Localization (L10n) 137
Nationalized Software 138
Multilingual Software 138

Areas of Concern in Internationalizing Software 139
Standards 139
Internationalizing Your Application: The Basic Steps 139
Additional Reading on Internationalization 142

Contents

vii

Locales 142
Setting the Current Locale 142

Category 143
Locale 144
The Empty String 144
Nonempty Strings in Calls to setlocale() 145
Location of Locale-Specific Data 146
Locale Naming Conventions 146

Limitations of the Locale System 147
Multilingual Support 147
Misuse of Locales 148
No Filesystem Information for Encoding Types 148

Character Sets, Codesets, and Encodings 149
Eight-Bit Cleanliness 149
Character Representation 151
Multibyte Characters 151

Use of Multibyte Strings 152
Handling Multibyte Characters 152
Conversion to Constant-Size Characters 153
How Many Bytes in a Character? 153
How Many Bytes in an MB String? 153
How Many Characters in an MB String? 153

Wide Characters 154
Uses for wchar Strings 155
Support Routines for Wide Characters 155
Conversion to MB Characters 155

Reading Input Data 155

viii

Contents

Cultural Items 156
Collating Strings 156

The Issue 156
The Solution 158

Specifying Numbers and Money 158
printf() 158
localeconv() 159

Formatting Dates and Times 159
Character Classification and ctype 160

The Issue 160
The Solution 160
Using Functions Instead of Macros 161

Regular Expressions 161
Strings and Message Catalogs 161

XPG/3 Message Catalogs 162
Opening and Closing XPG/3 Catalogs 162
Using an XPG/3 Catalog 163
XPG/3 Catalog Location 164
Creating XPG/3 Message Catalogs 164
Compiling XPG/3 Message Catalogs 165

SVR4 MNLS Message Catalogs 166
Specifying MNLS Catalogs 166
Getting Strings from MNLS Message Catalogs 166
pfmt() 167
Labels, Severity, and Flags 167
Format Strings for pfmt() 168
fmtmsg() 169
Putting Strings into a Catalog 169
Internationalizing File Typing Rule Strings 169

Variably Ordered Referencing of printf() Arguments 171

Contents

ix

Internationalization Support in X11R6 173
Limitations of X11R6 in Supporting Internationalization 173

Vertical Text 174
Character Sets 174
Xlib Interface Change 174

Resource Names 175
Getting X Internationalization Started 175

Initialization for Xlib Programming 175
Initialization for Toolkit Programming 175

Fontsets 176
Example: EUC in Japanese 176
Specifying a Fontset 176
Creating a Fontset 177
Using a Fontset 178

Text Rendering Routines 178
New Text Extents Functions 178

x

Contents

User Input 180
About User Input and Input Methods 180

Reuse Sample Code 181
GL Input 181

About X Keyboard Support 181
Keys, Keycodes, and Keysyms 182
Composed Characters 182
Supported Keyboards 183

Input Methods (IMs) 184
Opening an Input Method 184
IM Styles 186
Root Window 186
Off-the-Spot 187
Over-the-Spot 188
On-the-Spot 188
Setting IM Styles 189
Using Styles 189

Input Contexts (ICs) 189
Find an IM Style 190
IC Values 191
Pre-edit and Status Attributes 192
Creating an Input Context 193
Using the IC 193

Events Under IM Control 194
XFilterEvent() 194
XLookupString(), XwcLookupString(), and
XmbLookupString() 194

Contents

xi

GUI Concerns 196
X Resources for Strings 196
Layout 197

Dynamic Layout 198
Constant Layout 198
Localized Layout 198
IRIS IM Localization with editres 199

Icons 199
Popular Encodings 199

The ISO 8859 Family 200
Asian Languages 201

Some Standards 201
EUC 202

ISO 10646 and Unicode 203

A. ISO 3166 Country Names and Abbreviations 207

Index 211

xiii

List of Examples

Example 1-1 msgget() System Call Example 10
Example 1-2 msgctl() System Call Example 16
Example 1-3 msgsnd() and msgrcv() System Call Example 25
Example 1-4 semget() System Call Example 40
Example 1-5 semctl() System Call Example 48
Example 1-6 semop() System Call Example 56
Example 1-7 shmget() System Call Example 67
Example 1-8 shmctl() System Call Example 73
Example 1-9 shmop() System Call Example 80
Example 1-10 Using uspsema(), usvsema(), and uscpsema() 85
Example 4-1 Reading an XPG/3 Catalog 163
Example 4-2 Internationalized Code 172
Example 4-3 Opening an IM 185
Example 4-4 Creating an Input Context with XCreateIC() 193
Example 4-5 Using the IC 193
Example 4-6 Event Loop 194
Example 4-7 KeyPress Event 195

xv

List of Figures

Figure 3-1 X Window System Font Name 117
Figure 3-2 Sample Display from xfd 121
Figure 4-1 Root Window Input 187
Figure 4-2 Off-the-Spot Input 188

xvii

List of Tables

Table In-1 Suggestions for Further Reading xx
Table 1-1 Operation Permissions Codes 7
Table 1-2 Control Commands (Flags) 8
Table 1-3 Variables Used in the msgop() Example Program 21
Table 1-4 Operation Permissions Codes 36
Table 1-5 Control Commands (Flags) 36
Table 1-6 Operation Permissions Codes 63
Table 1-7 Control Commands (Flags) 64
Table 4-1 Locale Categories 143
Table 4-2 Category Environment Variables 145
Table 4-3 Some Monetary Formats 158
Table 4-4 ISO 8859 Character Sets 200
Table 4-5 Character Sets for Asian Languages 202
Table A-1 ISO 3166 Country Codes 207

xix

About This Manual

This manual discusses a few topics of interest to programmers writing
applications for the IRIX™ operating system. Topics include inter-process
communication, file and record locking, fonts, and internationalization.

What This Manual Contains

This manual contains the following chapters:

• Chapter 1, “Inter-Process Communication,” describes System V and
IRIX inter-process communication mechanisms.

• Chapter 2, “File and Record Locking,” describes how to lock and
unlock files and parts of files from within a program.

• Chapter 3, “Working with Fonts,” discusses typography and font use
on Silicon Graphics computers, and describes the Font Manager library.

• Chapter 4, “Internationalizing Your Application,” explains how to
create an application that can be adapted for use in different countries.

• Appendix A, “ISO 3166 Country Names and Abbreviations,” lists
country codes for use with internationalization and localization.

For an overview of the IRIX programming environment and tools available
for application programming, see Programming on Silicon Graphics Systems:
An Overview.

What You Should Know Before Reading This Manual

This manual is for anyone who wants to program effectively under the IRIX
operating system. We assume you are familiar with the IRIX (or UNIX®)
operating system and a programming language such as C.

xx

About This Manual

Suggestions for Further Reading

In addition to this manual, which covers IRIX topics, you may want to refer
to other Silicon Graphics manuals that describe compilers and programming
languages. The following table lists where you can find this information.

You can order a printed manual from Silicon Graphics by calling SGI Direct
at 1-800-800-SGI1 (800-7441). Outside the U.S. and Canada, contact your
local sales office or distributor.

Silicon Graphics also provides manuals online. To read an online manual
after installing it, type insight or double-click the InSight icon. It’s easy to
print sections and chapters of the online manuals from InSight.

You may also want to learn more about standard UNIX topics. For UNIX
information, consult a computer bookstore or one of the following:

• AT&T. UNIX System V Release 4 Programmer’s Guide. Englewood Cliffs,
NJ: Prentice Hall, 1990

• Levine, Mason, and Brown. lex & yacc. Sebastopol. CA: O’Reilly &
Associates, Inc., 1992

Table In-1 Suggestions for Further Reading

Topic Document

IRIX programming Programming on Silicon Graphics Systems: An
Overview

Compiling MIPS Compiling and Performance Tuning Guide

Assembly language MIPSpro Assembly Language Programmer’s Guide

C language C Language Reference Manual

C++ language C++ Programming Guide

Fortran language Fortran77 Programmer’s Guide

Pascal language Pascal Programming Guide and Man Pages

Real-time programming REACT/Pro Release Notes

Conventions Used in This Manual

xxi

• Oram and Talbott. Managing Projects with make. Sebastopol. CA:
O’Reilly & Associates, Inc., 1991

Conventions Used in This Manual

This manual uses these conventions and symbols:

Courier In text, the Courier font represents function names, file
names, and keywords. It is also used for command syntax,
output, and program listings.

bold Boldface is used along with Courier font to represent user
input.

italics Words in italics represent characters or numerical values
that you define. Replace the abbreviation with the defined
value. Also, italics are used for manual page names and
commands. The section number, in parentheses, follows the
name.

[] Brackets enclose optional items.

{ } Braces enclose two or more items; you must specify at least
one of the items.

| The OR symbol separates two or more optional items.

… A horizontal ellipsis in a syntax statement indicates that the
preceding optional items can appear more than once in
succession.

() Parentheses enclose entities and must be typed.

The following two examples illustrate the syntax conventions:

DIMENSION a(d) [, a(d)] …

indicates that the Fortran keyword DIMENSION must be typed as shown,
that the user-defined entity a(d) is required, and that one or more of a(d) can
be specified. The parentheses () enclosing d are required.

Conventions Used in This Manual

xxii

{STATIC | AUTOMATIC} v [, v] …

indicates that either the STATIC or AUTOMATIC keyword must be typed as
shown, that the user-defined entity v is required, and that one or more v
items can be specified.

This chapter describes System V
Release 4 and IRIX inter-process
communication mechanisms.

Inter-Process Communication

Chapter 1

1

Chapter 1

1. Inter-Process Communication

The term Inter-Process Communication (IPC) describes any method of sending
data from one running process to another. IPC is commonly used to allow
processes to cooperate—for instance, to let two subprograms use the same
data areas in memory without interfering with each other—or to make data
acquired by one process available to others. A variety of IPC mechanisms
exist, each intended for a different purpose.

This chapter describes IPC and covers the following topics:

• “Types of Inter-Process Communication Available” covers the types of
IPC available on IRIX systems

• “System V IPC” describes System V messages, semaphores, and shared
memory.

• “IRIX IPC” explains IRIX shared arenas, spinlocks, semaphores, and
shared memory.

Types of Inter-Process Communication Available

IRIX supports several types of IPC. Standard AT&T System V Release 4 IPC
is available for making code portable. However, its implementation is
fundamentally different from (and slower than) that of the IRIX-specific IPC
also provided with IRIX. BSD socket-based IPC is supported for
compatibility and, to allow IPC across a network, between processes
running on different machines.

Do not mix the various types of IPC in a given program. Use System V IPC—
based on a mechanism called keys—for code that must comply with the
MIPS ABI, code that needs to be portable, or code that you’re porting from
another System V operating system. Use arena-based IRIX IPC for
applications that require speed, ease of implementation, or multiprocessing

2

Chapter 1: Inter-Process Communication

ability. Socket-based IPC is necessary only for code being ported from or to
a BSD system, and for network IPC.

This chapter describes the available types of System V and IRIX IPC, and
provides examples of each. Since there are many ways to accomplish any
given task or requirement, keep in mind that the example programs were
written for clarity and not for program efficiency.

System V IPC

This section covers System V IPC and includes:

• “System V IPC Overview”

• “System V Messages”

• “Controlling Message Queues: msgctl()”

• “Operations for Messages: msgsnd() and msgrcv()”

• “System V Semaphores”

• “System V Shared Memory”

System V IPC Overview

System V IPC comprises three inter-process communication mechanisms:

• Messages allow processes to send and receive buffers full of data.

• Semaphores allow processes to turn on and off a set of flags.

• Shared memory gives multiple processes access to the same data area in
memory.

System V Messages

The message mechanism allows processes to exchange data stored in
buffers. This data is transmitted between processes in discrete units called
messages. Processes using this type of IPC can perform two operations:
sending messages and receiving messages.

System V IPC

3

Before a process can send or receive messages, the process must request that
the operating system generate a new message queue (the mechanism used to
control and keep track of messages), and an associated data structure. A
process makes this request by using the msgget() system call. The requesting
process becomes the owner and creator of the resulting message queue, and
specifies the initial operation permissions for all processes that might use
that queue (including itself). Subsequently, the owning process can
relinquish ownership or change the operation permissions using the
msgctl() system call. However, the creator remains the creator as long as the
queue exists. Other processes with permission can use msgctl() to perform
various other control functions, as described in “Controlling Message
Queues: msgctl().”

A process that is attempting to send a message can suspend execution
temporarily in order to wait until the process that is to receive the message
is ready; similarly, a receiving process can suspend execution until the
sending process is ready. Message operations that suspend execution in this
fashion are called “blocking message operations.” A process that specifies
that its execution is not to be suspended—that is, a process that does not wait
for communication if such is not immediately available—is performing a
“nonblocking message operation.”

A blocking message operation can be told to suspend a calling process until
one of three conditions occurs:

• The operation is successful.

• The operation receives a signal.

• The message queue is removed.

To request a message operation, the calling process passes arguments to a
system call, and the system call attempts to perform its function. If the
system call is successful, it returns its results. Otherwise, it returns a known
error code (-1), and an external error variable, errno, is set accordingly.

Message Queues

Before a message can be sent or received, a uniquely identified message
queue and data structure must be created. The unique identifier created is
called the message queue identifier (msqid); it is used to reference the
associated message queue and data structure.

4

Chapter 1: Inter-Process Communication

The message queue is used to store header information about each message
that is being sent or received. This information includes the following for
each message:

• pointer to the next message on queue

• message type

• message text size

• message text address

Each message queue has a data structure associated with it. This data
structure contains the following information for its message queue:

• operation permissions data

• pointer to first message on the queue

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes allowed on the queue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

• and some padding space reserved for future expansion.

The definition for the message queue structure is:

struct msg
{
 struct msg *msg_next; /* ptr to next msg on queue */
 long msg_type; /* message type */
 short msg_ts; /* message text size */
 caddr_t msg_spot; /* message text map address */
};

System V IPC

5

It is located in the /usr/include/sys/msg.h header file. The definition for the
associated data structure, msqid_ds, is also located in that header file. The
permissions structure that’s part of the msqid_ds structure is based on
another structure called ipc_perm, which is also used as a template for
permissions for other forms of IPC. The ipc_perm data structure format can
be found in the /usr/include/sys/ipc.h header file.

Message Operations Overview

The msgget() system call receives an argument msgflg, which can be set to
indicate various flags. When only the IPC_CREAT flag is set in msgflg,
msgget() performs one of two tasks:

• It gets a new msqid and creates an associated message queue and data
structure for it; or

• It returns an existing msqid that already has an associated message
queue and data structure.

The task performed is determined by the value of the key argument passed
to the msgget() system call. For the first task, if the key is not already in use
for an existing msqid, a new msqid is returned with an associated message
queue and data structure created for the key, unless some system-tunable
parameter (such as the maximum allowable number of message queues)
would be exceeded.

Instead of requesting a specific key number, you may indicate a key of value
zero, which is known as the private key (the constant IPC_PRIVATE is
defined to be zero). When you specify IPC_PRIVATE for the key value, a new
msqid is always returned with an associated message queue and data
structure created for it unless a system-tunable parameter would be
exceeded. When the ipcs command is performed, the KEY field for the msqid
is all zeros, for security reasons.

For the second task, if a msqid exists for the key specified, the value of the
existing msqid is returned. If you do not desire to have an existing msqid
returned, you can specify a control command (IPC_EXCL) in the msgflg
argument passed to the system call. The details of using this system call are
discussed in “Getting Message Queues with msgget()”in this chapter.

When performing the first task, the process that calls msgget() becomes the
owner/creator, and the associated data structure is initialized accordingly.

6

Chapter 1: Inter-Process Communication

Remember, ownership can be changed but the creating process always
remains the creator; see “Controlling Message Queues: msgctl().” The
creator of the message queue also determines the initial operation
permissions for it.

Once a uniquely identified message queue and data structure are created,
message operations and message control can be used.

The available message operations are sending and receiving. System calls
are provided for these operations: msgsnd() and msgrcv(), respectively.
Refer to “Operations for Messages: msgsnd() and msgrcv(),” for details of
these system calls.

Message control is done by using the msgctl() system call. It permits you to
control the message facility in the following ways:

• to determine the associated data structure status for a message queue
identifier (msqid)

• to change operation permissions for a message queue

• to change the size (msg_qbytes) of the message queue for a particular
msqid

• to remove a particular msqid from the UNIX operating system along
with its associated message queue and data structure

Refer to “Controlling Message Queues: msgctl()” for details of the msgctl()
system call.

Getting Message Queues with msgget()

This section details the msgget() system call and provides an example
program illustrating its use.

The synopsis in the msgget(2) reference page looks like this:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

System V IPC

7

All of the listed include-files are located in the /usr/include/sys directory of the
UNIX operating system.

The type of the key parameter, key_t, is defined by a typedef in the types.h
header file to be equivalent to an integer.

Upon successful completion, msgget() returns a message queue identifier. A
new msqid with an associated message queue and data structure is provided
if either of the following is true:

• key is equal to IPC_PRIVATE

• key is a unique hexadecimal integer, and IPC_CREAT is set in msgflg

The value passed to the msgflg argument must be an integer type octal value
and must specify access permissions, execution modes, and control fields
(commands). Access permissions determine the read/write attributes, while
execution modes determine the user/group/other attributes of the msgflg
argument. The permissions and modes are collectively referred to as
“operation permissions.” Table 1-1 shows the numeric values (expressed in
octal notation) for the valid operation permissions codes.

A specific octal value is derived by adding the octal values for the operation
permissions desired. For instance, if you want a message queue to be
readable by its owner and both readable and writable by others, use the code
value 00406 (00400 plus 00004 plus 00002). The constants MSG_R and
MSG_W, defined in the msg.h header file, can be used instead of 00400 and
00200, respectively.

Table 1-1 Operation Permissions Codes

Operation Permissions Octal Value

Read by Owner (MSG_R) 00400

Write by Owner (MSG_W) 00200

Read by Group 00040

Write by Group 00020

Read by Others 00004

Write by Others 00002

8

Chapter 1: Inter-Process Communication

Control commands are constants defined in the ipc.h header file. See Table 1-
2, which contains the names of the constants that apply to the msgget()
system call and their values.

The value for msgflg is therefore a combination of operation permissions and
control commands. To accomplish this combination, perform a bitwise OR
(|) on the flags with the operation permissions. The bit positions and values
for the control commands in relation to those of the operation permissions
make this possible.

Two examples:

msqid = msgget (key, (IPC_CREAT | MSG_R));

msqid = msgget (key, (IPC_CREAT | IPC_EXCL | 0400));

The msgget() system call attempts to return a new msqid if either of the
following conditions is true:

• key is equal to IPC_PRIVATE

• key does not already have a msqid associated with it, and IPC_CREAT is
set in msgflg

To satisfy the first condition, simply pass IPC_PRIVATE as the key argument
when calling msgget():

msqid = msgget (IPC_PRIVATE, msgflg);

The second condition is satisfied if the value for key is not already associated
with a msqid and a bitwise AND of msgflg and IPC_CREAT gives “true” (1).
This means that the given key is not currently being used to refer to any
message queue on the computer the program is running on, and that the
IPC_CREAT flag is set in msgflg.

Table 1-2 Control Commands (Flags)

Control Command Value

IPC_CREAT 0001000

IPC_EXCL 0002000

System V IPC

9

Note: The system-tunable parameter MSGMNI determines the maximum
number of unique message queues (msqids) in the UNIX operating system.
Attempting to exceed MSGMNI always causes a failure.

IPC_EXCL is another control flag used in conjunction with IPC_CREAT to
exclusively have the system call fail if, and only if, a msqid exists for the
specified key provided. This is necessary to prevent the process from
thinking that it has received a new (unique) msqid when it has not. In other
words, when both IPC_CREAT and IPC_EXCL are specified, a new msqid is
returned if the system call is successful.

Refer to the msgget(2) reference page for specific information about the
associated data structures. The specific failure conditions, with error names,
are listed there as well.

Example Program

The example program in this section (Example 1-1) is a menu-driven
program that exercises all possible combinations of the msgget() system call.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the msgget(2) reference page. Note that the errno.h header file is
included instead of declaring errno as an external variable; either method
works.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. This
choice of names makes the program more readable, and it is perfectly legal
since the variables are local to this program.

The variables in this program and their purposes are as follows:

key used to pass the value for the desired key

opperm used to store the desired operation permissions

flags used to store the desired control commands

10

Chapter 1: Inter-Process Communication

opperm_flags used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call
to pass the msgflg argument

msqid used for returning the message queue identification
number for a successful system call or the error code (-1) for
an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags),
which are selected from a menu (lines 15-32). All possible combinations are
allowed even though they might not be viable. This allows observing the
errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored in the opperm_flags variable (lines 36-51).

The system call is made next, and the result is stored in the msqid variable
(line 53).

Since the msqid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 55). If msqid equals
-1, a message indicates that an error resulted, and the external errno variable
is displayed (lines 57, 58).

If no error occurred, the returned message queue identifier is displayed
(line 62).

The example program for the msgget() system call follows in Example 1-1.

Example 1-1 msgget() System Call Example

1 /*This is a program to illustrate the capabilities of
2 *the msgget() (message-get) system call.
3 */

4 #include <stdio.h>
5 #include <sys/types.h>
6 #include <sys/ipc.h>
7 #include <sys/msg.h>
8 #include <errno.h>

9 /*Start of main C program*/

System V IPC

11

10 main()
11 {
12 key_t key;
13 int opperm, flags;
14 int msqid, opperm_flags;
15 /*Enter the desired key*/
16 printf("Enter the desired key in hex = ");
17 scanf("%x", &key);
18 /*Enter the desired octal operation
19 permissions.*/
20 printf("\nEnter the operation ");
21 printf("permissions in octal = ");
22 scanf("%o", &opperm);
23 /*Set the desired flags.*/
24 printf("\nEnter corresponding number to\n");
25 printf("set the desired flags:\n");
26 printf("No flags = 0\n");
27 printf("IPC_CREAT = 1\n");
28 printf("IPC_EXCL = 2\n");
29 printf("IPC_CREAT and IPC_EXCL = 3\n");
30 printf(" Flags = ");

31 /*Get the flag(s) to be set.*/
32 scanf("%d", &flags);

33 /*Check the values.*/
34 printf ("\nkey =0x%x, opperm = 0%o, flags = 0%o\n",
35 key, opperm, flags);

36 /*Incorporate the control fields (flags) with
37 the operation permissions*/
38 switch (flags)
39 {
40 case 0: /*No flags are to be set.*/
41 opperm_flags = (opperm | 0);
42 break;
43 case 1: /*Set the IPC_CREAT flag.*/
44 opperm_flags = (opperm | IPC_CREAT);
45 break;
46 case 2: /*Set the IPC_EXCL flag.*/
47 opperm_flags = (opperm | IPC_EXCL);
48 break;
49 case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/
50 opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
51 }

12

Chapter 1: Inter-Process Communication

52 /*Call the msgget() system call.*/
53 msqid = msgget (key, opperm_flags);

54 /*Perform the following if the call failed.*/
55 if(msqid == -1)
56 {
57 printf ("\nThe msgget system call failed!\n");
58 printf ("The error number was %d.\n", errno);
59 }
60 /*Return the msqid upon successful completion.*/
61 else
62 printf ("\nThe msqid is %d.\n", msqid);

63 exit(0);
64 }

Controlling Message Queues: msgctl()

This section gives a detailed description of using the msgctl() system call
and an example program that exercises its capabilities.

The synopsis given in the msgctl(2) reference page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, cmd, buf)
int msqid, cmd;
struct msqid_ds *buf;

The msgctl() system call requires three arguments to be passed to it, and it
returns an integer value.

On successful completion, it returns zero; when unsuccessful, it returns a -1.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

System V IPC

13

The cmd argument can be replaced by one of the following control
commands (flags):

IPC_STAT return the status information contained in the associated
data structure for the specified msqid, and place it in the data
structure pointed to by the *buf pointer in the user memory
area.

IPC_SET for the specified msqid, set the effective user and group
identification, operation permissions, and the number of
bytes for the message queue.

IPC_RMID remove the specified msqid along with its associated
message queue and data structure.

A process must have an effective user identification of OWNER/CREATOR
or super user to perform an IPC_SET or IPC_RMID control command. Read
permission is required to perform the IPC_STAT control command.

The details of this system call are discussed in the example program for it. If
you have trouble understanding the logic manipulations in this program,
read the “Getting Message Queues with msgget()” section of this chapter; it
goes into more detail than would be practical to do for every system call.

Example Program

The example program in this section (Example 1-2) is a menu-driven
program that exercises all possible combinations of the msgctl() system call.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgctl(2) reference page. Note in this program that errno is
declared as an external variable, and therefore, the errno.h header file does
not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self-
explanatory. These names make the program more readable, and it is

14

Chapter 1: Inter-Process Communication

perfectly legal since they are local to the program. The variables declared for
this program and their purpose are as follows:

uid used to store the IPC_SET value for the effective user
identification

gid used to store the IPC_SET value for the effective group
identification

mode used to store the IPC_SET value for the operation
permissions

bytes used to store the IPC_SET value for the number of bytes in
the message queue (msg_qbytes)

rtrn used to store the return integer value from the system call

msqid used to store and pass the message queue identifier to the
system call

command used to store the code for the desired control command so
that subsequent processing can be performed on it

choice used to determine which member is to be changed for the
IPC_SET control command

msqid_ds used to receive the specified message queue identifier’s
data structure when an IPC_STAT control command is
performed

*buf a pointer passed to the system call; it locates the data
structure in the user memory area where the IPC_STAT
control command is to place its return values or where the
IPC_SET command gets the values to set

Note that the msqid_ds data structure in this program (line 16) uses the data
structure located in the msg.h header file of the same name as a template for
its declaration. This is a perfect example of the advantage of local variables.

The next important thing to observe is that although the *buf pointer is
declared to be a pointer to a data structure of the msqid_ds type, it must also
be initialized to contain the address of the user memory area data structure
(line 17). Now that all of the required declarations have been explained for
this program, this is how it works.

System V IPC

15

First, the program prompts for a valid message queue identifier, which is
stored in the msqid variable (lines 19, 20). This is required for every msgctl()
system call.

Then the code for the desired control command must be entered (lines 21-
27), and it is stored in the command variable. The code is tested to determine
the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 37, 38) and the status information returned is printed out
(lines 39-46); only the members that can be set are printed out in this
program. Note that if the system call is unsuccessful (line 106), the status
information of the last successful call is printed out. In addition, an error
message is displayed and the errno variable is printed out (lines 108, 109). If
the system call is successful, a message indicates this along with the message
queue identifier used (lines 111-114).

If the IPC_SET control command is selected (code 2), the first thing done is
to get the current status information for the message queue identifier
specified (lines 50-52). This is necessary because this example program
provides for changing only one member at a time, and the system call
changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be
changed (lines 53-59). This code is stored in the choice variable (line 60). Now,
depending upon the member picked, the program prompts for the new
value (lines 66-95). The value is placed in the appropriate member in the user
memory area data structure, and the system call is made (lines 96-98).
Depending upon success or failure, the program returns the same messages
as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 100-103), and the msqid along with its associated message
queue and data structure are removed from the UNIX operating system.
Note that the *buf pointer is not required as an argument to perform this
control command, and its value can be zero or NULL. Depending upon the
success or failure, the program returns the same messages as for the other
control commands.

The example program for the msgctl() system call follows in Example 1-2.

16

Chapter 1: Inter-Process Communication

Example 1-2 msgctl() System Call Example

1 /*This is a program to illustrate
2 *the message control, msgctl(),
3 *system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/msg.h>

10 /*Start of main C language program*/
11 main()
12 {
13 extern int errno;
14 int uid, gid, mode, bytes;
15 int rtrn, msqid, command, choice;
16 struct msqid_ds msqid_ds, *buf;
17 buf = &msqid_ds;
18 /*Get the msqid, and command.*/
19 printf("Enter the msqid = ");
20 scanf("%d", &msqid);
21 printf("\nEnter the number for\n");
22 printf("the desired command:\n");
23 printf("IPC_STAT = 1\n"); 24 printf("IPC_SET = 2\n");
25 printf("IPC_RMID = 3\n");
26 printf("Entry = ");
27 scanf("%d", &command);
28 /*Check the values.*/
29 printf (\nmsqid =%d, command = %\n", 30 msqid, command);
31 switch (command)
32 {
33 case 1: /*Use msgctl() to duplicate
34 the data structure for
35 msqid in the msqid_ds area pointed
36 to by buf and then print it out.*/
37 rtrn = msgctl(msqid, IPC_STAT,
38 buf);
39 printf ("\nThe USER ID = %d\n",
40 buf->msg_perm.uid);
41 printf ("The GROUP ID = %d\n",
42 buf->msg_perm.gid);
43 printf ("The operation permissions = 0%o\n",

System V IPC

17

44 buf->msg_perm.mode);
45 printf ("The msg_qbytes = %d\n",
46 buf->msg_qbytes);
47 break;
48 case 2: /*Select and change the desired
49 member(s) of the data structure.*/
50 /*Get the original data for this msqid
51 data structure first.*/
52 rtrn = msgctl(msqid, IPC_STAT, buf);
53 printf("\nEnter the number for the\n");
54 printf("member to be changed:\n");
55 printf("msg_perm.uid = 1\n");
56 printf("msg_perm.gid = 2\n");
57 printf("msg_perm.mode = 3\n");
58 printf("msg_qbytes = 4\n");
59 printf("Entry = ");
60 scanf("%d", &choice);
61 /*Only one choice is allowed per pass
62 as an illegal entry will
63 cause repetitive failures until
64 msqid_ds is updated with
65 IPC_STAT.*/
66 switch(choice){
67 case 1:
68 printf("\nEnter USER ID = ");
69 scanf ("%d", &uid);
70 buf->msg_perm.uid = uid;
71 printf("\nUSER ID = %d\n",
72 buf->msg_perm.uid);
73 break;
74 case 2:
75 printf("\nEnter GROUP ID = ");
76 scanf("%d", &gid);
77 buf->msg_perm.gid = gid;
78 printf("\nGROUP ID = %d\n",
79 buf->msg_perm.gid);
80 break;
81 case 3:
82 printf("\nEnter MODE = ");
83 scanf("%o", &mode);
84 buf->msg_perm.mode = mode;
85 printf("\nMODE = 0%o\n",
86 buf->msg_perm.mode);
87 break;
88 case 4:

18

Chapter 1: Inter-Process Communication

89 printf("\nEnter msq_bytes = ");
90 scanf("%d", &bytes);
91 buf->msg_qbytes = bytes;
92 printf("\nmsg_qbytes = %d\n",
93 buf->msg_qbytes);
94 break;
95 }
96 /*Do the change.*/
97 rtrn = msgctl(msqid, IPC_SET,
98 buf);
99 break;
100 case 3: /*Remove the msqid along with its
101 associated message queue
102 and data structure.*/
103 rtrn = msgctl(msqid, IPC_RMID, NULL);
104 }
105 /*Perform the following if call is unsuccessful.*/
106 if(rtrn == -1)
107 {
108 printf ("\nThe msgctl system call failed!\n");
109 printf ("The error number = %d\n", errno);
110 }
111 /*Return the msqid upon successful completion.*/
112 else
113 printf ("\nMsgctl was successful for msqid = %d\n",
114 msqid);
115 exit (0);
116 }

Operations for Messages: msgsnd() and msgrcv()

This section describes the msgsnd() and msgrcv() system calls and presents
an example program that exercises all of their capabilities.

The synopsis found in the msgop(2) reference page, which describes both
msgsnd() and msgrcv(), is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp,
 size_t msgsz, int msgflg);

System V IPC

19

int msgrcv(int msqid, void *msgp,
 size_t msgsz, long msgtyp, int msgflg);

Sending a Message

The msgsnd() system call requires four arguments to be passed to it. It
returns an integer value.

Upon successful completion, a zero value is returned; when unsuccessful,
msgsnd() returns a -1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

The msgp argument is a pointer to a structure in the user memory area that
contains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the message.
The maximum size of this array is determined by the MSGMAX system
tunable parameter.

The msg_qbytes data structure member can be lowered from MSGMNB by
using the msgctl() IPC_SET control command, but only the super user can
raise it afterwards.

The msgflg argument allows the “blocking message operation” to be
performed if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = 0).
This occurs if the total number of bytes allowed on the specified message
queue are in use (msg_qbytes or MSGMNB), or the total system-wide number
of messages on all queues is equal to the system imposed limit (MSGTQL).
If the IPC_NOWAIT flag is set, the system call fails and returns -1.

Further details of this system call are discussed in the example program for
it. If you don’t understand the logic manipulations in this program, read the
“Getting Message Queues with msgget()” section of this chapter; it goes into
more detail than would be practical to do for every system call.

20

Chapter 1: Inter-Process Communication

Receiving Messages

The msgrcv() system call requires five arguments to be passed to it, and it
returns an integer value.

Upon successful completion, a value equal to the number of bytes received
is returned and when unsuccessful a -1 is returned.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

The msgp argument is a pointer to a structure in the user memory area that
receives the message type and the message text.

The msgsz argument specifies the length of the message to be received. If its
value is less than the message in the array, an error can be returned if desired;
see the msgflg argument.

The msgtyp argument is used to pick the first message on the message queue
of the particular type specified. If it is equal to zero, the first message on the
queue is received; if it is greater than zero, the first message of the same type
is received; if it is less than zero, the lowest type that is less than or equal to
its absolute value is received.

The msgflg argument allows the “blocking message operation” to be
performed if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = 0);
this would occur if there is not a message on the message queue of the
desired type (msgtyp) to be received. If the IPC_NOWAIT flag is set, the
system call fails immediately when a message of the desired type is not on
the queue. msgflg can also specify that the system call fails if the message is
longer than the size to be received; this is done by not setting the
MSG_NOERROR flag in the msgflg argument (msgflg & MSG_NOERROR =
0). If the MSG_NOERROR flag is set, the message is truncated to the length
specified by the msgsz argument of msgrcv().

Further details of this system call are discussed in the example program for
it. If you don’t understand the logic manipulations in this program, read the
“Getting Message Queues with msgget()” section of this chapter; it goes into
more detail than would be practical to do for every system call.

System V IPC

21

Example Program

The example program in this section (Example 1-3) is a menu-driven
program that exercises all possible combinations of the msgsnd() and
msgrcv() system calls.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the msgop(2) reference page. Note that in this program, errno is
declared as an external variable. Therefore, the errno.h header file does not
have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self-explanatory. These names
make the program more readable, and this is perfectly legal since they are
local to the program.

The variables declared for this program and their purposes are as shown in
Table 1-3:

Table 1-3 Variables Used in the msgop() Example Program

Variable Purpose

sndbuf Used as a buffer to contain a message to be sent (line 13); it
uses the msgbuf1 data structure as a template (lines 10-13)
The msgbuf1 structure (lines 10-13) is almost an exact
duplicate of the msgbuf structure contained in the msg.h
header file. The only difference is that the character array for
msgbuf1 contains the maximum message size (MSGMAX) for
the workstation where in msgbuf it is set to one to satisfy the
compiler. For this reason msgbuf cannot be used directly as a
template for the user-written program. It is there so you can
determine its members.

rcvbuf Used as a buffer to receive a message (line 13); it uses the msgbuf1
data structure as a template (lines 10-13).

*msgp Used as a pointer (line 13) to both the sndbuf and rcvbuf
buffers.

22

Chapter 1: Inter-Process Communication

Note that a msqid_ds data structure is set up in the program (line 21) with a
pointer that is initialized to point to it (line 22); this allows the data structure
members that are affected by message operations to be observed. They are
observed by using the msgctl() system call (with IPC_STAT) to get them so
the program can print them out (lines 80-92 and lines 161-168).

