
ProDevTM WorkShop: Debugger User’s
Guide

007–2579–008

COPYRIGHT
© 1996, 1999, 2001, 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIS, and IRIX are registered trademarks and Developer Magic, ProDev and OpenMP are
trademarks of Silicon Graphics, Inc. Portions of this document may have been derived from the OpenMP Language Application
Program Interface Specification. MIPSpro is a trademark of MIPS Technologies, Inc., and is used under license by Silicon Graphics, Inc.

UNIX and X/Open are registered trademarks of The Open Group in the United States and other countries.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in this Guide

Data diving is now available in many views of the Debugger. This allows the user to
click on a variable and bring up a Data View window, allowing the user to easily
manipulate data. Information about data diving has been incorporated throughout
the documentation.

Appendix A, which contained details about cvd and the Debugger interface, has been
made a separate document. See theProDev WorkShop: Debugger Reference Manual for
that reference material.

The Structure Browser is now called the Data Explorer throughout this documentation.

The Multiprocess View window is now called the Multiprocess Explorer.

Enhanced OpenMP support in the Debugger is now available. See Chapter 10 for
more information.

Some of the screen representations in this guide may not be current.

007–2579–008 iii

Record of Revision

Version Description

004 June 1998
Revised to reflect changes for the ProDev WorkShop 2.7 release.

005 April 1999
Revised to reflect changes for the MIPSpro WorkShop 2.8 release.

005 August 1999
Document released under new online and print format.

006 June 2001
Supports the ProDev WorkShop 2.9 release.

007 November 2001
Supports the ProDev WorkShop 2.9.1 release.

008 September 2002
Supports the ProDev WorkShop 2.9.2 release.

007–2579–008 v

Contents

About This Guide . xxvii

Related Publications . xxviii

Obtaining Publications . xxviii

Conventions . xxix

Reader Comments . xxix

1. WorkShop Debugger Overview 1

Main Debugger Features . 1

The Debugger Main View Window 1

About Traps . 3

Viewing Program Data . 4

Integrating the Debugger with Other WorkShop Tools 5

Using the Mouse for Data Diving 7

Debugging with Fix+Continue 7

Debugging with the X/Motif Analyzer 8

Customizing the Debugger . 8

2. Basic Debugger Usage 9

Getting Started with the Debugger 9

Basic Tips and Features . 9

Fortran 90 Code Example and Short Tutorial 11

C Example and Short Tutorial 13

Options for Controlling Program Execution 16

Setting Traps (Breakpoints) 17

007–2579–008 vii

Contents

Options for Viewing Variables 18

Using the Mouse for Data Diving 18

Viewing Variables Using the cvd Command Line 18

Viewing Variables Using Click To Evaluate 20

Viewing Variables Using the Variable Browser 20

Viewing Variables Using the Expression View Window 20

Viewing Variables Using the Array Browser 21

Searching . 24

Using the Call Stack . 24

Stopping at Functions or Subroutines 25

Suggestions for Debugging for Serial Execution of Scientific Programs 27

Step 1: Use lint . 28

Step 2: Check for Out-of-Bounds Array Accesses 28

Step 3: Check for Uninitialized Variables Being Used in Calculations 29

Step 4: Find Divisions by Zero and Overflows 30

Step 5: Perform Core File Analysis 31

Step 6: Troubleshoot Incorrect Answers 32

3. Selecting Source Files 35

How to Load Source Files . 35

Load Directly into the Main View Window 35

Load from the File Browser Dialog Box 36

Load from the Open Dialog Box 37

Path Remapping . 38

Case Example for Path Remapping 40

4. Tutorial: The jello Program 43

viii 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Starting the Debugger . 43

Run the jello Program . 44

Perform a Search . 46

Edit Your Source Code . 48

Setting Traps . 49

Examining Data . 54

Exiting the Debugger . 60

5. Setting Traps (Breakpoints) 61

Traps Terminology . 61

Trap Triggers . 62

Trap Types . 62

Setting Traps . 64

Setting Traps with the Mouse 64

Setting Traps Using the cvd Command Line 65

Setting Traps Using the Traps Menu in the Main View Window 65

Setting Traps in the Trap Manager Window 66

Setting Single-Process and Multiprocess Traps 67

Syntaxes . 69

Setting a Trap Condition . 72

Setting a Trap Cycle Count 73

Setting a Trap with the Traps Menu 73

Moving around the Trap Display Area 74

Enabling and Disabling Traps 74

Saving and Reusing Trap Sets 74

Setting Traps by Using Signal Panel and System Call Panel 74

6. Controlling Program Execution 77

007–2579–008 ix

Contents

The Main View Window Control Panel 77

Features of the Main View Window Control Panel 77

Execution Control Buttons . 78

Controlling Program Execution Continue To/Jump To 79

Execution View . 80

7. Viewing Program Data 81

Traceback Through the Call Stack Window 81

Options for Viewing Variables 82

Using the cvd Command Line 82

Using Click to Evaluate . 82

Using the Array Browser . 83

Using the Data Explorer . 83

Using the Variable Browser 83

Using the Expression View 83

Using the Data View Window 84

Evaluating Expressions . 84

Expression View Window . 84

Assigning Values to Variables 86

Evaluating Expressions in C 86

C Function Calls . 87

Evaluating Expressions in C++ 87

Limitations . 88

Evaluating Expressions in Fortran 88

Fortran Variables . 89

Fortran Function Calls . 89

8. Debugging with Fix+Continue 91

x 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Fix+Continue Functionality . 91

Fix+Continue Integration with Debugger Views 92

How Redefined Code Is Distinguished from Compiled Code 92

The Fix+Continue Interface 93

Debugger with Fix+Continue Support 93

Change ID, Build Path, and Other Concepts 93

Restrictions on Fix+Continue . 94

Fix+Continue Tutorial . 95

Setting up the Sample Session 95

Redefining a Function: time1 Program 96

Editing a Function . 96

Changing Code . 98

Deleting Changed Code 99

Changing Code from the Debugger Command Line 99

Saving Changes . 101

Setting Breakpoints in Redefined Code 101

Comparing Original and Redefined Code 103

Switching between Compiled and Redefined Code 103

Comparing Function Definitions 103

Comparing Source Code Files 104

Ending the Session . 105

9. Detecting Heap Corruption 107

Typical Heap Corruption Problems 107

Finding Heap Corruption Errors 107

Compiling with the Malloc Library 108

Setting Environment Variables 108

007–2579–008 xi

Contents

Trapping Heap Errors Using the Malloc Library 110

Heap Corruption Detection Tutorial 111

10. Multiple Process Debugging 117

Using the Multiprocess Explorer Window 118

Starting a Multiprocess Session 118

Viewing Process Status . 119

Using Multiprocess Explorer Control Buttons 120

Multiprocess Traps . 120

Viewing Multiprocess and Pthreaded Applications 120

Adding and Removing Processes 121

Multiprocess Preferences . 121

Bringing up Additional Main View Windows 122

Debugging a Multiprocess C Program 122

Launch the Debugger in Multiprocess Explorer 124

Using Multiprocess Explorer to Control Execution 124

Using the Trap Manager to Control Trap Inheritance 126

Debugging a Multiprocess Fortran Program 128

General Fortran Debugging Hints 128

Fortran Multiprocess Debugging Session 128

Debugging Procedure . 130

Debugging a Pthreaded Program 133

User-Level Continue of Single 6.5 POSIX Pthread 133

Scheduling Anomalies . 134

Blocking Anomalies . 135

How to Continue a Single POSIX 6.5 Pthread 136

Other Pthread Debugging Hints 136

xii 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Pthread Debugging Session 136