The first thing the program prompts for is whether to send or receive a
message. A corresponding code must be entered for the desired operation,
and it is stored in the choice variable (lines 23-30). Depending upon the code,
the program proceeds as in the following msgsnd() or msgrcv() sections.

i Used as a counter for inputting characters from the keyboard,
storing them in the array, and keeping track of the message length
for the msgsnd() system call; it is also used as a counter to output
the received message for the msgrcv() system call.

c Used to receive the input character from the getchar()
function (line 50).

flag Used to store the code of IPC_NOWAIT for the msgsnd() system
call (line 61).

flags Used to store the code of the IPC_NOWAIT or MSG_NOERROR
flags for the msgrcv() system call (line 117).

choice Used to store the code for sending or receiving (line 30).

rtrn Used to store the return values from all system calls.

msqid Used to store and pass the desired message queue identifier for
both system calls.

msgsz Used to store and pass the size of the message to be sent or received.

msgflg Used to pass the value of flag for sending or the value of flags for
receiving.

msgtyp Used for specifying the message type for sending, or used to pick a
message type for receiving.

Table 1-3 (continued) Variables Used in the msgop() Example Program

Variable Purpose

System V IPC

23

msgsnd

When the code is to send a message, the msgp pointer is initialized (line 33)
to the address of the send data structure, sndbuf. Next, a message type must
be entered for the message; it is stored in the variable msgtyp (line 42), and
then (line 43) it is put into the mtype member of the data structure pointed to
by msgp.

The program now prompts for a message to be entered from the keyboard
and enters a loop of getting and storing into the mtext array of the data
structure (lines 48-51). This continues until an end of file is reached (for the
getchar() function, this is a control-D immediately following a carriage
return). When this happens, the size of the message is determined by adding
one to the i counter (lines 52, 53) as it stored the message beginning in the
zero array element of mtext. Keep in mind that the message also contains the
terminating characters; therefore, the message appears to be three characters
short of msgsz.

The message is immediately echoed from the mtext array of the sndbuf data
structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that 1 be entered
for yes or anything else for no (lines 57-65). The result is stored in the flag
variable. If a 1 is entered, IPC_NOWAIT is logically ORed with msgflg;
otherwise, msgflg is set to zero.

The msgsnd() system call is then performed (line 69). If it is unsuccessful, a
failure message is displayed along with the error number (lines 70-72). If it
is successful, the returned value (which should be zero) is printed (lines 73-
76).

Every time a message is successfully sent, three members of the associated
data structure are updated. They are:

msg_qnum represents the total number of messages on the message
queue; it is incremented by one

msg_lspid contains the Process Identification (PID) number of the last
process sending a message; it is set accordingly

24

Chapter 1: Inter-Process Communication

msg_stime contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) of the last message sent; it is
set accordingly

These members are displayed after every successful message send operation
(lines 79-92).

msgrcv

If the code specifies that a message is to be received, the program continues
execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to
receive the message is requested, and it is stored in msqid (lines 100-103).

The message type is requested, and it is stored in msgtyp (lines 104-107).

The code for the desired combination of control flags is requested next, and
it is stored in flags (lines 108-117). Depending upon the selected combination,
msgflg is set accordingly (lines 118-133).

Finally, the number of bytes to be received is requested, and it is stored in
msgsz (lines 134-137).

The msgrcv() system call is performed (line 144). If it is unsuccessful, a
message and error number is displayed (lines 145-148). If successful, a
message indicates success, and the number of bytes returned is displayed
followed by the received message (lines 153-159).

When a message is successfully received, three members of the associated
data structure are updated; they are described as follows:

msg_qnum contains the number of messages on the message queue; it
is decremented by one

msg_lrpid contains the process identification (PID) of the last process
receiving a message; it is set accordingly

System V IPC

25

msg_rtime contains the time in seconds since January 1, 1970,
Greenwich Mean Time (GMT) that the last process received
a message; it is set accordingly

The example program for the msgop() system calls is shown in Example 1-3.

Example 1-3 msgsnd() and msgrcv() System Call Example

1 /*This is a program to illustrate
2 * the message operations, msgop(),
3 * system call capabilities: msgsnd() and msgrcv().
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/msg.h>

10 struct msgbuf1 {
11 long mtype;
12 char mtext[8192];
13 } sndbuf, rcvbuf, *msgp;
14 /*Start of main C language program*/
15 main()
16 {
17 extern int errno;
18 int i, c, flag, flags, choice;
19 int rtrn, msqid, msgsz, msgflg;
20 long mtype, msgtyp;
21 struct msqid_ds msqid_ds, *buf;
22 buf = &msqid_ds;

23 /*Select the desired operation.*/
24 printf(“Enter the corresponding\n”);
25 printf(“code to send or\n”);
26 printf(“receive a message:\n”);
27 printf(“Send = 1\n”);
28 printf(“Receive = 2\n”);
29 printf(“Entry = “);
30 scanf(“%d”, &choice);

31 if(choice == 1) /*Send a message.*/
32 {
33 msgp = &sndbuf; /*Point to user send structure.*/

26

Chapter 1: Inter-Process Communication

34 printf(“\nEnter the msqid or\n”);
35 printf(“the message queue to\n”);
36 printf(“handle the message = “);
37 scanf(“%d”, &msqid);

38 /*Set the message type.*/
39 printf(“\nEnter a positive integer\n”);
40 printf(“message type (long) for the\n”);
41 printf(“message = “);
42 scanf(“%d”, &msgtyp);
43 msgp->mtype = msgtyp;

44 /*Enter the message to send.*/
45 printf(“\nEnter a message: \n”);

46 /*A control-d (^d) terminates as
47 EOF.*/

48 /*Get each character of the message
49 and put it in the mtext array.*/
50 for(i = 0; ((c = getchar()) != EOF); i++)
51 sndbuf.mtext[i] = c;

52 /*Determine the message size.*/
53 msgsz = i + 1;
54 /*Echo the message to send.*/
55 for(i = 0; i < msgsz; i++)
56 putchar(sndbuf.mtext[i]);

57 /*Set the IPC_NOWAIT flag if
58 desired.*/
59 printf(“\nEnter a 1 if you want the\n”);
60 printf(“the IPC_NOWAIT flag set: “);
61 scanf(“%d”, &flag);
62 if(flag == 1)
63 msgflg |= IPC_NOWAIT;
64 else
65 msgflg = 0;

66 /*Check the msgflg.*/
67 printf(“\nmsgflg = 0%o\n”, msgflg);

68 /*Send the message.*/
69 rtrn = msgsnd(msqid, msgp, msgsz, msgflg);

System V IPC

27

70 if(rtrn == -1)
71 printf(“\nMsgsnd failed. Error = %d\n”,
72 errno);
73 else {
74 /*Print the value of test which
75 should be zero for successful.*/
76 printf(“\nValue returned = %d\n”, rtrn);

77 /*Print the size of the message
78 sent.*/
79 printf(“\nMsgsz = %d\n”, msgsz);

80 /*Check the data structure update.*/
81 msgctl(msqid, IPC_STAT, buf);

82 /*Print out the affected members.*/

83 /*Print the incremented number of
84 messages on the queue.*/
85 printf(“\nThe msg_qnum = %d\n”,
86 buf->msg_qnum);
87 /*Print the process id of the last sender.*/
88 printf(“The msg_lspid = %d\n”,
89 buf->msg_lspid);
90 /*Print the last send time.*/
91 printf(“The msg_stime = %d\n”,
92 buf->msg_stime);
93 }
94 }

95 if(choice == 2) /*Receive a message.*/
96 {
97 /*Initialize the message pointer
98 to the receive buffer.*/
99 msgp = &rcvbuf;

100 /*Specify the message queue which contains
101 the desired message.*/
102 printf(“\nEnter the msqid = “);
103 scanf(“%d”, &msqid);

104 /*Specify the specific message on the queue
105 by using its type.*/
106 printf(“\nEnter the msgtyp = “);
107 scanf(“%d”, &msgtyp);

28

Chapter 1: Inter-Process Communication

108 /*Configure the control flags for the
109 desired actions.*/
110 printf(“\nEnter the corresponding codeen”);
111 printf(“to select the desired flags: \n”);
112 printf(“No flags = 0\n”);
113 printf(“MSG_NOERROR = 1\n”);
114 printf(“IPC_NOWAIT = 2\n”);
115 printf(“MSG_NOERROR and IPC_NOWAIT = 3\n”);
116 printf(“ Flags = “);
117 scanf(“%d”, &flags);

118 switch(flags) {
119 /*Set msgflg by ORing it with the appropriate
120 flags (constants).*/
121 case 0:
122 msgflg = 0;
123 break;
124 case 1:
125 msgflg |= MSG_NOERROR;
126 break;
127 case 2:
128 msgflg |= IPC_NOWAIT;
129 break;
130 case 3:
131 msgflg |= MSG_NOERROR | IPC_NOWAIT;
132 break;
133 }

134 /*Specify the number of bytes to receive.*/
135 printf(“\nEnter the number of bytes\n”);
136 printf(“to receive (msgsz) = “);
137 scanf(“%d”, &msgsz);

138 /*Check the values for the arguments.*/
139 printf(“\nmsqid =%d\n”, msqid);
140 printf(“\nmsgtyp = %d\n”, msgtyp);
141 printf(“\nmsgsz = %d\n”, msgsz);
142 printf(“\nmsgflg = 0%o\n”, msgflg);

143 /*Call msgrcv to receive the message.*/
144 rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);

145 if(rtrn == -1) {
146 printf(“\nMsgrcv failed. “);

System V IPC

29

147 printf(“Error = %d\n”, errno);
148 }
149 else {
150 printf (“\nMsgctl was successful\n”);
151 printf(“for msqid = %d\n”,
152 msqid);

153 /*Print the number of bytes received,
154 it is equal to the return
155 value.*/
156 printf(“Bytes received = %d\n”, rtrn);

157 /*Print the received message.*/
158 for(i = 0; i<=rtrn; i++)
159 putchar(rcvbuf.mtext[i]);
160 }
161 /*Check the associated data structure.*/
162 msgctl(msqid, IPC_STAT, buf);
163 /*Print the decremented number of messages.*/
164 printf(“\nThe msg_qnum = %d\n”, buf->msg_qnum);
165 /*Print the process id of the last receiver.*/
166 printf(“The msg_lrpid = %d\n”, buf->msg_lrpid);
167 /*Print the last message receive time*/
168 printf(“The msg_rtime = %d\n”, buf->msg_rtime);
169 }
170 }

System V Semaphores

Semaphore IPC allows processes to communicate through the exchange of
data items called semaphores. A single semaphore is represented as a
positive integer (0 through 32,767). Semaphores are usually used to manage
resources; each semaphore indicates whether or not a specific data item is
currently in use (and by how many different processes). Since many
applications require the use of more than one semaphore, the UNIX
operating system has the ability to create sets or arrays of semaphores at one
time. A semaphore set can contain one or more semaphores, up to a limit set
by the system administrator. (This limit, a tunable parameter called
SEMMSL, has a default value of 25.) To create a set of semaphores, use the
semget() system call.

30

Chapter 1: Inter-Process Communication

The process performing the semget() system call becomes the owner/creator
of the semaphore set, determines how many semaphores are in the set, and
sets the operation permissions for the set. This process can subsequently
relinquish ownership of the set or change the operation permissions using
the semctl() (semaphore control) system call.The creating process remains
the creator as long as the semaphore set exists, but other processes with
permission can use semctl() to perform other control functions.

Provided a process has alter permission, it can manipulate the semaphore
set. Each semaphore within a set can be either increased or decreased with
the semop(2) system call (see the IRIX reference pages for more
information).

To increase a semaphore, pass a positive integer value of the desired
magnitude to the semop() system call. To decrease a semaphore, pass a
negative integer value of the desired magnitude.

The UNIX operating system ensures that only one process can manipulate a
semaphore set at any given time. Simultaneous requests are performed
sequentially in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value
by attempting to decrement the semaphore by one more than that value. If
the process is successful, then the semaphore value is greater than that
certain value. Otherwise, the semaphore value is not. While doing this, the
process can have its execution suspended (IPC_NOWAIT flag not set) until
the semaphore value would permit the operation (other processes increment
the semaphore), or the semaphore facility is removed.

The ability to suspend execution is called a “blocking semaphore operation.”
This ability is also available for a process that is testing for a semaphore to
become zero or equal to zero; only read permission is required for this test,
and it is accomplished by passing a value of zero to the semop() system call.

On the other hand, if the process is not successful and the process does not
request to have its execution suspended, it is called a “nonblocking
semaphore operation.” In this case, the process is returned a known error
code (-1), and the external errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based
on the values of semaphores at different points in time. Remember also that

System V IPC

31

IPC facilities remain in the UNIX operating system until removed by a
permitted process or until the system is reinitialized.

Operating on a semaphore set is done by using the semop(), semaphore
operation, system call.

When a set of semaphores is created, the first semaphore in the set is
semaphore number zero. The last semaphore in the set is numbered one less
than the number of semaphores in the set.

An array of these “blocking/nonblocking operations” can be performed on
a set containing more than one semaphore. When performing an array of
operations, the “blocking/nonblocking operations” can be applied to any or
all of the semaphores in the set. Also, the operations can be applied in any
order of semaphore number. However, no operations are done until they can
all be done successfully. This requirement means that preceding changes
made to semaphore values in the set must be undone when a “blocking
semaphore operation” on a semaphore in the set cannot be completed
successfully; no changes are made until they can all be made. For example,
if a process has successfully completed three of six operations on a set of ten
semaphores but is “blocked” from performing the fourth operation, no
changes are made to the set until the fourth and remaining operations are
successfully performed. Additionally, any operation preceding or
succeeding the “blocked” operation, including the blocked operation, can
specify that when all operations can be performed successfully, that the
operation should be undone. Otherwise, the operations are performed and
the semaphores are changed, or one “nonblocking operation” is
unsuccessful and none are changed. This is commonly referred to as being
“atomically performed.”

The ability to undo operations requires the UNIX operating system to
maintain an array of “undo structures” corresponding to the array of
semaphore operations to be performed. Each semaphore operation that is to
be undone has an associated adjust variable used for undoing the operation,
if necessary.

Remember, any unsuccessful “nonblocking operation” for a single
semaphore or a set of semaphores causes immediate return with no
operations performed at all. When this occurs, a known error code (-1) is
returned to the process, and the external variable errno is set accordingly.

32

Chapter 1: Inter-Process Communication

System calls make these semaphore capabilities available to processes. The
calling process passes arguments to a system call, and the system call
attempts to perform its function. If the system call is successful, it performs
its function and returns the appropriate information. Otherwise, a known
error code (-1) is returned to the process, and the external variable errno is set
accordingly.

Using Semaphores

Before you can use semaphores, you must request a uniquely identified
semaphore set and its associated data structure with a system call. The
unique identifier is called the semaphore identifier (semid); it is used to
reference a particular semaphore set and data structure.

The semaphore set contains a predefined number of structures in an array,
one structure for each semaphore in the set. The user may select the number
of semaphores (nsems) in a set. The following members are in each instance
of the structure within a semaphore set:

• semaphore text map address

• process identification (PID) performing last operation

• number of processes waiting for the semaphore value to become
greater than its current value

• number of processes waiting for the semaphore value to equal zero

Each semaphore set has an associated data structure. This data structure
contains information related to the semaphore set:

• operation permissions data

• pointer to first semaphore in the set

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

System V IPC

33

The definition for the semaphore set is:

struct sem
{
 ushort semval; /* semaphore text map address */
 short sempid; /* pid of last operation */
 ushort semncnt; /* # awaiting semval > cval */
 ushort semzcnt; /* # awaiting semval = 0 */
};

This definition is located in the /usr/include/sys/sem.h header file. The
structure definition for the associated semaphore data structure is also
located in the same header file. Note that the sem_perm member of this
structure uses ipc_perm as a template. The ipc_perm data structure is the same
for all IPC facilities, and it is located in the /usr/include/sys/ipc.h header file.

The semget() system call is used to perform two tasks when only the
IPC_CREAT flag is set in the semflg argument that it receives:

• to get a new semid and create an associated data structure and
semaphore set for it

• to return an existing semid that already has an associated data structure
and semaphore set

The task performed is determined by the value of the key argument passed
to the semget() system call. For the first task, if the key is not already in use
for an existing semid, a new semid is returned with an associated data
structure and semaphore set created for it, provided no system-tunable
parameter would be exceeded.

Also, a provision exists for specifying a key of value zero, known as the
private key (IPC_PRIVATE = 0). When specified, a new semid is always
returned with an associated data structure and semaphore set created for it,
unless a system tunable parameter would be exceeded. When the ipcs
command is performed, the KEY field for the semid is all zeros.

When performing the first task, the process that calls semget() becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always
remains the creator; see “Controlling Semaphores with semctl()” for more
information. The creator of the semaphore set also determines the initial
operation permissions for the facility.

34

Chapter 1: Inter-Process Communication

For the second task, if a semid exists for the key specified, the value of the
existing semid is returned. If you do not desire to have an existing semid
returned, a control command (IPC_EXCL) can be specified in the semflg
argument passed to the system call. The system call fails if it is passed a
value for the number of semaphores (nsems) that is greater than the number
actually in the set. If you do not know how many semaphores are in the set,
use 0 for nsems. The details of the semget() system call are discussed in
“Getting Semaphores with semget().”

Once a uniquely-identified semaphore set and data structure are created, use
semaphore operations (semop()) and semaphore control (semctl()).

Semaphores can be increased, decreased, or tested for zero. A single system
call, semop(), is used to perform these operations. Refer to “Operations on
Semaphores: semop()” for details on this system call.

Semaphore control is done by using the semctl() system call. Use control
operations to control the semaphore facility in the following ways:

• to return the value of a semaphore

• to set the value of a semaphore

• to return the process identification (PID) of the last process performing
an operation on a semaphore set

• to return the number of processes waiting for a semaphore value to
become greater than its current value

• to return the number of processes waiting for a semaphore value to
equal zero

• to get all semaphore values in a set and place them in an array in user
memory

• to set all semaphore values in a semaphore set from an array of values
in user memory

• to place all data structure member values and status of a semaphore set
into user memory area

• to change operation permissions for a semaphore set

• to remove a particular semid from the UNIX operating system along
with its associated data structure and semaphore set

System V IPC

35

Refer to “Controlling Semaphores with semctl()” for details of the semctl()
system call.

Getting Semaphores with semget()

This section contains a detailed description of using the semget() system call
along with an example program illustrating its use.

The synopsis found in the semget(2) reference page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
int semget(key_t key, int nsems, int semflg);

key_t is declared by a typedef in the types.h header file to be an integer.

The integer returned from this system call upon successful completion is the
semaphore set identifier (semid) that was discussed above.

As declared, the process calling the semget() system call must supply three
actual arguments to be passed to the formal key, nsems, and semflg arguments.

A new semid with an associated semaphore set and data structure is
provided if either

• key is equal to IPC_PRIVATE, or

• key is passed a unique hexadecimal integer, and semflg ANDed with
IPC_CREAT is TRUE

The value passed to the semflg argument must be an integer type octal value
and must specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/alter attributes and execution
modes determine the user/group/other attributes of the semflg argument.
They are collectively referred to as “operation permissions.”

36

Chapter 1: Inter-Process Communication

Table 1-4 shows the numeric values (expressed in octal notation) for the
valid operation permissions codes.

A specific octal value is derived by adding the octal values for the operation
permissions desired. That is, if read by user and read/alter by others is
desired, the code value would be 00406 (00400 plus 00006). There are
constants #defined in the sem.h header file that can be used for the owner.
They are:

SEM_A 0200 /* alter permission by owner */

SEM_R 0400 /* read permission by owner */

Control commands are predefined constants (represented by all uppercase
letters). Table 1-5 contains the names of the constants that apply to the
semget() system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

The value for semflg is, therefore, a combination of operation permissions
and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.

Table 1-4 Operation Permissions Codes

Operation Permissions Octal Value

Read by User 00400

Alter by User 00200

Read by Group 00040

Alter by Group 00020

Read by Others 00004

Alter by Others 00002

Table 1-5 Control Commands (Flags)

Control Command Value

IPC_CREAT 0001000

IPC_EXCL 0002000

System V IPC

37

This specification is accomplished by using a bitwise OR (|) with the
operation permissions; the bit positions and values for the control
commands in relation to those of the operation permissions make this
possible.

The semflg value can be easily set by using the names of the flags in
conjunction with the octal operation permissions value:

semid = semget (key, nsems, (IPC_CREAT | 0400));
semid = semget (key, nsems, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the semget(2) reference page, success or failure of this
system call depends upon the actual argument values for key, nsems, semflg
or system tunable parameters. The system call attempts to return a new
semid if one of the following conditions is true:

• key is equal to IPC_PRIVATE (0)

• key does not already have a semid associated with it, and (semflg &
IPC_CREAT) is “true”

The key argument can be set to IPC_PRIVATE in the following ways:

semid = semget (IPC_PRIVATE, nsems, semflg);

or

semid = semget (0, nsems, semflg);

which causes the system call to be attempted because it satisfies the first
condition specified.

Exceeding the SEMMNI, SEMMNS, or SEMMSL system-tunable parameters
always causes a failure. The SEMMNI system tunable parameter determines
the maximum number of unique semaphore sets (semids) in the UNIX
operating system. The SEMMNS system tunable parameter determines the
maximum number of semaphores in all semaphore sets system wide. The
SEMMSL system tunable parameter determines the maximum number of
semaphores in each semaphore set.

The second condition is satisfied if the value for key is not already associated
with a semid, and the bitwise ANDing of semflg and IPC_CREAT is “true”
(not zero). This means that the key is unique (not already in use) within the
UNIX operating system for this facility type and that the IPC_CREAT flag

38

Chapter 1: Inter-Process Communication

has been set (using semflg | IPC_CREAT). SEMMNI, SEMMNS, and
SEMMSL apply here also, just as for condition one.

IPC_EXCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a semid
exists for the specified key provided. This is necessary to prevent the process
from thinking that it has received a new (unique) semid when it has not. In
other words, when both IPC_CREAT and IPC_EXCL are specified, a new
semid is returned if the system call is successful. Any value for semflg returns
a new semid if the key equals zero (IPC_PRIVATE) and no system tunable
parameters are exceeded.

Refer to the semget(2) reference page for specific associated data structure
initialization for successful completion.

Example Program

The example program in this section (Example 1-4) is a menu-driven
program that exercises all possible combinations of the semget() system call.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 4-8) by including the required header files as
specified by the semget(2) reference page. Note that the errno.h header file is
included as opposed to declaring errno as an external variable; either method
works.

Variable names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self-explanatory. These names make the
program more readable, and this is perfectly legal since they are local to the
program. The variables declared for this program and their purpose are as
follows:

• key: used to pass the value for the desired key

• opperm: used to store the desired operation permissions

• flags: used to store the desired control commands (flags)

System V IPC

39

• opperm_flags: used to store the combination from the logical ORing of
the opperm and flags variables; it is then used in the system call to pass
the semflg argument

• semid: used for returning the semaphore set identification number for a
successful system call or the error code (-1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and the control command combinations (flags), which are
selected from a menu (lines 15-32). All possible combinations are allowed,
even though they might not be viable. This allows you to observe the errors
for illegal combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored in the opperm_flags variable (lines 36-52).

Then, the number of semaphores for the set is requested (lines 53-57), and its
value is stored in nsems.

The system call is made next, and the result is stored in the semid variable
(lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or the
error code (-1), it is tested to see if an error occurred (line 63). If semid equals
-1, a message indicates that an error resulted and the external errno variable
is displayed (lines 65, 66). Remember that the external errno variable is only
set when a system call fails; it should only be tested immediately following
system calls.

If no error occurred, the returned semaphore set identifier is displayed
(line 70).

40

Chapter 1: Inter-Process Communication

The example program for the semget() system call is shown in Example 1-4.

Example 1-4 semget() System Call Example

1 /*This is a program to illustrate
2 *the semaphore get, semget(),
3 *system call capabilities.*/

4 #include <stdio.h>
5 #include <sys/types.h>
6 #include <sys/ipc.h>
7 #include <sys/sem.h>
8 #include <errno.h>

9 /*Start of main C language program*/
10 main()
11 {
12 key_t key; /*declare as long integer*/
13 int opperm, flags, nsems;
14 int semid, opperm_flags;

15 /*Enter the desired key*/
16 printf(“\nEnter the desired key in hex = “);
17 scanf(“%x”, &key);

18 /*Enter the desired octal operation
19 permissions.*/
20 printf(“\nEnter the operation\n”);
21 printf(“permissions in octal = “);
22 scanf(“%o”, &opperm);

23 /*Set the desired flags.*/
24 printf(“\nEnter corresponding number to\n”);
25 printf(“set the desired flags:\n”);
26 printf(“No flags = 0\n”);
27 printf(“IPC_CREAT = 1\n”);
28 printf(“IPC_EXCL = 2\n”);
29 printf(“IPC_CREAT and IPC_EXCL = 3\n”);
30 printf(“ Flags = “);
31 /*Get the flags to be set.*/
32 scanf(“%d”, &flags);

33 /*Error checking (debugging)*/
34 printf (“\nkey =0x%x, opperm = 0%o, flags = 0%o\n”,
35 key, opperm, flags);

System V IPC

41

36 /*Incorporate the control fields (flags) with
37 the operation permissions.*/
38 switch (flags)
39 {
40 case 0: /*No flags are to be set.*/
41 opperm_flags = (opperm | 0);
42 break;
43 case 1: /*Set the IPC_CREAT flag.*/
44 opperm_flags = (opperm | IPC_CREAT);
45 break;
46 case 2: /*Set the IPC_EXCL flag.*/
47 opperm_flags = (opperm | IPC_EXCL);
48 break;
49 case 3: /*Set the IPC_CREAT and IPC_EXCL
50 flags.*/
51 opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
52 }
53 /*Get the number of semaphores for this set.*/
54 printf(“\nEnter the number of\n”);
55 printf(“desired semaphores for\n”);
56 printf(“this set (25 max) = “);
57 scanf(“%d”, &nsems);
58 /*Check the entry.*/
59 printf(“enNsems = %d\n”, nsems);
60 /*Call the semget system call.*/
61 semid = semget(key, nsems, opperm_flags);
62 /*Perform the following if the call is unsuccessful.*/
63 if(semid == -1)
64 {
65 printf(“The semget system call failed!\n”);
66 printf(“The error number = %d\n”, errno);
67 }
68 /*Return the semid upon successful completion.*/
69 else
70 printf(“\nThe semid = %d\n”, semid);
71 exit(0);
72 }

Controlling Semaphores with semctl()

This section details the semctl() system call and provides an example
program that exercises all of its capabilities.

42

Chapter 1: Inter-Process Communication

The synopsis found in the semctl(2) reference page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, semnum, cmd;
union semun

{
 int val;
 struct semid_ds *bu;
 ushort array[];
} arg;

The semctl() system call requires four arguments to be passed to it, and it
returns an integer value.

The semid argument must be a valid, non-negative, integer value that has
already been created by using the semget() system call.

The semnum argument is used to select a semaphore by its number. This
relates to array (atomically performed) operations on the set. When a set of
semaphores is created, the first semaphore is number 0, and the last
semaphore has the number of one less than the total in the set.

The cmd argument can be replaced by one of the following control
commands (flags):

• GETVAL: return the value of a single semaphore within a semaphore
set

• SETVAL: set the value of a single semaphore within a semaphore set

• GETPID: return the process identifier (PID) of the process that
performed the last operation on the semaphore within a semaphore set

• GETNCNT: return the number of processes waiting for the value of a
particular semaphore to become greater than its current value

• GETZCNT: return the number of processes waiting for the value of a
particular semaphore to be equal to zero

• GETALL: return the values for all semaphores in a semaphore set

System V IPC

43

• SETALL: set all semaphore values in a semaphore set

• IPC_STAT: return the status information contained in the associated
data structure for the specified semid, and place it in the data structure
pointed to by the *buf pointer in the user memory area; arg.buf is the
union member that contains the value of buf

• IPC_SET: for the specified semaphore set (semid), set the effective user/
group identification and operation permissions

• IPC_RMID-remove the specified (semid) semaphore set along with its
associated data structure.

A process must have an effective user identification of OWNER/CREATOR
or super user to perform an IPC_SET or IPC_RMID control command.
Read/alter permission is required as applicable for the other control
commands.

Use the arg argument to pass the appropriate union member to the system
call for the control command to be performed:

• arg.val

• arg.buf

• arg.array

The details of this system call are discussed in the example program for it. If
you have problems understanding the logic manipulations in this program,
read “Getting Semaphores with semget()”; it goes into more detail than
would be practical to do for every system call.

Example Program

The example program in this section (Figure 8-10) is a menu-driven program
that exercises all possible combinations of using the semctl() system call.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the semctl(2) reference page. Note that in this program errno is

44

Chapter 1: Inter-Process Communication

declared as an external variable, and therefore the errno.h header file does
not have to be included.

Variable, structure, and union names have been chosen to be as close as
possible to those in the synopsis. Their declarations are self-explanatory.
These names make the program more readable, and this is perfectly legal
since they are local to the program. Those declared for this program and
their purpose are as follows:

• semid_ds: used to receive the specified semaphore set identifier’s data
structure when an IPC_STAT control command is performed

• c: used to receive the input values from the scanf() function (line 117)
when performing a SETALL control command

• i: used as a counter to increment through the union arg.array when
displaying the semaphore values for a GETALL (lines 97-99) control
command, and when initializing the arg.array when performing a
SETALL (lines 115-119) control command

• length: used as a variable to test for the number of semaphores in a set
against the i counter variable (lines 97, 115)

• uid: used to store the IPC_SET value for the effective user identification

• gid: used to store the IPC_SET value for the effective group
identification

• mode: used to store the IPC_SET value for the operation permissions

• rtrn: used to store the return integer from the system call which
depends upon the control command or a -1 when unsuccessful

• semid: used to store and pass the semaphore set ID to the system call

• semnum: used to store and pass the semaphore number to the system
call

• cmd: used to store the code for the desired control command so that
subsequent processing can be performed on it

• choice: used to determine which member (uid, gid, mode) for the
IPC_SET control command that is to be changed

• arg.val: used to pass the system call a value to set (SETVAL) or to store
(GETVAL) a value returned from the system call for a single semaphore
(union member)

System V IPC

45

• arg.buf: a pointer passed to the system call. It locates the data structure
in the user memory area where the IPC_STAT control command is to
place its return values, or where the IPC_SET command gets the values
to set (union member)

• arg.array: used to store the set of semaphore values when getting
(GETALL) or initializing (SETALL) (union member).

Note that the semid_ds data structure in this program (line 14) uses the data
structure located in the sem.h header file of the same name as a template for
its declaration. This is a perfect example of the advantage of local variables.

The arg union (lines 18-22) serves three purposes in one. The compiler
allocates enough storage to hold its largest member. The program can then
use the union as any member by referencing union members as if they were
regular structure members. Note that the array is declared to have 25
elements (0 through 24).This number corresponds to the maximum number
of semaphores allowed per set (SEMMSL), a system-tunable parameter.

The next important program aspect to observe is that although the *buf
pointer member (arg.buf) of the union is declared to be a pointer to a data
structure of the semid_ds type, it must also be initialized to contain the
address of the user memory area data structure (line 24). Because of the way
this program is written, the pointer does not need to be reinitialized later. If
it was used to increment through the array, it would need to be reinitialized
just before calling the system call.

Now all of the required declarations have been presented for this program.
The next paragraphs explain how it works.

First, the program prompts for a valid semaphore set identifier, which is
stored in the semid variable (lines 25-27). This is required for all semctl()
system calls.

Then, the code for the desired control command must be entered (lines 28-
42), and the code is stored in the cmd variable. The code is tested to determine
the control command for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompting
for a semaphore number is displayed (lines 49, 50). When it is entered, it is
stored in the semnum variable (line 51). Then, the system call is performed,

46

Chapter 1: Inter-Process Communication

and the semaphore value is displayed (lines 52-55). If the system call is
successful, a message indicates this along with the semaphore set identifier
used (lines 195, 196); if the system call is unsuccessful, an error message is
displayed along with the value of the external errno variable (lines 191-193).

If the SETVAL control command is selected (code 2), a message prompting
for a semaphore number is displayed (lines 56, 57). When it is entered, it is
stored in the semnum variable (line 58). Next, a message prompts for the
value to which the semaphore is to be set, and it is stored as the arg.val
member of the union (lines 59, 60). Then, the system call is performed (lines
61, 63). Depending upon success or failure, the program returns the same
messages as for GETVAL above.

If the GETPID control command is selected (code 3), the system call is made
immediately since all required arguments are known (lines 64-67), and the
PID of the process performing the last operation is displayed. Depending
upon success or failure, the program returns the same messages as for
GETVAL above.

If the GETNCNT control command is selected (code 4), a message
prompting for a semaphore number is displayed (lines 68-72). When
entered, it is stored in the semnum variable (line 73). Then, the system call is
performed, and the number of processes waiting for the semaphore to
become greater than its current value is displayed (lines 74-77). Depending
upon success or failure, the program returns the same messages as for
GETVAL above.

If the GETZCNT control command is selected (code 5), a message prompting
for a semaphore number is displayed (lines 78-81). When it is entered, it is
stored in the semnum variable (line 82). Then the system call is performed,
and the number of processes waiting for the semaphore value to become
equal to zero is displayed (lines 83, 86). Depending upon success or failure,
the program returns the same messages as for GETVAL above.

If the GETALL control command is selected (code 6), the program first
performs an IPC_STAT control command to determine the number of
semaphores in the set (lines 88-93). The length variable is set to the number
of semaphores in the set (line 91). Next, the system call is made and, upon
success, the arg.array union member contains the values of the semaphore set
(line 96). Now, a loop is entered that displays each element of the arg.array

System V IPC

47

from zero to one less than the value of length (lines 97-103). The semaphores
in the set are displayed on a single line, separated by a space. Depending
upon success or failure, the program returns the same messages as for
GETVAL above.

If the SETALL control command is selected (code 7), the program first
performs an IPC_STAT control command to determine the number of
semaphores in the set (lines 106-108). The length variable is set to the number
of semaphores in the set (line 109). Next, the program prompts for the values
to be set and enters a loop that takes values from the keyboard and initializes
the arg.array union member to contain the desired values of the semaphore
set (lines 113-119). The loop puts the first entry into the array position for
semaphore number zero and ends when the semaphore number that is filled
in the array equals one less than the value of length. The system call is then
made (lines 120-122). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is
performed (line 127), and the status information returned is printed out
(lines 128-139); only the members that can be set are printed out in this
program. Note that if the system call is unsuccessful, the status information
of the last successful one is printed out. In addition, an error message is
displayed, and the errno variable is printed out (lines 191, 192).

If the IPC_SET control command is selected (code 9), the program gets the
current status information for the semaphore set identifier specified (lines
143-146). This is necessary because this example program provides for
changing only one member at a time, and the semctl() system call changes
all of them. Also, if an invalid value happened to be stored in the user
memory area for one of these members, it would cause repetitive failures for
this control command until corrected. The next thing the program does is to
prompt for a code corresponding to the member to be changed (lines 147-
153). This code is stored in the choice variable (line 154). Now, depending
upon the member picked, the program prompts for the new value (lines 155-
178). The value is placed in the appropriate member in the user memory area
data structure, and the system call is made (line 181). Depending on success
or failure, the program returns the same messages as for GETVAL above.

If the IPC_RMID control command (code 10) is selected, the system call is
performed (lines 183-185). The semid is removed from the UNIX operating
system along with its associated data structure and semaphore set.

48

Chapter 1: Inter-Process Communication

Depending on success or failure, the program returns the same messages as
for the other control commands.

The example program for the semctl() system call is shown in Example 1-5.

Example 1-5 semctl() System Call Example

1 /*This is a program to illustrate
2 *the semaphore control, semctl(),
3 *system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/sem.h>

10 /*Start of main C language program*/
11 main()
12 {
13 extern int errno;
14 struct semid_ds semid_ds;
15 int c, i, length;
16 int uid, gid, mode;
17 int retrn, semid, semnum, cmd, choice;
18 union semun {
19 int val;
20 struct semid_ds *buf;
21 ushort array[25];
22 } arg;

23 /*Initialize the data structure pointer.*/
24 arg.buf = &semid_ds;

25 /*Enter the semaphore ID.*/
26 printf(“Enter the semid = “);
27 scanf(“%d”, &semid);

28 /*Choose the desired command.*/
29 printf(“\nEnter the number for\n”);
30 printf(“the desired cmd:\n”);
31 printf(“GETVAL = 1\n”);
32 printf(“SETVAL = 2\n”);
33 printf(“GETPID = 3\n”);

System V IPC

49

34 printf(“GETNCNT = 4\n”);
35 printf(“GETZCNT = 5\n”);
36 printf(“GETALL = 6\n”);
37 printf(“SETALL = 7\n”);
38 printf(“IPC_STAT = 8\n”);
39 printf(“IPC_SET = 9\n”);
40 printf(“IPC_RMID = 10\n”);
41 printf(“Entry = “);
42 scanf(“%d”, &cmd);

43 /*Check entries.*/
44 printf (“\nsemid =%d, cmd = %d\n\n”,
45 semid, cmd);
46 /*Set the command and do the call.*/
47 switch (cmd)
48 {

49 case 1: /*Get a specified value.*/
50 printf(“\nEnter the semnum = “);
51 scanf(“%d”, &semnum);
52 /*Do the system call.*/
53 retrn = semctl(semid, semnum, GETVAL, 0);
54 printf(“\nThe semval = %d\n”, retrn);
55 break;
56 case 2: /*Set a specified value.*/
57 printf(“\nEnter the semnum = “);
58 scanf(“%d”, &semnum);
59 printf(“\nEnter the value = “);
60 scanf(“%d”, &arg.val);
61 /*Do the system call.*/
62 retrn = semctl(semid, semnum, SETVAL, arg.val);
63 break;
64 case 3: /*Get the process ID.*/
65 retrn = semctl(semid, 0, GETPID, 0);
66 printf(“\nThe sempid = %d\n”, retrn);
67 break;
68 case 4: /*Get the number of processes
69 waiting for the semaphore to
70 become greater than its current
71 value.*/
72 printf(“\nEnter the semnum = “);
73 scanf(“%d”, &semnum);
74 /*Do the system call.*/
75 retrn = semctl(semid, semnum, GETNCNT, 0);
76 printf(“\nThe semncnt = %d”, retrn);

50

Chapter 1: Inter-Process Communication

77 break;
78 case 5: /*Get the number of processes
79 waiting for the semaphore
80 value to become zero.*/
81 printf(“\nEnter the semnum = “);
82 scanf(“%d”, &semnum);
83 /*Do the system call.*/
84 retrn = semctl(semid, semnum, GETZCNT, 0);
85 printf(“\nThe semzcnt = %d”, retrn);
86 break;
87 case 6: /*Get all of the semaphores.*/
88 /*Get the number of semaphores in
89 the semaphore set.*/
90 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
91 length = arg.buf->sem_nsems;
92 if(retrn == -1)
93 goto ERROR;
94 /*Get and print all semaphores in the
95 specified set.*/
96 retrn = semctl(semid, 0, GETALL, arg.array);
97 for (i = 0; i < length; i++)
98 {
99 printf(“%d”, arg.array[i]);
100 /*Seperate each
101 semaphore.*/
102 printf(“%c”, ‘ ‘);
103 }
104 break;
105 case 7: /*Set all semaphores in the set.*/
106 /*Get the number of semaphores in
107 the set.*/
108 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
109 length = arg.buf->sem_nsems;
110 printf(“Length = %den”, length);
111 if(retrn == -1)
112 goto ERROR;
113 /*Set the semaphore set values.*/
114 printf(“\nEnter each value:\n”);
115 for(i = 0; i < length ; i++)
116 {
117 scanf(“%d”, &c);
118 arg.array[i] = c;
119 }
120 /*Do the system call.*/
121 retrn = semctl(semid, 0, SETALL, arg.array);

System V IPC

51

122 break;
123 case 8: /*Get the status for the semaphore set.*/
125 /*Get and print the current status values.*/
127 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
128 printf (“\nThe USER ID = %d\n”,
129 arg.buf->sem_perm.uid);
130 printf (“The GROUP ID = %d\n”,
131 arg.buf->sem_perm.gid);
132 printf (“The operation permissions = 0%o\n”,
133 arg.buf->sem_perm.mode);
134 printf (“The number of semaphores in set = %d\n”,
135 arg.buf->sem_nsems);
136 printf (“The last semop time = %d\n”,
137 arg.buf->sem_otime);
138 printf (“The last change time = %d\n”,
139 arg.buf->sem_ctime);
140 break;
141 case 9: /*Select and change the desired
142 member of the data structure.*/
143 /*Get the current status values.*/
144 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
145 if(retrn == -1)
146 goto ERROR;
147 /*Select the member to change.*/
148 printf(“\nEnter the number for the\n”);
149 printf(“member to be changed:\n”);
150 printf(“sem_perm.uid = 1\n”);
151 printf(“sem_perm.gid = 2\n”);
152 printf(“sem_perm.mode = 3\n”);
153 printf(“Entry = “);
154 scanf(“%d”, &choice);
155 switch(choice){
156 case 1: /*Change the user ID.*/
157 printf(“\nEnter USER ID = “);
158 scanf (“%d”, &uid);
159 arg.buf->sem_perm.uid = uid;
160 printf(“enUSER ID = %d\n”,
161 arg.buf->sem_perm.uid);
162 break;
163 case 2: /*Change the group ID.*/
164 printf(“\nEnter GROUP ID = “);
165 scanf(“%d”, &gid);
166 arg.buf->sem_perm.gid = gid;
167 printf(“\nGROUP ID = %d\n”,
168 arg.buf->sem_perm.gid);

52

Chapter 1: Inter-Process Communication

169 break;
170 case 3: /*Change the mode portion of
171 the operation
172 permissions.*/
173 printf(“\nEnter MODE = “);
174 scanf(“%o”, &mode);
175 arg.buf->sem_perm.mode = mode;
176 printf(“\nMODE = 0%o\n”,
177 arg.buf->sem_perm.mode);
178 break;
179 }
180 /*Do the change.*/
181 retrn = semctl(semid, 0, IPC_SET, arg.buf);
182 break;
183 case 10: /*Remove the semid along with its
184 data structure.*/
185 retrn = semctl(semid, 0, IPC_RMID, 0);
186 }
187 /*Perform the following if the call is unsuccessful.*/
188 if(retrn == -1)
189 {
190 ERROR:
191 printf (“\n\nThe semctl system call failed!\n”);
192 printf (“The error number = %d\n”, errno);
193 exit(0);
194 }
195 printf (“\n\n semctl system call was successful\n”);
196 printf (“for semid = %d\n”, semid);
197 exit (0);
198 }

Operations on Semaphores: semop()

This section details the semop() system call and provides an example
program that exercises its capabilities.

The synopsis found in the semop(2) reference page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;

System V IPC

53

struct sembuf *sops;
size_t nsops;

semop() returns zero on success, or -1 on failure.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget() system call.

The sops argument is a pointer to an array of structures in the user memory
area that contains the following for each semaphore to be changed:

• the semaphore number

• the operation to be performed

• the control command (flags)

The *sops declaration means that a pointer can be initialized to the address
of the array, or the array name can be used since it is the address of the first
element of the array. Sembuf is the tag name of the data structure used as the
template for the structure members in the array; it is located in the /usr/
include/sys/sem.h header file.

The nsops argument specifies the length of the array (the number of
structures in the array).
The maximum size of this array is determined by the SEMOPM system-
tunable parameter. Therefore, a maximum of SEMOPM operations can be
performed for each semop() system call.

The semaphore number determines the particular semaphore within the set
on which the operation is to be performed.

The operation to be performed is determined by the following:

• a positive integer value means to increment the semaphore value by its
value

• a negative integer value means to decrement the semaphore value by
its value

• a value of zero means to test if the semaphore is equal to zero

54

Chapter 1: Inter-Process Communication

The following operation commands (flags) can be used:

• IPC_NOWAIT: this operation command can be set for any operations in
the array. The system call returns unsuccessfully without changing any
semaphore values at all if any operation for which IPC_NOWAIT is set
cannot be performed successfully. The system call is unsuccessful when
trying to decrement a semaphore more than its current value, or when
testing for a semaphore to be equal to zero when it is not.

• SEM_UNDO: this operation command allows any operations in the
array to be undone when any operation in the array is unsuccessful and
does not have the IPC_NOWAIT flag set. That is, the blocked operation
waits until it can perform its operation; and when it and all succeeding
operations are successful, all operations with the SEM_UNDO flag set
are undone. Remember, no operations are performed on any
semaphores in a set until all operations are successful. Undoing is
accomplished by using an array of adjust values for the operations that
are to be undone when the blocked operation and all subsequent
operations are successful.

Example Program

The example program in this section (Example 1-6) is a menu-driven
program that exercises all possible combinations of the semop() system call.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the semop(2) reference page. Note that in this program errno is
declared as an external variable, and therefore, the errno.h header file does
not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self-explanatory. These names
make the program more readable, and this is perfectly legal since the
declarations are local to the program.

System V IPC

55

The variables declared for this program and their purpose are as follows:

• sembuf[10]: used as an array buffer (line 14) to contain a maximum of
ten sembuf type structures; ten equals SEMOPM, the maximum number
of operations on a semaphore set for each semop() system call

• *sops: used as a pointer (line 14) to sembuf[10] for the system call and for
accessing the structure members within the array

• rtrn: used to store the return values from the system call

• flags: used to store the code of the IPC_NOWAIT or SEM_UNDO flags
for the semop() system call (line 60)

• i: used as a counter (line 32) for initializing the structure members in the
array, and used to print out each structure in the array (line 79)

• nsops: used to specify the number of semaphore operations for the
system call; must be less than or equal to SEMOPM

• semid: used to store the desired semaphore set identifier for the system
call

First, the program prompts for a semaphore set identifier that the system call
is to perform operations on (lines 19-22). Semid is stored in the semid variable
(line 23).

A message is displayed requesting the number of operations to be
performed on this set (lines 25-27). The number of operations is stored in the
nsops variable (line 28).

Next, a loop is entered to initialize the array of structures (lines 30-77). The
semaphore number, operation, and operation command (flags) are entered
for each structure in the array. The number of structures equals the number
of semaphore operations (nsops) to be performed for the system call, so nsops
is tested against the i counter for loop control. Note that sops is used as a
pointer to each element (structure) in the array, and sops is incremented just
like i. sops is then used to point to each member in the structure for setting
them.

After the array is initialized, all of its elements are printed out for feedback
(lines 78-85).

56

Chapter 1: Inter-Process Communication

The sops pointer is set to the address of the array (lines 86, 87). Sembuf could
be used directly, if desired, instead of sops in the system call.

The system call is made (line 89), and depending upon success or failure, a
corresponding message is displayed. The results of the operation(s) can be
viewed by using semctl() with the GETALL control command.

The example program for the semop() system call is shown in Example 1-6.

Example 1-6 semop() System Call Example

1 /*This is a program to illustrate
2 *the semaphore operations, semop(),
3 *system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/sem.h>
10 *Start of main C language program*/
11 main()
12 {
13 extern int errno;
14 struct sembuf sembuf[10], *sops;
15 char string[];
16 int retrn, flags, sem_num, i, semid;
17 unsigned nsops;
18 sops = sembuf; /*Pointer to array sembuf.*/

19 /*Enter the semaphore ID.*/
20 printf(“\nEnter the semid of\n”);
21 printf(“the semaphore set to\n”);
22 printf(“be operated on = “);
23 scanf(“%d”, &semid);
24 printf(“ensemid = %d”, semid);
25 /*Enter the number of operations.*/
26 printf(“\nEnter the number of semaphore\n”);
27 printf(“operations for this set = “);
28 scanf(“%d”, &nsops);
29 printf(“ennosops = %d”, nsops);
30 /*Initialize the array for the
31 number of operations to be performed.*/

System V IPC

57

32 for(i = 0; i < nsops; i++, sops++)
33 {
34 /*This determines the semaphore in
35 the semaphore set.*/
36 printf(“\nEnter the semaphore\n”);
37 printf(“number (sem_num) = “);
38 scanf(“%d”, &sem_num);
39 sops->sem_num = sem_num;
40 printf(“\nThe sem_num = %d”, sops->sem_num);

41 /*Enter a (-)number to decrement,
42 an unsigned number (no +) to increment,
43 or zero to test for zero. These values
44 are entered into a string and converted
45 to integer values.*/
46 printf(“\nEnter the operation for\n”);
47 printf(“the semaphore (sem_op) = “);
48 scanf(“%s”, string);
49 sops->sem_op = atoi(string);
50 printf(“ensem_op = %d\n”, sops->sem_op);
51 /*Specify the desired flags.*/
52 printf(“\nEnter the corresponding\n”);
53 printf(“number for the desired\n”);
54 printf(“flags:\n”);
55 printf(“No flags = 0\n”);
56 printf(“IPC_NOWAIT = 1\n”);
57 printf(“SEM_UNDO = 2\n”);
58 printf(“IPC_NOWAIT and SEM_UNDO = 3\n”);
59 printf(“ Flags = “);
60 scanf(“%d”, &flags);

61 switch(flags)
62 {
63 case 0:
64 sops->sem_flg = 0;
65 break;
66 case 1:
67 sops->sem_flg = IPC_NOWAIT;
68 break;
69 case 2:
70 sops->sem_flg = SEM_UNDO;
71 break;
72 case 3:
73 sops->sem_flg = IPC_NOWAIT | SEM_UNDO;
74 break;

58

Chapter 1: Inter-Process Communication

75 }
76 printf(“\nFlags = 0%o\n”, sops->sem_flg);
77 }
78 /*Print out each structure in the array.*/
79 for(i = 0; i < nsops; i++)
80 {
81 printf(“\nsem_num = %d\n”, sembuf[i].sem_num);
82 printf(“sem_op = %d\n”, sembuf[i].sem_op);
83 printf(“sem_flg = %o\n”, sembuf[i].sem_flg);
84 printf(“%c”, ‘ ‘);
85 }

86 sops = sembuf; /*Reset the pointer to
87 sembuf[0].*/
88 /*Do the semop system call.*/
89 retrn = semop(semid, sops, nsops);
90 if(retrn == -1) {
91 printf(“\nSemop failed. “);
92 printf(“Error = %d\n”, errno);
93 }
94 else {
95 printf (“\nSemop was successful\n”);
96 printf(“for semid = %d\n”, semid);
97 printf(“Value returned = %d\n”, retrn);
98 }
99 }

System V Shared Memory

Shared memory IPC allows two or more executing processes to share
memory and consequently the data contained there. This is done by
allowing processes to set up access to a common virtual memory address
space. This sharing occurs on a segment basis, which depends on memory
management hardware.

This sharing of memory provides the fastest means of exchanging data
between processes.

A process initially creates a shared memory segment facility using the
shmget() system call. Upon creation, this process sets the overall operation
permissions for the shared memory segment facility, sets its size in bytes,
and can specify that the shared memory segment is for reference only (read-

System V IPC

59

only) upon attachment. If the memory segment is not specified to be for
reference only, all other processes with appropriate operation permissions
can read from or write to the memory segment.

There are two operations that can be performed on a shared memory
segment:

• shmat() - shared memory attach

• shmdt() - shared memory detach

Shared memory attach allows processes to associate themselves with the
shared memory segment if they have permission. They can then read or
write as allowed.

Shared memory detach allows processes to disassociate themselves from a
shared memory segment. Therefore, they lose the ability to read from or
write to the shared memory segment.

The original owner/creator of a shared memory segment can relinquish
ownership to another process using the shmctl() system call. However, the
creating process remains the creator until the facility is removed or the
system is reinitialized. Other processes with permission can perform other
functions on the shared memory segment using the shmctl() system call.

System calls, documented in the IRIX reference pages, make these shared
memory capabilities available to processes. The calling process passes
arguments to a system call, and the system call attempts to perform its
function. If the system call is successful, it performs its function and returns
the appropriate information. Otherwise, a known error code (-1) is returned
to the process, and the external variable errno is set accordingly.

Using Shared Memory

The sharing of memory between processes occurs on a virtual segment basis.
There is one and only one instance of an individual shared memory segment
existing in the UNIX operating system at any point in time.

Before memory sharing can be realized, a uniquely identified shared
memory segment and data structure must be created. The unique identifier
created is called the shared memory identifier (shmid); it is used to identify

60

Chapter 1: Inter-Process Communication

or reference the associated data structure. The data structure includes the
following for each shared memory segment:

• operation permissions

• segment size

• segment descriptor

• process identification performing last operation

• process identification of creator

• current number of processes attached

• in memory number of processes attached

• last attach time

• last detach time

• last change time

The definition for the shared memory segment data structure is located in
the /usr/include/sys/shm.h header file. It is as follows:

/*
 * There is a shared mem id data structure for
 * each segment in the system.
 */

struct shmid_ds {
struct ipc_perm shm_perm; /* operation permission
 struct */
int shm_segsz; /* segment size */
struct region *shm_reg; /* ptr to region structure */
char pad[4]; /* for swap compatibility */
ushort shm_lpid; /* pid of last shmop */
ushort shm_cpid; /* pid of creator */
ushort shm_nattch; /* used only for shminfo */
ushort shm_cnattch; /* used only for shminfo */
time_t shm_atime; /* last shmat time */
time_t shm_dtime; /* last shmdt time */
time_t shm_ctime; /* last change time */ };

Note that the shm_perm member of this structure uses ipc_perm as a template.
The ipc_perm data structure is the same for all IPC facilities, and is located in
the /usr/include/sys/ipc.h header file.

System V IPC

61

The shmget() system call is used to perform two tasks when only the
IPC_CREAT flag is set in the shmflg argument that it receives:

• to get a new shmid and create an associated shared memory segment
data structure for it

• to return an existing shmid that already has an associated shared
memory segment data structure

The task performed is determined by the value of the key argument passed
to the shmget() system call. For the first task, if the key is not already in use
for an existing shmid, a new shmid is returned with an associated shared
memory segment data structure created for it, provided no system tunable
parameters would be exceeded.

A provision exists for specifying a key of value zero, known as the private key
(IPC_PRIVATE = 0); when specified, a new shmid is always returned with an
associated shared memory segment data structure created for it unless a
system tunable parameter would be exceeded. When the ipcs command is
performed, the KEY field for the shmid is all zeros.

For the second task, if a shmid exists for the key specified, the value of the
existing shmid is returned. If you do not want to have an existing shmid
returned, a control command (IPC_EXCL) can be set in the shmflg argument
passed to the system call. The details of using this system call are discussed
in “Getting Shared Memory Segments with shmget().”

When performing the first task, the process that calls shmget() becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always
remains the creator; see “Controlling Shared Memory: shmctl().” The creator
of the shared memory segment also determines the initial operation
permissions for it.

Once a uniquely-identified shared memory segment data structure is
created, shared memory segment operations and control can be used.

Shared memory segment operations consist of attaching and detaching
shared memory segments. System calls are provided for each of these
operations; they are shmat() and shmdt(). Refer to “Operations for Shared
Memory: shmat() and shmdt()” for details of these system calls.

62

Chapter 1: Inter-Process Communication

Shared memory segment control is done by using the shmctl() system call.
It permits you to control the shared memory facility in the following ways:

• to determine the associated data structure status for a shared memory
segment (shmid)

• to change operation permissions for a shared memory segment

• to remove a particular shmid from the UNIX operating system along
with its associated shared memory segment data structure

• to lock a shared memory segment in memory

• to unlock a shared memory segment

Refer to “Controlling Shared Memory: shmctl()” for details of the shmctl()
system call.

Getting Shared Memory Segments with shmget()

This section gives a detailed description of using the shmget() system call
along with an example program illustrating its use.

The synopsis found in the shmget(2) reference page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

All of these include files are located in the /usr/include/sys directory of the
UNIX operating system.

The integer returned from this function upon successful completion is the
shared memory identifier (shmid) that was discussed earlier.

As declared, the process calling the shmget() system call must supply three
arguments to be passed to the formal key, size, and shmflg arguments.

System V IPC

63

A new shmid with an associated shared memory data structure is provided
if either of the following is true:

• key is equal to IPC_PRIVATE

• key is passed a unique hexadecimal integer, and shmflg ANDed with
IPC_CREAT is TRUE

The value passed to the shmflg argument must be an integer-type octal value
and must specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes, and execution
modes determine the user/group/other attributes of the shmflg argument.
They are collectively referred to as “operation permissions.” Table 1-6 shows
the numeric values (expressed in octal notation) for the valid operation
permissions codes.

A specific octal value is derived by adding the octal values for the operation
permissions desired. That is, if read by user and read/write by others are
desired, the code value would be 00406 (00400 plus 00006).

Table 1-6 Operation Permissions Codes

Operation Permissions Octal Values

Read by User 00400

Write by User 00200

Read by Group 00040

Write by Group 00020

Read by Others 00004

Write by Others 00002

64

Chapter 1: Inter-Process Communication

Constants located in the shm.h header file can be used for the owner. They
include:

SHM_R 0400

SHM_W 0200

Control commands are predefined constants (represented by all uppercase
letters). Table 1-7 contains the names of the constants that apply to the
shmget() system call along with their values. They are also referred to as
flags and are defined in the ipc.h header file.

The value for shmflg is, therefore, a combination of operation permissions
and control commands. After determining the value for the operation
permissions as previously described, the desired flag(s) can be specified.
This is accomplished by using bitwise OR (|) with the operation
permissions; the bit positions and values for the control commands in
relation to those of the operation permissions make this possible.

The shmflg value can be easily set by using the names of the flags in
conjunction with the octal operation permissions value:

shmid = shmget (key, size, (IPC_CREAT | 0400));

shmid = shmget (key, size, (IPC_CREAT | IPC_EXCL | 0400));

As specified by the shmget(2) reference page, success or failure of this
system call depends upon the argument values for key, size, and shmflg or
system tunable parameters. The system call attempts to return a new shmid
if one of the following conditions is true:

• key is equal to IPC_PRIVATE (0)

• key does not already have a shmid associated with it, and (shmflg &
IPC_CREAT) is “true” (not zero)

Table 1-7 Control Commands (Flags)

Control Value

IPC_CREAT 0001000

IPC_EXCL 0002000

System V IPC

65

The key argument can be set to IPC_PRIVATE in the following ways:

shmid = shmget (IPC_PRIVATE, size, shmflg);

or

shmid = shmget (0, size, shmflg);

which causes the system call to be attempted because it satisfies the first
condition specified. Exceeding the SHMMNI system-tunable parameter
always causes a failure. The SHMMNI system-tunable parameter
determines the maximum number of unique shared memory segments
(shmids) in the UNIX operating system.

The second condition is satisfied if the value for key is not already associated
with a shmid and the bitwise ANDing of shmflg and IPC_CREAT is “true”
(not zero). This means that the key is unique (not in use) within the UNIX
operating system for this facility type and that the IPC_CREAT flag has been
set (by using shmflg | IPC_CREAT). SHMMNI applies here also, just as for
condition one.

IPC_EXCL is another control command used in conjunction with
IPC_CREAT to exclusively have the system call fail if, and only if, a shmid
exists for the specified key provided. This is necessary to prevent the process
from thinking that it has received a new (unique) shmid when it has not. In
other words, when both IPC_CREAT and IPC_EXCL are specified, a unique
shmid is returned if the system call is successful. Any value for shmflg returns
a new shmid if the key equals zero (IPC_PRIVATE).

The system call fails if the value for the size argument is less than SHMMIN
or greater than SHMMAX. These tunable parameters specify the minimum
and maximum shared memory segment sizes.

Refer to the shmget(2) reference page for specific associated data structure
initialization for successful completion. The specific failure conditions with
error names are contained there also.

Example Program

The example program in this section (Example 1-7) is a menu-driven
program that exercises all possible combinations of the shmget() system call.

66

Chapter 1: Inter-Process Communication

From studying this program, you can observe the method of passing
arguments and receiving return values. The program requirements are
pointed out.

This program begins (lines 4-7) by including the required header files as
specified by the shmget(2) reference page. Note that the errno.h header file is
included as opposed to declaring errno as an external variable; either method
works.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. These
names make the program more readable, and this is perfectly legal since
they are local to the program. The variables declared for this program and
their purposes are as follows:

• key: used to pass the value for the desired key

• opperm: used to store the desired operation permissions

• flags: used to store the desired control commands (flags)

• opperm_flags: used to store the combination from the logical ORing of
the opperm and flags variables; it is then used in the system call to pass
the shmflg argument

• shmid: used for returning the message queue identification number for
a successful system call or the error code (-1) for an unsuccessful one

• size: used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags),
which are selected from a menu (lines 14-31). All possible combinations are
allowed even though they might not be viable. Thus you can observe the
errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation
permissions, and the result is stored in the opperm_flags variable (lines 35-50).

A display then prompts for the size of the shared memory segment, which is
stored in the size variable (lines 51-54).

The system call is made next, and the result is stored in the shmid variable
(line 56).

System V IPC

67

Since the shmid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 58). If shmid equals
-1, a message indicates that an error resulted and the external errno variable
is displayed (lines 60, 61).

If no error occurred, the returned shared memory segment identifier is
displayed (line 65).

The example program for the shmget() system call is shown in Example 1-7.

Example 1-7 shmget() System Call Example

1 /*This is a program to illustrate
2 *the shared memory get, shmget(),
3 *system call capabilities.*/

4 #include <sys/types.h>
5 #include <sys/ipc.h>
6 #include <sys/shm.h>
7 #include <errno.h>

8 /*Start of main C language program*/
9 main()
10 {
11 key_t key; /*declare as long integer*/
12 int opperm, flags;
13 int shmid, size, opperm_flags;
14 /*Enter the desired key*/
15 printf(“Enter the desired key in hex = “);
16 scanf(“%x”, &key);

17 /*Enter the desired octal operation
18 permissions.*/
19 printf(“\nEnter the operation\n”);
20 printf(“permissions in octal = “);
21 scanf(“%o”, &opperm);
22 /*Set the desired flags.*/
23 printf(“\nEnter corresponding number to\n”);
24 printf(“set the desired flags:\n”);
25 printf(“No flags = 0\n”);
26 printf(“IPC_CREAT = 1\n”);
27 printf(“IPC_EXCL = 2\n”);
28 printf(“IPC_CREAT and IPC_EXCL = 3\n”);
29 printf(“ Flags = “);

68

Chapter 1: Inter-Process Communication

30 /*Get the flag(s) to be set.*/
31 scanf(“%d”, &flags);

32 /*Check the values.*/
33 printf (“\nkey =0x%x, opperm = 0%o, flags = 0%o\n”,
34 key, opperm, flags);
35 /*Incorporate the control fields (flags) with
36 the operation permissions*/
37 switch (flags)
38 {
39 case 0: /*No flags are to be set.*/
40 opperm_flags = (opperm | 0);
41 break;
42 case 1: /*Set the IPC_CREAT flag.*/
43 opperm_flags = (opperm | IPC_CREAT);
44 break;
45 case 2: /*Set the IPC_EXCL flag.*/
46 opperm_flags = (opperm | IPC_EXCL);
47 break;
48 case 3: /*Set the IPC_CREAT and IPC_EXCL flags.*/
49 opperm_flags = (opperm | IPC_CREAT | IPC_EXCL);
50 }
51 /*Get the size of the segment in bytes.*/
52 printf (“\nEnter the segment”);
53 printf (“\nsize in bytes = “);
54 scanf (“%d”, &size);

55 /*Call the shmget system call.*/
56 shmid = shmget (key, size, opperm_flags);

57 /*Perform the following if the call is unsuccessful.*/
58 if(shmid == -1)
59 {
60 printf (“\nThe shmget system call failed!\n”);
61 printf (“The error number = %d\n”, errno);
62 }
63 /*Return the shmid upon successful completion.*/
64 else
65 printf (“\nThe shmid = %d\n”, shmid);
66 exit(0);
67 }

System V IPC

69

Controlling Shared Memory: shmctl()

This section details using the shmctl() system call and provides an example
program that exercises all of its capabilities.

The synopsis found in the shmctl(2) reference page is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds *buf;

The shmctl() system call requires three arguments to be passed to it, and it
returns an integer value.

Upon successful completion, a zero value is returned; when unsuccessful,
shmctl() returns a -1.

The shmid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget() system call.

The cmd argument can be replaced by one of following control commands
(flags):

• IPC_STAT: return the status information contained in the associated
data structure for the specified shmid and place it in the data structure
pointed to by the *buf pointer in the user memory area

• IPC_SET: for the specified shmid, set the effective user and group
identification, and operation permissions

• IPC_RMID: remove the specified shmid along with its associated shared
memory segment data structure

• SHM_LOCK: lock the specified shared memory segment in memory;
must be super user

• SHM_UNLOCK: unlock the shared memory segment from memory;
must be super user.

A process must have an effective user identification of OWNER/CREATOR
or super user to perform an IPC_SET or IPC_RMID control command. Only

70

Chapter 1: Inter-Process Communication

the super user can perform a SHM_LOCK or SHM_UNLOCK control
command. A process must have read permission to perform the IPC_STAT
control command.

The details of this system call are discussed in the example program for it. If
you have problems understanding the logic manipulations in this program,
read “Getting Shared Memory Segments with shmget()”; it goes into more
detail than would be practical to do for every system call.

Example Program

The example program in this section (Example 1-8) is a menu-driven
program that exercises all possible combinations of the shmctl() system call.

From studying this program, you can observe the method of passing
arguments and receiving return values. The user-written program
requirements are pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmctl(2) reference page. Note in this program that errno is
declared as an external variable, and therefore, the errno.h header file does
not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self-
explanatory. These names make the program more readable, and it is
perfectly legal since they are local to the program. The variables declared for
this program and their purposes are as follows:

• uid: used to store the IPC_SET value for the effective user identification

• gid: used to store the IPC_SET value for the effective group
identification

• mode: used to store the IPC_SET value for the operation permissions

• rtrn: used to store the return integer value from the system call

• shmid: used to store and pass the shared memory segment identifier to
the system call

• command: used to store the code for the desired control command so
that subsequent processing can be performed on it

System V IPC

71

• choice: used to determine which member for the IPC_SET control
command that is to be changed

• shmid_ds: used to receive the specified shared memory segment
identifier’s data structure when an IPC_STAT control command is
performed

• *buf: a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_STAT control command is to
place its return values or where the IPC_SET command gets the values
to set.

Note that the shmid_ds data structure in this program (line 16) uses the data
structure located in the shm.h header file of the same name as a template for
its declaration. This is a perfect example of the advantage of local variables.

The next important thing to observe is that although the *buf pointer is
declared to be a pointer to a data structure of the shmid_ds type, it must also
be initialized to contain the address of the user memory area data structure
(line 17).

Now that all of the required declarations have been explained for this
program, this is how it works.

First, the program prompts for a valid shared memory segment identifier
that is stored in the shmid variable (lines 18-20). This is required for every
shmctl() system call.

Then, the code for the desired control command must be entered (lines 21-
29), and it is stored in the command variable. The code is tested to determine
the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is
performed (lines 39, 40) and the status information returned is printed out
(lines 41-71). Note that if the system call is unsuccessful (line 146), the status
information of the last successful call is printed out. In addition, an error
message is displayed and the errno variable is printed out (lines 148, 149). If
the system call is successful, a message indicates this along with the shared
memory segment identifier used (lines 151-154).

If the IPC_SET control command is selected (code 2), the first thing done is
to get the current status information for the message queue identifier

72

Chapter 1: Inter-Process Communication

specified (lines 90-92). This is necessary because this example program
provides for changing only one member at a time, and the system call
changes all of them. Also, if an invalid value happened to be stored in the
user memory area for one of these members, it would cause repetitive
failures for this control command until corrected. The next thing the
program does is to prompt for a code corresponding to the member to be
changed (lines 93-98). This code is stored in the choice variable (line 99). Now,
depending upon the member picked, the program prompts for the new
value (lines 105-127). The value is placed in the appropriate member in the
user memory area data structure, and the system call is made (lines 128-130).
Depending upon success or failure, the program returns the same messages
as for IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is
performed (lines 132-135), and the shmid along with its associated message
queue and data structure are removed from the UNIX operating system.
Note that the *buf pointer is not required as an argument to perform this
control command and its value can be zero or NULL. Depending upon the
success or failure, the program returns the same messages as for the other
control commands.

If the SHM_LOCK control command (code 4) is selected, the system call is
performed (lines 137,138). Depending upon the success or failure, the
program returns the same messages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system call
is performed (lines 140-142). Depending upon the success or failure, the
program returns the same messages as for the other control commands.

System V IPC

73

The example program for the shmctl() system call is shown in Example 1-8.

Example 1-8 shmctl() System Call Example

1 /*This is a program to illustrate
2 *the shared memory control, shmctl(),
3 *system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/shm.h>

10 /*Start of main C language program*/
11 main()
12 {
13 extern int errno;
14 int uid, gid, mode;
15 int rtrn, shmid, command, choice;
16 struct shmid_ds shmid_ds, *buf;
17 buf = &shmid_ds;

18 /*Get the shmid, and command.*/
19 printf(“Enter the shmid = “);
20 scanf(“%d”, &shmid);
21 printf(“\nEnter the number for\n”);
22 printf(“the desired command:\n”);
23 printf(“IPC_STAT = 1\n”);
24 printf(“IPC_SET = 2\n”);
25 printf(“IPC_RMID = 3\n”);
26 printf(“SHM_LOCK = 4\n”);
27 printf(“SHM_UNLOCK = 5\n”);
28 printf(“Entry = “);
29 scanf(“%d”, &command);

30 /*Check the values.*/
31 printf (“\nshmid =%d, command = %d\n”,
32 shmid, command);
33 switch (command)
34 {
35 case 1: /*Use shmctl() to duplicate
36 the data structure for
37 shmid in the shmid_ds area pointed

74

Chapter 1: Inter-Process Communication

38 to by buf and then print it out.*/
39 rtrn = shmctl(shmid, IPC_STAT,
40 buf);
41 printf (“\nThe USER ID = %d\n”,
42 buf->shm_perm.uid);
43 printf (“The GROUP ID = %d\n”,
44 buf->shm_perm.gid);
45 printf (“The creator’s ID = %d\n”,
46 buf->shm_perm.cuid);
47 printf (“The creator’s group ID = %d\n”,
48 buf->shm_perm.cgid);
49 printf (“The operation permissions = 0%o\n”,
50 buf->shm_perm.mode);
51 printf (“The slot usage sequenceen”);
52 printf (“number = 0%x\n”,
53 buf->shm_perm.seq);
54 printf (“The key= 0%x\n”,
55 buf->shm_perm.key);
56 printf (“The segment size = %d\n”,
57 buf->shm_segsz);
58 printf (“The pid of last shmop = %d\n”,
59 buf->shm_lpid);
60 printf (“The pid of creator = %d\n”,
61 buf->shm_cpid);
62 printf (“The current # attached = %d\n”,
63 buf->shm_nattch);
64 printf(“The in memory # attached = %d\n”,
65 buf->shm_cnattach);
66 printf(“The last shmat time = %d\n”,
67 buf->shm_atime);
68 printf(“The last shmdt time = %d\n”,
69 buf->shm_dtime);
70 printf(“The last change time = %d\n”,
71 buf->shm_ctime);
72 break;
 /* Lines 73 - 87 deleted */
88 case 2: /*Select and change the desired
89 member(s) of the data structure.*/
90 /*Get the original data for this shmid
91 data structure first.*/
92 rtrn = shmctl(shmid, IPC_STAT, buf);
93 printf(“\nEnter the number for the\n”);
94 printf(“member to be changed:\n”);
95 printf(“shm_perm.uid = 1\n”);
96 printf(“shm_perm.gid = 2\n”);

System V IPC

75

97 printf(“shm_perm.mode = 3\n”);
98 printf(“Entry = “);
99 scanf(“%d”, &choice);
100 /*Only one choice is allowed per
101 pass as an illegal entry will
102 cause repetitive failures until
103 shmid_ds is updated with
104 IPC_STAT.*/
105 switch(choice){
106 case 1:
107 printf(“\nEnter USER ID = “);
108 scanf (“%d”, &uid);
109 buf->shm_perm.uid = uid;
110 printf(“\nUSER ID = %d\n”,
111 buf->shm_perm.uid);
112 break;
113 case 2:
114 printf(“\nEnter GROUP ID = “);
115 scanf(“%d”, &gid);
116 buf->shm_perm.gid = gid;
117 printf(“\nGROUP ID = %d\n”,
118 buf->shm_perm.gid);
119 break;

120 case 3:
121 printf(“\nEnter MODE = “);
122 scanf(“%o”, &mode);
123 buf->shm_perm.mode = mode;
124 printf(“\nMODE = 0%o\n”,
125 buf->shm_perm.mode);
126 break;
127 }
128 /*Do the change.*/
129 rtrn = shmctl(shmid, IPC_SET,
130 buf);
131 break;
132 case 3: /*Remove the shmid along with its
133 associated
134 data structure.*/
135 rtrn = shmctl(shmid, IPC_RMID, NULL);
136 break;
137 case 4: /*Lock the shared memory segment*/
138 rtrn = shmctl(shmid, SHM_LOCK, NULL);
139 break;
140 case 5: /*Unlock the shared memory

76

Chapter 1: Inter-Process Communication

141 segment.*/
142 rtrn = shmctl(shmid, SHM_UNLOCK, NULL);
143 break;
144 }
145 /*Perform the following if the call fails.*/
146 if(rtrn == -1)
147 {
148 printf (“\nThe shmctl system call failed!\n”);
149 printf (“The error number = %d\n”, errno);
150 }
151 /*Return the shmid upon successful completion.*/
152 else
153 printf (“\nShmctl was successful for shmid = %d\n”,
154 shmid);
155 exit (0);
156 }

Operations for Shared Memory: shmat() and shmdt()

This section details the shmat() and shmdt() system calls, and presents an
example program that exercises all of their capabilities.