pthread example . 137

Using StepOver of Function Calls on IRIX 6.5+ Systems 142

Blocking Kernal Syscall Routines 143

Blocking pthreads Library Routines 143

Debugging an MPI Single System Image Application 143

MPI Debugging Session . 144

Debugging an OpenMP Application 151

C/C++ OpenMP Debug Example 151

Fortran OpenMP Debug Example 156

OpenMP Debugging Tips . 163

Setting Breakpoints in a Parallel Region 163

OMP_DYNAMIC daemon process 164

Consecutive and/or Nested OpenMP regions 164

Unexpected Stops in Routine nsproc 165

Creation of OpenMP Slave Threads 165

OpenMP Slave Thread Call Ctacks 166

11. X/Motif Analyzer . 167

Introduction to the X/Motif Analyzer 167

Examiners Overview . 167

Examiners and Selections . 168

Inspecting Data . 168

Inspecting the Control Flow 168

Tracing the Execution . 168

Restrictions and Limitations . 169

X/Motif Analyzer Tutorial . 169

007–2579–008 xiii

Contents

Setting up the Sample Session 170

Launching the X/Motif Analyzer 170

Navigating the Widget Structure 171

Examining Widgets . 174

Setting Callback Breakpoints 176

Using Additional Features of the Analyzer 178

Ending the Session . 182

12. Customizing the Debugger 183

Customizing the Debugger with Scripts 183

Using a Startup File . 183

Implementing User-Defined Buttons 184

Changing X Window System Resources 185

DUMPCORE Environment Variable 187

Other Variables . 188

Appendix A. Using the Build Manager 189

Build View Window . 189

Build Process Control Area . 190

Transcript Area . 191

Error List Area . 191

Build View Admin Menu . 192

Build View Preferences . 192

Build Options . 193

Using Build View . 194

Build Analyzer Window . 195

Build Specification Area . 195

Build Graph Area . 195

xiv 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Build Graph Control Area . 197

Build Analyzer Overview Window 198

Build Analyzer Menus . 199

Admin Menu . 199

Build Menu . 200

Filter Menu . 200

Query Menu . 200

Index . 203

007–2579–008 xv

Figures

Figure 1-1 The WorkShop Debugger Main View Window 3

Figure 2-1 Array Browser Window 22

Figure 2-2 Trap Manager Window 26

Figure 3-1 File Browser Window 36

Figure 3-2 Open Dialog Box 37

Figure 3-3 Path Remapping Dialog Box 39

Figure 4-1 The jello Window 46

Figure 4-2 Search Target Indicators 48

Figure 4-3 Stop Trap Indicator 51

Figure 4-4 Trap Manager Window 53

Figure 4-5 Array Browser Window for shadow Matrix 58

Figure 4-6 Subscript Controls Panel in Array Browser Window 59

Figure 5-1 Trap Manager Config, Traps, and Display Menus 67

Figure 5-2 Trap Examples . 68

Figure 5-3 Signal Panel and System Call Panel 75

Figure 6-1 The Main View Window Control Panel 77

Figure 8-1 Program Results in Execution View 96

Figure 8-2 Selecting a Function for Redefinition 97

Figure 8-3 Redefined Function 98

Figure 8-4 Comparing Compiled and Redefined Function Code 104

Figure 9-1 Heap Corruption Warning Shown in Execution View 113

Figure 9-2 Call Stack at Boundary Overrun Warning 113

Figure 9-3 Main View at Bus Error 115

007–2579–008 xvii

Contents

Figure 10-1 Multiprocess Explorer 119

Figure 10-2 Multiprocess Explorer with highlighted process 125

Figure 10-3 Multiprocess Explorer with running processes stopped 127

Figure 10-4 Multiprocess Explorer: stopped at breakpoint 132

Figure 10-5 Pthread stopped on entry 140

Figure 10-6 Pthread stopped on entry 3 141

Figure 10-7 “All” toggle button 141

Figure 10-8 “Single” toggle button 141

Figure 10-9 Multiprocess Explorer: Display by Process 148

Figure 10-10 Set MPI breakpoint 149

Figure 10-11 Multiprocess Explorer: Display by Status 150

Figure 10-12 MPI rank process status 150

Figure 10-13 Main View Unlock icon 153

Figure 10-14 Main View Lock icon 153

Figure 10-15 Multiprocess Explorer: OMP threads stopped at breakpoints 154

Figure 10-16 Variable Browser 154

Figure 10-17 Multiprocess Explorer: OmpThreads stopped at breakpoint 160

Figure 10-18 Variable Browser display 161

Figure 10-19 Data Explorer 162

Figure 11-1 First View of the X/Motif Analyzer (Widget Examiner) 172

Figure 11-2 Widget Hierarchy Displayed by the Tree Examiner 173

Figure 11-3 Adding a Breakpoint for a Widget 175

Figure 11-4 Callback Context Displayed by the Callback Examiner 177

Figure 11-5 Window Attributes Displayed by the Window Examiner 178

Figure 11-6 Selecting the Breakpoints Tab from the Overflow Area 180

Figure 11-7 Breakpoint Results Displayed by the Call Stack 181

xviii 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure A-1 Build Process Control Area in Build View Window 190

Figure A-2 Build View Window with Typical Data 191

Figure A-3 Build View Preferences Dialog 193

Figure A-4 Build Options Dialog 194

Figure A-5 Build Graph Icons 197

Figure A-6 Build Graph Control Area 198

Figure A-7 Build Analyzer Overview Window with Build Analyzer Graph 199

007–2579–008 xix

Tables

Table 7-1 Valid C Operations 86

Table 7-2 Valid Fortran Operations 88

007–2579–008 xxi

Examples

Example 2-1 Fortran 90 Example 11

Example 2-2 C Code Example 13

Example 2-3 Value of array x 19

Example 2-4 Value of x(2) . 19

Example 2-5 Change value of x(2) to 3.1 19

007–2579–008 xxiii

Procedures

Procedure 1-1 Accessing the Performance Analyzer from the Main View Window . . 5

Procedure 1-2 Accessing the Static Analyzer from the Main View Window 5

Procedure 1-3 Accessing Editors from the Main View Window 6

Procedure 1-4 Accessing Configuration Management Tools 6

Procedure 1-5 Recompiling from the Main View Window 6

Procedure 2-1 Changing values of array elements 23

Procedure 2-2 Viewing values of a C structure 23

007–2579–008 xxv

About This Guide

This publication documents the ProDev WorkShop Debugger, released with the 3.0
version of ProDev WorkShop tools running on IRIX systems.