The synopsis found in the shmop(2) reference page, which includes both
shmat() and shmaddr(), is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr;
int shmflg;

int shmdt (shmaddr)
char *shmaddr;

Attaching to a Shared Memory Segment

The shmat() system call requires three arguments to be passed to it, and it
returns a character pointer value.

System V IPC

77

The system call can be cast to return an integer value. Upon successful
completion, this value is the address in core memory where the process is
attached to the shared memory segment, and when unsuccessful, it is -1.

The shmid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget() system call.

The shmaddr argument can be zero or user-supplied when passed to the
shmat() system call. If it is zero, the UNIX operating system picks the
address of where the shared memory segment will be attached. If it is user
supplied, the address must be a valid address that the UNIX operating
system would pick. Here are some typical address ranges:

0xc00c0000
0xc00e0000
0xc0100000
0xc0120000

Note that these addresses are in chunks of 20,000 hexadecimal. It would be
wise to let the operating system pick addresses so as to improve portability.

The shmflg argument is used to pass the SHM_RND and SHM_RDONLY
flags to the shmat() system call.

Further details are discussed in the example program for shmop(). If you
have problems understanding the logic manipulations in this program, read
“Getting Shared Memory Segments with shmget()”; it goes into more detail
than would be practical to do for every system call.

Detaching Shared Memory Segments

The shmdt() system call requires one argument to be passed to it, and it
returns an integer value.

shmdt() returns zero if it completes successfully; otherwise, it returns -1.

Further details of this system call are discussed in the example program. If
you have problems understanding the logic manipulations in this program,
read “Getting Shared Memory Segments with shmget()”; it goes into more
detail than what would be practical to do for every system call.

78

Chapter 1: Inter-Process Communication

Example Program

The example program in this section (Figure 8-17) is a menu-driven program
that exercises all possible combinations of the shmat() and shmdt() system
calls.

From studying this program, you can observe the method of passing
arguments and receiving return values. The program requirements are
pointed out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) reference page. Note that in this program, errno is
declared as an external variable, and therefore, the errno.h header file does
not have to be included.

Variable and structure names were chosen to be as close as possible to those
in the synopsis. Their declarations are self-explanatory. The names make the
program more readable; this is legal since they are local to the program. The
variables declared for this program and their purposes include:

• flags: used to store the codes of SHM_RND or SHM_RDONLY for the
shmat() system call

• addr: used to store the address of the shared memory segment for the
shmat() and shmdt() system calls

• i: used as a loop counter for attaching and detaching

• attach: used to store the desired number of attach operations

• shmid: used to store and pass the desired shared memory segment
identifier

• shmflg: used to pass the value of flags to the shmat() system call

• rtrn: used to store the return values from both system calls

• detach: used to store the desired number of detach operations

This example program combines both the shmat() and shmdt() system calls.
The program prompts for the number of attachments, and enters a loop until
they are done, for the specified shared memory identifiers. Then, the
program prompts for the number of detachments to be performed, and
enters a loop until they are done, for the specified shared memory segment
addresses.

System V IPC

79

shmat()

The program prompts for the number of attachments to be performed, and
the value is stored in the attach variable (lines 17-21).

A loop is entered using the attach variable and the i counter (lines 23-70) to
perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier
(lines 24-27) and it is stored in the shmid variable (line 28). Next, the program
prompts for the address where the segment is to be attached (lines 30-34),
and it is stored in the addr variable (line 35). Then, the program prompts for
the desired flags to be used for the attachment (lines 37-44), and the code
representing the flags is stored in the flags variable (line 45). The flags
variable is tested to determine the code to be stored for the shmflg variable
used to pass them to the shmat() system call (lines 46-57). The system call is
made (line 60). If successful, a message stating so is displayed along with the
attach address (lines 66-68). If unsuccessful, a message stating so is
displayed and the error code is displayed (lines 62, 63). The loop then
continues until it finishes.

shmdt

After the attach loop completes, the program prompts for the number of
detach operations to be performed (lines 71-75), and the value is stored in the
detach variable (line 76).

A loop is entered using the detach variable and the i counter (lines 78-95) to
perform the specified number of detachments.

In this loop, the program prompts for the address of the shared memory
segment to be detached (lines 79-83), and it is stored in the addr variable (line
84). Then, the shmdt() system call is performed (line 87). If successful, a
message stating so is displayed along with the address that the segment was
detached from (lines 92,93). If unsuccessful, the error number is displayed
(line 89). The loop continues until it finishes.

80

Chapter 1: Inter-Process Communication

The example program for the shmop() system calls is shown in Example 1-9.

Example 1-9 shmop() System Call Example

1 /*This is a program to illustrate
2 *the shared memory operations, shmop(),
3 *system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/shm.h>
10 /*Start of main C language program*/
11 main()
12 {
13 extern int errno;
14 int flags, addr, i, attach;
15 int shmid, shmflg, retrn, detach;

16 /*Loop for attachments by this process.*/
17 printf(“Enter the number ofen”);
18 printf(“attachments for this\n”);
19 printf(“process (1-4).\n”);
20 printf(“ Attachments = “);

21 scanf(“%d”, &attach);
22 printf(“Number of attaches = %d\n”, attach);
23 for(i = 1; i <= attach; i++) {
24 /*Enter the shared memory ID.*/
25 printf(“\nEnter the shmid ofen”);
26 printf(“the shared memory segment to\n”);
27 printf(“be operated on = “);
28 scanf(“%d”, &shmid);
29 printf(“\nshmid = %d\n”, shmid);

30 /*Enter the value for shmaddr.*/
31 printf(“\nEnter the value for\n”);
32 printf(“the shared memory address\n”);
33 printf(“in hexadecimal:\n”);
34 printf(“ Shmaddr = “);
35 scanf(“%x”, &addr);
36 printf(“The desired address = 0x%x\n”, addr);
37 /*Specify the desired flags.*/

System V IPC

81

38 printf(“\nEnter the corresponding\n”);
39 printf(“number for the desireden”);
40 printf(“flags:\n”);
41 printf(“SHM_RND = 1\n”);
42 printf(“SHM_RDONLY = 2\n”);
43 printf(“SHM_RND and SHM_RDONLY = 3\n”);
44 printf(“ Flags = “);
45 scanf(“%d”, &flags);

46 switch(flags)
47 {
48 case 1:
49 shmflg = SHM_RND;
50 break;
51 case 2:
52 shmflg = SHM_RDONLY;
53 break;
54 case 3:
55 shmflg = SHM_RND | SHM_RDONLY;
56 break;
57 }
58 printf(“\nFlags = 0%o\n”, shmflg);
59 /*Do the shmat system call.*/
60 retrn = (int)shmat(shmid, addr, shmflg);
61 if(retrn == -1) {
62 printf(“\nShmat failed. “);
63 printf(“Error = %d\n”, errno);
64 }
65 else {
66 printf (“\nShmat was successful\n”);
67 printf(“for shmid = %d\n”, shmid);
68 printf(“The address = 0x%x\n”, retrn);
69 }
70 }
71 /*Loop for detachments by this process.*/
72 printf(“Enter the number ofen”);
73 printf(“detachments for this\n”);
74 printf(“process (1-4).\n”);
75 printf(“ Detachments = “);
76 scanf(“%d”, &detach);
77 printf(“Number of attaches = %d\n”, detach);
78 for(i = 1; i <= detach; i++) {

79 /*Enter the value for shmaddr.*/
80 printf(“\nEnter the value for\n”);

82

Chapter 1: Inter-Process Communication

81 printf(“the shared memory address\n”);
82 printf(“in hexadecimal:\n”);
83 printf(“ Shmaddr = “);
84 scanf(“%x”, &addr);
85 printf(“The desired address = 0x%x\n”, addr);

86 /*Do the shmdt system call.*/
87 retrn = (int)shmdt(addr);
88 if(retrn == -1) {
89 printf(“Error = %d\n”, errno);
90 }
91 else {
92 printf (“\nShmdt was successful\n”);
93 printf(“for address = 0%x\n”, addr);
94 }
95 }
96 }

IRIX IPC

To meet the demands of parallel programming, IRIX provides a set of fast,
low-overhead inter-process communication mechanisms. These
mechanisms are powerful and easy to use. However, remember that they are
IRIX-specific, so code using them is not portable to other systems.

Unlike System V IPC mechanisms that use their own namespace, IRIX IPC
mechanisms are associated with the filesystem namespace. To begin using
IRIX IPC, a process must specify the name of a file to be used as a shared
arena. All processes using the same arena have access to the same set of IPC
mechanisms. This makes it relatively easy for unrelated processes to
communicate using IRIX IPC. The shared arena file is mapped into the
process’s user space, which means that most of the shared arena IPC
functions do not have to make system calls. This is one reason that the
overhead on IRIX IPC is lower than the overhead on standard System V IPC.

IRIX IPC comprises four main mechanisms, two of which—semaphores and
shared memory—resemble their System V counterparts. The other
mechanisms are spinlocks, simple busy-wait locks for low-level
synchronization, and barriers, which provide rendezvous points for multiple
processes.

IRIX IPC

83

Note: Modules using IRIX IPC routines should include <stdio.h> and
<ulocks.h>, and should be linked with the libmpc.so shared object (-lmpc).

For more information on any of the routines presented here, see the
appropriate reference pages.

This section explains how to use IRIX IPC. Topics include;

• “Initializing the Shared Arena” describes how to begin using shared
arenas.

• “Using Shared-Arena Semaphores” explains how to allocate and
change the value of a shared-arena semaphore.

• “Using Spinlocks” covers how to allocate, lock, and unlock spinlocks.

• “Using IRIX Shared Memory” describes how to allocate and free shared
memory.

• “Using Barriers” covers how to allocate, use, and free a barrier.

• “Exchanging the First Datum” explains how to communicate the
location of an object in an arena to another process using the arena.

Initializing the Shared Arena

To begin using IRIX IPC, call usinit().

Syntax

#include <stdio.h>
#include <ulocks.h>
usptr_t *usinit (const char *filename);

The filename variable specifies a file to use as the shared arena. If the file
doesn’t exist, usinit() creates it. If a shared arena exists by that name, usinit()
joins the shared arena. If the file exists but isn’t a shared arena, usinit()
overwrites it. In any case, usinit() is subject to regular filesystem
permissions: it returns an error if the process doesn’t have read and write
permission on the file (if it already exists) or permission to create the file (if
it doesn’t exist).

84

Chapter 1: Inter-Process Communication

Using Shared-Arena Semaphores

To allocate a new shared-arena semaphore, call usnewsema().

Syntax

#include <ulocks.h>
usptr_t *usnewsema (usptr_t *handle, int initial_value);

The initial_value argument simply specifies the initial value of the
semaphore. An initial value of zero is commonly used for a synchronization
semaphore: the first process that attempts a P operation on the semaphore
blocks until another process performs a V operation on the semaphore. An
initial value of 1 may be used to provide a simple mutual exclusion
semaphore: the first process attempting a P operation on the semaphore
succeeds, and subsequent processes block until the first process releases the
semaphore by performing a V operation on it.

Changing the Values of Shared-Arena Semaphores

To perform P and V operations on shared arena semaphores, use the
uspsema() and usvsema() functions. The uscpsema() function provides a
conditional P operation: it performs a P operation on the semaphore only if
it can do so without blocking. The ustestsema() function returns the current
value of the semaphore (useful primarily for debugging), and the
usinitsema() function reinitializes the semaphore to a specified value. Note
that if you reinitialize a semaphore on which processes are waiting, the
processes will not be woken.

Syntax

#include <ulocks.h>
int uspsema (usema_t *sema);
int uscpsema (usema_t *sema);
int usvsema (usema_t *sema);
int ustestsema (usema_t *sema);
int usinitsema (usema_t *sema, int initial_value);

The following code fragment demonstrates the use of uspsema(), usvsema(),
and uscpsema().

IRIX IPC

85

Example 1-10 Using uspsema(), usvsema(), and uscpsema()

char *arenafile = “/usr/tmp/testarena”;
usptr_t arena;
usema_t *sema;
/* open an arena, allocate a semaphore */
arena = usinit(arenafile);
if (arena == NULL)
{
 /* error */
}
sema = usnewsema(arena);
if (sema == NULL)
{
 /* error */
}
/* acquire the semaphore */
uspsema(sema);
/* release the semaphore */
usvsema(sema);
/* try to get the semaphore again, without blocking */
if (uscpsema(sema) == 1)
{
 /*we succeeded, so we have to release the semaphore again*/
 usvsema(sema);
}
else
 /* failed to get the semaphore */

Using Spinlocks

Spinlocks are somewhat like semaphores. Instead of having an integer
value, a spinlock has a binary value: it is either locked or unlocked.

The way that spinlocks are implemented depends upon the hardware
architecture of the computer using them. On multiprocessor computers,
spinlocks are busy-wait locks, so the processor continually tries to acquire
the lock until it succeeds. This implementation only makes sense on
multiprocessor systems, in which one processor can release the lock while
another processor is “spinning” trying to acquire the lock. On single
processor machines, spinlocks are implemented using the same algorithm as
semaphores—that is, processes waiting to acquire a lock may be put to sleep
until the lock is released by another process.

86

Chapter 1: Inter-Process Communication

To allocate a new spinlock, use usnewlock():

Syntax

#include <ulocks.h>
ulock_t usnewlock (usptr_t *arena);

The usnewlock() function returns a lock, which may then be used by the
process. Locking and unlocking can be performed with the functions
ussetlock(), uscsetlock(), uswsetlock(), and usunsetlock().

Syntax

#include <ulocks.h>
int ussetlock (ulock_t lock);
int uscsetlock (ulock_t lock, unsigned spins);
int uswsetlock (ulock_t lock, unsigned spins);
int usunsetlock (ulock_t lock);

The ussetlock() function locks the specified lock. On multiprocessor systems
it spins until it succeeds; on single-processor systems, it may sleep until it
can set the lock. It returns 1, unless it encounters an error. The uscsetlock()
function tries to set the lock spins times; if it succeeds, it returns 1, if it fails,
it returns 0. On a single-processor system, uscsetlock() ignores the spins
argument and only sets the lock if it can do so without waiting. The
uswsetlock() function resembles ussetlock() except that after every spins
attempts to set the lock, it yields the processor by calling sginap(). On single-
processor systems, uswsetlock() behaves exactly like ussetlock(). The
usunsetlock() function unlocks the lock; it always returns 0, unless it
encounters an error. All of these functions return -1 in the event of an error.
You can find the reason for the error by calling oserror().

IRIX also provides a function to test whether a given lock is locked or
unlocked: ustestlock(). ustestlock() returns 1 if the lock is set, and 0 if the
lock is not set.

Syntax

#include <ulocks.h>
int ustestlock (ulock_t lock);

A process can call usunsetlock() on a lock that is either not locked or locked
by another process. In either case, the lock is unlocked. Double tripping–

IRIX IPC

87

that is, calling a set lock function twice with the same lock–is also
permissible. The caller blocks until another process unsets the lock.

Using Barriers

Barriers provide a convenient way of synchronizing parallel processes on
multiprocessor systems. To use a barrier, you must first allocate one by
calling new_barrier(), which returns a pointer to an initialized barrier
structure. You must then communicate this pointer to the other processes
(for example, by placing it in a data structure in shared memory). To arrange
a rendezvous, have each process call barrier(), passing it the pointer to the
barrier structure and a numerical argument specifying the number of
processes to wait for. Each process blocks until the last process calls barrier().
Barriers are always busy-wait, so they aren’t suitable for use on single-
processor systems.

Syntax

#include <ulocks.h>
barrier_t *new_barrier (usptr_t *handle);
void barrier (barrier_t *b, unsigned n);
void free_barrier (barrier_t *b);
void init_barrier (barrier_t *b);

The free_barrier() function releases the resources associated with a barrier.
The init_barrier() function restores a barrier to its original state, as if it had
just been allocated by new_barrier().

Using IRIX Shared Memory

Allocating shared memory from a shared arena is much like the regular
process of allocating memory using the malloc() and free() library routines.

Syntax

#include <ulocks.h>
#include <malloc.h>
void *usmalloc (size_t size, usptr_t *handle);
void usfree (void *ptr, usptr_t *handle);
void *usrealloc (void *ptr, size_t size, usptr_t *handle);

88

Chapter 1: Inter-Process Communication

void *uscalloc (size_t nelem, size_t elsize, usptr_t *handle);
int usmallopt (int cmd, int value, usptr_t *handle);
struct mallinfo usmallinfo (usptr_t *handle);

Memory allocated using usmalloc() and related functions can be accessed by
all processes that have joined the shared arena specified by handle. Other
than that, these functions operate in the same way as their single-threaded
cousins.

Exchanging the First Datum

Once you’ve established a shared arena, it’s frequently useful to
communicate the location of some object in that arena to another process
using the arena. For example, one process might create a data structure in
shared memory, and pass the address of the data structure to other processes
using the arena. The shared arena has a special one-word area for storing
such data. This area is accessed using the calls usputinfo(), usgetinfo(), and
uscasinfo(). The first two are fairly self-explanatory: usputinfo() puts a
word of data into the storage area, and usgetinfo() returns the current value
in the storage area. uscasinfo() is explained later.

Syntax

#include <ulocks.h>
void usputinfo (usptr_t *handle, void *info);
void *usgetinfo (usptr_t *handle);

The following program fragment initializes an arena, allocates space for a
data structure, and places the address of the data structure in the storage
area. The exact contents of the data structure are left as an exercise for the
reader:

#include <stdio.h>
#include <ulocks.h>
 /* ... */
 usptr_t *arena;
 char *arenafile = "/usr/tmp/testarena";
 struct controlStruct *control;
 arena = usinit(arenafile);
 if (arena == NULL) {
 /* error */
 }

IRIX IPC

89

 control = usmalloc(sizeof(struct controlStruct), arena);
 if (control == NULL) {
 /* error */
 }
 usputinfo(arena, control);

The next program fragment accesses the same shared arena created by the
previous program fragment, and obtains the address of the previously
allocated data structure:

#include <stdio.h>
#include <ulocks.h>
 /* ... */
 usptr_t *arena;
 char *arenafile = "/usr/tmp/testarena";
 struct controlStruct *control;
 arena = usinit(arenafile);
 if (arena == NULL) {
 /* error */
 }
 control = usgetinfo(arena);
 if (control == NULL) {
 /* error */
 }

The simple technique outlined above works fine if you know which process
is going to create the arena (for example, if program #1 creates the arena
before forking and execing program #2). However, if several processes are
started independently and they all try to access the same arena, the situation
becomes more complicated. You may want one of the processes to set up
data structures for the others to use. In this instance, IRIX provides an atomic
compare-and-swap operator, uscasinfo(), which compares the current value
in the storage area with a specified value. If these two are equal, uscasinfo()
changes the value in the storage area to a second specified value.

Syntax

#include <ulocks.h>
int uscasinfo (usptr_t *arena, void *oldinfo, void *newinfo);

If the value in the storage area is equal to oldinfo, uscasinfo() changes the
value to newinfo and returns 1. Otherwise, uscasinfo() leaves the value
untouched and returns 0. Usually, uscasinfo() is called with oldinfo equal to
0. The value in the storage area is 0 if no one has placed any data in it yet.

90

Chapter 1: Inter-Process Communication

The following code example illustrates a race condition free sequence for a
process to attach to an arena. The code expects to be supplied a routine to
initialize the control structure that will behave the same way in all the
processes that use this code segment and a register_process routine that
will set up specific structures for the specific process. It is expected that at
process termination, the file will be deleted. This is why specific state needs
to be considered for this condition.

#include <stdio.h>
#include <ulocks.h>
 /* ... */
usptr_t *arena;

char * arenafile = <name of a file>;
struct controlStruct * control;
struct controlStruct * control2;
int attempts;

attempts = 20;
while (attempts --) {

 arena = usinit(arenafile);

 /* Make sure that the arena was opened successfully */
 if (! arena) {
 /* error */
 return ERROR;
 }
 /* Is there a head in the arena yet? */
 control = (controlStruct *) usgetinfo(arena);

 if (! control) {
 control = (controlStruct *) usmalloc(sizeof(* control), arena);

 if (! control) {
 /* error */
 return ERROR;
 }

 /* initialize only the bare minimum of the control structure */
 control->ushandle = arena;
 control->unlinked = 0; /* application should set this flag when */
 /* the last process detaches from arena */
 control->startlock = usnewlock(arena);

IRIX IPC

91

 if (! uscsetlock(control->startlock, 1)) {
 /* I must be able to set the lock that I allocated but didn’t*/
 /* error - Internal, should never get here ! */
 return ERROR;
 }

 doitagain: /* easiest way to handle this weird case is with*/
 /* a goto. Many object to this style but it works*/

 /* compare and swap the control structure */
 if (! uscasinfo(arena, 0, control)) {

 control2 = (controlStruct *) usgetinfo(arena);

 if (! control2) {
 /* uscasinfo failed due to some exception (page fault */
 /* interrupt etc). We need to try it again. */
 goto doitagain;
 }

 /* Free data allocated by this process. */
 usfreelock(control->startlock, arena);
 usfree(control, arena);
 control = control2;

 } else {

 /* This process will now initialize the rest of the control */
 /* structure. */

 initialize_control(control);
 handle = register_process(control);

 usunsetlock(control->startlock);

 return handle;
 }
 }

 ussetlock(control->startlock);

 /* In case the initializing process fails or the file gets unlinked */
 /* before I get registered check the unlinked flag. */
 if (! control->unlinked) {
 handle = register_process(control);

92

Chapter 1: Inter-Process Communication

 usunsetlock(control->startlock);

 return handle;
 }

 /* The file got unlinked before I could register. */
 /* lets try again - first detach myself. */

 usunsetlock(control->startlock);
 usdetach(arena);

} /* while (1) */

/* file keeps getting unlinked by another process. Very unlucky. */
/* Process failed to attach to arena. */

return ERROR;

Attaching to an arena asynchronously also requires detaching
asynchronously. The following code illustrates how a process can detach
itself gracefully from the arena attached in the example above. It assumes
that the application provides a routine that will de-register a process from
the arena structures. The application needs to determine the condition of no
more registered processes.

ussetlock(control->startlock);
deregister_pocess(control);
if (no_registered_processes(control)) {
 remove(arenafile);
 control->unlinked = 1;
}

usunsetlock(control->startlock);
usdetach(arena);

You can see, IRIX shared memory is very flexible and provides a low
overhead solution to IPC problems.

This chapter explains how to lock
and unlock files and parts of files
from within a program.

File and Record Locking

Chapter 2

95

Chapter 2

2. File and Record Locking

This chapter describes how you can use file and record locking capabilities.
Examples are given for the correct use of record locking. Misconceptions
about the amount of protection that record locking affords are dispelled.
Record locking should be viewed as a synchronization mechanism, not a
security mechanism.

This chapter describes file and record locking, and includes these topics:

• “An Overview of File and Record Locking” presents an introduction to
locking mechanisms.

• “Terminology” defines some common terms.

• “File Protection” covers using access permissions, locking files, and
getting lock information.

• “Selecting Advisory or Mandatory Locking” describes mandatory
locking and record locking across systems.

An Overview of File and Record Locking

Mandatory and advisory file and record locking are available on many
current releases of the UNIX system. The intent of these capabilities is to
provide a synchronization mechanism for programs accessing the same
stores of data simultaneously. Such processing is characteristic of many
multi-user applications, and the need for a standard method of dealing with
the problem has been recognized by standards advocates like /usr/group, an
organization of UNIX system users from businesses and campuses across
the country.

Advisory file and record locking can be used to coordinate self-
synchronizing processes. In mandatory locking, on the other hand, the
standard I/O subroutines and I/O system calls enforce the locking protocol.

96

Chapter 2: File and Record Locking

In this way, at the cost of a little efficiency, mandatory locking double-checks
the programs to avoid accessing the data out of sequence.

The reference pages for the fcntl(2) system call, the lockf(3) library function,
and fcntl(5) data structures and commands are referred to throughout this
section. You should read them before continuing.

Terminology

Before discussing record locking mechanisms, first consider a few terms.

Record A contiguous set of bytes in a file. The UNIX operating
system does not impose any record structure on files. Such
structure may be imposed by the programs that use the files.

Cooperating Processes
Processes that work together in some well-defined fashion
to accomplish the tasks at hand. Processes that share files
must request permission to access the files before using
them. File access permissions must be carefully set to
restrict non-cooperating processes from accessing those
files. The term “process” is used interchangeably with
“cooperating process” to refer to a task obeying such
protocols.

Read (Share) Locks
These locks are used to gain limited access to sections of
files. When a read lock is in place on a record, other
processes may also read lock that record, in whole or in part.
No other process, however, may have or obtain a write lock
on an overlapping section of the file. If a process holds a
read lock it may assume that no other process will be
writing or updating that record at the same time. This access
method also permits many processes to read the given
record. This may be necessary when searching a file,
without the contention involved if a write or exclusive lock
were to be used.

Write (Exclusive) Lock
These are used to gain complete control over sections of
files. When a write lock is in place on a record, no other

File Protection

97

process may read- or write-lock that record, in whole or in
part. If a process holds a write lock it may assume that no
other process will be reading or writing that record at the
same time.

Advisory Locking
A form of record locking that does not interact with the I/O
subsystem (which includes creat(2), open(2), read(2), and
write(2)). The control over records is accomplished by
requiring an appropriate record lock request before I/O
operations. If appropriate requests are always made by all
processes accessing the file, then the accessibility of the file
is controlled by the interaction of these requests. Advisory
locking depends on the individual processes to enforce the
record locking protocol; it does not require an accessibility
check at the time of each I/O request.

 Mandatory Locking
A form of record locking that does interact with the I/O
subsystem. Access to locked records is enforced by the
creat(2), open(2), read(2), and write(2) system calls. If a
record is locked, then access to that record by any other
process is restricted according to the type of lock on the
record. The control over records should still be performed
explicitly by requesting an appropriate record lock before I/
O operations, but an additional check is made by the system
before each I/O operation to ensure the record locking
protocol is being honored. Mandatory locking offers an
extra synchronization check, but at the cost of some
additional system overhead.

File Protection

The access permissions for each UNIX file control who may read, write, or
execute the file. These access permissions may only be set by the owner of
the file or by the superuser. The permissions of the directory in which the file
resides can also affect the access permissions for a file. Note that if the
permissions for a directory allow anyone to write in the directory, then files
within that directory may be removed even by a user who does not have
read, write, or execute permission for those files. Any information that is

98

Chapter 2: File and Record Locking

worth protecting, is worth protecting properly. If your application warrants
the use of record locking, make sure that the permissions on your files and
directories are set properly. A record lock, even a mandatory record lock,
only protects the portions of the files that are locked. Other parts of the files
can be corrupted if proper precautions are not taken.

Only a known set of programs and/or administrators should be able to read
or write a database. This can be done easily by setting the set-group-ID bit
(see chmod(1)) of the database accessing programs. The files can then be
accessed by a known set of programs that obey the record-locking protocol.
An example of such file protection, although record locking is not used, is
the mail(1) command. In that command only the owning user and the mail
command can read and write the unread mail files.

This section covers the following topics:

• “Opening a File for Record Locking”

• “Setting a File Lock”

• “Setting and Removing Record Locks”

• “Getting Lock Information”

• “Deadlock Handling”

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid
open file descriptor. If read locks are to be used, then the file must be opened
with at least read access; likewise for write locks and write access.

In the example that follows, we open a file for both read and write access:

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
int fd; /* file descriptor */
char *filename;

main(argc, argv)
int argc;
char *argv[];
{

File Protection

99

 extern void exit(), perror();

 /* get database file name from command line and open the
 * file for read and write access.
 */
 if (argc < 2) {
 (void) fprintf(stderr, "usage: %s filename\n", argv[0]);
 exit(2);
 }
 filename = argv[1];
 fd = open(filename, O_RDWR);
 if (fd < 0) {
 perror(filename);
 exit(2);
 }
}

The file is now open for us to perform both locking and I/O functions. We
then proceed with the task of setting a lock.

Setting a File Lock

Several ways exist to set a lock on a file. These methods depend upon how
the lock interacts with the rest of the program. Questions of portability and
performance exist. Two methods are given: using the fcntl(2) system call and
using the /usr/group standards-compatible lockf(3) library function call.

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked
starting at a byte offset of zero and going until the end of the maximum file
size. This point is beyond any real end-of-file so that no other lock can be
placed on the file. To set such a lock, set the size of the lock to zero. Here is a
sample code fragment using the fcntl() system call:

#include <fcntl.h>
#define MAX_TRY 10
int try;
struct flock lck;

try = 0;
/* set up the record locking structure, the address of which
 * is passed to the fcntl() system call. */

100

Chapter 2: File and Record Locking

lck.l_type = F_WRLCK; /* setting a write lock */
lck.l_whence = 0; /* offset l_start from beginning of file */
lck.l_start = 0L;
lck.l_len = 0L; /* until the end of the file address space */
/* Attempt locking MAX_TRY times before giving up. */
while (fcntl(fd, F_SETLK, &lck) < 0) {
 if (errno == EAGAIN || errno == EACCES) {
 /* there might be other error cases in which
 * you might try again.
 */
 if (++try < MAX_TRY) {
 (void) sleep(2);
 continue;
 }
 (void) fprintf(stderr,"File busy try again
later!\n");
 return;
 }
 perror("fcntl");
 exit(2);
}
...

This piece of code tries to lock a file. The lock is attempted several times until
one of the following events occurs:

• the file is locked

• an error occurs

• the program exceeds MAX_TRY and gives up

To perform the same task using the lockf() function, use code like this:

#include <unistd.h>
#define MAX_TRY 10
int try;
try = 0;

/* make sure the file ptr is at the beginning of file. */
lseek(fd, 0L, 0);

/* Attempt locking MAX_TRY times before giving up. */
while (lockf(fd, F_TLOCK, 0L) < 0) {
 if (errno == EAGAIN || errno == EACCES) {
 /* there might be other error cases in which

File Protection

101

 * you might try again.
 */
 if (++try < MAX_TRY) {
 sleep(2);
 continue;
 }
 (void) fprintf(stderr,"File busy try again
later!\n");
 return;
 }
 perror("lockf");
 exit(2);

}
...

It should be noted that the lockf() example appears to be simpler, but the
fcntl() example exhibits additional flexibility. Using the fcntl() method, it is
possible to set the type and start of the lock request simply by setting a few
structure variables. lockf() merely sets write (exclusive) locks; an additional
system call (lseek()) is required to specify the start of the lock.

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the
differing starting point and length of the lock. We now try to solve an
example problem of dealing with two records (which may be either in the
same file or in different files) that must be updated simultaneously so that
other processes get a consistent view of the information they contain. This
type of problem occurs, for example, when updating the inter-record
pointers in a doubly linked list.

To deal with multiple locks, consider the following questions:

• What do you want to lock?

• For multiple locks, in what order do you want to lock and unlock the
records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get all the locks?

102

Chapter 2: File and Record Locking

In managing record locks, you must plan a failure strategy for the case in
which you cannot obtain all the required locks. It is because of contention for
these records that we have decided to use record locking in the first place.
Different programs might:

• wait a certain amount of time, and try again

• end the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list.
For the example, we assume that the record after which the new record is to
be inserted has a read lock on it already. The lock on this record must be
changed or promoted to a write lock so that the record may be edited.

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. If processes
exist with pending write locks that are waiting for the same section of the
file, the lock promotion succeeds and the other (sleeping) locks wait.
Promoting (or demoting) a write lock to a read lock carries no restrictions. In
either case, the lock is reset with the new lock type. Because the /usr/group
lockf() function does not have read locks, lock promotion is not applicable
to that call.

The code below shows an example of record locking with lock promotion:

struct record {
 .
 . /* data portion of record */
 .
 long prev; /* index to previous record in the list */
 long next; /* index to next record in the list */
};

/* Lock promotion using fcntl(2)
 * When this routine is entered it is assumed that there are
 * read locks on "here" and "next".
 * If write locks on "here" and "next" are obtained:
 * Set a write lock on "this".
 * Return index to "this" record.
 * If any write lock is not obtained:
 * Restore read locks on "here" and "next".

File Protection

103

 * Remove all other locks.
 * Return a -1.
 */
long set3lock (this, here, next)
long this, here, next;
{
 struct flock lck;

 lck.l_type = F_WRLCK; /* setting a write lock */
 lck.l_whence = 0; /* offset l_start from beginning of file */
 lck.l_start = here;
 lck.l_len = sizeof(struct record);

 /* promote lock on "here" to write lock */
 if (fcntl(fd, F_SETLKW, &lck) < 0) {
 return (-1);
 }
 /* lock "this" with write lock */
 lck.l_start = this;
 if (fcntl(fd, F_SETLKW, &lck) < 0) {
 /* Lock on "this" failed;
 * demote lock on "here" to read lock.
 */
 lck.l_type = F_RDLCK;
 lck.l_start = here;
 (void) fcntl(fd, F_SETLKW, &lck);
 return (-1);
 }
 /* promote lock on "next" to write lock */
 lck.l_start = next;
 if (fcntl(fd, F_SETLKW, &lck) < 0) {
 /* Lock on "next" failed; demote lock on "here" to read lock,... */
 lck.l_type = F_RDLCK;
 lck.l_start = here;
 (void) fcntl(fd, F_SETLK, &lck);
 /* ...and remove lock on "this". */
 lck.l_type = F_UNLCK;
 lck.l_start = this;
 (void) fcntl(fd, F_SETLK, &lck);
 return (-1) /* cannot set lock, try again or quit */
 }

 return (this);
}

104

Chapter 2: File and Record Locking

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW
command. If the F_SETLK command was used instead, the fcntl() system
calls would fail if blocked. The program would then have to be changed to
handle the blocked condition in each of the error return sections.

Let us now look at a similar example using the lockf() function. Since there
are no read locks, all (write) locks are referenced generically as locks.

/* Lock promotion using lockf(3).
 * When this routine is entered it is assumed that there are
 * no locks on "here" and "next".
 * If locks are obtained:
 * Set a lock on "this".
 * Return index to "this" record.
 * If any lock is not obtained:
 * Remove all other locks.
 * Return a -1.
 */

#include <unistd.h>

long set3lock (this, here, next)
long this, here, next;
{

 /* lock "here" */
 (void) lseek(fd, here, 0);
 if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
 return (-1);
 }
 /* lock "this" */
 (void) lseek(fd, this, 0);
 if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
 /* Lock on "this" failed. Clear lock on "here". */
 (void) lseek(fd, here, 0);
 (void) lockf(fd, F_ULOCK, sizeof(struct record));
 return (-1);
 }

 /* lock "next" */
 (void) lseek(fd, next, 0);
 if (lockf(fd, F_LOCK, sizeof(struct record)) < 0) {
 /* Lock on "next" failed. Clear lock on "here", */
 (void) lseek(fd, here, 0);

File Protection

105

 (void) lockf(fd, F_ULOCK, sizeof(struct record));
 /* and remove lock on "this". */
 (void) lseek(fd, this, 0);
 (void) lockf(fd, F_ULOCK, sizeof(struct record));
 return (-1); /* cannot set lock, try again or quit */
 }

 return (this);
}

Locks are removed in the same manner as they are set; only the lock type is
different (F_UNLCK or F_ULOCK). An unlock cannot be blocked by another
process and only affects locks that were placed by the unlocking process. The
unlock only affects the section of the file defined in the previous example by
lck. It is possible to unlock or change the type of lock on a subsection of a
previously set lock; this may cause an additional lock (two locks for one
system call) to be used by the operating system. This occurs if the subsection
is from the middle of the previously set lock.

Getting Lock Information

One can determine which processes, if any, are blocking a lock from being
set. This can be used as a simple test or as a means to find locks on a file. To
find this information, set up a lock as in the previous examples and use the
F_GETLK command in the fcntl() call. If the lock passed to fcntl() would be
blocked, the first blocking lock is returned to the process through the
structure passed to fcntl(). That is, the lock data passed to fcntl() is
overwritten by blocking lock information. This information includes two
pieces of data that have not been discussed yet, l_pidf and l_sysid, that are
only used by F_GETLK. (For systems that do not support a distributed
architecture the value in l_sysid should be ignored.) These fields uniquely
identify the process holding the lock.

If a lock passed to fcntl() using the F_GETLK command is not blocked by
another process’ lock, then the l_type field is changed to F_UNLCK and the
remaining fields in the structure are unaffected. Let us use this capability to
print all the segments locked by other processes. Note that if several read
locks occur over the same segment, only one of these is found.

106

Chapter 2: File and Record Locking

struct flock lck;

/* Find and print "write lock" blocked segments of file. */
(void) printf("sysid pid type start length\n");
lck.l_whence = 0;
lck.l_start = 0L;
lck.l_len = 0L;
do {
 lck.l_type = F_WRLCK;
 (void) fcntl(fd, F_GETLK, &lck);
 if (lck.l_type != F_UNLCK) {
 (void) printf("%5d %5d %c %8d %8d\n",
 lck.l_sysid,
 lck.l_pid,
 (lck.l_type == F_WRLCK) ? ‘W’ : ‘R’,
 lck.l_start,
 lck.l_len);
 /* if this lock goes to the end of the address
 * space, no need to look further, so break out.
 */
 if (lck.l_len == 0)
 break;
 /* otherwise, look for new lock after the one
 * just found.
 */
 lck.l_start += lck.l_len;
 }
} while (lck.l_type != F_UNLCK);

fcntl() with the F_GETLK command always returns correctly (that is, it will
not sleep or fail) if the values passed to it as arguments are valid.

The lockf() function with the F_TEST command can also be used to test if
there is a process blocking a lock. This function does not, however, return the
information about where the lock actually is and which process owns the
lock. Here is a routine using lockf() to test for a lock on a file:

/* find a blocked record. */

/* seek to beginning of file */
(void) lseek(fd, 0, 0L);
/* set the size of the test region to zero
 * to test until the end of the file address space.
 */
if (lockf(fd, F_TEST, 0L) < 0) {

File Protection

107

 switch (errno) {
 case EACCES:
 case EAGAIN:
 (void) printf("file is locked by another process\n");
 break;
 case EBADF:
 /* bad argument passed to lockf */
 perror("lockf");
 break;

 default:
 (void) printf("lockf: unknown error <%d>\n", errno);
 break;
 }
}

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for
each file. If the parent were to seek to a point in the file, the child’s file pointer
would also be at that location. This feature has important implications when
using record locking. The current value of the file pointer is used as the
reference for the offset of the beginning of the lock, as described by l_start,
when using an l_whence value of 1. If both the parent and child process set
locks on the same file, possibly a lock will be set using a file pointer that was
reset by the other process. This problem appears in the lockf() function call
as well and is a result of the /usr/group requirements for record locking.

 If forking is used in a record locking program, the child process should close
and reopen the file if either locking method is used. This results in the
creation of a new and separate file pointer that can be manipulated without
this problem occurring. Another solution is to use the fcntl() system call with
an l_whence value of 0 or 2. This makes the locking function atomic, so
processes sharing file pointers can lock without difficulty.

Deadlock Handling

A certain level of deadlock detection/avoidance is built into the record
locking facility. This deadlock handling provides the same level of
protection granted by the /usr/group standard lockf() call. This deadlock
detection is only valid for processes that are locking files or records on a
single system.

108

Chapter 2: File and Record Locking

Deadlocks can potentially occur only when the system is about to put a
record locking system call to sleep. A search is made for constraint loops of
processes that would cause the system call to sleep indefinitely. If such a
situation is found, the locking system call fails and sets errno to the deadlock
error number.

If a process wishes to avoid using the system’s deadlock detection, it should
set its locks using F_GETLK instead of F_GETLKW.

Selecting Advisory or Mandatory Locking

This section covers the following topics:

• “Mandatory Locking”

• “Record Locking Across Multiple Systems”

Mandatory locking is not recommended for reasons stated in the next
section, “Mandatory Locking.” Whether or not locks are enforced by I/O
system calls is determined at the time the calls are made, by the state of the
permissions on the file (see chmod(2)). For locks to be under mandatory
enforcement, the file must be a regular file with the set-group-ID bit on and
the group execute permission off. If either condition fails, all record locks are
advisory.

Mandatory enforcement can be assured by code like this:

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;
...
if (stat(filename, &buf) < 0) {
 perror("program");
 exit (2);
}
/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mode */
mode &= ~(S_IEXEC>>3);
/* set ‘set group id bit’ in mode */

Selecting Advisory or Mandatory Locking

109

mode |= S_ISGID;
if (chmod(filename, mode) < 0) {
 perror("program");
 exit(2);
}
...

Files that are to be record locked should never have any type of execute
permission set on them. This is because the operating system does not obey
the record locking protocol when executing a file.

Use the chmod(1) command to set a file to have mandatory locking. This can
be done with the command:

IRIS% chmod +l filename

The ls command shows this setting when you ask for the long listing format:

IRIS% ls -l filename
-rw---l--- 1 abc other 1048576 Dec 3 11:44 filename

Mandatory Locking

Some points to remember about mandatory locking:

• Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according
to normal UNIX system file permissions.

• If multiple reads or writes are necessary for an atomic transaction, the
process should explicitly lock all necessary pieces before any I/O
begins. Thus, advisory locking is sufficient for all programs that
perform in this way.

• As stated earlier, arbitrary programs should not have unrestricted
access permission to files that are important enough to record lock.

• Advisory locking is more efficient because a record lock check does not
have to be performed for every I/O request.

110

Chapter 2: File and Record Locking

Record Locking Across Multiple Systems

In a UNIX environment, the system on which the locking process resides
may be remote from the system on which the file and record locks reside. In
this way multiple processes on different systems may put locks upon a
single file that resides on one of them, or on yet another system. The record
locks for a file reside on the system that maintains the file. It is also important
to note that deadlock detection and avoidance is only determined by the
record locks being held by and for a single system. Therefore, it is necessary
that a process hold record locks on only a single system at any given time for
the deadlock mechanism to be effective.

If a process needs to maintain locks over several systems, it is suggested that
the process avoid the sleep-when-blocked features of fcntl() or lockf() and
that the process maintain its own deadlock detection. If the process uses the
sleep-when-blocked feature, then a timeout mechanism should be provided
by the process so that it does not hang waiting for a lock to be cleared.

Conclusion

Record locking has been added to UNIX System V to ease the development
of small to mid-range database systems. The implementation is compatible
with the published standards of /usr/group to this date. Minor differences in
operation may exist; they were made for correctness, or to include things not
covered by the published standards.

This chapter describes how install,
add, and use fonts on Silicon
Graphics Computer systems.

Working With Fonts

Chapter 3

113

Chapter 3

3. Working With Fonts

This chapter describes how to work with fonts on Silicon Graphics
computers. It begins with an introduction to fonts and digital typography.
Then it explains which fonts are available and how to install additional
fonts. It also covers how to download outline fonts in the Type 1 format to a
PostScript printer.

This chapter contains these sections:

• “Font Basics” defines fonts and provides some general background
information.

• “Using Fonts with the X Window System” discusses some of the X
Window System’s most useful font utilities.

• “Installing and Adding Font and Font Metric Files” explains how to
install and add font files and font metric files for system-wide use.

• “Downloading a Type 1 Font to a PostScript Printer” explains how to
download a Type 1 font to a PostScript® printer.

Font Basics

Fonts are collections of characters. A font contains the information about the
shape, size, and position of each character in a character set. That
information is needed by those programs which process characters, such as
editing, word-processing, desktop-publishing, multimedia, titling, and
pre-press application programs. Almost all software components in a
computer system use fonts to display messages, prompts, titles, and so forth.

Computers from Silicon Graphics are called digital computers, because
discrete voltage levels are used to represent the binary digits 0 and 1. Binary
digits are used to represent all other information stored in a digital
computer, including fonts. Digital typography deals with the style,

114

Chapter 3: Working With Fonts

arrangement, and appearance of typeset matter in digital systems. If you
want to use font and font metric files to correctly typeset text on a digital
computer, you need to know some basics about digital typography. This
section contains a brief introduction to fonts and digital typography. You
may want to read a book on typography for more in-depth information.

This section covers the following topics:

• “Terminology” introduces a few basic terms.

• “How Resolution Affects Font Size” describes horizontal and vertical
resolution, pixels, and bitmap fonts.

• “Font Names” explains the 14-part font name.

• “Writing Programs That Need to Use Fonts” covers X programs, DPS
programs, and IRIS GL and IRIS GL/X programs.

Terminology

Before discussing how to use fonts, consider these few terms.

Typography Typography is the art and technique of working with type.
In traditional typography, the term type refers to a piece of
wood or metal with a raised image of a character or
characters on its upper face. Such pieces of wood or metal
are assembled into lines and pages which are printed by a
letterpress process. What typographers do with type is
called typesetting or composition. Type can also refer to the
images produced by using such pieces of wood or metal.

Traditional typesetting is seldom used today. In modern
typography, the term type usually refers to the images
produced on typesetting or composition systems, which do
not use wooden or metal type, such as photo and digital
composition systems. The typography on a digital system,
such as a digital computer, is called digital typography.

Digital typography is based on a hierarchy of objects called
characters, fonts, and font families or typefaces. Numeric
values or measurements related to those objects can be
divided into character metrics, font metrics, and font
family or typeface metrics. Sometimes all information

Font Basics

115

about a font family or typeface is stored in a set of font files,
but sometimes metric information for a set of font files is
stored in a separate file called the font metric file.

Characters A character is a graphical or mathematical representation of
a glyph. Letters, digits, punctuation marks, mathematical
symbols, and cursors are examples of glyphs.In a bitmap
font, the shape of a character is usually represented by a
rectangular bitmap. In an outline font, the shape of a
character is usually represented by a mathematical
description of its outline.

Fonts A font is a set of characters. A distinction exists between a
base and composite font. A base font is a set of characters of
the same size and style. A composite font is composed of base
fonts with various attributes. Characters in a base font
usually match each other in size, style, weight, and slant
because their shape, size, position, and spacing have been
carefully designed by a skilled font designer.

Font Family or Typeface
A professional font designer usually creates an entire font
family or typeface, rather than a single font. A base font
family or typeface is a set of base fonts with the same style
or design. A composite font family or typeface is composed
of base font families or typefaces. A base font family or
typeface can consist of bitmap fonts in certain sizes, a
scalable font that can be used to produce bitmap fonts in
different sizes, or both.

How Resolution Affects Font Size

The images on some output devices, such as laser printers and some types
of video monitors, are created by drawing small dots or pixels (picture
elements). The number of dots or pixels that can be drawn per unit of length
in a horizontal direction is called the horizontal resolution, while the number
of dots or pixels that can be drawn per unit of length in a vertical direction
is called the vertical resolution. The most commonly used unit of measure for
resolution is the number of dots per inch (dpi). The size of each dot or pixel
decreases as the resolution of the output device increases and vice versa;
therefore, dots and pixels are device-dependent units of measure.

116

Chapter 3: Working With Fonts

To display the resolution of your video monitor, enter this command:

xdpyinfo | grep resol

You should get a response similar to this:

resolution: 96x96 dots per inch

If you draw all of the characters in a font in the same place (without
advancing), you will get a composite image of those characters. If you then
draw smallest rectangle that encloses that image, you will get the bounding
box for that font. The size of a font is usually measured in the vertical
direction. That size is usually not smaller than the height of a font bounding
box, but it can be greater than that height. It may include additional vertical
spacing that is considered part of the font design.

Typographers use small units of measure called points to specify font size. A
point is approximately equal to 1/72 of an inch. The exact value is 1/72.27
(0.013837) of an inch or 0.351 mm.

A point is a device-independent unit of measure. Its size does not depend on
the resolution of an output device. A 12-point font should have
approximately the same size on different output devices, regardless of the
resolution of those devices.

If the resolution of an output device is equal to 72 dots per inch (dpi), the size
of a dot or pixel is approximately equal to the size of a point. If the resolution
of an output device is greater than 72 dpi, the size of a dot or pixel is smaller
than the size of a point, and vice versa. You can use the following formula to
calculate a pixel size from a point size:

pixel-size = point-size x device-resolution / 72.27

A bitmap font is usually designed for a particular resolution. That font has
the point size specified by its designer only when it is used on an output
device whose resolution matches the resolution for which that font was
designed. This is because a font designer specifies a fixed bitmap for each
character. If a pixel is smaller than a point, characters will be smaller than
intended, and vice versa.

Font Basics

117

Font Names

When a font is designed, it is assigned a name such as Courier Oblique. This
font belongs to a font family called Courier, which includes:

• Courier

• Courier Bold

• Courier Bold Oblique

• Courier Oblique

The size of a font is usually not specified for scalable fonts, because they can
be scaled to any specified size. Bitmap fonts are usually designed in specific
sizes. They are referred to by names such as 12-point Courier or 10-pixel
Courier Bold.

When the PostScript page description software language was developed by
Adobe Systems, the spaces embedded in font names were replaced with
dashes. PostScript font names look like this:

Courier
Courier-Bold
Courier-BoldOblique

The X Consortium specified 14-part font names for the X Window System.

Figure 3-1 shows an example 14-part name for a bitmap font, with each part
labeled. In this Point sizes in X font names are specified in decipoints (tenths
of a point).

Figure 3-1 X Window System Font Name

For a detailed description of X font names, see the recommended X Window
System documentation.

118

Chapter 3: Working With Fonts

Writing Programs That Need to Use Fonts

You can write different types of programs for Silicon Graphics computers,
for example, X, Display PostScript (DPS), IRIS GL, OpenGL, and
mixed-model programs. Some of your programs need fonts.

How a program accesses font files depends on the program type:

• X programs access fonts by calling X font functions, such as XListFonts()
and XLoadFont().

• DPS programs access fonts by calling X and DPS functions, or by using
PostScript.

• IRIS GL and IRIS GL/X mixed-model programs usually access fonts by
calling font management (fm) functions from the IRIS GL Font Manager
library (fmenumerate() and fmfindfont() for example).

Most fonts are installed when you install the X Window System (X11
Execution Environment). Some fonts are installed with other software
components, such as DPS, Impressario™ and IRIS Showcase™. Japanese
fonts are installed when you install the Japanese Language System.
However, most fonts are shared by the X Window System, DPS (which is an
extension of the X Window System), IRIS GL Font Manager, and other
software components.

To maintain compatibility and portability, it is best not to access font files
directly from an application program because font formats, font names, font
contents, and the location of font directories may change. Your program
should use the Application Programming Interfaces (APIs) specified for the
X Window System, DPS, and IRIS GL Font Manager, or call even higher level
functions for the 2D and 3D text available from toolkits such as Inventor™
and Performer.

Using Fonts with the X Window System

119

Using Fonts with the X Window System

This section describes how to use fonts with the X Window System. The X
Window System has several font utilities. This section covers a few of the
most useful utilities and includes:

• “Getting a List of Font Names and Font Aliases”explains using the
xlsfonts command.

• “Viewing Fonts” describes the xfd command.

• “Getting the Current X Font Path” covers the xset command.

• “Changing the X Font Path” explains the xset fp command.

For a complete description of the utilities, refer to your X Window System
documentation.

Getting a List of Font Names and Font Aliases

To find out which font names and font aliases are known to the X Window
System, enter this command:

xlsfonts > /tmp/fontlist

The resulting file, fontlist, contains entries such as:

-adobe-courier-bold-o-normal--0-0-0-0-m-0-iso8859-1
-adobe-courier-bold-o-normal--14-100-100-100-m-90-iso8859-1
-sgi-screen-medium-r-normal--14-140-72-72-m-70-iso8859-1
screen14

The first entry is an example of a 14-part X name for an outline (scalable)
font. Numeric parts of font names are set to zero for outline fonts, because
those fonts can be scaled to various sizes. The second and third entries are
examples of 14-part X font names for bitmap fonts, while the last entry is an
alias for the third entry. An X or DPS program can get a list of available fonts
by calling XListFonts() or the function XListFontsWithInfo().

120

Chapter 3: Working With Fonts

Viewing Fonts

To see what a particular font looks like, use the command xfd, and specify a
font name or font alias from the file fontlist by using the option -fn. For
example, to display the 14-point Adobe Courier Bold font, enter:

xfd -fn -adobe-courier-bold-r-normal--14-140-75-75-m-90-iso8859-1

To request a Utopia Regular font scaled to the size of 28 points, enter:

xfd -fn -adobe-utopia-medium-r-normal--0-280-0-0-p-0-iso8859-1

You can use wild cards (*) to indicate that any value is acceptable for parts of
an X font name. For example, enter:

xfd -fn "-*-courier-bold-r-normal--14-140-75-75-m-90-iso8859-1"

to indicate that xfd can use a Courier Bold font from any foundry. Enclose
the X font name on a command line in single or double quotes when that
name contains wild cards or embedded space characters.

The xfd command displays all characters in the specified font, as shown in
Figure 3-2.

Using Fonts with the X Window System

121

Figure 3-2 Sample Display from xfd

To open a shell window that uses a certain font, enter:

xwsh -fn font-name

122

Chapter 3: Working With Fonts

Getting the Current X Font Path

To display the current X font path, enter this command:

xset q

In addition to other information, the xset utility displays font path
information that may look like this:

Font Path:

/usr/lib/X11/fonts/100dpi/,/usr/lib/X11/fonts/75dpi/,
/usr/lib/X11/fonts/misc/,/usr/lib/X11/fonts/Type1/,
/usr/lib/X11/fonts/Speedo

The X Window System checks the resolution of your video monitor. If that
resolution is closer to 75 dpi than 100 dpi, it puts the directory 75dpi ahead
of the directory 100dpi in the X font path.

Changing the X Font Path

You can change the default X font path by using the option fp on an xset
command line. For example, enter:

xset fp= newpath

This command changes the X font path to the new font path (newpath).

Installing and Adding Font and Font Metric Files

This section explains where the various types of font and font metric files are
installed by default, and how you can add one of your font or font metric
files to the IRIX operating system.

This section describes the following topics:

• “Installing Font and Font Metric Files” covers getting and changing the
current X font path.

• “Adding Font and Font Metric Files” details adding a bitmap and
outline font, and adding a font metric file.

Installing and Adding Font and Font Metric Files

123

Installing Font and Font Metric Files

By default, bitmap font files are installed in these directories:
/usr/lib/X11/fonts/100dpi, /usr/lib/X11/fonts/75dpi, and /usr/lib/X11/fonts/misc.
The 100dpi directory contains bitmap fonts designed for the screen
resolution of 100 dpi. The 75dpi directory contains bitmap fonts designed for
the screen resolution of 75 dpi. The misc directory contains miscellaneous
other fonts.

By default, outline font files in the Type 1 format are installed in the directory
/usr/lib/DPS/outline/base.

By default, font files in the directories listed above are used by the X Window
System, DPS, IRIS GL Font Manager, and other software components.

The X Window System accesses Type 1 font files with symbolic links in the
directory /usr/lib/X11/fonts/Type1.

By default, outline font files in the Speedo™ format are installed in the
directory /usr/lib/X11/fonts/Speedo. Font files in this directory are currently
used only by the X Window System.

By default, Adobe Font Metric (AFM) files are installed in the directory
/usr/lib/DPS/AFM.

There is one font metric file per typeface. Font metric files are primarily used
by text-processing and desktop-publishing programs to, for example,
generate PostScript code for a specified document.

Adding Font and Font Metric Files

When you purchase fonts or obtain a font that is in the public domain, you
may need to add that font to your system or printer in order to use it. Adobe
Systems donated bitmap, outline, and font metric files for the Utopia font
family to the X Consortium. This section shows how the font and font metric
files for Utopia Regular were added to the IRIX operating system. Other font
and font metric files can be added in a similar way.

You must log in as root to make any changes to X font directories. Before you
make any changes to any IRIX directory, you should make a copy of its

124

Chapter 3: Working With Fonts

contents so that you can restore that directory if anything goes wrong. For
example, your font files may not be in the right format, and they may
interfere with the access of Silicon Graphics font files. You should keep a log
of the changes you make, and mention those changes when you report a
problem with font files to Silicon Graphics; otherwise, it may be very
difficult or impossible for other people to reproduce any problems that you
might report.

Adding a Bitmap Font

As an example, we show how Utopia Regular bitmap fonts were added to
IRIX. Other fonts can be added in a similar way.

To add the Utopia bitmap fonts to the X Window System, Display PostScript,
and IRIS GL Font Manager, follow the steps below.

1. Log in as root.

2. Look at the names of existing bitmap font files and try to match these
names when you specify new font names. For example, Adobe
provided two sets of Utopia Regular bitmap font files that were
designed for the resolutions of 100 and 75 dpi. These files were in the
extended Bitmap BDF 2.1 format.

The names of the bitmap files were:

UTRG_10.bdf through UTRG_24.bdf

When these fonts were added to IRIX, the names were changed to:

utopiaR10.bdf through utopiaR24.bdf

to match the names of other X bitmap font files.

3. Convert the BDF font files to Portable Compiled Format (PCF) font
files.

BDF font files are text (ASCII) files. You can think of them as source font
files. You could put BDF font files into an X font directory, but people
usually use binary font formats such as the PCF (.pcf) or compressed
PCF format (.pcf.Z), so you should covert new fonts to one of these
formats.

To convert a BDF font file to a PCF font file, enter a command such as:

bdftopcf -o file-name.pcf file-name.bdf

Installing and Adding Font and Font Metric Files

125

Note: If you have used the bdftopcf command before, you may not have
specified the name of the output file, but the command now requires that
you enter the name of the output file.

You can compress a PCF file by entering a command such as:

compress file-name.pcf

That should give you a file called:

file-name.pcf.Z

Most bitmap font files shipped by Silicon Graphics are in the
compressed PCF format to save on disk space.

4. Put the bitmap font files for 100 dpi in the directory:
/usr/lib/X11/fonts/100dpi.

You can tell the resolution for which a font was designed by the name
of the directory in which the font designer stored the font files, or by the
information in the header of a bitmap font file. In a BDF 2.1 font file, the
horizontal (x) and vertical (y) resolution are specified in the X font
name. They are also specified after the point size as the second and
third numeric values in a SIZE entry. For example, the entry:

SIZE 8 100 100

indicates an 8-point font that was designed for the horizontal and
vertical resolution of 100 dpi.

For example, when 100-dpi Utopia Regular bitmap font files were
added to IRIX, they were moved to the directory
/usr/lib/X11/fonts/100dpi.

5. Similarly, put the bitmap font files for 75 dpi in the directory
/usr/lib/X11/fonts/75dpi, and put other bitmap fonts into the directory
/usr/lib/X11/fonts/misc.

For example, when 75-dpi Utopia Regular bitmap font files were added
to IRIX, they were placed in the directory /usr/lib/X11/fonts/75dpi.

6. For most font families shipped by Silicon Graphics, there is one entry
per font family in the file:

/usr/lib/X11/fonts/ps2xlfd_map

126

Chapter 3: Working With Fonts

The same entry is used for both bitmap and outline fonts. A typical
entry in this file looks like this:

Utopia-Regular -adobe-utopia-medium-r-normal--0-0-0-0-p-0-iso8859-1

For each Japanese font family shipped by Silicon Graphics, there is an
entry in the file:

/usr/lib/X11/fonts/ps2xlfd_map.japanese

The entries are used by the IRIS Font Manager to map PostScript and
other short font names to corresponding X font names. The IRIS Font
Manager does not use any bitmap fonts that do not have an entry in
those files.

If you add your own (local) bitmap or outline fonts, you should put an
entry for each font family in a file called:

/usr/lib/X11/fonts/ps2xlfd_map.local

If that file does not exist, log in as root, and create it. That way your
entries will not disappear when you upgrade the system software on
your machine.

7. Enter the command:

mkfontdir

to create a new fonts.dir (fonts directory) file in that directory. For
example, when Utopia Regular fonts were added to the directories
100dpi and 75dpi, the command mkfontdir was executed in both of
those directories.

8. Enter:

xset fp rehash

to tell the X Window System that it should check again which fonts are
available.

9. To check whether the fonts you added are known to the X Window
System, enter:

xlsfonts > /tmp/fontlist

The names of the fonts you added should appear on the list of font
names and aliases produced by xlsfonts.

Installing and Adding Font and Font Metric Files

127

Bitmap fonts should now be added to the X Window System and the IRIS GL
Font Manager. Since DPS needs both outline and bitmap fonts for each
supported typeface, it first checks which outline fonts are stored in the
directory /usr/lib/DPS/outline/base. Then it looks for the corresponding
bitmap fonts in other X font directories. It ignores all other bitmap fonts.
Therefore, DPS ignores the bitmap fonts you added, until you add the
corresponding outline fonts.

Make sure that there is no overlap between your entries and the entries in
other ps2xlfd_map* files.

If you do not want to use long X font names, you can specify short aliases for
those names. Silicon Graphics software engineers use a file called fonts.alias
to specify aliases for their fonts. There may be a fonts.alias file in an X font
directory. For example, see the file fonts.alias in the directory:

/usr/lib/X11/fonts/100dpi

A typical font alias looks like this:

fixed -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1

If you want to specify your own (local) font aliases in a font directory, you
should specify them in a file called fonts.alias.local in that directory. If that file
does not exist, log in as root, and create it. That way your entries will not
disappear when you upgrade the system software on your
machine.

Adding a Font Metric File

AFM files are primarily used by application programs—for example, to
generate PostScript code for a specified document. Follow these steps to add
a font metric file, follow the steps below.

1. Log in as root.

2. Put Adobe Font Metric files in the directory /usr/lib/DPS/AFM.

For example, Adobe provided the Utopia Regular font metric file
UTRG____.AFM.

128

Chapter 3: Working With Fonts

The name of an AFM file should also match the PostScript font name.
When this font was added to IRIX, the name of the file UTRG____.AFM
was changed to Utopia-Regular, and it was put in the directory
/usr/lib/DPS/AFM.

Adding an Outline Font

To add the Utopia Regular outline font to the X Window System, Display
PostScript, and the IRIS GL Font Manager, follow the steps below.

1. Log in as root.

2. Look at the names of existing outline font files in the directory
/usr/lib/DPS/outline/base. Display PostScript requires that the name of
each outline font file match the PostScript font name specified in the
/FontName entry in the header of that outline font file. For example, if
you enter:

grep /FontName Courier-Bold

in the directory /usr/lib/DPS/outline/base, you get:

/FontName /Courier-Bold def

You should put only Adobe text (ASCII) Type 1 font files or compatibles
into that directory, not binary Type 1 font files or Type 3 font files.
Display PostScript can handle Type 3 font files, but the X Window
System and IRIS GL Font Manager cannot. You should put into that
directory only those outline font files that look like the font files that are
already in that directory.

If you have a binary Type 1 font file (a .pfb file), you must convert it into
a text (ASCII) Type 1 font file before you can use it on a Silicon Graphics
system. To convert .pfb files to .pfa files, you can use the program pfb2pfa
from the subsystem print.sw.desktop (shipped with IRIX operating
system version 5.3 and higher).

For example, Adobe provided the Utopia Regular outline font file
UTRG____.pfa, which is an outline font file in the Type 1 format, a
special PostScript program that specifies a scalable outline font.

To find the PostScript font name for this font, enter:

grep /FontName UTRG____.pfa

Installing and Adding Font and Font Metric Files

129

You should get the response:

/FontName Utopia-Regular def

This response tells you that the PostScript font name for this font is
Utopia-Regular.

When this font was added to IRIX, the name of the file UTRG____.pfa
was changed to Utopia-Regular.

3. Put the file Utopia-Regular in the directory /usr/lib/DPS/outline/base,
because that outline font is in the Type 1 format. If you have an outline
font in the Speedo format, put it in the directory:

/usr/lib/X11/fonts/Speedo

4. To add the Utopia Regular font and font metric files to Display
PostScript, enter:

/usr/bin/X11/makepsres -o /usr/lib/DPS/DPSFonts.upr
/usr/lib/DPS/outline/base /usr/lib/DPS/AFM

You should now be able to access the font file you added via Display
PostScript.

5. For most font families shipped by Silicon Graphics, there is one entry
per font family in the file:

/usr/lib/X11/fonts/ps2xlfd_map

as described in “Adding a Bitmap Font.” The same entry is used for
both bitmap and outline fonts.

If you add your own (local) bitmap or outline fonts, you should put an
entry for each font family in the file called:

/usr/lib/X11/fonts/ps2xlfd_map.local

You can use entries in the file ps2xlfd_map as templates for entries in the
file ps2xlfd_map.local.

If the file ps2xlfd_map.local does not exist, log in as root, and create it.

You should now be able to access the font you added via the IRIS GL
Font Manager.

130

Chapter 3: Working With Fonts

6. Display PostScript is an extension of the X Window System. To add an
outline font in the Type 1 format to the rest of the X Window System, in
any directory, enter the commands:

type1xfonts
xset fp rehash

This recreates symbolic links in the directory /usr/lib/X11/fonts/Type1
that point to outline font files in the directory /usr/lib/DPS/outline/base,
and instructs the X Window System to check which fonts are available.

7. To check whether the outline fonts you added are known to the X
Window System, enter:

xlsfonts > /tmp/fontlist

The entries for the outline fonts you added should appear on the list of
font names and aliases produced by xlsfonts.

Downloading a Type 1 Font to a PostScript Printer

Some outline fonts are usually built into a PostScript printer. You can find
out which fonts are known to the PostScript interpreter in your printer by
sending the following file to that printer:

%!
% Produce a list of available fonts
/f 100 string def
/Times-Roman findfont 12 scalefont setfont
/y 700 def
72 y moveto
FontDirectory {

pop f cvs show 72 /y y 13 sub def y moveto
} forall
showpage

Utopia fonts are not usually built into PS printers. If you try to print a
document that requires a Utopia font on a PS printer that does not have that
font, a warning message about the replacement of a missing font with a
Courier font is sent to the file /usr/spool/lp/log on the machine to which that
PS printer is attached.

Downloading a Type 1 Font to a PostScript Printer

131

You can download a Type 1 font to a PS printer in either of the following two
ways:

• You can insert a Type 1 font file at the beginning of the PostScript file
that needs that font. You should have a statement that starts with:

%!

Put this statement at the beginning of your PS file. If you have two such
lines, delete the second one.

When you download a font this way, the font is available only while
your print job is being processed.

• You can make a copy of a Type 1 font file, and then insert the statement:

serverdict begin 0 exitserver

after the first group of comment statements (lines that start with %) if
no password has been specified for your printer; otherwise, you should
replace 0 in the above statement with the password for your printer.
Then you should send the edited file to your printer.

When you download a font this way, the warning message:

%%[exitserver: permanent state may be changed]%%

is sent to the file /usr/spool/lp/log on the machine to which the printer is
attached.

The permanent state of the printer is not really changed. Downloaded
fonts disappear when you reset the printer by switching its power off
and on. If there is not enough memory for additional fonts, you receive
a message about a Virtual Memory (VM) error, and the font is not
downloaded.

If you again send the program that produces a list of available fonts to
your printer, you should see the PostScript names of the fonts you
downloaded on that list.

This chapter explains how to create
an application that can be adapted
for use in different countries.

Internationalizing Your Application

Chapter 4

135

Chapter 4

4. Internationalizing Your Application

Internationalization is the process of generalizing an application so that it
can easily be customized—or localized—to run in more than one language
environment. You can provide internationalized software to produce output
in a user’s native language, format data (such as currency values and dates)
according to local standards, and tailor software to a specific culture.

This chapter describes how to create such an application. It contains the
following major sections:

• “Overview” presents an introduction to internationalization and
defines some common terms.

• “Additional Reading on Internationalization” describes how to use
existing locales or define new ones to choose the environment
(language, cultural, character set, etc.) in which an application runs.

• “Character Sets, Codesets, and Encodings” describes various ways of
encoding characters, the traditional ASCII being just one of these.

• “Cultural Items” discusses the ways in which different cultures affect
the way a string can be viewed, for example in outputting or collating.

• “Strings and Message Catalogs”describes how to create and use
catalogs of messages to send diagnostic information to users in various
locales.

• “Internationalization Support in X11R6” describes internationalization
support provided by X11, Release 6 (X11R6) (including features from
X11R5).

• “User Input” discusses the translation of keyboard event into
programmatic character strings for a variety of keyboards.

• “GUI Concerns” discusses internationalizing applications that use
Graphical User Interfaces (GUIs)

• “Popular Encodings” presents some common non-ASCII encodings.

136

Chapter 4: Internationalizing Your Application

For a list of ISO 3166 country names and abbreviations, see Appendix A,
“ISO 3166 Country Names and Abbreviations.” You can find detailed
information about fonts in Chapter 3, “Working With Fonts.” Also, you can
find additional information about internationalizing an application in the
Indigo Magic Desktop Integration Guide.

Overview

Internationalized software can be made to produce output in a user’s native
language, to format data (such as dates and currency values) according to
the user’s local customs, and to otherwise make the software easier to use for
users from a culture other than that of the original software developer. As
computers become more widely used in non-American cultures, it becomes
increasingly more important that developers stop relying on the conventions
of American programming and the English language in their programs; this
chapter provides information on how to make your applications more
widely accessible.