The WorkShop Debugger is a source-level debugging tool that allows you to see
program data, monitor program execution, and fix code for Ada (1.4.2 and older
versions), C, C++, Fortran 77, and Fortran 90 programs.

This manual contains the following chapters:

• Chapter 1, "WorkShop Debugger Overview", page 1, gives you an introductory
functional overview of the ProDev WorkShop Debugger.

• Chapter 2, "Basic Debugger Usage", page 9, outlines principles and procedures of
the debugging process and how to approach them using the WorkShop Debugger.

• Chapter 3, "Selecting Source Files", page 35, describes how to manage source files.

• Chapter 4, "Tutorial: The jello Program", page 43, presents a short Debugger
tutorial based on demonstration programs provided with your WorkShop tools.

• Chapter 5, "Setting Traps (Breakpoints)", page 61, describes how to set various
types of traps.

• Chapter 6, "Controlling Program Execution", page 77, describes methods for
controlling process execution.

• Chapter 7, "Viewing Program Data", page 81, explains how to examine Debugger
data.

• Chapter 8, "Debugging with Fix+Continue", page 91, presents a short tutorial
using Fix and Continue.

• Chapter 9, "Detecting Heap Corruption", page 107, describes heap corruption
problems and how to detect them.

• Chapter 10, "Multiple Process Debugging", page 117, describes debugging
multiprocess programs.

• Chapter 11, "X/Motif Analyzer", page 167, presents a short tutorial using the
X/Motif Analyzer.

007–2579–008 xxvii

About This Guide

• Chapter 12, "Customizing the Debugger", page 183, gives you tips on how you can
customize the Debugger to the requirements of your working environment.

• Appendix A, "Using the Build Manager", page 189, describes the use of the Build
Manager.

Related Publications
The following documents contain additional information that may be helpful:

• C Language Reference Manual

• MIPSpro C++ Programmer’s Guide

• MIPSpro C and C++ Pragmas

• ProDev WorkShop: Performance Analyzer User’s Guide

• ProDev WorkShop: Overview

• ProDev WorkShop: Static Analyzer User’s Guide

• MIPSpro Fortran 77 Language Reference Manual

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• dbx User’s Guide

Obtaining Publications
Silicon Graphics maintains publications information at the following web site:

http://docs.sgi.com

This library contains information that allows you to browse documents online, order
documents, and send feedback to Silicon Graphics.

xxviii 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

To order a printed Silicon Graphics document, call 1–800–627–9307.

Customers outside of the United States and Canada should contact their local service
organization for ordering and documentation information.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

GUI This font denotes the names of graphical user interface
(GUI) elements such as windows, screens, dialog boxes,
menus, toolbars, icons, buttons, boxes, fields, and lists.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

007–2579–008 xxix

About This Guide

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

xxx 007–2579–008

Chapter 1

WorkShop Debugger Overview

The SGI ProDev WorkShop Debugger is a UNIX source-level debugging tool for SGI
MIPS systems. It displays program data and execution status in real time. This tool
can be used to debug Ada (1.4.2 and older versions), C, C++, FORTRAN 77, and
Fortran 90 programs.

For an introductory tutorial to the principles of debugging, particularly with the
WorkShop Debugger, see Chapter 2, "Basic Debugger Usage", page 9.

This chapter presents an overview of the WorkShop Debugger and is divided into the
following sections:

• "Main Debugger Features", page 1

• "Debugging with Fix+Continue", page 7

• "Debugging with the X/Motif Analyzer", page 8

• "Customizing the Debugger", page 8

Main Debugger Features
The following sections outline the primary features and functions of the WorkShop
Debugger and include references to comprehensive information found throughout
this manual:

• "The Debugger Main View Window", page 1

• "About Traps", page 3

• "Viewing Program Data", page 4

• "Integrating the Debugger with Other WorkShop Tools", page 5

• "Using the Mouse for Data Diving", page 7

The Debugger Main View Window

When you start the Debugger with an executable file, the Main View window
displays, loaded with source code, ready to execute your program with your specified

007–2579–008 1

1: WorkShop Debugger Overview

arguments. Most of your debugging work takes place in the Main View window,
which includes the following:

• A menu bar for performing debugger functions.

• A control panel for specifying and controlling program execution.

• A source code display area which displays the code for the program you are
debugging.

• A source filename field which tells gives you the path to the file displayed in the
source code display area.

• A status area for viewing the current status of the program.

• The Debugger command line in which to enter debugging commands (see the
ProDev WorkShop: Debugger Reference Manual for command syntax).

The major areas of the Main View window are shown in Figure 1-1, page 3. For a
comprehensive description of the Main View window, see the ProDev WorkShop:
Debugger Reference Manual.

2 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 1-1 The WorkShop Debugger Main View Window

About Traps

Part of the debugging process requires that you inspect data at various points during
program execution. A trap is a mechanism for gathering this data. Traps are also
referred to as breakpoints, watchpoints, samples, signals, and system calls. There are
two categories of traps:

007–2579–008 3

1: WorkShop Debugger Overview

• A stop trap halts a process so that you can manually examine data.

• A sample trap collects specific performance data without stopping.

The Debugger lets you set traps at the following points:

• At a line in a file (a breakpoint). These are the most commonly used stop traps.
You can set them by clicking in the annotation column to the left of an executable
statement in the source code display panel. (See the annotation column in Figure
1-1.)

• At an instruction address.

• On entry to or exit from a function.

• When a signal is received (a signal trap).

• When a system call is made, at either the entry or exit point (a system call).

• When a given variable or address is written to, read from, or executed (a
watchpoint).

• At set time intervals (a pollpoint).

For more information on traps, refer to Chapter 5, "Setting Traps (Breakpoints)", page
61.

Viewing Program Data

When you stop a process, the Views menu at the Main View window menu bar
provides several options for viewing your data. These Views menu options allow you
to inspect the following types of data:

• Array Browser: this option allows you to inspect the values of an array variable.

• Call Stack: this option allows you to inspect the call stack at the breakpoints.

• Data Explorer: this option allows you to inspect data structure.

• Data View: this option allows you to interactively inspect separate data structures
in a view. Pointers can be followed by diving (right mouse click) on the field to
dereference it.

• Disassembly View: this option allows you to inspect the disassembled code.

4 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

• Expression View: this option allows you to inspect the value of specified
expressions.

• Memory View: this option allows you to inspect the values in specified memory
locations.

• Multiprocess View: this option allows you to inspect the values of multiple and /
or pthreaded processes.

• Register View: this option allows you to inspect registers.

• Variable Browser: this option allows you to inspect the values, types, or addresses
of variables.

You can also view data by using the data diving techniques described in "Using the
Mouse for Data Diving", page 7.

Integrating the Debugger with Other WorkShop Tools

ProDev WorkShop tools are designed so that you can move easily between them in a
work session.