This section presents the following topics:

• “Some Definitions” covers locales, internationalization, localization,
nationalized software, and multilingual software.

• “Areas of Concern in Internationalizing Software” points out a few
concerns to watch for when internationalizing your software.

• “Standards” covers standard-compliant features.

• “Internationalizing Your Application: The Basic Steps” lists the
procedure to used when internationalizing an icon.

• “Additional Reading on Internationalization” provides references you
can consult for additional information about internationalization.

Overview

137

Some Definitions

This section defines some of the terms used in this chapter.

Locale

Locale refers to a set of local customs that determine many aspects of
software input and output formatting, including natural language, culture,
character sets and encodings, and formatting and sorting rules. The locale of
a program is the set of such environmental parameters that are currently
selected. For information on the method for selecting locales, see
“Additional Reading on Internationalization,” below.

Internationalization (I18n)

Internationalization is the process of making a program capable of running in
multiple locales without recompiling. To put it another way, an
internationalized program is one that can be easily localized without
changing the program itself. (See “Localization (L10n),” below, for an
explanation of the term “localization.”)

Note: The word “internationalization” consists of an ‘i’ followed by 18
letters followed by an ‘n.’ It is thus commonly abbreviated “i18n.” “I18n” is
pronounced “internationalization,” not “eye-eighteen-enn.”

A program written for a specific locale may be difficult to run in a different
environment. Rewriting such a program to operate in each desired
environment would be tedious and costly.

Your goal as a developer should thus be to write locale-independent programs,
programs that make no assumptions about languages, local customs, or
coded character sets. Such internationalized applications can run in a user’s
native environment following native conventions with native messages,
without recompiling or relinking. A single copy of an internationalized
program can be used by a world of different users.

Localization (L10n)

Localization is the act of providing an internationalized application with the
environment and data it needs to operate in a particular locale. For example,

138

Chapter 4: Internationalizing Your Application

adding German system messages to IRIX is a part of localizing IRIX for the
German locale.

Note: Localization is often abbreviated “l10n.”

Nationalized Software

Nationalized programs run in only one language and are governed by one set
of customs; in other words, in a nationalized program the locale is built into
the application. Even if the application doesn’t use ASCII or English, as long
as it is a single-language program it is nationalized, not internationalized.
Most older UNIX programs can be thought of as being nationalized for the
United States.

Consider two applications, hello and bonjour. The application hello always
produces the output

Hello, world.

and bonjour always produces

Bon jour, tout le monde.

Neither hello nor bonjour are internationalized; they are both nationalized.

There are no special requirements for writing or porting nationalized
applications, whether they are text or graphics programs. Terminal-based
programs work on suitable terminals, including internationalized terminal
emulators. “Suitable” means that the terminal supports any necessary fonts
and understands the encoding of the application output. Graphics programs
simply do as they have always done. Applications using existing interfaces
to operate in non-English or non-ASCII environments should continue to
compile and run under an internationalized operating system.

Multilingual Software

A multilingual program is one that uses several different locales at the same
time. Examples are described in “Multilingual Support” on page 147.

Overview

139

Areas of Concern in Internationalizing Software

Few developers will have to pay attention to more than a few items
described in this section. Most will need to catalog their strings. Some will
need to use library routines for character sorting or locale-dependent date,
time, or number formatting. A few whose applications use the eighth bit of
8-bit characters inappropriately will need to stop doing so. The few
applications that do arithmetic to manipulate characters will need to be
cleaned up. Some GUI designers will have to spend just a little more time
thinking. But for the large majority of developers, there isn’t much to do.

The information presented in the following sections addresses
internationalization issues pertinent to a developer; some sections, however,
may not be applicable to your applications.

Standards

IRIX internationalization includes these standards-compliant features,
among others:

• ANSI C and POSIX (ISO 9945-1): Locale

• X/OPEN Portability Guide, Issue 3 (XPG/3): XPG/3 message catalogs,
interpretation of locale strings

• AT&T UNIX™ System V Release 4: Multi-National Language Support
(MNLS) message catalogs

• X11R5 and X11R6: Input methods, text rendering, resource files

Internationalizing Your Application: The Basic Steps

To internationalize your icon, follow these steps:

1. Call setlocale() as soon as possible to put the process into the desired
locale. See “Setting the Current Locale” on page 142 for instructions.

2. Make your application 8-bit clean. (An application is 8-bit clean if it
does not use the high bit of any data byte to convey special
information.) See “Eight-Bit Cleanliness” on page 149 for instructions.

140

Chapter 4: Internationalizing Your Application

3. If you’re writing a multilingual application, you must do one of two
things. Either

• fork, and then call setlocale() differently in each process

or

• call setlocale() repeatedly as necessary to change from language to
language

See “Multilingual Support” on page 147 for more information.

4. Use WC or MB characters and strings to allow for more than one byte
per character (this is needed for Asian languages, which often require
two or even four bytes per character). See “Character Representation”
on page 151 for more information.

5. Do not rely on ASCII and English sorting rules. Locale-specific collation
should be performed with strcoll() and strxfm(). (These are
table-driven functions; the tables are supplied as part of locale
support.). See “Collating Strings” on page 156 for more information.

6. Use the localeconv() function to find out about numeric formatting
data. (Format of simple numbers differs from locale to locale.) See
“Specifying Numbers and Money” on page 158 for more information.

7. Use strftime() to format dates and times (strftime() gives a host of
options for displaying locale-specific dates and times.) See “Formatting
Dates and Times” on page 159 for more information.

8. Avoid arithmetic on character values. Use the macros in ctype.h macros
to determine various kinds of information about a given character.
(These macros are table-driven and are therefore locale-sensitive.) If
you prefer, you can use the functions that correspond to these macros
instead. “Character Classification and ctype” on page 160 provides
more detailed information on these macros and functions.

9. If you do your own regular expression parsing and matching, use the
XPG/3 extensions to traditional regular expression syntax for
internationalized software. See “Regular Expressions” on page 161 for
more information.

10. Where possible, use the XPG/3, rather than the MNLS interface in
order to maximize portability. See “Strings and Message Catalogs” on
page 161 for more information.

Overview

141

11. Provide a catalog for the your locale. See “SVR4 MNLS Message
Catalogs” on page 166 for more information.

12. Internationalize FTR strings. See “Internationalizing File Typing Rule
Strings” on page 169 for more information.

13. Use message catalogs for printf() format strings that take linguistic
parameters, and allow localizers to localize the format strings as well as
text strings. See “Variably Ordered Referencing of printf() Arguments”
on page 171 for more information.

14. If you’re using Xlib, initialize Xlib’s internationalization state after
calling setlocale(). See “Initialization for Xlib Programming” on
page 175 for more information.

15. Specify a default fontset suitable for the default locale. Make sure that
the application accepts localized fontset specifications via resources (or
message catalogs) or command line options. See “Fontsets” on page 176
for more information.

16. Use X11R5 and X11R6 text rendering routines that understand
multibyte and wide character strings, not the X11R4 text rendering
routines XDrawText(), XDrawString(), and XDrawImageString(). See
“Text Rendering Routines” on page 178 for more information.

17. Use X11R5 and X11R6 MB and WC versions of width and extents
interrogation routines. See “New Text Extents Functions” on page 178
for more information.

18. If you are writing a toolkit text object, or if you can’t use a toolkit to
manage event processing for you, then you have to deal with input
methods. Follow the instructions in “User Input” on page 180.

19. Use resources to label any object that employs some sort of text label.
Your application’s app-defaults file should specify every reasonable
string resource. See “X Resources for Strings” on page 196 for more
information.

20. Use dynamic layout objects that calculate layout depending on the
natural (localized) size of the objects involved. Some IRIS IM widgets
providing these services are XmForm, XmPanedWindow, and
XmRowColumn. See “Dynamic Layout” on page 198 for more
information. If you can’t use dynamic layout objects, refer to “Layout”
on page 197 for instructions.

142

Chapter 4: Internationalizing Your Application

21. Make sure that all icons and other pictographic representations used by
your application are localizable. See “Icons” on page 199 for more
information.

Additional Reading on Internationalization

For more information on internationalization, refer to:

• O’Reilly Volume 1, Xlib Programming Manual

• X Window System, by Robert Scheifler and Jim Gettys.

• X/Open Portability Guide

• OSF/Motif Style Guide

Locales

An internationalized system is capable of presenting and receiving data
understandably in a number of different formats, cultures, languages and
character sets. An application running in an internationalized system must
indicate how it wants the system to behave. IRIX uses the concept of a locale
to convey that information.

A process can have only one locale at a time. Most internationalization
interfaces rely on the locale of the current process being set properly; the
locale governs the behavior of certain library routines.

This section covers the following topics:

• “Setting the Current Locale” explains categories, locales, strings,
location of locale-specific data, and locale naming conventions.

• “Limitations of the Locale System” describes multilingual support,
misuses of locales, and encoding.

Setting the Current Locale

Applications begin in the C locale. (C is the name used to indicate the system
default locale; it usually corresponds to American English.) Applications

Locales

143

should therefore call setlocale() as soon as possible to put the process into the
desired locale. The syntax for setlocale() is:

#include <locale.h>
char *setlocale(int category, const char *locale);

The call almost always looks either like this:

if (setlocale(LC_ALL, "") == NULL)
 exit_with_error();

or like this:

if (setlocale(LC_ALL, "") == NULL)

 setlocale(LC_ALL, "C");

Details of the two parameters are given in the next two sections.

Category

Applications need not perform every aspect of their work in the same locale.
Although this approach is not recommended, an application could (for
example) perform most of its activities in the English locale but use French
sorting rules. You can use locale categories to do this kind of locale-mixing.
(Mixing locale categories is not the same as multilingual support—see
“Multilingual Support.”)

The category argument is a symbolic constant that tells setlocale() which items
in a locale to change. Table 4-1 lists the available category choices.

Table 4-1 Locale Categories

Category Affects

LC_ALL All categories below

LC_COLLATE Regular expressions, strcoll(), and
strxfrm()

LC_CTYPE Regular expressions and ctype routines
(such as islower())

LC_MESSAGESa gettxt(), pfmt(), and nl_langinfo()

144

Chapter 4: Internationalizing Your Application

Categories correspond to databases that contain relevant information for
each defined locale. The locations of these databases are given in the
“Location of Locale-Specific Data” on page 146.

Locale

The setlocale() function attempts to set the locale of the specified category to
the specified locale. You should almost always pass the empty string as the
locale parameter to conform to user preferences.

On success, setlocale() returns the new value of the category. If setlocale()
couldn’t set the category to the value requested, it returns NULL and does
not change locale.

The Empty String

An empty string passed as the locale parameter is special. It specifies that the
locale should be chosen based on environment variables. This is the way a
user specifies a preferred locale, and that preference should almost always
be honored. The variables are checked hierarchically, depending on
category, as shown in Table 4-2; for instance, if the category is
LC_COLLATE, an empty-string locale parameter indicates that the locale
should be chosen based on the value of the environment variable
LC_COLLATE—or, if that value is undefined, the value of the environment

a. LC_MESSAGES is supported by SVR4 but isn’t required by XPG/3.

LC_MONETARY localeconv()

LC_NUMERIC Decimal-point character for formatted
I/O and nonmonetary formatting
information returned by localeconv()

LC_TIME ascftime(), cftime(), getdate(), and strftime()

Table 4-1 (continued) Locale Categories

Category Affects

Locales

145

variable LANG, which should contain the name of the locale that the user
wishes to work in.

Specifying the category LC_ALL attempts to set each category individually
to the value of the appropriate environment variable.

If no non-null environment variable is available, setlocale() returns the name
of the current locale.

Nonempty Strings in Calls to setlocale()

Here are the possibilities for specifying a nonempty string as the locale
parameter:

NULL string Specifying a locale value of NULL—not the same as the
empty string—causes setlocale() to return the name of the
current locale.

“C” Specifying a locale value of the single-character string “C”
requests whatever locale the system uses as a default. (Note
that this is a string and not just a character.)

Other nonempty strings
Requesting a particular locale to be used by specifying its
name. Overrides any user preferences; this should only be
done with good reason.

Table 4-2 Category Environment Variables

Category First Environment
Variable

Second Environment
Variable

LC_COLLATE LC_COLLATE LANG

LC_CTYPE LC_CTYPE LANG

LC_MESSAGES LC_MESSAGES LANG

LC_MONETARY LC_MONETARY LANG

LC_NUMERIC LC_NUMERIC LANG

LC_TIME LC_TIME LANG

146

Chapter 4: Internationalizing Your Application

Location of Locale-Specific Data

Except for XPG/3 message catalogs, locale-specific data (that is, the
“compiled” files containing the collation information, monetary
information, and so on) are located in /usr/lib/locale/locale/category, where
locale and category are the names of the locale and category, respectively. For
example, the database for the LC_COLLATE category of the French locale fr
would be in /usr/lib/locale/fr/LC_COLLATE.

There will probably be multiple locales symbolically linked to each other,
usually in cases where a specific locale name points to the more general case.
For example, /usr/lib/locale/En_US.ascii might point to /usr/lib/locale/C.

Locale Naming Conventions

A locale string is of the form:

language[_ territory[. encoding]][@ modifier]...

where:

• language is the two-letter ISO 639 abbreviation for the language name.

• territory is the two-uppercase-letter ISO 3166 abbreviation for the
territory name. (For a list of these abbreviations, see the table in
Appendix A, “ISO 3166 Country Names and Abbreviations.”)

• encoding is the name of the character encoding (mapping between
numbers and characters). For western languages, this is typically the
codeset, such as 8859-1 or ASCII. For Asian languages, where an
encoding may encode multiple codesets, the encodings themselves
have names, such as UJIS or EUC (these encodings are described later
in this section). “Character Sets, Codesets, and Encodings” on page 149
discusses codesets and encodings.

• modifiers are not actually part of the locale name definition; they give
more specific information about the desired localized behavior of an
application. For example, under X11R5 or X11R6, a user can select an
input method with modifiers. (To use the xwnmo Input Method server
provided by Silicon Graphics, for example, add @im=_XWNMO to the
locale string.) No standards exist for this part of a locale string.

Locales

147

Language data is implementation specific; databases for the language en
(English) might contain British cultural data in England and American
cultural data in the United States. If other than the default settings are
required, the territory field may be used. For example, the above cases could
be more strictly defined by setting LANG to en_EN or en_US. Full rigor
might lead to en_EN.88591 for England (the locale encoding specification for
ISO 8859-1 is “88591”) and en_US.ascii for the USA.

ANSI C has defined a special locale value of C. The C locale is guaranteed to
work on all compliant systems and provides the user with the system’s
default locale. This default is typically American English and ASCII, but
need not be. POSIX has also defined a special locale value, POSIX, which is
identical to the C locale.

The length of the locale string may not exceed NL_LANGMAX characters
(NL_LANGMAX is defined in /usr/include/limits.h). However, XPG/3
recommends that this string (not counting modifiers) not exceed 14
characters.

Limitations of the Locale System

Multilingual Support

There can only be one locale at a time associated with any given process in
an internationalized system. Therefore, although multilingual
applications—which give the appearance of using more than one locale at a
time—can be created, internationalization does not provide inherent
support for them. Here are two examples of multilingual programs:

• An application creates and maintains windows on four different
displays, operated by four different users. The program has a single
controlling process, which is associated with only one locale at any
given time. However, the application can switch back and forth
between locales as it switches between users, so the four users may
each use a different locale.

• In a sophisticated editing system with a complex user interface, a user
may wish to operate the interface in one language while entering or
editing text in another. For instance, a user whose first language is
German may wish to compose a Japanese document, using Japanese

148

Chapter 4: Internationalizing Your Application

input and text manipulation, but with the user interface operating in
German. (There is no standard interface for such behavior.)

In writing a multilingual application, the first task is identifying the locales
for the program to run in and when they apply. (There is no standard
method for performing this task.) Once the application has chosen the
desired locales, it must either one of the following:

• fork, and then call setlocale() differently in each process

• call setlocale() repeatedly as necessary to change from language to
language

Misuse of Locales

The LANG environment variable and the locale variables provide the
freedom to configure a locale, but they do not protect the user from creating
a nonsensical combination of settings. For example, you are allowed to set
LANG to fr (French) and LC_COLLATE to ja_JP.EUC (Japanese). In such a
case, string routines would assume text encoded in 8859-1—except for the
sorting routines, which might assume French text and Japanese sorting
rules. This would likely result in arbitrary-seeming behavior.

No Filesystem Information for Encoding Types

The IRIX filesystem does not contain information about what encoding
should be associated with any given data. Thus, applications must assume
that data presented to an application in some locale is properly encoded for
that locale. In other words, a file is interpreted differently depending on
locale; there is no way to ask the file what it thinks its encoding is.

For example, you may have created a file while in a Japanese locale using
EUC. Later, you might try printing it while in a French locale. The results will
likely resemble a random collection of Latin 1 characters.

This problem applies to almost all stored strings. Most strings are
uninterpreted sequences of nonzero bytes. This includes, for example,
filenames. You can, if you want to, name your files using Chinese characters
in a Chinese locale, but the names will look odd to anyone who runs /bin/ls
on the same filesystem using a non-Chinese locale.

Character Sets, Codesets, and Encodings

149

Character Sets, Codesets, and Encodings

One major difference between nationalized and internationalized software
is the availability in internationalized software of a wide variety of methods
for encoding characters. Developers of internationalized software no longer
have the convenience of always being able to assume ASCII. Three terms
that describe groupings of characters are:

character set An abstract collection of characters.

codeset A character set with exactly one associated numerical
encoding for each character. The English alphabet is a
character set; ASCII is a codeset.

encoding A set of characters and associated numbers; however, this
term is more general than “codeset.” A single encoding may
include multiple codesets; Extended Unix Code (EUC), for
instance, is an encoding that provides for four codesets in
one data stream.

This section describes these topics:

• “Eight-Bit Cleanliness” explains how to make 8-bit clean characters.

• “Character Representation” discuses multibyte and wide characters.

• “Multibyte Characters” covers using and handling multibyte
characters, conversions to constant-size characters, and the number of
bytes in a character and string.

• “Wide Characters” explains wchar strings, support routines, and
conversion to multibyte characters.

• “Reading Input Data” covers nonuser-originated data.

For information on installing and using fonts with an application, refer to
Chapter 3, “Working With Fonts.”

Eight-Bit Cleanliness

A program is 8-bit clean if it does not use the high bit of any data byte to
convey special information. ASCII characters are specified by the low seven
bits of a byte, so some programs use the high bit of a data byte as a flag; such
programs are not 8-bit clean. Internationalized programs must be 8-bit clean,

150

Chapter 4: Internationalizing Your Application

because they cannot expect data to be in the form of ASCII bytes; non-ASCII
character sets usually use all eight bits of each byte to specify the character.
But a program must go out of its way to manipulate bytes based on the value
of the high bit; and since changing data without cause is seldom desirable,
most programs are already 8-bit clean.

The old csh (before this problem was fixed in the IRIX 5.0 release) was a good
example of a program that was not 8-bit clean; it used the high bit in input
strings to distinguish aliases from unaliased commands. An effect of this
misuse was that csh stripped the 8th bit from all characters:

echo I know an architect named Mañosa

I know an architect named Maqosa

Another example is the specification of Internet messages, which calls for
7-bit data. Thus, if sendmail fails to strip the 8th bit from a character prior to
sending it, it violates a protocol; if it does strip the bit, it could garble a
non-ASCII message (this protocol problem is being addressed).

One of the simplest things to do to remove the American bias from a
program is to replace the ASCII assumption with the assumption that the
Latin 1 codeset will be used. This approach is not true internationalization,
but it can make the application usable in most of Western Europe. Latin 1
uses only one byte per character, unlike some other codesets, so 8-bit clean
ASCII software should work without modification using the Latin 1 codeset.

Ensuring that code is 8-bit clean is the single most important aspect of
internationalizing software.

Another caveat about 8-bit characters only applies to a particular set of
circumstances: if you’re not using a multibyte character type (see the next
section), you should not declare characters as type signed char. (The default
in IRIX C is for char to imply unsigned char.) If you try to cast a signed char
to an int (as you must do to use the ctype(3C) functions) and the character’s
high bit is set (as it may be in an 8-bit character set), the high bit is interpreted
as a sign bit and extends into the full width of the int.

Character Sets, Codesets, and Encodings

151

Character Representation

Western languages usually require only one byte for each character. Asian
languages, however, often require two or even four bytes per character; and
some Asian encodings allow a variable number of bytes per character.

The two kinds of encodings that allow more than one byte per character are:

• multibyte (MB) characters (which are of variable size)

• wide (WC or wchar) characters (which are a fixed number of bytes long)

The application developer must decide where to use WC and MB characters
and strings:

• Multibyte strings are almost the default: string I/O uses MB, MB code
works for ASCII and ISO 8859, and MB characters use less space than
do wide characters. However, manipulating individual characters
within a multibyte string is difficult.

Note: Traditional strings are merely a special case of multibyte strings,
where every character happens to be one byte long and there is only one
codeset. All MB code, including conversion to and from wchars, works
for traditional ASCII, or ISO 8859, strings.

• Applications that do heavy string manipulation typically use WC
strings for such activity, because manipulating individual WC
characters in a string is much simpler than doing the same thing with
MB characters. So wide characters are used as necessary to provide
programming ease or runtime speed; however, they take up more space
than MB characters.

Note: WC is system dependent—applications should not use it for I/O
strings or communication.

Multibyte Characters

A multibyte character is a series of bytes. The character itself contains
information on how many bytes long it is. Multibyte characters are
referenced as strings (and are therefore of type char *); before parsing, a
string is indistinguishable from a multibyte character. The zero byte is still
used as a string (and MB character) terminator.

152

Chapter 4: Internationalizing Your Application

A string of MB characters can be considered a null-terminated array of bytes,
exactly like a traditional string. A multibyte string may contain characters
from multiple codesets. Usually, this is done by incorporating special bytes
that indicate that the next character (and only the next character) will be in a
different codeset. Very little application code should ever need to be aware
of that, though; you should use the available library routines to find out
information about multibyte strings rather than look at the underlying byte
structure, because that structure varies from one encoding to another. For
one example of an encoding that allows characters from multiple codesets,
see “EUC” on page 202.

Use of Multibyte Strings

Multibyte strings are very easy to pass around. They efficiently use space
(both data and disk space), since “extra” bytes are used only for characters
that require them. MB strings can be read and written without regard to their
contents, as long as the strings remain intact. Displaying MB strings on a
terminal is done with the usual routines: printf(), puts(), and so on. Many
programs (such as cat) need never concern themselves with the multibyte
nature of MB strings, since they operate on bytes rather than on characters;
so MB strings are often used for string I/O.

Manipulation of individual characters in an MB string can be difficult, since
finding a particular character or position in a string is nontrivial (see
“Handling Multibyte Characters,” below). Therefore, it is common to
convert to WC strings for that kind of work.

Handling Multibyte Characters

Usually, multibyte characters are handled just like char strings. Editing such
strings, however, requires some care.

You cannot tell how many bytes are in a particular character until you look
at the character. You cannot look at the nth character in a string without
looking at all the previous n - 1 characters, because you cannot tell where a
character starts without knowing where the previous character ends. Given
a byte, you don’t know its position within a character. Thus, we say the
string has state or is context-sensitive; that is, the interpretation we assign to
any given byte depends on where we are in a character.

Character Sets, Codesets, and Encodings

153

This analysis of characters is locale-dependent, and therefore must be done
by routines that understand locale.

Conversion to Constant-Size Characters

Multibyte characters and strings are convertible to wchars via mbtowc(3)
(individual characters) and mbstowcs(3) (strings).

How Many Bytes in a Character?

To find out how many bytes make up a given single MB character, use
mblen(3):

#include <stdlib.h>
. . .
size_t n;
int len;
char *pStr;
. . .
len = mblen(pStr, n); /* examine no more than n bytes */

It is the application’s responsibility to ensure that pStr points to the
beginning of a character, not to the middle of a character.

The maximum number of bytes in a multibyte character is MB_LEN_MAX,
which is defined in limits.h. The maximum number of bytes in a character
under the current locale is given by the macro MB_CUR_MAX, defined in
stdlib.h.

How Many Bytes in an MB String?

Since strlen() simply counts bytes before the first NULL, it tells you how
many bytes are in an MB string.

How Many Characters in an MB String?

When mbstowcs() coverts MB strings to WC strings, it returns the number of
characters converted. This is the simplest way to count characters in an MB
string.

154

Chapter 4: Internationalizing Your Application

Note: Many code segments that need to deal with individual characters
within a string would be better suited by wide character strings. Since
counting often involves conversion, such segments are often better served
by working with a WC string, then converting back.

Getting the length without performing the conversion is straightforward,
but not as simple. mbtowc() converts one character and returns the number
of bytes used, but returns the same information without conversion if a
NULL is passed as the address of the WC destination. Thus:

len = mblen(pStr, n);

is equivalent to

len = mbtowc((wchar_t *) NULL, pStr, n);

In fact, mblen() calls mbtowc() to perform its count. Therefore, counting
characters in an MB string without converting would look like this:

int cLen;
char *tStr = pStr;

numChars = 0;
cLen = mbtowc((wchar_t *) NULL, tStr, MB_CUR_MAX);
while (cLen > 0) {
 tStr += cLen;
 numChars++;
 cLen = mbtowc((wchar_t *) NULL, tStr, MB_CUR_MAX);
 if (cLen == -1)
 numChars = cLen; /* invalid MB character */
}

Wide Characters

A wide character (WC or wchar) is a data object of type wchar_t, which is
guaranteed to be able to hold the system’s largest numerical code for a
character. wchar_t is defined in stdlib.h. Under IRIX 4.0.x, sizeof(wchar_t) was
1. Under IRIX 5.1, it is 4. All wchars on a system are the same size,
independent of locale, encoding, or any other factors.

Character Sets, Codesets, and Encodings

155

Uses for wchar Strings

The single advantage of WC strings is that all characters are the same size.
Thus, a string can be treated as an array, and a program can simply index
into the array in order to modify its contents. Most applications’ char
manipulation routines work with little modification other than a type
change to wchar_t, with appropriate attention to byte count and sizeof().

So, when applications have significant string editing to perform, they
typically keep the strings in WC format while doing that editing. Those WC
strings may or may not be converted to or from MB strings at other points in
the application.

Wide characters are often large and are not as space efficient as multibyte
strings. Applications that do not need to perform string editing probably
shouldn’t use wchars. If an application intends to both maintain and edit
large numbers of strings, then the developer needs to make size/complexity
trade-off decisions.

Support Routines for Wide Characters

Analogs to the routines defined in string.h and stdio.h are supplied in libw.a
and defined in widec.h. This includes routines such as getwchar(), putwchar(),
putws(), wscpy(), wslen(), and wsrchr().

Conversion to MB Characters

Wide characters and strings are convertible to MB strings via wctomb() and
wcstombs(), respectively.

Reading Input Data

Input can be divided into two categories: user events and other data. This
section deals with nonuser-originated data, which is assumed to come from
file descriptors or streams. User events are discussed in “User Input” on
page 180.

156

Chapter 4: Internationalizing Your Application

It is generally fair to assume that unless otherwise specified, data read by an
application is encoded suitably for the current locale. Text strings typically
are in MB format.

Streams can be read in WC format by using routines defined in widec.h.

Cultural Items

This section discusses several aspects of a locale that may differ between
locales. It includes these topics:

• “Collating Strings” describes string collation.

• “Specifying Numbers and Money” explains some monetary formats,
and the printf() and localeconv() functions.

• “Formatting Dates and Times” covers using strftime() to format of dates
and times.

• “Character Classification and ctype” discusses associations between
character codes, and using ctype.h macros and functions.

• “Regular Expressions” presents information for developers who do
their own regular expression parsing and matching.

Collating Strings

Different locales can have different rules governing collation of strings, even
within identical encodings.

The Issue

In English, sorting rules are extremely simple: each character sorts to exactly
one unique place. Under ASCII, the characters are even in numeric order.
However, neither of those statements is necessarily true for other languages
and other codesets. Furthermore:

• Sorting order for a language may be completely unrelated to the
(numerical) order of the characters in a given encoding.

Cultural Items

157

• Even with a correctly sorted list of the characters in a character set, you
may not be able to sort words properly.

• Locales using identically encoded character sets may use very different
sorting rules.

Programs using ASCII can do simple arithmetic on characters and directly
calculate sorting relationships; such programs frequently rely on truisms
such as the fact that:

’a’ < ’b’

in ASCII. But internationalized programs cannot rely on ASCII and English
sorting rules. Consider some non-English collation rule types:

• One-to-Two mappings collate certain characters as if they were two. For
example, the German ß collates as if it were “ss.”

• Many-to-One mappings collate a string of characters as if they were one.
For example, Spanish sorts “ch” as one character, following “c” and
preceding “d.” In Spanish, the following list is in correct alphabetical
order: calle, creo, chocolate, decir.

• Don’t-Care Character rules collate certain characters as if they were not
present. For example, if “-” were a don’t-care character, “co-op” and
“coop” would sort identically.

• First-Vowel rules sort words based first on the first vowel of the word,
then by consonants (which may precede or follow the vowel in
question).

• Primary/Secondary sorts consider some characters as equals until there is
a tie. For example, in French, a, á, à, and â all sort to the same primary
location. If two strings (such as “tache” and “tâche”) collate to the same
primary order, then the secondary sort distinguishes them.

• Special case sorts exist for some Asian languages. For example,
Japanese kanji has no strict sorting rules. Kanji strings can be sorted by
the strokes that make up the characters, by the kana (phonetic) spellings
of the characters, or by other agreed-upon rules.

It should be clear that a programmer cannot hope to collate strings by simple
arithmetic or by traditional methods.

158

Chapter 4: Internationalizing Your Application

The Solution

Locale-specific collation should be performed with strcoll() and strxfm().
These are table-driven functions; the tables are supplied as part of locale
support. The value of LC_COLLATE determines which ordering table to
use. strcoll() has the same interface as strcmp(); it can be directly substituted
into code that uses strcmp().

Specifying Numbers and Money

Format of simple numbers differs from locale to locale. Characters used for
decimal radix and group separators vary. Grouping rules may also vary.
Even though we assume that decimal numbers are universal, there are some
eighteen varying aspects of numeric formatting defined by a locale. Many of
these are details of monetary formatting.

For example, Germany uses a comma to denote a decimal radix and a period
to denote a group separator. English reverses these. India groups digits by
two except for the last three digits before the decimal radix. Many locales
have particular formats used for money, some of which are shown in
Table 4-3:

printf()

printf() examines LC_NUMERIC and chooses the appropriate decimal radix.
If none is available, it tries to use ASCII period. No further locale-specific

Table 4-3 Some Monetary Formats

Country Positive Format Negative Format

India Rs1,02,34,567.89 Rs(1,02,34,567.89)

Italy L.10.234.567 -L.10.234.567

Japan ¥10,234,567 -¥10,234,567

Netherlands F10.234.567,89 F-10.234.567,89

Norway Kr10.234.567,89 Kr10.234.567,89-

Switzerland SFr10,234,567.89 SFr10,234,567.89C

Cultural Items

159

formatting is done directly by printf(). However, you may wish to refer to
“Variably Ordered Referencing of printf() Arguments,” for a way to do your
own locale-specific output formatting.

localeconv()

The localeconv() function can be called to find out about numeric formatting
data, including the decimal radix (inappropriately called decimal_point), the
grouping separator (inappropriately called thousands_sep), the grouping
rules, and a great deal of monetary formatting information. Actual use of
formatting information other than the decimal radix is left to the application;
there aren’t any special print routines that produce formatted numbers
according to all of localeconv()’s data.

Formatting Dates and Times

All of these dates can mean the same thing to different people:

92.1.4

4/1/92

1/4/92

All of these can mean the same time to different people:

2:30 PM

14:30

14h30

Dates and times can be easily formatted by using strftime(), which gives a
host of options for displaying locale-specific dates and times. The ascftime()
and cftime() functions give further options, but should be avoided because
they do not conform to ANSI and XPG/3 specifications. The old asctime()
and ctime() functions are now obsolete; use strftime() instead. For more
information, see the strftime(3C) reference page.

160

Chapter 4: Internationalizing Your Application

Character Classification and ctype

The ctype.h header file is described in the ctype(3C) reference page and
defines macros to determine various kinds of information about a given
character: isalpha(), isupper(), islower(), isdigit(), isxdigit(), isalnum(), isspace(),
ispunct(), isprint(), isgraph(), iscntrl(), and isascii().

The Issue

When programmers knew that a character set was ASCII, some convenient
assumptions could be made about characters and letters. It was common for
programmers to do arithmetic with the ASCII code values in order to
perform some simple operations. For example, raising a character to upper
case could be done by subtracting the difference between the code for a and
the code for A. Numeric characters could be identified by inspection: if they
fell between 0 and 9, they were numeric; otherwise, they weren’t. You could
tell if a character was (for instance) printable, a letter, or a symbol by
comparing to known encoding values. Macros for such activity have long
been available in ctype.h, but lots of programs did character arithmetic
anyway. Since character encoding and linguistic semantics are completely
independent, such arithmetic in an internationalized program leads to
unpleasant results.

Furthermore, characters exist outside of ASCII that break some
non-arithmetic assumptions. Consider the German character ß which is a
lowercase alphabetic character (letter), yet has no uppercase. Consider also
French (as written in France), where the uppercase of é is E, not É.

Clearly, the programmer of an internationalized application has no way of
directly computing all the character associations that were available in
English under ASCII.

The Solution

Strict avoidance of arithmetic on character values should remove any
trouble in this area. The macros in ctype.h are table-driven and are therefore
locale-sensitive. If you think of characters as abstract characters rather than
as the numbers used to represent them, you can avoid pitfalls in this area.

Strings and Message Catalogs

161

Using Functions Instead of Macros

A corresponding function exists for each of the macros in ctype.h. To get a
function instead of a macro, simply undefine the name. For example:

#undef toascii
char (*xlate)(char);
char a, b;
...
xlate = toascii;
a = (*xlate)(b);

Regular Expressions

XPG/3 specifies some extensions to traditional regular expression syntax for
internationalized software. Few application developers do their own regular
expression parsing and matching, however, so we do not include full details
here. Briefly, the extensions provide the ability to specify matches based on:

• character class (such as alpha, digit, punct, or space)

• equivalence class (for instance: a, á, à, â, A, Á, À, and Â may be
equivalent)

• collating symbols (allowing you to match the Spanish “ch” as one
element because it is a single collating token)

• generalization of range specifications of the form [c1-c2] to include the
above

Programmers who process expressions themselves need the full description
of internationalized regular expression grammar in Volume 3, Chapter 6, of
XPG/3.

Strings and Message Catalogs

Message catalogs are compiled databases of strings. While a major role of
message catalogs is to provide communications text in locale-specific natural
language, the strings can be used for any purpose. The idea is that an
application uses only strings from a catalog, thus allowing localizers to
supply catalogs suitable for a given locale.

162

Chapter 4: Internationalizing Your Application

Two different and incompatible interfaces to message catalogs exist in IRIX:
MNLS and XPG/3. Developers working on SVR4 or other AT&T code, or
related base-system utilities, probably use MNLS. Developers working on
independent projects probably use XPG/3. Neither is a solid standard, but
XPG/3 is closer to being a standard than MNLS. Thus applications
developers who have to choose between the two interfaces are encouraged
to use XPG/3 to maximize their portability. XPG/3 seems to be popular in
Europe. Asia is leaning toward MNLS.

This section describes string and message catalogs, specifically:

• “XPG/3 Message Catalogs”

• “SVR4 MNLS Message Catalogs”

• “Variably Ordered Referencing of printf() Arguments”

XPG/3 Message Catalogs

The XPG/3 message catalog interface requires that a catalog be opened
before it is read, and requires that catalog references specify a catalog
descriptor.

Since catalog references include a default to be used in case of failure,
applications will work normally without a catalog when in the default
locale. This means catalog generation is exclusively the task of localizers. But
in order to inform the localizer as to what strings to translate and how they
should comprise a catalog, the application developer should provide a
catalog for the developer’s locale.

Opening and Closing XPG/3 Catalogs

catopen() locates and opens a message catalog file:

#include <nl_types.h>
nl_catd catopen(char *name, int unused);

The argument name is used to locate the catalog. Usually, this is a simple,
relative pathname that is combined with environment variables to indicate
the path to the catalog (see “XPG/3 Catalog Location” for details). However,
the catalog assumes names that begin with “/ ” are absolute pathnames. Use

Strings and Message Catalogs

163

of a hard-coded pathname like this is strongly discouraged; it doesn’t allow
the user to specify the catalog’s locale through environment variables.

When an application is finished using a message catalog, it should close the
catalog and free the descriptor using catclose():

int catclose(nl_catd);

Using an XPG/3 Catalog

Catalogs contain sets of numbered messages. The application developer
must know the contents of the catalog in order to specify the set and number
of a message to be obtained.

catgets() is used to retrieve strings from a message catalog:

#include <nl_types.h>
char *catgets (nl_catd catd, int set_num, int msg_num,
 char *defaultStr);

catgets() retrieves message msg_num from set set_num from the catalog
described by catd. If for any reason catgets() cannot do this, it returns
defaultStr. Example 4-1 shows a program which reads the first message from
the first message set in the appropriate catalog, and displays the result.

Example 4-1 Reading an XPG/3 Catalog

#include <stdio.h>
#include <locale.h>
#include <nl_types.h>

#define SET1 1
#define WRLD_MSG 1

int main(){
 nl_catd msgd;
 char *message;
 setlocale(LC_ALL, "");

msgd = catopen("hw",0);
 message = catgets(msgd, SET1, WRLD_MSG,"Hello, world\n");
 printf(message);
 catclose(msgd);
}

164

Chapter 4: Internationalizing Your Application

The previous example uses printf() instead of puts() in order to make a point:
the format string of printf() came from a catalog. Note that:

printf(catgets(msgd, set, num, defaultStr));

is very different from:

printf("%s", catgets(msgd, set, num, defaultStr));

because strings in catalogs can contain formatting strings of the kind used
by printf(). For further discussion of issues relating to this important
distinction, see “Variably Ordered Referencing of printf() Arguments.”

XPG/3 Catalog Location

XPG/3 message catalogs are located using the environment variable
NLSPATH. The default NLSPATH is /nlslib/%L/%N, where %L is filled in by
the LANG environment variable and %N is filled in by the name argument
to catopen(). NLSPATH can specify multiple pathnames in ordered
precedence, much like the PATH variable. A sample NLSPATH assignment:

NLSPATH=/usr/lib/locale/%L/%N:/usr/local/lib/locale/%L/%N:/usr/defaults/%N

Full details are in the catopen(3) reference page.

Creating XPG/3 Message Catalogs

Message catalogs are of this general form:

$set n comment
a message-a \n
b message-b \n
c message-c \n
$quote "
d " message-d "
$this is a comment

Each message is identified by a message number and a set. Sets are often used
to separate messages into more easily usable groups, such as error messages,
help messages, directives, and so on. Alternatively, you could use a different
set for each source file, containing all of that source file’s messages.

Strings and Message Catalogs

165

“$set n” specifies the beginning of set n, where n is a set identifier in the range
from 1 to NL_SETMAX. All messages following the “$set n” statement
belong to set n until either a $delset or another $set is reached. You can skip
set numbers (for example, you can have a set 3 without having a set 2), but
the set numbers that you use must be listed in ascending numerical order
(and every set must have a number). Any string following the set identifier
on the same line is considered a comment.

“$delset n” deletes the set n from a message catalog.

“$quote c” specifies a quote character, c, which can be used to surround
message text so that trailing spaces or null (empty) messages are visible in a
message source line. By default, there is no quote character and messages are
separated by newlines. To continue a message onto a second line, add a
backslash to the end of the first line:

$set 1
1 Hello, world.
2 here is a long \
string.\n
3 Hello again.
n message-text-n

Message #2 in set #1 is “here is a long string.\n”.

Compiling XPG/3 Message Catalogs

After creating the message catalog sources, you need to compile them into
binary form using gencat, which has the following syntax:

gencat catfile msgfile [msgfile ...]

where catfile is the target message catalog and msgfile is the message source
file. If an old catfile exists, gencat attempts to merge new entries with the old.
gencat “resolves” set and message number conflicts with new information
replacing the old.

The catfile then needs to be placed in a location where catopen() can find it;
see the “XPG/3 Catalog Location” on page 164.

166

Chapter 4: Internationalizing Your Application

SVR4 MNLS Message Catalogs

There are many ways to use strings from MNLS message catalogs. You can
get strings directly and then use them, or you can use output routines that
search catalogs.

Specifying MNLS Catalogs

MNLS message catalogs do not need to be specifically opened. The catalog
of choice can be set explicitly once, or it can be specified every time a string
is needed.

To specify the default message catalog to be used by subsequent calls to
MNLS routines that reference catalogs (such as gettxt(), tfmt(), or pfmt()), use
setcat():

#include <pfmt.h>
char *setcat(const char *catalog);

where catalog is limited to 14 characters, with no character equal to zero or
the ASCII codes for / (slash) or : (colon). setcat() doesn’t check to see if the
catalog name is valid; it just stores the string for future reference. For an
example of use, see “Getting Strings from MNLS Message Catalogs,” below.
The catalog indicated by the string can be found in the directory
/usr/lib/locale/localename/LC_MESSAGES.

Getting Strings from MNLS Message Catalogs

MNLS message catalogs do not need to be specifically opened. The catalog
of choice can be set explicitly once, or it can be specified in each reference
call. Strings are read from a catalog via gettxt():

#include <unistd.h>
char *gettxt(const char *msgid, const char *defaultStr);

msgid is a string containing two fields separated by a colon:

msgfilename : msgnumber

Strings and Message Catalogs

167

The msgfilename is a catalog name as described previously in the “Specifying
MNLS Catalogs” on page 166. For example, to get message 10 from the MQ
catalog, you could use either:

char *str = gettxt("MQ:10", "Hello, world.\n");

or

setcat("MQ");
str = gettxt(":10", "Hello, world.\n");

pfmt()

pfmt() is one of the most important routines dealing with MNLS catalogs,
because it is used to produce most system diagnostic messages. pfmt()
formats like printf() and produces standard error message formats. It can
usually be used in place of perror(). For example,

pfmt(stderr, MM_ERROR, "MQ:64:Permission denied");

would produce, by default (such as when the Mozambique locale is
unavailable),

ERROR: Permission denied.

The syntax of pfmt() is:

#include <pfmt.h>
int pfmt(FILE *stream, long flags, char *format, ...);

The flags are used to indicate severity, type, or control details to pfmt(). The
format string includes information specifying which message from which
catalog to look for. Flag details are discussed next in the section “Labels,
Severity, and Flags”, and the format is discussed in the “Format Strings for
pfmt()” on page 168.

Labels, Severity, and Flags

pfmt() flags are composed of several groups; specify no more than one from
each group. Specify multiple flags by using OR.

168

Chapter 4: Internationalizing Your Application

The groups are:

output format control:
MM_NOSTD, MM_STD

catalog access control:
MM_NOGET, MM_GET

severity: MM_HALT, MM_ERROR, MM_WARNING, MM_INFO

action message specification:
MM_ACTION

pfmt() prints messages in the form label:severity:text. Severity is specified in
the flags. The text comes from a message catalog (or a default) as specified in
the format, and the label is specified earlier by the application.

In the example above, we get only:

ERROR: Permission denied.

if no label has been set. Typically, an application sets the label once early in
its life; subsequent error messages have the label prepended. For example:

setlabel("UX:myprog");
...
pfmt(stderr, MM_ERROR, "MQ:64:Permission denied");

would produce (by default):

UX:myprog: ERROR: Permission denied.

For details, consult the pfmt(3) and setlabel(3) reference pages.

Format Strings for pfmt()

pfmt() format strings are of the form:

[[catalog:]messagenum:]defaultstring

The catalog field is in the format described above in the “Specifying MNLS
Catalogs” on page 166. messagenum is the message number in the catalog to
use as the format. defaultstring specifies the string to use if the catalog lookup
fails for any reason.

Strings and Message Catalogs

169

An important feature of pfmt() is its ability to refer to format arguments in
format-specified order just as printf() does. See “Variably Ordered
Referencing of printf() Arguments” for details.

fmtmsg()

fmtmsg() is a comprehensive formatter using the MNLS catalogs and
“standard” formats. You probably won’t need to use it; most applications
should get by with pfmt(), gettxt(), and printf(). Consult the fmtmsg(3)
reference page for details.

Putting Strings into a Catalog

An MNLS catalog source file contains merely a list of strings, separated by
new lines. For an empty string, an empty line is used. Strings are referenced
by line number in the original source file.

Applications access the catalog by line number, so it’s very important not to
change the line numbers of existing catalog entries. This means that, when
you want to add a new string to an existing catalog source, you should
always append it to the end of the file—if you put it in the middle of the file,
then you change the line number for subsequent strings.

Tools exist that help you compile MNLS message catalogs. exstr, for instance,
extracts strings directly from your source code and replaces them with calls
to the message retrieval function.

When a file of strings is ready to be compiled, simply run mkmsgs and put
the results in the directory /usr/lib/locale/localename/LC_MESSAGES.

Internationalizing File Typing Rule Strings

You can internationalize the strings defined in the LEGEND and
MENUCMD rules in the File Typing Rule (FTR) file. To internationalize these
rules, precede the string with the following:

: catalogname: msgnumber:

where catalogname is optional and should be a valid MNLS catalog,
msgnumber is the line number in catalogname. If you omit catalogname, the
uxsgidesktop catalog is used by default.

170

Chapter 4: Internationalizing Your Application

You can use these rules to create your own FTR catalog. For example, an
entry looks like this:

LEGEND :mycatalog:7:Archive 8mm Tape Drive

This entry uses line 7 from the catalog, mycatalog, as the LEGEND for this
FTR. If mycatalog is not available, or line 7 is not accessible from mycatalog,
“Archive 8mm Tape Drive” is used as the LEGEND.

LEGEND :7:Archive 8mm Tape Drive

This entry uses line 7 from the uxsgidesktop catalog, if available. Otherwise,
“Archive 8mm Tape Drive” is used.

The next example,

MENUCMD \‘mycatalog:9:Eject Tape\’ /usr/sbin/eject /dev/tape

displays line 9 from mycatalog, if available. Otherwise “Eject Tape” is
displayed on the menu that pops up when you click on an icon using this
FTR.

You can internationalize strings in the command part of MENUCMD and
CMD rules by using gettxt or any other convenient policy detailed in this
section. For example:

CMD OPEN xconfirm -t “Tape tool not available”

can be internationalized to:

CMD OPEN xconfirm -t “‘gettxt mycatalog:376 ’Tape tool not
available’‘”

In this example, gettxt is invoked to access line 376 from the catalog,
mycatalog, and the string returned by gettxt is passed to xconfirm for display.
If line 376 from mycatalog is not accessible, then gettxt returns the string
“Tape tool not available.”

For more information about FTRs, see the Indigo Magic Desktop Integration
Guide.”

Strings and Message Catalogs

171

Variably Ordered Referencing of printf() Arguments

printf() and its variants can now refer to arguments in any specified order.
Consider the following scenario: an application has chosen “house” from a
list of objects and “white” from a list of colors. The application wishes to
display this choice. The code might look like:

char *obj, *color;
... /* make choices */ ...
printf("%s %s\n", color, obj);

And the printf() yields:

white house

Even once we make sure that obj and color are localized strings, we are not
quite finished. If our locale is Spanish, the printf() yields:

blanca casa

which is wrong; in Spanish, it should be:

casa blanca

The solution to this problem is variably ordered referencing of printf()
arguments. The syntax of printf() format strings has been expanded.

If a format string used to contain %T (where T represents one of the printf()
conversion characters), the string can now contain %D$T. The T is the same,
but the D specifies which argument from the argument list should be used.

This means you can write:

printf("2nd parameter is %2$s; the 1st is %1$s", p1, p2)

and the second parameter is printed first, with the first parameter printed
second. For example:

char *store = "Macy’s";
char *obj = "a cup";

printf("At %1$s, I bought %2$s.\n", store, obj);
printf("I bought %2$s at %1$s.\n", store, obj);

172

Chapter 4: Internationalizing Your Application

This code yields:

At Macy’s, I bought a cup.
I bought a cup at Macy’s.

even though the parameters to printf() are in the same order.

In English, we are able to come up with strings suitable for either word
order; in some other language, we might not be so lucky. Nor can we predict
which order such languages might prefer. So the developer has no way of
knowing how to create traditional printf() format strings suitable for all
languages.

Developers should therefore use message catalogs for their printf() format
strings that take linguistic parameters, and allow localizers to localize the
format strings as well as text strings. This means that the localizer has much
greater ability to create intelligible text. An internationalized version of the
above code appears in the following example.

Example 4-2 Internationalized Code

/* internationalized (XPG/3) version */
char *form = catgets(msgd, set, formNum,
 "At %1$s, I bought %2$s.\n");
char *store = catgets(msgd, set, storeNum, "Macy’s");
char *obj = catgets(msgd, set, objNum, "a cup");

printf(form, store, obj);

The unlocalized (default) version would produce:

At Macy’s, I bought a cup.

and a localized version might produce:

Compré una tasa en Macy’s.

In practice, variably ordered format strings are only found in message
catalogs and not in default strings. The default string usually simply uses the
parameters in the order they’re given, without the new variable-order
format strings.

Internationalization Support in X11R6

173

Internationalization Support in X11R6

X11R6 internationalization support is provided on the X client side; that is,
the application must take care of such support instead of relying on the X
server. No server changes are necessary, and the protocol is unchanged. Full
backward compatibility is preserved, so a new internationalized application
can run on an old server.

Note: X11R6 internationalization refers to features in X11R5 and X11R6.

X uses existing internationalization standards to do its internationalization
support; there are no X-specific interfaces to set and change locale.
Internationalized X applications receive no help from X when attempting
multilingual support. No locales or special process states are peculiar to X.

This section explains:

• “Limitations of X11R6 in Supporting Internationalization” discusses
vertical text, character sets, and Xlib interface changes.

• “Resource Names” covers encoding of resource names.

• “Getting X Internationalization Started” describes initialization of Xlib
and toolkit programming.

• “Fontsets” explains specifying, creating, and using fontsets,

• “Text Rendering Routines” discusses the XmbDrawText(),
XmbDrawString(), and XmbDrawImageString() functions.

• “New Text Extents Functions” describes a few new extents-related
functions including XFontSetExtents.

Limitations of X11R6 in Supporting Internationalization

Since X is locale-independent, there are some limitations on its ability to
support internationalization. The X protocol and Xlib specification, together
with ANSI C and POSIX restrictions, have led to the following choices being
made in X11R6:

174

Chapter 4: Internationalizing Your Application

Vertical Text

There is no built-in support for vertical text. Applications may draw strings
vertically only by laying out the text manually.

Character Sets

In previous releases of X, there was no general support for character sets
other than Latin 1. X11R6, however, does allow other character sets.

X11R6 includes the definition of the X Portable Character Set, which is
required to exist in all locales supported by Xlib. There is no encoding
defined for this set; it is only a character set. The set, similar to printable
ASCII, consists of these characters:

abcdefghijklmnoqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~
<space> <tab> <newline>

The Host Portable Character Encoding is the encoding of the X Portable
Character Set on the Xlib host. This encoding is part of X, and is thus
independent of locale—the coding remains the same for all locales
supported by the host.

Strings used or returned by Xlib routines are either in the Host Portable
Character Encoding or a locale-specific encoding. The Xlib reference pages
specify which encodings are used where. Some string constructs (such as
TextProperty) contain information regarding their own encoding.

Xlib Interface Change

Full use of X11R6’s internationalization features means calling some new
routines supplied in the X11R6 Xlib. While all old Xlib applications work
with the new Xlib, developers should change their code in places. These are
described below.

Internationalization Support in X11R6

175

Resource Names

Resource names are compiled into programs. Because of that, their encoding
must be known independent of locale. Trying to add a level of indirection
here results in a problem: you’re always left with something compiled that
can’t be localized. Resource names therefore use the X Portable Character
Set. The names may be anything; at least they’ll mean something to the
application author. (If the names were numbers, for example, they would be
meaningless to everybody.)

Getting X Internationalization Started

Xlib’s internationalization state, like that of libc, needs to be initialized.

Initialization for Xlib Programming

Initialize Xlib’s internationalization state after calling setlocale(). Xlib is being
initialized, not a server or server-specific object, so a server connection is not
necessary:

if (setlocale(LC_ALL, "") == NULL)
 exit_with_error();
if (! XSupportsLocale())
 exit_with_other_error();
if (XSetLocaleModifiers("") == NULL)
 give_warning();

XSetLocaleModifiers() is only required for input. Just as passing an empty
string to setlocale() honors the user’s environment, so does passing an empty
string to XSetLocaleModifiers().

Initialization for Toolkit Programming

If you’re using Xt (with a widget set such as IRIS IM, Motif, or XaW) then
you don’t use setlocale(). Instead you should use:

XtSetLanguageProc(NULL, NULL, NULL)

If you’re using a toolkit other than Xt, call setlocale() as early as possible after
execution begins.

176

Chapter 4: Internationalizing Your Application

Fontsets

In X11R5 and X11R6, unlike previous releases of X, a string may contain
characters from more than one codeset. There are several methods for
determining which codeset a given character is in; which method is
appropriate depends on the locale and the encoding used.

For information on installing and using fontsets with an application, refer to
Chapter 3, “Working With Fonts.”

Such multiple-codeset strings usually cannot be rendered using a single
font. A fontset is a collection of fonts suitable for rendering all codesets
represented in a locale’s encoding. A fontset includes information to indicate
which locale it was created in. Applications create fontsets for their own use;
when a program creates a fontset, it is told which of the requested fonts are
unavailable.

Example: EUC in Japanese

To render strings encoded in EUC in Japanese, an application would need
fonts encoded in 8859-1, JIS X 208, and JIS X 201. The application doesn’t
need to know which characters in a string go with which font, since it
doesn’t get into locale specifics. So it creates a fontset that is made from a list
of user-specified fonts (under the assumption that the localizer has provided
an appropriate list). Rendering is then done using that fontset. The
locale-aware rendering system chooses the appropriate fonts for each
character being rendered, from the supplied list. You can find additional
information about EUC in “Asian Languages.”

Specifying a Fontset

A fontset specification is just a string, enumerating XLFD names of fonts.
(See X Logical Font Description Conventions, an MIT X Consortium standard.)
This string can include wild card characters. For example, a specification of
15-point “fixed” fonts might be:

char *fontSetSpecString = "*fixed-medium-r-normal*150*";

A particular server might expand this to:

-jis-fixed-medium-r-normal--16-150-75-75-c-160-jisx0208.1983-0

Internationalization Support in X11R6

177

-sony-fixed-medium-r-normal--16-150-75-75-c-80-iso8859-1
-sony-fixed-medium-r-normal--16-150-75-75-c-80-jisx0201.1976-0

Specifying the fontset by simply enumerating the fonts is perfectly
acceptable:

char *fontSetSpecString =
"-jis-fixed-medium-r-normal*150-75-75*jisx0208.1983-0,\
-sony-fixed-medium-r-normal*150-75-75*iso8859-1,\
-sony-fixed-medium-r-normal*150-75-75*jisx0201.1976-0";

A German locale would use this fontset with interest only in the ISO font; a
Japanese locale might use all three; a Chinese locale would have trouble with
this fontset.

The developer should specify a default fontset suitable for the default locale.
Furthermore, developers should ensure that the application accepts
localized fontset specifications via resources (or message catalogs) or
command line options. Localizers are responsible for providing default
fontset specifications suitable for their locales.

Creating a Fontset

Creating fontsets in X is simply a matter of providing a string that names the
fonts, as described above.

XFontSet fontset;
char *base_name; /* should get from resource */
char **missingCharsetList;
int missingCharsetCount;
char *defaultStringForMissingCharsets;

base_name = "*fixed-medium-r*150*"; /* use resources! */

fontset = XCreateFontSet(display, base_name,
 &missingCharsetList,
 &missingCharsetCount,
 &defaultStringForMissingCharsets);

The locale in effect at create time is bound to the fontset. Fontsets are freed
with XFreeFontSet().

178

Chapter 4: Internationalizing Your Application

Using a Fontset

Fontsets are used when rendering text with X11R6 Xmb or Xwc text
rendering routines. These routines are described in “Text Rendering
Routines.”

Text Rendering Routines

X11R6includes text rendering routines that understand multibyte and wide
character strings. These routines are analogs to the X11R4 text rendering
routines XDrawText(), XDrawString(), and XDrawImageString(). The old
routines continue to operate, but do not take fontsets, and don’t know how
to handle characters longer than one byte.

• XmbDrawText() and XwcDrawText() take lists of TextItems, each of which
contains (among other things) a string. The strings are rendered using
fontsets. These routines allow complex spacing and fontset shifts
between strings.

• XmbDrawString() and XwcDrawString() render a string using a fontset.
These routines render in foreground only and use the raster operation
from the current graphics context.

• XmbDrawImageString() and XwcDrawImageString also render a string
using a fontset. These routines fill the background rectangle of the
entire string with the background, then render the string in the
foreground color, ignoring the currently active raster operation.

Consult the appropriate reference pages for more details on these routines.

New Text Extents Functions

X11R6 provides MB and WC versions of width and extents interrogation
routines, supplying the maximum amount of space required to draw any
character in a given fontset. These routines depend on fontsets to interpret
strings and use locale-specific data.

Internationalization Support in X11R6

179

The XFontSetExtents structure contains the two kinds of extents a string can
have:

typedef struct {
 XRectangle max_ink_extent;
 XRectangle max_logical_extent;
} XFontSetExtents;

max_ink_extent gives the maximum boundaries needed to render the
drawable characters of a fontset. It considers only the parts of glyphs that
would be drawn, and gives distances relative to a constant origin.
max_logical_extent gives the maximum extent of the occupied space of
drawable characters of a fontset. The occupied space of a character is a
rectangle specifying minimum distance from other graphical features; other
graphics generated by a client should not intersect this rectangle.
max_logical_extent is used to compute interline spacing and the minimum
amount of space needed for a given number of characters.

Here are descriptions of a few of the new extents-related functions (consult
the appropriate reference pages for details):

• XExtentsOfFontSet() returns an XFontSetExtents structure for a fontset.

• XmbTextEscapement() and XwcTextEscapement() take a string and return
the distance in pixels (in the current drawing direction) to the origin of
the next character after the string, if the string were drawn. Escapement
is always positive, regardless of direction.

• XmbTextExtents() and XwcTextExtents() take a string and return
information detailing the overall rectangle bounding the string’s image
and the space the string occupies (for spacing purposes).

• XmbTextPerCharExtents() and XwcTextPerCharExtents() take a string and
return ink and logical extents for each character in the string. Use this
for redrawing portions of strings or for word justification. If the fontset
might include context-dependent drawing, the client cannot assume
that it can redraw individual characters and get the same rendering.

• XContestDependentDrawing() returns a Boolean telling whether a fontset
might include context-dependent drawing.

180

Chapter 4: Internationalizing Your Application

User Input

This section has to do with the translation of physical user events into
programmatic character strings or special keyboard data (such as
“backspace”). This kind of work should be done by toolkits. If you can use a
toolkit to manage event processing for you, do so, and blissfully ignore this
section. If you are writing a toolkit text object, or are writing a truly
extraordinary application, then this section is for you.

This section on user input covers these topics:

• “About User Input and Input Methods” presents an overview of user
input and input methods

• “About X Keyboard Support” covers X keyboard support, including
keys, keycodes, keysyms, and composed characters.

• “Input Methods (IMs)” describes opening and closing input methods,
and IM styles.

• “Input Contexts (ICs)” explains an IM styles, IC values, pre-edit and
status attributes, and creating and using ICs.

• “Events Under IM Control” describes differences in processing events
under IM control including XFilterEvent() and LookupString routines.

About User Input and Input Methods

Just as internationalized programs cannot assume that data is in ASCII, they
cannot assume that user input will use any specific keyboard. Keyboards
change from country to country and language to language; internationalized
software should never assume that a certain position on the keyboard is
bound to a certain character, or that a given character will be available as a
single keystroke on all keyboards.

No useful physical keyboard—not even one specifically designed for
multilingual work—could possibly contain a key for every character we
would ever wish to type. Certainly there are characters commonly used in
other areas of the world that are not present on most USA keyboards. So
methods have been invented that provide for input of almost any known
character on even the most naïve keyboards. These schemes are referred to
as input methods (IMs).

User Input

181

Note: IMs should not be confused with the IRIS IM product, the Silicon
Graphics port of the OSF/Motif product.

Input methods vary significantly in design, use, and behavior, but there is a
single API that developers use to access them. The object is for the
application simply to ask for an IM and let the system check the locale and
choose the appropriate IM.

Some IMs are complex; others are very simple. The API is designed to be a
low-level interface, like Xlib. Usually, only toolkit text object authors must
deal with the IM interfaces. However, some applications developers are
unable to use toolkit objects, so the concepts are described here.

Reuse Sample Code

A sample program demonstrating some of the concepts in this section is
given in Chapter 11 of the Xlib Programming Manual, Volume One. Looking
carefully at that code may be easier than starting from scratch.

GL Input

The old GL function qdevice() has a hard-coded view of a keyboard (see
/usr/include/gl/device.h for details). Some flexibility, particularly for Europe, is
available if you queue KEYBD instead of individual keys, but the GL has no
general solution to non-ASCII input. There is no supported way to input
Chinese (for instance) to the old GL.

The OpenGL does not contain input code but leaves that to the operating
environment, which in IRIX means X.

In short, support for internationalized input means a departure from qread().
Under IRIX, that means using mixed-model input, all the more reason to use
a toolkit.

About X Keyboard Support

This section provides some background that may help make the following
sections easier to understand.

182

Chapter 4: Internationalizing Your Application

Keys, Keycodes, and Keysyms

When a client connects to the X server, the server announces its range of
keycodes and exports a table of keysyms. Each key event the client receives has
a single byte keycode, which directly represents a physical key, and a single
byte state, which represents currently engaged modifier keys, such as Shift
or Alt.

Note: The mapping of state bits to modifiers is done by another table
acquired from the server.

Keysyms are well defined, and there has been an attempt to have a keysym
for every engraving one might possibly find on any keyboard, anywhere.
(An engraving is the image imprinted on a physical key.) These are contained
in /usr/include/X11/keysymdef.h. Keysyms represent the engravings on the
actual keys, but not their meanings. The server’s idea of the keysym table
can be changed by clients, and clients may receive KeyMap events when this
remapping happens, but such events don’t happen often.

When a client receives a Key event, it asks Xlib to use the keycode to index
into its keysym table to find a list of keysyms. (This list is usually very short.
Most keys have only one or two engravings on them.) Using the state byte,
Xlib chooses a keysym from the list to find out what was engraved on the key
the user pressed.

At this point, the client can choose to act on the keysym itself (if, for instance,
it was a backspace) or it can ask for a character string represented by the
keysym (or both). Generating such a string is tricky; it is discussed in “Input
Methods (IMs),” below.

Details on X keyboard support can be found in X Window System, Third
Edition, from Digital Press. Details on input methods are also available in
that book, as well as in the Xlib Programming Manual, Volume One.

Composed Characters

There are two ways to compose characters that do not exist on a keyboard:
explicit and implicit. It is common for an application to be modal and switch
between the two. For example, Japanese input of kana is often done via
implicit composition.

User Input

183

Users switch between a mode where input is interpreted as romaji (Latin
characters) and a mode where strokes are all translated to kana.

Furthermore, both styles may operate simultaneously. While an application
is supporting implicit composition of certain characters, other characters
may be composable via explicit composition.

Not every keystroke produces a character, even if the associated keysym
normally implies character text. The event-to-string translation routines (see
“XLookupString(), XwcLookupString(), and XmbLookupString()” in this
section) figure out what result a given set of keystrokes should produce.

Explicit Composition
Explicit composition is requested when the user presses the
Compose key and then types a key sequence that
corresponds to the desired character. For example, to
compose the character ‘ñ’ under some keymaps, you might
press the Compose key and then type “~n”.

Note: The Compose key can be defined by using
xmodmap(1) to map the XK_Multi_key keysym onto
whatever key you want to use as Compose.

Implicit Composition
Implicit composition mimics many existing European
typewriters that have “dead” keys: keys that type a
character but do not advance the carriage. When a special
“dead” key is struck, the system attempts to compose a
character using the next character struck. For example, on a
keyboard that had a diaeresis (¨) and an O, but no Ö, one
would simply strike ‘¨’ and then ‘O’ to compose ‘Ö’.

Implicit composition support usually comes with some
specified way to leave characters uncomposed.

Supported Keyboards

IRIX currently supports 12 keyboard layouts: American, Belgian, Danish,
English, French, German, Italian, Norwegian, Portuguese, Spanish,
Swedish, and Swiss. All are representable in Latin 1; the American keyboard
needs only ASCII.

184

Chapter 4: Internationalizing Your Application

Input Methods (IMs)

Input methods (IMs) are ways to translate keyboard-input events into text
strings. You would use a different input method, for instance, to type on a
USA keyboard in Chinese than to type on the same keyboard in English.
Nobody would build a keyboard suitable for direct input of the roughly
80,000 distinct Chinese characters.

IMs come in two flavors, front-end and back-end. Both types can use identical
application programming interfaces, so we lose no generality by using
back-end methods for our examples here.

To use an IM, follow these steps:

1. Open the IM.

2. Find out what the IM can do.

3. Agree upon capabilities to use.

4. Create input contexts with preferences and window(s) specified (see
“Input Contexts (ICs)” on page 189).

5. Set the input context focus.

6. Process events.

Although all applications go through the same setup when establishing
input methods, the results can vary widely. In a Japanese locale, one might
end up with networked communications with an input method server and a
kanji translation server, with circuitous paths for Key events. But in (say) a
Swiss locale, it is likely that nothing would occur besides a flag or two being
set in Xlib. Since operating in non-Asian locales ends up bypassing almost
all of the things that might make input methods expensive, Western users
are not noticeably penalized for using Asia-ready applications.

Opening an Input Method

XOpenIM() opens an input method appropriate for the locale and modifiers
in effect when it is called. The locale is bound to that IM and cannot be
changed. (But you could open another IM if you wanted to switch later.)
Strings returned by XmbLookupString() and XwcLookupString() are encoded
in the locale that was current when the IM was opened, regardless of current
input context.

User Input

185

The syntax is:

XIM XOpenIM(Display *dpy, XrmDataBase db, char *res_name,
 char *res_class);

The res_name is the resource name of the application, res_class is the resource
class, and db is the resource database that the input method should use for
looking up resources private to itself. Any of these can be NULL.

So opening an IM is easy. For example:

Example 4-3 Opening an IM

XIM im;
im = XOpenIM(dpy, NULL, NULL, NULL);
if (im == NULL)
 exit_with_error();

XOpenIM() finds the IM appropriate for the current locale. If
XSupportsLocale() has returned good status (see “Initialization for Xlib
Programming”) and XOpenIM() fails, something is amiss with the
administration of the system.

XSetLocaleModifiers() determines configure locale modifiers. The local host X
locale modifiers announcer - XMODIFIERS environment variable is
appended to the modifier list to provide default values on the locale host.
The modifier list argument is a null-terminated string of the form:

“{@category =value }”

For example, if you want to connect Input Method Server - “xwnmo,” set
modifiers “_XWNMO” as follows:

• XSetLocaleModifiers(“@im=_XWNMO”);

or

• set environment variable “XMODIFIERS=@im=_XWNMO” and
XSetLocaleModifiers(““); .

Note: The library routines are not prepared for the possibility of
XSupportsLocale() succeeding and XOpenIM() failing, so it’s up to
application developers to deal with such an eventuality. (This circumstance

186

Chapter 4: Internationalizing Your Application

could occur, for example, if the IM died after XSupportsLocale() was called.)
This topic is under some debate in the MIT X consortium. If
XSetLocaleModifiers() is wrong, XOpenIM() will fail.

Most of the complexity associated with IM use comes from configuring an
input context to work with the IM. Input contexts are discussed in “Input
Contexts (ICs)” on page 189.

To close an input method, call XCloseIM().

IM Styles

If the application requests it, an input method can often supply status
information about itself. For example, a Japanese IM may be able to indicate
whether it is in Japanese input mode or romaji input mode. An input method
can also supply pre-edit information, partial feedback about characters in the
process of being composed. The way in which an IM deals with status and
pre-edit information is referred to as an IM style. This section describes styles
and their naming.

Root Window

The Root Window style has a pre-edit area and a status area in a window
owned by the IM as a descendant of the root. The application does not
manage the pre-edit data, the pre-edit area, the status data, or the status area.
Everything is left to the input method to do in its own window, as illustrated
in Figure 4-1:

User Input

187

Figure 4-1 Root Window Input

Off-the-Spot

The Off-the-Spot style places a pre-edit area and a status area in the window
being used, usually in reserved space away from the place where input
appears. The application manages the pre-edit area and status area, but
allows the IM to update the data there. (The application provides
information regarding foreground and background colors, fonts, and so on.)
A window using Off-the-Spot input style might look like that shown in
Figure 4-2:

Status Pre-edit information
IM window

Main body of window; text input occurs here.

root window

Application window

188

Chapter 4: Internationalizing Your Application

Figure 4-2 Off-the-Spot Input

Over-the-Spot

The Over-the-Spot style involves the IM creating a small, pre-edit window
over the point of insertion. The window is owned and managed by the IM
as a descendant of the root, but it gives the user the impression that input is
being entered in the right place; in fact, the pre-edit window often has no
borders and is invisible to the user, giving the appearance of On-the-Spot
input. The application manages the status area as in Off-the-Spot, but
specifies the location of the editing so that the IM can place pre-edit data
over that spot.

On-the-Spot

On-the-Spot input is by far the most complex for the application developer.
The IM delivers all pre-edit data via callbacks to the application, which must
perform in-place editing—complete with insertion and deletion and so on.
This approach usually involves a great deal of string and text rendering
support at the input generation level, above and beyond the effort required
for completed input. Since this may mean a lot of updating of surrounding
data or other display management, everything is left to the application.
There is little chance an IM could ever know enough about the application

Pre-edit informationStatus

Main body of window; text input occurs here.

root window

Application window

User Input

189

to be able to help it provide user feedback. The IM therefore provides status
and edit information via callbacks.

Done well, this style can be the most intuitive one for a user.

Setting IM Styles

A style describes how an IM presents its pre-edit and status information to
the user. An IM supplies information detailing its presentation capabilities.
The information comes in the form of flags, OR’ed together. The flags to use
with each style are:

Root Window XIMPreeditNothing | XIMStatusNothing

Off-the-Spot XIMPreeditArea | XIMStatusArea

Over-the-Spot XIMPreeditPosition | XIMStatusArea

On-the-Spot XIMPreeditCallbacks | XIMStatusCallbacks

For example, if you wanted a style variable to match an Over-the-Spot IM
style, you could write:

XIMStyle over = XIMPreeditPosition | XIMStatusArea;

If an IM returns XIMStatusNone (not to be confused with XIMStatusNothing),
it means the IM will not supply status information.

Using Styles

An input method supports one or more styles. It’s up to the application to
find a style that is supported by both the IM and the application. If several
exist, the application must choose. If none exist, the application is in trouble.