Procedure 1-1 Accessing the Performance Analyzer from the Main View Window

You can run the Performance Analyzer from the Main View window as follows:

1. Select Perf > Select Task > Task in List from the menu bar.

2. Click on the Run button in the Control Panel. The executable is run.

3. Select Perf > Examine Results from the menu bar.

The Performance Analyzer window will display your results. For more information
about the Performance Analyzer, see the ProDev WorkShop: Performance Analyzer User’s
Guide.

Procedure 1-2 Accessing the Static Analyzer from the Main View Window

The Static Analyzer displays information that makes it easier to determine where to
set traps in your source code. To launch the Static Analyzer, select Admin > Launch
Tool > Static Analyzer from the menu bar.

For more information about the Static Analyzer, see the ProDev WorkShop: Static
Analyzer User’s Guide.

007–2579–008 5

1: WorkShop Debugger Overview

Procedure 1-3 Accessing Editors from the Main View Window

After you have isolated your code problem with the WorkShop tools, you will want
to correct and recompile your source. WorkShop offers several ways to do this:

• You can select the following from the Source Menu to make code changes in the
source pane of the Main View window:

– Select Source > Make Editable. Make your changes accordingly. (Make
Editable toggles with Make Read Only.)

– Select Source > Save to save your changes.

– Select Source > Recompile to recompile your changed code.

• You can invoke an editor from the Views menu that is a separate window in
which to edit your code: Views > Source View (you must select Make Editable
from the File menu at this point to proceed).

• You can call up a fork editor window to launch your own editor by using Source
> Fork Editor (first path).

• You can call up a fork editor window to launch your own editor by using Views >
Source View (second path) . Then, from the Source View window select File >
Fork Editor.

Procedure 1-4 Accessing Configuration Management Tools

If you use ClearCase (an SGI product), RCS, or SCCS for configuration management,
you can integrate the tool into the WorkShop environment by entering the following
command:

% cvconfig [clearcase | rcs | sccs]

This will allow you to use Versioning source control (from the Source menu) to check
files in and out.

Procedure 1-5 Recompiling from the Main View Window

You can recompile your code from the Build View window, accessible from the menu
bar by using Source > Recompile.

For more information about the Build View window, see "Build View Window", page
189.

6 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

To examine build dependencies for your code, launch the Build Analyzer from the
menu bar as follows: Admin > Launch Tool > Build Analyzer.

For more information about the Build Analyzer window, see "Build Analyzer
Window", page 195.

For general information on the Build Manager tools, see Appendix A, "Using the
Build Manager", page 189.

Using the Mouse for Data Diving

Dynamic menus are available in all of the Debugger views and windows. To access
the dynamic menus, position the mouse over the item you are interested in and click
the right mouse button. A menu of actions that can be done with that object is
displayed.

Data diving is available in several debugger views and screens. Click the right mouse
button over any item and a default action occurs (when appropriate).

Depending on the cursor location, the result of a mouse action will vary:

• In the Source View, a click of the mouse button over a variable displays the
variable in the Data View window. Holding a mouse button down brings up a
menu of available actions.

• Holding a mouse button down over a blank area in a view brings up a menu that
allows you to Jump To the selected line or Continue To the selected line.

• When in the icon canvas area (the part of the screen to the left of the source code
listing), holding a mouse button down provides a list of actions that can be
performed against that line of code (for example, set and delete traps, enable or
disable traps, or access the trap manager). Clicking the mouse in the icon canvas
area sets or deletes a breakpoint.

• A right mouse button click on a user function in the Source View displays the
source for that function.

Debugging with Fix+Continue
Fix+Continue gives you the ability to make changes to a program written in C or C++
without having to recompile and link the entire program before continuing to debug
the code. With Fix+Continue, you can edit a function, parse the new functions, and

007–2579–008 7

1: WorkShop Debugger Overview

continue execution of the program being debugged. Fix+Continue commands may be
issued from the Fix+Continue window, which you launch from the Fix+Continue
item on the Main View menu bar.

You can also issue Fix+Continue commands from the Debugger’s command line.

See Chapter 8, "Debugging with Fix+Continue", page 91, for a comprehensive
description of the theory and operation of Fix+Continue, including a short tutorial.

Debugging with the X/Motif Analyzer
The X/Motif Analyzer provides specific debugging support for X/Motif applications.
The X/Motif analyzer is integrated with the Debugger. You issue X/Motif analyzer
commands graphically from the X/Motif analyzer subwindow of the Debugger Main
View. Select Views > X/Motif Analyzer from the Main View window to access this
subwindow.

See Chapter 11, "X/Motif Analyzer", page 167 for a comprehensive description of the
theory and operation of the X/Motif Analyzer, including a short tutorial.

Customizing the Debugger
WorkShop provides you with a number of ways that you can customize your
Debugger as best suited to the needs of your development environment.

See Chapter 12, "Customizing the Debugger", page 183, for more tips on customizing
the Debugger to your specific needs.

8 007–2579–008

Chapter 2

Basic Debugger Usage

The WorkShop Debugger can be used with the following compilers: C, C++, Ada,
FORTRAN 77, and Fortran 90.

This chapter includes information regarding principles and procedures of the
debugging process and how these are to be approached with the WorkShop Debugger.

Getting Started with the Debugger
Before starting a Debugger session from a remote workstation, you must first enter
the following from a window:

% xhost + machine_name

machine_name is the name or IP address of the machine where the program that you
would like to debug will be run.

On the machine where your program will run, enter the following:

% echo $DISPLAY

The machine_name of your workstation should appear, followed by :0.0. If it does
not, enter the following on the machine where your program will run (if you are
using the csh or tcsh shells):

% setenv DISPLAY machine_name:0.0

For other shells, see their respective man pages.

Basic Tips and Features

To provide debugging information to the Debugger, compile your program with the
-g option (this disables optimization and produces information for symbolic
debugging).

To begin a Debugger session enter:

% cvd executable &

007–2579–008 9

2: Basic Debugger Usage

The Debugger Main View window automatically appears along with an icon for the
Execution View window.

If your program requires data to be read from a file named input, for example, then
type the following in the command (cvd) pane of the Main View window:

cvd> run<input

(See Figure 1-1, page 3.)

The Execution View window receives all the output from running your program that
would normally go directly to your screen. The Main View window controls your
Debugger session, displaying your source code in its center pane. If you want to see
the line numbers for your program, select Display > Show Line Numbers from the
Main View window menu bar.

Context sensitive help is enabled by default. This pops up a help phrase or statement
for some menu items, data entry fields, and buttons. It can be enabled and disabled
by selecting Display > Show Tooltips / Hide Tooltips from the Main View window
menu bar.

At the bottom of the Main View window you can enter dbx-style commands to the
Debugger. See the ProDev WorkShop: Debugger Reference Manual for details about
which commands are supported.

The Debugger allows you to run your program and stop at selected places so you can
view current values of program variables to help you find bugs in your program. To
stop at a selected statement in your program, you may either set a breakpoint (also
called a stop trap) at the desired statement or set a breakpoint prior to the desired
statement and then use either the Step or Next buttons to reach the desired stopping
point. The statement where your program has stopped is indicated in green. A
statement highlighted in red indicates that a breakpoint has been set on this line.
When the Debugger causes your program to stop at a breakpoint that you have set,
the executable statement immediately prior to the breakpoint has been executed, and
the executable statement on which the breakpoint has been set has yet to be executed.

Programs featured in this chapter are located in the
/usr/demos/WorkShop/getstarted directory.

You can find short Debugger tutorials in "Fortran 90 Code Example and Short
Tutorial", page 11 and "C Example and Short Tutorial", page 13.

Also see the ProDev WorkShop: Debugger Reference Manual for a comprehensive
description of Debugger functions.

10 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Fortran 90 Code Example and Short Tutorial

Use the prog.f and dot.f files in /usr/demos/WorkShop/getstarted to
demonstrate the Debugger features in the following tutorial.

Example 2-1 Fortran 90 Example

• The Fortran 90 code in the file prog.f is as follows:

program prog

parameter (n=3)

double precision A(n,n), x(n), y(,) sum xydot

! initialize arrays

x = 2.0d0

do i = 1, n

y(i) = i

do j = 1, n
A(i,j) = i*j - i

enddo

enddo

! compute the dot product of x and y

call dot(x,y,n,xydot)
print *, ’dot product of x & y = ’, xydot

! compute y = Ax

do i = 1, n

sum = 0.0
do j = 1, n

sum = sum + A(i,j)*x(j)

enddo

y(i) = sum

enddo
print *, ’y = ’, y

stop

end

• It includes subroutine dot in file dot.f, as follows:

subroutine dot(a,b,m,answer)

double precision a(m), b(m), answer

integer m

007–2579–008 11

2: Basic Debugger Usage

answer = 0.0d0
do i = 1, m

answer = answer + a(i)*b(i)

enddo

end

Perform the following steps with these files to demonstrate Debugger features:

1. Enter the following command in the /usr/demos/WorkShop/getstarted
directory to produce the executable program:

% f90 -g -o progf prog.f dot.f

This produces the executable progf.

2. Launch the WorkShop Debugger with your newly-compiled executable as follows:

% cvd progf &

The WorkShop Debugger Main View displays the source for your prog.f file
(see Example 2-1, page 11).

3. Select Display > Show Line Numbers from the Main View menu bar to turn on
file line numbering.

The line numbers display to the left of the source code.

4. Enter a breakpoint at line 15 as follows at the cvd> prompt at the bottom of the
Main View window. This enables you to execute through the end of the
initialization of the y array for the sample code:

cvd> stop at 15

Line 15 is highlighted in red and a stop icon appears in the left column.

5. Run the program. There are two ways that you can do this:

a. Click on the Run button at the top of the Main View window.

OR

b. Enter the following at the cvd> prompt:

cvd> run

The program executes up to Line 15 and waits for further instruction.

12 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

6. Enter the following command at the cvd> prompt to print the y array for this
example:

cvd> print y

The following displays in the cvd> command pane:

y =

(1) = 1.0

(2) = 2.0

(3) = 3.0

cvd>

Note: You should expand this pane (or use the slider at the right side of the
pane) if you do not see the printout.

7. At this point, you can experiment with other commands described in this chapter,
notably the execution control buttons described in "Options for Controlling
Program Execution", page 16.

8. Select Admin > Exit to end this tutorial for the Fortran 90 demo program.

C Example and Short Tutorial

Use the prog.c and dot.c files in /usr/demos/WorkShop/getstarted to
demonstrate the Debugger features in the following tutorial.

Example 2-2 C Code Example

The following is the same example as that in "Fortran 90 Code Example and Short
Tutorial", page 11, but it is written in C. Use this example to see how the Debugger
can be used to view C structures.

• The C code in the file prog.c is as follows:

#include <stdio.h>

#define N 3
double dot(double v[],double w[], int m);

void main(){

int i,j;

double a[N][N],x[N],y[N],sum,xydot;

struct node

007–2579–008 13

2: Basic Debugger Usage

{
int value;

struct node *next;

} *list,start;

/* Initialize arrays */
for(i=0;i<N;i++){

x[i]=2;

y[i]=i;

for(j=0;j<N;j++){

a[i][j]=i*j-i;

}
}

/* Compute the dot product x and y */

xydot=dot(x,y,N);

printf("dot product of x & y: %f \n",xydot);

/* Compute y=ax */

for(i=0;i<N;i++){

sum=0;

for(j=0;j<N;j++){

sum+=a[i][j]*x[j];
}

y[i]=sum;

}

printf("y = ");

for(i=0;i<N;j++){
printf("%f ",y[i]);

}

printf("\n");

/* Built list*/
start.value=1;

list=&start

for(i=1;i<N;i++){

list->next=(struct node *) malloc(sizeof(struct node));

list=list->next;

list->value=i;
}

list->next=NULL;

14 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

printf("list: ");
list=&start;

for(i=0;i<N;i++){

printf("%d ",list->value);

list=list->next;

}
printf("\n");

}

• It includes function dot in file dot.c, as follows:

double dot(double v[],double w[], int m){

int i;

double sum;

for(i=0;i<m;i++){
sum+=v[i]*w[i];

}

return(sum);

}

Perform the following steps with this file to demonstrate Debugger features:

1. Enter the following command in the /usr/demos/WorkShop/getstarted
directory to produce the executable program:

% cc -g -o progc prog.c dot.c

This produces the executable progc.

2. Launch the WorkShop Debugger with your newly-compiled executable as follows:

% cvd progc &

The WorkShop Debugger Main View displays the source for your prog.c file
(see Example 2-2, page 13).

3. Select Display > Show Line Numbers from the Main View menu bar to turn on
file line numbering.

The line numbers display to the left of the code source window.

007–2579–008 15

2: Basic Debugger Usage

4. Enter a breakpoint at line 23 as follows at the cvd> prompt at the bottom of the
Main View window. This enables you to execute up to the end of the y array for
the sample code:

cvd> stop at 23

Line 23 is highlighted in red and a stop icon appears in the left column.

5. Run the program. There are two ways that you can do this:

a. Click on the Run button at the top of the Main View window.

OR

b. Enter the following at the cvd> prompt:

cvd> run

The program executes up to Line 23 and waits for further instruction.

6. Enter the following command at the cvd> prompt to print the y array for this
example:

cvd> print y

The following displays in the cvd command pane:

y = {

[0] 0.00000000000000000e+00

[1] 1.0

[2] 2.0

}

cvd>

7. At this point, you can experiment with other commands described in this chapter,
notably the execution control buttons described in "Options for Controlling
Program Execution", page 16.

8. Select Admin > Exit to end this tutorial for the C demo program.

Options for Controlling Program Execution

There are a number of buttons in the Main View window that allow you to control
the execution of your program. The following summarizes their functions:

16 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

• Run creates a new process to execute your program and starts execution. It can
also be used to rerun your program.

• Kill kills the active process that is executing your program.

• Stop stops execution of your program. The first executable statement after the
statement where your program has stopped is highlighted.