Input Contexts (ICs)

An input method may be serving multiple clients, or one client with multiple
windows, or one client with multiple input styles on one window. The
specification of style and client/IM communication is done via input
contexts. An input context is simply a collection of parameters that together
describe how to go about receiving and examining input under a given set
of circumstances.

190

Chapter 4: Internationalizing Your Application

To set up and use an input context:

1. Decide what styles your application can support.

2. Query the IM to find out what styles it supports.

3. Find a match.

4. Determine information that the IC needs in order to work with your
application.

5. Create the IC.

6. Employ the IC.

Find an IM Style

The IM may be able to support multiple styles—for example, both
Off-the-Spot and Root Window. The application may be able to do, in order
of preference, Over-the-Spot, Off-the-Spot, and Root Window. The
application should determine that the best match in this case is Off-the-Spot.

First, discover what the IM can do, then set up a variable describing what the
application can do:

XIMStyles *IMcando;
XIMStyle clientCanDo; /* note type difference */
XIMStyle styleWeWillUse = NULL;

XGetImValues(im, XNQueryInputStyle, &IMcando, NULL);

clientCanDo =
/*none*/ XIMPreeditNone | XIMStatusNone |
/*over*/ XIMPreeditPosition | XIMStatusArea |
/*off*/ XIMPreeditArea | XIMStatusArea |
/*root*/ XIMPreeditNothing | XIMStatusNothing;

A client should always be able to handle the case of
XIMPreeditNone | XIMStatusNone, which is likely in a Western locale. To the
application, this is not very different from a RootWindow style, but it comes
with less overhead.

Once we know what the application can handle, we look through the IM
styles for a match:

for(i=0; i<IMcando->count_styles; i++) {
 XIMStyle tmpStyle;

User Input

191

 tmpStyle = IMcando->support_styles[i];

 if (((tmpStyle & clientCanDo) == tmpStyle) &&
 prefer(tmpStyle, styleWeWillUse))
 styleWeWillUse = tmpStyle;
}

if (styleWeWillUse = NULL)
 exit_with_error();
XFree(IMcando);

/* styleWeWillUse is set, which is what we were after */

The prefer() routine simply applies some heuristic to application preference.

IC Values

There are several pieces of information an input method may require,
depending on the input context and style chosen by the application. The
input method can acquire any such information it needs from the input
context, ignoring any information that does not affect the style or IM.

A full description of every item of information available to the IM is
supplied in X Window System, Third Edition. We include only a brief list here:

• XNClientWindow specifies to the IM which client window it can display
data in or create child windows in. It is set once and cannot be changed.

• XNFilterEvents is an additional event mask for event selection on the
client window.

• XNFocusWindow specifies the focus window. This specifies which
window gets the processed (composed) Key events.

• XNGeometryCallback specifies a geometry handler that is called if the
client allows an IM to change the geometry of the window.

• XNInputStyle specifies the style for this IC.

• XNResourceClass and XNResourceName specify the resource class and
name to use when the IM looks up resources that vary by IC.

• XNStatusAttributes and XNPreeditAttributes specify to an IM the
attributes to be used for any status and pre-edit areas. The attributes are
nested, variable-length lists.

192

Chapter 4: Internationalizing Your Application

Pre-edit and Status Attributes

When an IM is going to provide state, it needs some simple X information
with which to do its work. For example, if an IM is going to draw status
information in a client window in an Off-the-Spot style, it needs to know
where the area is, what color and font to render text in, and so on. The
application gives this data to the IC for use by the IM.

As with the “IC Values” section, full details are available in X Window
System, Third Edition.

• XNArea specifies a rectangle to be used as a status or pre-edit area.

• XNAreaNeeded specifies the rectangle desired by the attribute writer.
Either the application or the IM may provide this information,
depending on circumstances.

• XNBackgroundPixmap specifies a pixmap to be used for the background
of windows the IM creates.

• XNColormap specifies the colormap to use.

• XNCursor specifies the cursor to use.

• XNFontSet specifies the fontset to use for rendering text.

• XNForeground and XNBackground specify the colors to use for
rendering.

• XNLineSpacing specifies the line spacing to be used in the pre-edit
window if more than one line is used.

• XNSpotLocation specifies where the next insertion point is, for use by
XIMPreeditPosition styles.

• XNStdColormap specifies that the IM should use XGetRGBColormaps()
with the supplied property (passed as an Atom) in order to find out
which colormap to use.

User Input

193

Creating an Input Context

Creating an input context is a simple matter of calling XCreateIC() with a
variable-length list of parameters specifying IC values. Here’s a simple
example that works for the root window. An example follows.

Example 4-4 Creating an Input Context with XCreateIC()

XVaNestedList arglist;
XIC ic;

arglist = XVaCreateNestedList(0, XNFontSet, fontset,
 XNForeground,
 WhitePixel(dpy, screen),
 XNBackground,
 BlackPixel(dpy, screen),
 NULL);

ic = XCreateIC(im, XNInputStyle, styleWeWillUse,
 XNClientWindow, window, XNFocusWindow, window,
 XNStatusAttributes, arglist,
 XNPreeditAttributes, arglist, NULL);
XFree(arglist);

if (ic == NULL)
 exit_with_error();

Using the IC

A multi-window application may choose to use several input contexts. But
for simplicity, we assume that the application just wants to get to the
internationalized input using one method in one window.

Using the IC is a matter of (a) making sure we check events the IC wants and
(b) setting IC focus. If you are setting up a window for the first time, you
know the event mask you want, and you can use it directly. If you are
attaching an IC to a previously configured window, you should query the
window and add in the new event mask.

Example 4-5 Using the IC

unsigned long imEventMask;

XGetWindowAttributes(dpy, win, &winAtts);
XGetICValues(ic, XNFilterEvents, &imEventMask, NULL);

194

Chapter 4: Internationalizing Your Application

imEventMask |= winAtts.your_event_mask;
XSelectInput(dpy, window, imEventMask);
XSetICFocus(ic);

At this point, the window is ready to be used.

Events Under IM Control

Processing events under input method control is almost the same in X11R6
as it was under R4 and before. There are two essential differences:
XFilterEvent() and the LookupString routines.

XFilterEvent()

Every event received by your application should be fed to the IM via
XFilterEvent(), which returns a value telling you whether or not to disregard
the event. IMs asks you to disregard the event if they have extracted the data
and plan on giving it to you later, possibly in some other form. All events
(not just KeyPress and KeyRelease events) go to XFilterEvent().

If we compacted the event processing into a single routine, a typical event
loop would look something like the following example.

Example 4-6 Event Loop

Xevent event;

while (TRUE) {
 XNextEvent(dpy, &event);

 if (XFilterEvent(&event, None))
 continue;

 DealWithEvent(&event);
}

XLookupString() , XwcLookupString() , and XmbLookupString()

When using an input method, you should replace calls to XLookupString()
with calls to XwcLookupString() or XmbLookupString(). The MB and WC
versions have very similar interfaces. In the examples below, we arbitrarily
use XmbLookupString(), but the examples apply to both versions.

User Input

195

There are two new situations to deal with:

1. The string returned may be long.

2. There may be an interesting keysym returned, an interesting set of
characters returned, both, or neither.

Dealing with the former is merely a matter of maintaining an arena, as in the
example below.

To tell the application what to pay attention to for a given event,
XmbLookupString() returns a status value in a passed parameter, equal to one
of the following:

• XLookupKeysym, which indicates the keysym should be checked

• XLookupChars, which indicates a string has been typed or composed

• XLookupBoth, which means both of the above

• XLookupNone, which means neither is ready for processing

• XBufferOverflow, which means the supplied buffer is too
small—XmbLookupString() should be called again with a bigger buffer

XmbLookupString() also returns the length of the string in question. Note that
XmbLookupString() returns the length of the string in bytes, while
XwcLookupString() returns the length of the string in characters.

The example below should help show how these functions work. Most event
processors perform a switch() on the event type; assume we have done that,
and we have received a KeyPress event.

Example 4-7 KeyPress Event

case KeyPress:
{
 Keysym keysym;
 Status status;
 int buflength;
 static int bufsize = 16;
 static char *buf = NULL;

 if (buf == NULL) {
 buf = malloc(bufsize);
 if (buf < 0) StopSequence();

196

Chapter 4: Internationalizing Your Application

 }

 buflength = XmbLookupString(ic, &event, buf, bufsize,
 &keysym, &status);

 /* first, check to see if that worked */
 if (status == XBufferOverflow) {
 buf = realloc(buf, (bufsize = buflength));
 buflength = XmbLookupString(ic, &event, buf, bufsize,
 &keysym, &status);
 }

 /* We have a valid status. Check that */
 switch(status) {
 case XLookupKeysym:
 case XLookupBoth:
 DealWithKeysym(keysym);
 if (status == XLookupKeysym)
 break; /* wasn’t XLookupBoth */
 case XLookupChars:
 DealWithString(buf, buflength);
 case XLookupNone:
 break;
 } /* end switch(status) */

} /* end case KeyPress segment */
break; /* we are in a switch(event.type) statement */

GUI Concerns

It shouldn’t be significantly more difficult to internationalize an application
with a graphical user interface than an application without such an interface,
but there are a few further issues that must be addressed. These include:

• “X Resources for Strings” covers labeling objects using X resources.

• “Layout” describes creating layouts that are usable after localization.

• “Icons” explains some concerns for localizing icons.

X Resources for Strings

Resource lookup mechanisms in Xlib as well as in toolkits monitor locale
environment variables when locating resource files. For string constants that

GUI Concerns

197

are used within toolkit objects, resources provide a simpler solution than do
message catalogs.

Some common objects that should definitely get their labels from resources:

• Labels

• Buttons

• Menu items

• Dialog notices and questions

Any object that employs some sort of text label should be labeled via
resources. Since the localizer wants to provide strings for the local version of
the application, the app-defaults file for the application should specify every
reasonable string resource. Reference pages should identify all localizable
string resources.

Localizers of an application provide a separate resource file for each locale
that the application runs in.

Layout

Layout management is of special interest when you cannot predict how
large a button or other label might be. The nature of the problem of layout
composition and management does not change, but one must construct the
layout management without full knowledge of the final appearance.

It’s worth noting that localization efforts can be assumed to be “reasonable”
in some sense. For example, X resources have always allowed a user to
specify an extremely large font for buttons, but applications correctly choose
to let such users live with the results. But it’s not always that clear what is
reasonable and what isn’t; we don’t always know what will be difficult to
translate succinctly in some locale. So while developers need not provide for
all combinations of resource specifications, they must take the responsibility
to make the application localizable.

198

Chapter 4: Internationalizing Your Application

Three main approaches to the layout problem include:

• Dynamic Layout

• Constant Layout

• Localized Layout

Dynamic Layout

Most toolkits provide form, pane, rowcolumn, rubberboard, or other layout
objects that will calculate layout depending on the “natural” (localized) size
of the objects involved. Most use some hints provided by the developer that
can regulate this layout. For example, some IRIS IM widgets providing these
services are XmForm, XmPanedWindow, and XmRowColumn.

Dynamic layout is probably the simplest way to prevent localization
difficulties.

Note: The IRIS IM product is the Silicon Graphics port of the OSF/Motif
product, and should not be confused with IM, the abbreviation for Input
Methods.

Constant Layout

Under certain circumstances, an application may insist on having a
predefined layout. When this is so, the application must provide objects that
are so constructed as to allow localization. A “Quit” button that just barely
allows room for the Latin 1 string “Quit” is not likely to suffice when
localizers attempt to fit their translations into that small space.

In order to enforce constant layout, the developer incurs the heavy
responsibility of making sure the objects are localizable. This means a lot of
investigation; the “there, that ought to be enough” approach is chancy at
best.

Localized Layout

Some toolkits provide for layout control by run-time reading of strings or
other data files. Applications that use such toolkits can easily finesse the
layout issue by providing capability for localization of the layout as well as
the contents of the layout. This provides each localizer maximum freedom in

Popular Encodings

199

presenting the application to the local users. The application developer is
responsible for providing localizers with instructions and mechanisms
necessary to produce layout data.

IRIS IM Localization with editres

IRIX provides an interactive method of laying out widgets for IRIS IM and
Xaw (the Athena Widget Set): a utility called editres. With editres, you can
construct and edit resources and see how your widgets will look on the
screen; the program even generates a usable app-defaults file for you. But
note that if you hard-code any resources into your IRIS IM code, you won’t
be able to edit them using this method.

Icons

Icons attempt to be fairly generic representations of their antecedents.
Unfortunately, it is very difficult for a designer to know what is generic or
recognizable in other cultures. Therefore, it is important that any
pictographic representations used by an application be localizable.

Graphic representations can be stored as strings representing X bitmaps, as
names of data files containing pictographs, or in whatever manner the
developer thinks best, so long as the developer provides a way for the
localizer to produce and deliver localized pictographs.

Popular Encodings

This section discusses three encodings that are commonly used:

• “The ISO 8859 Family” explains the ISO 8859 family of encodings.

• “Asian Languages” describes Asian language encodings.

• “ISO 10646 and Unicode” covers the ISO 10646 and Unicode.

200

Chapter 4: Internationalizing Your Application

The ISO 8859 Family

American English is easily representable in 7-bit ASCII. Most other
languages are not. For example, the character é is not in ASCII.

Most Western European languages are representable in 8-bit ISO 8859-1,
which is commonly known as Latin 1. Latin 1 is a superset of ASCII
including characters used by several Western European languages (such as
ö, £, ñ, ç, ¿).

ISO 8859 comes in nine parts, many of which overlap; all are supersets of
ASCII.

The ISO 8859 Character Sets are shown in Table 4-4.

Table 4-4 ISO 8859 Character Sets

Character set Common name Languages supported

8859-1 Latin 1 Danish, Dutch, English, Faeroese, Finnish,
French, German, Icelandic, Irish, Italian,
Norwegian, Portuguese, Spanish, Swedish

8859-2 Latin 2 Albanian, Czech, English, German,
Hungarian, Polish, Rumanian,
Serbo-Croatian, Slovak, Slovene

8859-3 Latin 3 Afrikaans, Catalan, Dutch, English,
Esperanto, German, Italian, Maltese,
Spanish, Turkish

8859-4 Latin 4 Danish, English, Estonian, Finnish, German,
Greenlandic, Lapp, Latvian, Lithuanian,
Norwegian, Swedish

8859-5 Latin/Cyrillic Bulgarian, Byelorussian, English,
Macedonian, Russian, Serbo-Croatian,
Ukrainian

8859-6 Latin/Arabic Arabic, English (see ISO 8859-6 specification)

8859-7 Latin/Greek English, Greek (see ISO 8859-7 specification)

Popular Encodings

201

IRIX contains over 500 Latin 1 fonts, as well as a few fonts for each of the
other 8859-encoded character sets except 8859-6. Currently, IRIX contains no
fonts for use with the 8859-6 character set.

To get the list of ISO-8859 fonts, enter the following:

xlsfonts

Or you can restrict the amount of output, for example, by typing:

xlsfonts ‘*8859-2’

To see the encoding, use the xfd command. For example:

xfd -fn -sgi-screen-medium-r-normal--9-90-72-72-m-60-iso8859-1

For more information on xlsfonts and xfd, and installing and using fonts,
refer to Chapter 3, “Working With Fonts.”

Asian Languages

Asian languages are commonly pictographic and employ many thousands
of characters for their representation. For example, Japanese and Korean can
be practically encoded in 16 bits. Daily-use Chinese can also be, but archives
and scholars frequently need more; Chinese is often encoded with up to four
bytes per character.

Some Standards

Various Asian character sets have been developed, some of which are
considered standard. Encodings for these sets are less standardized. Asian

8859-8 Latin/Hebrew English, Hebrew (see ISO 8859-8
specification)

8859-9 Latin 5 Danish, Dutch, English, Finnish, French,
German, Irish, Italian, Norwegian,
Portuguese, Spanish, Swedish, Turkish

Table 4-4 (continued) ISO 8859 Character Sets

Character set Common name Languages supported

202

Chapter 4: Internationalizing Your Application

character sets usually require larger-than-byte character types like those
described in “Multibyte Characters.” Table 4-5 lists some of these standard
character sets. Note that some of these character sets have multiple
associated codesets, usually designated by appending the year the codeset
was adopted to the character set name. (For example, JIS X 208-1983 is
different from JIS X 208-1990.)

EUC

EUC is Extended Unix Code, an encoding methodology that supports
concurrent use of four codesets in one encoding. It employs two special
“shift state” bytes:

ss1 = 0x8e
ss2 = 0x8f

These are used to identify codesets within a string. The EUC encoding
scheme uses the following patterns to indicate which codeset is in use at any
given time:

Codeset #1: 0 xxxxxxx
Codeset #2: 1 xxxxxxx [1 xxxxxxx ...]
Codeset #3: ss1 1 xxxxxxx [1 xxxxxxx ...]
Codeset #4: ss2 1 xxxxxxx [1 xxxxxxx ...]

Table 4-5 Character Sets for Asian Languages

Language Character Set Standards Support

Japanese JIS X 0201.1976-0

JIS X 0208.1983-0

JIS X 0212.1990-0

Katakana

Kanji, kana, Latin, Greek,
Cyrillic, symbols, others

Supplemental kanji, others

Chinese GB2312.1980-0

Korean KSC5601.1987-0 Hangul

Taiwan CNS11643

Popular Encodings

203

So if ss1 appears in a string, it means that the next character—however many
bytes long it is—should be interpreted as a character from codeset #3. (So if
there are multiple characters in a row from codeset #3, each one is preceded
by ss1.) Similarly, ss2 indicates that the following character belongs to
codeset #4. If any other byte whose high bit is 1 appears in the string
(without being preceded by ss1 or ss2), it is interpreted as part of a character
from codeset #2.

In EUC, codeset #1 is always ASCII. The other codesets are implementation-
or user-defined.

EUC implementations exist (but are not standardized) for all ideographic
Asian languages.

ISO 10646 and Unicode

ISO and the Unicode Consortium have jointly developed a character set
designed to cover almost every character normally used by any language in
the world. ISO calls this ISO IS 10646. The Unicode Consortium embraces a
subset of 10646, called the Basic Multilingual Plane (BMP) of 10646, and calls
it Unicode. The only characters defined in either standard are the characters
in the BMP. The characters have 2- and 4-byte representations.

It appears that ISO 10646 will grow significantly in acceptance, but
widespread use is still some years away.

This appendix alphabetically lists
ISO 3166 country codes.

ISO 3166 Country Names and
Abbreviations

Appendix A

207

Appendix A

A. ISO 3166 Country Names and Abbreviations

Table A-1 lists the ISO 3166 country codes, alphabetized by country name
(the table reads from left to right, and top to bottom).

Table A-1 ISO 3166 Country Codes

Country Name Code Country Name Code Country Name Code

Afghanistan AF Albania AL Algeria DZ

American Samoa AS Andorra AD Angola AO

Anguilla AI Antarctica AQ Antigua and
Barbuda

AG

Argentina AR Aruba AW Australia AU

Austria AT Bahamas BS Bahrain BH

Bangladesh BD Barbados BB Belgium BE

Belize BZ Benin BJ Bermuda BM

Bhutan BT Bolivia BO Botswana BW

Bouvet Island BV Brazil BR British Indian
Ocean Territory

IO

Brunei
Darussalam

BN Bulgaria BG Burkina Faso BF

Burma BU Burundi BI Byelorussia BY

Cameroon CM Canada CA Cape Verde CV

Cayman Islands KY Central African
Republic

CF Chad TD

Chile CL China CN Christmas Island CX

Cocos Islands CC Colombia CO Comoros KM

208

Appendix A: ISO 3166 Country Names and Abbreviations

Congo CG Cook Islands CK Costa Rica CR

Cote D'Ivoire CI Cuba CU Cyprus CY

Czech Republic CS Denmark DK Djibouti DJ

Dominica DM Dominican
Republic

DO East Timor TP

Ecuador EC Egypt EG El Salvador SV

Equatorial
Guinea

GQ Ethiopia ET Falkland Islands FK

Faroe Islands FO Fiji FJ Finland FI

France FR French Guiana GF French Polynesia PF

French Southern
Territories

TF Gabon GA Gambia GM

Germany DE Ghana GH Gibraltar GI

Greece GR Greenland GL Grenada GD

Guadalupe GP Guam GU Guatemala GT

Guinea-Bissau GW Guinea GN Guyana GY

Haiti HT Heard and
McDonald
Islands

HM Honduras HN

Hong Kong HK Hungary HU Iceland IS

India IN Indonesia ID Iran IR

Iraq IQ Ireland IE Israel IL

Italy IT Jamaica JM Japan JP

Jordan JO Kampuchea KH Kenya KE

Kiribati KI Korea KP or
KR

Kuwait KW

Table A-1 (continued) ISO 3166 Country Codes

Country Name Code Country Name Code Country Name Code

209

Laos LA Lebanon LB Lesotho LS

Liberia LR Libya LY Liechtenstein LI

Luxembourg LU Macau MO Madagascar MG

Malawi MW Malaysia MY Maldives MV

Mali ML Malta MT Marshall Islands MH

Martinique MQ Mauritania MR Mauritius MU

Mexico MX Micronesia FM Monaco MC

Mongolia MN Montserrat MS Morocco MA

Mozambique MZ Namibia NA Nauru NR

Nepal NP Netherlands
Antilles

AN Netherlands NL

Neutral Zone NT New Caledonia NC New Zealand NZ

Nicaragua NI Nigeria NG Niger NE

Niue NU Norfolk Island NF Northern
Mariana Islands

MP

Norway NO Oman OM Pakistan PK

Palau PW Panama PA Pangaea GE

Papua New
Guinea

PG Paraguay PY Peru PE

Philippines PH Pitcairn PN Poland PL

Portugal PT Puerto Rico PR Qatar QA

Quebec QC Reunion RE Romania RO

Rwanda RW Saint Kitts and
Nevis

KN Saint Lucia LC

Saint Vincent and
the Granadines

VC Samoa WS San Marino SM

Table A-1 (continued) ISO 3166 Country Codes

Country Name Code Country Name Code Country Name Code

210

Appendix A: ISO 3166 Country Names and Abbreviations

Sao Tome and
Principe

ST Saudi Arabia SA Senegal SN

Seychelles SC Sierra Leone SL Singapore SG

Solomon Islands SB Somalia SO South Africa ZA

Spain ES Sri Lanka LK St. Helena SH

St. Pierre and
Miquelon

PM Sudan SD Suriname SR

Svalbard and Jan
Mayen Islands

SJ Swaziland SZ Sweden SE

Switzerland CH Syrian Arab
Republic

SY Taiwan TW

Tanzania TZ Thailand TH Togo TG

Tokelau TK Tonga TO Trinidad and
Tobago

TT

Tunisia TN Turkey TR Turks and Caicos
Islands

TC

Tuvalu TV Uganda UG Ukraine UA

United Arab
Emirates

AE United Kingdom GB United States
Minor Outlying
Islands

 UM

Uruguay UY Vanuatu VU Vatican City State VA

Venezuela VE Viet Nam VN Virgin Islands
(British)

VG

Virgin Islands
(USA)

VI Wallis and
Futuna Islands

WF Western Sahara EH

Yemen YE or
YD

Yugoslavia
(Former)

YU Zaire ZR

Zambia ZM Zimbabwe ZW

Table A-1 (continued) ISO 3166 Country Codes

Country Name Code Country Name Code Country Name Code

211

C

calling process, suspend, 3
catalogs. See message catalogs
character sets. See internationalization, character sets
Chile country code, 207
China country code, 207
C local value, 147
codes, country, 207
codesets. See internationalization, codesets
Colombia country code, 207
conventions, syntax, xxi
country codes, 207-210
Courier font, 117
ctype

character classification, 160

D

data structure. See IPC message queues
deadlocks, 107
Denmark country code, 208

E

editres, 199
Egypt country code, 208
empty strings, 144

Numbers

8-bit clean codesets, 149

A

access permissions, file, 97
Adobe Font Metric files, 123
arenas

example, 88
IPC, 1
IRIX IPC, 82

Argentina country code, 207
ASCII strings. See internationalization

codesets, ASCII
Australia country code, 207
Austria country code, 207

B

barriers
allocating, 87

Belgium country code, 207
Brazil country code, 207
BSD and IPC, 1

Index

212

Index

encodings. See internationalization, encodings
errno variable, 9
EUC encoding

Chinese, 177
German, 177
Japanese, 176

F

fcntl(), 96, 99
file and record locking, 95-110

access permissions, 97
across systems, 110
advisory, 95, 109
advisory locking, 97
changing lock types, 102
deadlocks, 107
definitions, 96
efficiency, comparative, 109
exclusive locks, 96
F_GETLK, 105
F_SETLK, 104
F_TEST, 106
F_ULOCK, 105
F_UNLCK, 105
failure, 102
fcntl(), 99
forking, 107
lockf(), 100
lock information, 105
locking a file, 99
lseek(), 101
mandatory, 95, 109

assuring, 108
mandatory locking, 97
multiple read locks, 105
opening files, 98
order of lock removal, 105
overview, 95-96

file and record locking
promoting a lock, 102
read locks, 96
removing locks, 101
setting locks, 101
sharing locks, 96
write locks, 96

file typing rules, 169
LEGEND, 170
MENUCMD, 170

Finland country code, 208
fonts, 113-131

accessing, 118
adding, 123-128

bitmap font, 124-127
font files, 123
font metric file, 127
outline font, 128-130
Utopia Regular font files, 123

Adobe Font Metric files, 123
aliases, 119
character, defined, 115
display characters, 120
downloading, 130
images, 115
installing, 122-128
missing fonts, 130
names, 117, 119
opening a shell window, 121
path, 122
pixels, 115
point size, 116
PostScript printers, 130
programming access, 118
resolution and size, 115
scaling, 120
Speedo format, 123
Type 1 font, 123, 130-131
typeface, defined, 115
using APIs, 118

213

Index

fonts
Utopia fonts, 130
viewing, 120
virtual memory, 131
xfd command, 120
X Window System, 117, 119-128

fontsets, 176-178
creating, 177
specifying, 176
using, 178

forking, 107
France country code, 208

G

Germany country code, 208

H

Hong Kong country code, 208

I

i18n. See internationalization
input methods. See internationalization, input

methods
internationalization, 135-203

character classification, 160
character sets

and X, 174
defined, 149

codesets
ASCII, 149, 151
defined, 149

composing characters, 182
ctype, 160
date formats, 159

internationalization
defined, 137
eight-bit cleanliness, 149
encodings

about, 146
and filesystem, 148
Asian languages, 201
defined, 149
EUC, 202
European languages, 200
ISO 10646, 203
ISO 8859, 200
Latin 1, 200
multibyte, 151
Unicode, 203
wchar, 151, 154

file I/O, 155
file typing rules, 169
fmtmsg(), 169
functions, 161
GL input, 181
GUIs, 196-199

composition, 197
editres, 199
icons, 199
layout, 197
localized layout, 198
object labels, 197
text labels, 197

icons, 199
initializing Xlib, 175
input contexts, 189-194

creating, 193
styles, 190
using, 193
values, 191

input methods, 184-196
about, 180
event handling, 194
Off-the-Spot style, 187
On-the-Spot style, 188

214

Index

internationalization
opening, 184
Over-the-Spot style, 188
root window style, 186
setting styles, 189
status, 186
strings, 194
using styles, 189
XFilterEvent(), 194
XLookupString(), 194

languages
Asian, 201
in locale strings, 146
Japanese, 201
Latin

localeconv(), 159
locales. See locales
macros, 161
message catalogs, 161
MNLS

fmtmsg(), 169
message catalogs. See message catalogs, MNLS
pfmt(), 167

monetary formats, 158
multibyte characters

about
converting, 153
size of, 153
string length, 153
using, 151

multilingual support, 147
numerical formats, 158
pfmt(), 167
printf(), 158, 171
regular expressions, 161
setlocal(), 144
setting locale, 142
signed chars, 150
sorting rules, 156
standards, 139
strings, 161

internationalization
territories, 146
time formats, 159
Unicode, 203
user input, 180

application programming, 180
text objects, 180
toolkit text object, 180

wide characters
about, 151
converting, 155

XFontSetExtents(), 179
XPG/3

message catalogs. See message catalogs
regular expressions, 161

X Window System
about, 173
changes, 173
character sets, 174
EUC encoding, 176
fontsets, 176
keyboard support, 182-183
limitations, 173
resource names, 175
string resources, 196
vertical text, 174
XFontSetExtents, 179
Xlib changes, 174

Inter-Process Communication. See IPC
IPC

arenas, 1, 82
barriers, 87
BSD-style, 1
IPC_CREAT, 5, 61
IPC_EXCL, 5, 34, 38, 65
IPC_NOWAIT, 20, 30
IPC_PRIVATE, 5, 7, 33
IPC_RMID, 13
IPC_SET, 13
IPC_STAT, 13
ipcs command, 33, 61

215

Index

IPC
IRIX arenas, 82
IRIX shared memory, 87
IRIX-style, 1
keys, 1, 5
message operation permissions, 7
message operations, 3, 5
message queues, 3, 3-5

controlling, 6
creating, 5, 6
data structure, 4
getting, 6
maximum number, 9

messages, 2-25
automatic truncating, 20
errno variable, 9
limit total number, 19
msgctl(), 3, 6, 12

example, 13
msgget(), 3, 5, 6

example, 9
msgrcv(), 18, 20

example, 21
msgsnd(), 18, 19

example, 21
receiving, 18, 20
sending, 18, 19

MSG_NOERROR, 20
MSG_R, 7
MSG_W, 7
msgctl(), 3, 6, 12
msgflg(), 5, 8
msgget(), 3, 5, 6
MSGMNI, 9
msgrcv(), 18, 20
msgsnd(), 18, 19
MSGTQL, 19
msqid(), 3
parallel programming, 82
portability, 1

IPC
removing facilities, 30
semaphores, 29-56

arrays of operations, 31
blocking operations, 30
control commands, 36
controlling, 34, 37, 41
creating, 30, 33
decrementing, 30
getting, 33, 35
identifiers, 32
incrementing, 30
maximum number allowed, 29
nonblocking operations, 30
numbering, 31
number of, limits, 37
operation permissions, 35
operations, 52

limits, 53
ownership, 30
semctl(), 30, 34

example, 43
semget(), 29, 33, 35

example, 38
semop(), 30, 31, 52

example, 54
set structure, 32
testing values, 30
undo structures, 31

semctl(), 30, 34, 37, 41
semget(), 29, 33, 35
semid(), 32
SEMMNI, 37
SEMMNS, 37
SEMMSL, 29, 37
semop(), 30, 31, 52
SEMOPM, 53
setting message permissions, 8
shared memory, 58-82

attaching, 59, 76

216

Index

IPC
control commands, 64
controlling, 59, 62, 69
creating, 61, 63
detaching, 59, 76, 77
getting, 61, 62
number of segments, limit, 65
operation permissions, 63
shmat(), 59, 76

example, 78
shmctl(), 59, 62, 69

example, 70
shmdt(), 59, 76, 77

example, 78
shmget(), 61, 62

example, 65
size, limits, 65
using, 59

shmat(), 59, 76
shmctl(), 59, 62, 69
shmdt(), 59, 76, 77
shmget(), 61, 62
SHMMAX, 65
SHMMIN, 65
SHMMNI, 65
sockets, 1
spinlocks, 85
suspending execution, 30
SVR4-style, 1, 2-82
System V-style, 2-82
types, 1

ipcs command, 5
Iran country code, 208
Ireland country code, 208
IRIX and IPC, 1, 87
ISO 3166 Country Codes, 207-210
Israel country code, 208
Italy country code, 208

J

Japan country code, 208

K

Kenya country code, 208
Korea country code, 208

L

l10n. See localization
languages, ISO. See internationalization, encodings
languages, Latin. See internationalization, encodings
Laos country code, 209
LC_ALL, 143
LC_COLLATE, 143
LC_CTYPE, 143
LC_MESSAGES, 143
LC_MONETARY, 143
LC_NUMERIC, 143
LC_TIME, 143
LEGEND, 170
locales, 142-148

categories, 143
C locale value, 147
collation, 158
data location, 146
date formats, 159
defined, 137
empty strings, 144
encoding, 146
languages, 146
location of data, 146
modifiers, 146
monetary formats, 158
naming conventions, 146

217

Index

locales
nonempty strings, 145
numerical formats, 158
setlocale(), 142
setting current, 142
sorting rules, 156
territories, 146
time formats, 159

localization
defined, 137
empty strings, 144
nonempty strings, 145

lockf(), 96, 100
locking, file and record. See file and record locking
lock removal, order, 105
log file warning messages, 131
lp log file warning messages, 131
lseek(), 101

M

Macau country code, 209
memory, shared. See IPC
MENUCMD, 170
message catalogs, 161-172

closing, 162
file typing rules, 169
incompatibilities, 162
locating, 164
MNLS

fmtmsg(), 169
pfmt(), 167
pfmt() flags, 167
pfmt() format strings, 168
strings, 169
using, 166

NLSPATH, 164
opening, 162

message catalogs
reading, 163
specifying, MNLS, 166
XPG/3

about, 162
compiling, 165
creating, 164
using, 163

message operations
blocking, 3
nonblocking, 3

message queue identifier, 3
messages. See IPC
Mexico country code, 209
MNLS

Also see message catalogs
message catalogs, 166-170

monitor resolution, 115
msgctl(), 3, 6, 12
msgget(), 3, 5, 6
msgrcv(), 18, 20
msgsnd(), 18, 19
msqid(), 3
multibyte characters. See internationalization,

multibyte characters
multilingual support, 147
multiprocessor systems, 87

N

names, country, 207
nationalized software, 138
New Zealand country code, 209
Nigeria country code, 209
NLSPATH, 164

218

Index

O

Off-the-Spot style, 187
On-the-Spot style, 188
Over-the-Spot style, 188

P

parallel programming, 82
barriers, 87
synchronizing processes, 87

path
fonts, 122

Portugal country code, 209
PostScript printers, 130
printers, PostScript, 130
printf(), 171
printf() message catalogs, 171
programming

fonts, 118
parallel, 82

R

record, definition, 96
record locking. See file and record locking

S

Saudi Arabia country code, 210
semaphores

shared arena, 84
semaphores. See IPC
semctl(), 30, 34, 37, 41
semget(), 29, 33, 35

semop(), 30, 31, 52
setlocal(), 144
setlocale(), 142
shared arenas, 82-92

allocate, 84
barriers, 87
changing semaphore values, 84
example, 88
initializing, 83
IRIX shared memory, 87
spinlocks, 85
using semaphores, 84

shared memory
IRIX, 87

shared memory. See IPC
shmat(), 59, 76
shmctl(), 59, 62, 69
shmdt(), 59, 76, 77
shmget(), 61, 62
sockets, 1
South Africa country code, 210
Spain country code, 210
Speedo format fonts, 123
spinlocks

allocate, 85
and shared arenas, 85

suspend
calling process, 3

SVR4 and IPC, 1
Sweden country code, 210
Switzerland country code, 210
syntax, conventions, xxi

T

Taiwan country code, 210
text rendering routines, 178

219

Index

Type 1 font. See fonts
types

IPC, 1
typographical conventions, xxi
typography. See fonts

U

Uganda country code, 210
Utopia fonts, 130

V

video resolution, 115
virtual memory

font loading, 131

W

warning messages
lp log file, 131

wide characters. See internationalization, wide
characters

X

xfd command, 120
XFilterEvent(), 194
XFontSetExtents, 179
XLFD font names. See internationalization, X

Window System, fontsets
Xlib changes, 174
XLookupString(), 194
XmbLookupString(), 194
XSetLocaleModifiers(), 185

XwcLookupString(), 194
X Window System

fonts. See fonts
installing fonts. See fonts, installing
internationalization changes, 173
limitations, 173

Z

Zambia country code, 210

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2478-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
1600 Amphitheatre Pkwy, M/S 535
Mountain View, California 94043-1351