• Cont continues program execution until a breakpoint or some other event stops
execution, or program execution terminates. (See also "How to Continue a Single
POSIX 6.5 Pthread", page 136.)

• Step steps to the next executable statement and into function and subroutine calls.
Thus, if you set a breakpoint at a subroutine call, click on the Run button so the
call to the subroutine is highlighted in green, then click on the Step button to step
into this subroutine — source code for this subroutine is automatically displayed
in the Main View window.

By clicking the right mouse button on the Step button you can select the number
of steps the Debugger takes. Left-click on the Step button to take one step.

• Next steps to the next executable statement and steps over function and
subroutine calls. Thus, if you set a breakpoint at a subroutine call, click on the
Run button so the call to the subroutine is highlighted in green, then click the
Next button to step over this subroutine to the next executable statement
displayed in the source pane of the Main View window.

Right-click on the Next button to select the number of steps the Debugger takes.
Left-click on the Next button to take one step.

• Return executes the remaining instructions in the current function or subroutine.
Execution stops upon return from that function or subroutine.

• All or Single applies control action to all processes or threads if the button is set
to All. If set to Single, the actions apply only to this process or thread.

• Lock causes the debugger to stay focused on this process or thread, no matter
what the program does. If unlocked, the debugger follows the interesting process
or thread (i.e., focuses on a process or thread that reaches a breakpoint/trap).

Setting Traps (Breakpoints)

A trap (also called a breakpoint) can be set if you click your cursor in the area to the
left of the statement in the area underneath the word Status in the Main View

007–2579–008 17

2: Basic Debugger Usage

window. When you do this, the line in your program is highlighted in red. To
remove the breakpoint, click on the red highlight in the left canvas and the breakpoint
disappears. Clicking on the Run button causes your program to run and stop at the
first breakpoint encountered. To continue program execution, click on the Continue
button. Breakpoints can only be set at executable statements.

Options for Viewing Variables

There are many ways to view current values of variables with the Debugger. Before
you can do this, you must first run your program under the Debugger and stop
execution at some point. The following sections list ways of viewing current values of
variables with the Debugger. It is suggested that you try each of the following
methods to determine which you would prefer to use.

Using the Mouse for Data Diving

Data diving is available in several debugger views and screens. Click the right mouse
button over any item and a default action occurs (when appropriate). Depending on
the cursor location, the result of a mouse action will vary. For example:

• In the Source View window, a click of the right mouse button on a variable
displays that variable in a Data View. Holding the mouse button down brings up
a menu of available actions.

• A right mouse button action on a user function in the Source View displays the
source for that function.

• Holding a mouse button down over a blank area in a view brings up a menu that
allows you to Jump To the selected line or Continue To the selected line.

• In the icon canvas area (to the left of the source code listing), a right mouse button
action sets and unsets a breakpoint. Holding down the mouse button provides a
list of actions that can be performed against the line of code (for example, set or
delete a trap, enable or disable a trap).

Viewing Variables Using the cvd Command Line

At the bottom of the Main View window is the command/message pane. Here, you
can give the Debugger various instructions at the cvd command line.

18 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Example 2-3 Value of array x

If you want to know the current value of array x, enter either of the following two
commands in the command/message pane:

cvd> print x
or

cvd> p x

The current values for x are printed.

Example 2-4 Value of x(2)

If your program is written in Fortran and you only want the value of x(2), enter:

cvd> print x(2)

For a C program, enter:

cvd> print x[2]

Example 2-5 Change value of x(2) to 3.1

To change the value of x(2) to 3.1 in a Fortran program, enter:

cvd> assign x(2) = 3.1

For a C program, enter:

cvd> assign x[2] = 3.1

The value of x(2) is now 3.1 when execution is resumed.

Such changes are only active during the current Debugger run of your program. In
the preceding examples, if x is a large array, you may want to use the Array Browser
window (see "Viewing Variables Using the Array Browser", page 21).

To view the components of the structure start in the prog.c example, enter:

cvd> print start

The current values of each component of start are printed.

To view what the pointer list points to in the prog.c example, enter:

cvd> print *list

007–2579–008 19

2: Basic Debugger Usage

This pointer must be initialized before you can perform this function.

A complete list of the instructions that can be entered at the cvd command line can
be found in the ProDev WorkShop: Debugger Reference Manual.

Viewing Variables Using Click To Evaluate

Perform the following to view variables with Click To Evaluate (available in the
Display Menu):

1. Right-click in the window that contains your source code to bring up the menu.

2. Select Click To Evaluate from the menu. You can now click on any variable and
its value appears. For example:

• If you click on the x in x(i), the address of x appears.

• If you click-drag to highlight x(i), the current value of x(i) displays.

• If you highlight an expression, the current value of the expression displays.

Viewing Variables Using the Variable Browser

Perform the following to view variables with the Variable Browser:

1. Select Views > Variable Browser from the Main View window to call up the
Variable Browser.

The Variable Browser automatically displays values of all variables valid within
the routine in which you have stopped as well as the address location for each
array.

Values of variables can be changed by typing in their new value in the Result
column and then hitting the ENTER key (or RETURN key, for some keyboards).

Viewing Variables Using the Expression View Window

The Expression View window allows you to enter the variables and/or expressions
for which you would like to know values.

1. Select Views > Expression View from the Main View window menu bar to
display the Expression View window.

20 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

2. To view, for example, the value component of the structure start in prog.c, enter
the following in the Expression column:

start.value

As you step through your program, for example with Step Over, the values of all
the entries in this window are updated to their current values.

Values of variables can be changed by typing in their new value in the Result
column and then pressing ENTER.

To enter an expression from your source code into the Expression View window:

1. Left-click and drag on the expression in your source code. The expression is
highlighted.

2. Left-click in a field in the Expression column. The cursor appear in the field.

3. Middle-click your mouse. The desired value appears in the field.

Viewing Variables Using the Array Browser

To view array values, select Views > Array Browser from the Main View window
menu bar to call up the Array Browser.

007–2579–008 21

2: Basic Debugger Usage

Figure 2-1 Array Browser Window

To view the values of an array in the Array Browser:

1. Enter the name of the array in the Array field

2. Press ENTER

22 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

The current values of, at most, two dimensions of the array display in the lower pane
of the Array Browser window. The values of the array are updated to their current
values as you step through your program.

If the array is large or has more than two dimensions, the Subscript Controls panel
in the middle of the Array Browser window allows you to specify portions of the
array for viewing. You may also use the slide bars at the bottom and right of the
window to view hidden portions of an array.

Procedure 2-1 Changing values of array elements

Perform the following to change values of array elements:

1. Click on the box with the array value in the lower portion of the Array Browser
window. After the element is selected, the array index and value appear in the
two fields below the Subscript Controls panel in the center of the Array Browser
window.

For example, if you click on the value for array element A(2,3), then A(2,3)
appears in the box above the display of the array values, and its value appears in
the box to the right of A(2,3). Simply click in this box, and enter a new value for
A(2,3). (Press ENTER to change the value of A(2,3) to the new value.)

2. Enter your change into the Value field described in the note above.

3. If you would like to view a second array at the same time, select Admin > Clone
in the Array Browser window that you have already opened. This brings up a
second Array Browser window.

4. Select Admin > Active from this new window.

You can now enter the name of the second array you would like to view.

Procedure 2-2 Viewing values of a C structure

Perform the following to view values of a C structure:

1. Select Views > Data Explorer from the Main View window menu bar to call up
the Data Explorer window.

2. Enter the name of the structure in the Expression field. This brings up a window
listing the name of the structure, the names of its components in the left column,
and their values in the right column.

3. If one of these components is a pointer, you can see what is being pointed to by
double-clicking on its value to the right of the pointer name. This brings up a

007–2579–008 23

2: Basic Debugger Usage

new window showing what is being pointed at and an arrow appears showing
this relationship. This can aid in debugging linked lists, for example.

There is another way to do this without using the Data Explorer. If the user performs
a mouse click on the variable name (“dives” on the variable name) in the source view,
a Data View is dislayed, showing the structure. Click the right mouse button to access
the menu and to have the variable displayed or added to the Data Explorer.

Searching

Often it is useful to search for the occurrences of a variable or some character string
in your program so you can set breakpoints. Perform a search as follows:

1. Call up the search utility from the Main View window menu bar using Source >
Search.

2. Enter the character string for which you would like to search in the search utility
window, then click on the Apply button. All occurrences of this string are
highlighted.

3. Click on Cancel to remove highlighting.

Using the Call Stack

As the Debugger executes, it may stop during a program function or subroutine, or in
a system routine. When this happens, you can locate where the Debugger is in your
program by examining the call stack.

There are two ways to examine the call stack:

• You can enter the following in the command/message pane:

cvd> where

This lists the functions and subroutines that were called to bring the Debugger to
this place. This call list includes not only your program functions/subroutines but
may also include system routines that have been used. You can now move up or
down the call tree by issuing, for example:

cvd> up [n]

24 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

In this case, the source code for a function or subroutine that is ‘up’ n items in the
call stack appears in the Main View window. If you omit [n] you move up one
item in the call stack.

• You can select Views > Call Stack from the Main View window menu bar. This
brings up the Call Stack window.

If you double-click on an item here, the source code for the function or subroutine,
if available, displays in the Main View window.

You can also “dive” on the Call Stack. A dive on the function name performs the
same function as a double-click. Diving on the arguments brings up a Data View
window with that argument displayed. Additionally, a Dive Menu is displayed if a
right-mouse button action is performed.

Stopping at Functions or Subroutines

In the debugging process, it is sometimes useful to stop at each occurrence of a
function or subroutine. The Debugger permits you to do this in either of these ways:

• Use the “data diving” method described in "Using the Mouse for Data Diving",
page 7, to dive on the function name in the Source View and then click the mouse
to select a breakpoint. You can also use a right-mouse button action over the
function name to bring up a menu and then select Stop In Function from the
menu.

• Using the cvd command/message pane.

1. Enter the following in the command/message pane of the Main Window:

cvd> stop in name

For name, specify the name of the function or subroutine in your program
where you would like the Debugger to stop.

2. Click on the Run button and the Debugger stops each time it encounters this
function or subroutine.

3. To remove this stopping condition enter the following in the
command/message pane:

cvd> status

007–2579–008 25

2: Basic Debugger Usage

For the Stop in command above, the trap in the list would appear as:

[n] Stop entry name...

Here, the value of n is a positive integer and name is the name of the function
or subroutine where the stop has been set.

4. To delete this stop, enter:

cvd> delete n

• Using the Trap Manager.

1. Select Views > Trap Manager from the Main View window menu bar to use
the trap manager. This calls the Trap Manager window.

Figure 2-2 Trap Manager Window

2. In the text field to the right of the word Trap enter:

stop in name

26 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

3. Click on the Add button or press Enter. This adds your breakpoint at your
desired function or subroutine.

To remove the stopping condition so the Debugger does not stop at each occurrence
of name, click on the Delete button in the Trap Manager window.

If you have multiple traps displayed, click on the trap that you wish to delete before
you click on the Delete button.

Suggestions for Debugging for Serial Execution of Scientific Programs
This section offers tips and suggestions for debugging programs written for scientific
applications; but many of the suggestions apply to debugging other types of
applications as well.

Note: This section deals only with debugging programs that are running serially and
not in parallel.

Programs can sometimes appear to have no bugs with some sets of data because all
paths through the program may not be executed. To debug your program, therefore,
it is important to test it with a variety of different data sets so that, one would hope,
all paths in your program can be tested for errors.

Now, assume that your program compiles and produces an executable, but the
program execution either does not complete, or it completes but produces wrong
answers. In this case, go through the following steps to find many of the commonly
occurring bugs:

• "Step 1: Use lint", page 28

• "Step 2: Check for Out-of-Bounds Array Accesses", page 28

• "Step 3: Check for Uninitialized Variables Being Used in Calculations", page 29

• "Step 4: Find Divisions by Zero and Overflows", page 30

• "Step 5: Perform Core File Analysis", page 31

• "Step 6: Troubleshoot Incorrect Answers", page 32

All compiler options mentioned in the following sections are valid for FORTRAN 77,
Fortran 90, C and C++ compilers unless indicated otherwise.

007–2579–008 27

2: Basic Debugger Usage

Step 1: Use lint

If your program is written in C, you should use the lint utility. This helps you
identify problems with your code at the compile step. For example, if your C
program is in a file named prog.c, invoke lint with:

> lint prog.c

The output from this command is directed to your screen.

There is a public domain version of lint for FORTRAN 77 called ftnchek. You can
get ftnchek from the /pub directory at the anonymous ftp site
ftp.dsm.fordham.edu at Fordham University.

Step 2: Check for Out-of-Bounds Array Accesses

A common programming error is the use of array indices outside their declared
limits. For help finding these errors, compile your program as follows:

> -g -DEBUG:subscript_check=ON

Then run the generated executable under cvd and click on the RUN button. (See the
DEBUG_group(5) man page for more information on this option.)

The following list explains compiling dependencies when working with
out-of-bounds array accesses:

• If you are running a C or C++ program, your program stops at the first occurrence
of an array index going out of bounds. You can now examine the value of the
index that caused the problem by using any of the methods described in "Options
for Viewing Variables", page 18. If you compile with the -g option, the compiler
generates symbolic debugging information so your program executes under cvd.
It also disables optimization. Sometimes, disabling optimization causes the bug to
disappear. If this happens, you should still carefully go through each of these
steps as best as you can.

• If you are using the Fortran 90 compiler, after compiling with the preceding
options and after running the generated executable under cvd, enter the following
in the cvd pane:

cvd> stop in __f90_bounds_check

Note: __f90 in this command has two lead “_” characters.

28 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Now, click on the RUN button. Next select Views > Call Stack from the Main
View window menu bar.

Next, double click on the function or subroutine immediately below
__f90_bounds_check. This causes the source code for this function or subroutine
to display in the Main View window, and the line where cvd stops is highlighted.
You can now find the value of the index that caused the out-of-bounds problem.

• If you are using the FORTRAN 77 compiler, after compiling with the preceding
options and after running the generated executable under cvd, enter the following
in the cvd> pane:

cvd> stop in s_rnge

Click on the RUN button. Next, select Views > Call Stack from the Main View
menu bar.

Double-click on the function or subroutine immediately below s_rnge. This
causes the source code for this function or subroutine to display in the Main View
window and the line where the Debugger stopped is highlighted. You can now
find the value of the index that caused the out-of-bounds problem.

Note: For Fortran programs, bounds checking cannot be performed in subprograms if
arrays passed to a subprogram are declared with extents of 1 or * instead of passing
in their sizes and using this information in their declarations. An example of how the
declarations should be written to allow for bounds checking is: SUBROUTINE
SUB(A,LDA,N, ...) INTEGER LDA,N REAL A(LDA,N)

Step 3: Check for Uninitialized Variables Being Used in Calculations

To find uninitialized REAL variables being used in floating-point calculations, compile
your program with the following:

-g -DEBUG:trap_uninitialized=ON

This forces all uninitialized stack, automatic, and dynamically allocated variables to
be initialized with 0xFFFA5A5A. When this value is used as a floating-point variable
involving a floating-point calculation, it is treated as a floating-point NaN and it
causes a floating-point trap. When it is used as a pointer or as an address a
segmentation violation may occur. For example, if x and y are real variables and the
program is compiled as described previously, x = y is not detected when y is

007–2579–008 29

2: Basic Debugger Usage

uninitialized since no floating point calculations are being done. However, the
following are detected:

x = y + 1.0

After you compile your program with the preceding options, enter the following:

% cvd executable

Then click the RUN button. To find out where your program has stopped, select
Views > Call Stack from the Main View window menu bar.

Here, you see that many routines have been called. Double-click on the routine
closest to the top of the displayed list that is not a system routine. (You will probably
recognize the name of this source file.) This brings up the source code for this routine
and the line where the first uninitialized variable (subject to the above-mentioned
conditions) was used. You can now examine the values of the indices which caused
the problem using any of the methods described in "Options for Viewing Variables",
page 18. You cannot use cvd to detect the use of uninitialized INTEGER variables.

Step 4: Find Divisions by Zero and Overflows

If you are using a csh or tsch shell, perform the following to find floating-point
divisions by zero and overflows (for other shells, see their man pages for the correct
command).

1. Enter the following:

% setenv TRAP_FPE ON

2. Compile your program using the following options:

compiler command -g -lfpe

3. Enter the following:

% cvd executable

4. In the cvd command/message pane enter:

cvd> stop in _catch

5. Click on the RUN button.

6. Select Views > Call Stack from the Main View window.

30 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

7. Double-click on the routine closest to the top of the displayed list that is not a
system routine. (You will probably recognize the name of this source file.)

The line where execution stopped is highlighted in the source code display area
of the Main View window.

You may now use any of the methods to find variable values, described in
"Options for Viewing Variables", page 18, to discover why the divide-by-zero or
overflow occurred.

For more information on handling floating-point exceptions, see the
handle_sigfpes(3) and fsigfpe(3f) man pages.

Perform the following to find integer divisions by zero:

1. Compile your program using the following options:

-g -DEBUG:div_check=1

2. Enter the following:

% cvd executable

3. Click the Run button.

The program automatically stops at the first line where an integer divide-by-zero
occurred. You may now use any of the methods to find variable values, described
in "Options for Viewing Variables", page 18, to discover why the divide-by-zero
occurred.

Step 5: Perform Core File Analysis

Sometimes during program execution a core file is produced and the program does
not complete execution. The file is placed in your working directory and named core.

Some machines are configured to not produce a core file. To find out if this is the case
on the machine you are using, enter the following:

% limit

If the limit on coredumpsize is zero, no corefile is produced. If the limit on
coredumpsize is not large enough to hold the program’s memory image, the core
file produced will not be usable.

007–2579–008 31

2: Basic Debugger Usage

To change the configuration to allow core files to be produced enter the following:

% unlimit coredumpsize

After you have a core file, you can perform the following analysis:

1. You can find the place in your program where the execution stopped and the core
file was produced by entering:

% cvd executable core

Here, executable is the executable that you were running.

The Main View window comes up and the source line where execution stopped
may be highlighted in green.

2. If the source line is not highlighted in green, select Views > Call Stack from the
Main View window menu bar.

3. Double-click on the routine closest to the top of the displayed list that is not a
system routine. (You will probably recognize the name of this source file.) This
brings up the source code for this routine, and the last line executed is
highlighted in green.

If the executable was formed by compiling with the -g option, then you can view
values of program variables when program execution stopped.

To find the assembly instruction where execution stopped, select Views >
Disassembly View from the Main View window menu bar.

Remember that this is the last statement executed before the core file was produced.
It therefore does not necessarily mean that the bug in your program is in this line of
code. For example, a program variable may have been initialized incorrectly; but the
core was not produced until the variable was used later in the program.

Step 6: Troubleshoot Incorrect Answers

Assume that the preceding steps have been taken and that all detected problems have
been corrected. Your program now completes execution, but obtains incorrect
answers. What you do at this point will likely depend on special circumstances. The
following is a list of some commonly used debugging tips that may or may not apply
to your situation.

32 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

1. Try running your program on a very small size problem where you can easily
obtain intermediate results. Run your program under cvd on this small problem
and compare with the known correct results.

2. If you know that a certain answer being calculated is not correct, set breakpoints
in your program so you can monitor the value of the answer at various points in
your program.

3. You may want to set breakpoints on each call to a selected function or subroutine
where you suspect there may be problems. (See"Options for Viewing Variables",
page 18 for suggested methods.)

4. Debug COMMON blocks and EQUIVALENCE statements in Fortran. Variables used
in these statements must have the same type and dimension everywhere they
appear and they must occur in the same order. Normally ftnchek, for
FORTRAN 77 programs, and cflint, for Fortran 90 programs, can find these
errors. However, for FORTRAN 77 programs it is best to use an include statement
for each COMMON block. For Fortran 90 programs, it is best to use a module for
each COMMON block. It is best not to use EQUIVALENCE statements.

5. Save local data that is otherwise not saved. In Fortran, values of local variables
are not guaranteed to be saved from one execution of the subprogram to the next
unless they are either initialized in their declarations or they are declared to have
the SAVE attribute. Some compilers and machines automatically give all local
variables the SAVE attribute, so moving a working program from one compiler or
machine to a compiler or machine that does not do this may cause this bug to
manifest. The Fortran standards require that you give all uninitialized local
variables the SAVE attribute if you would like their values saved.

007–2579–008 33

Chapter 3

Selecting Source Files

This chapter shows you how to select source files for the source pane of the Main
View window of the Debugger (see Figure 1-1, page 3). It covers the following topics:

• "How to Load Source Files", page 35

• "Path Remapping", page 38

How to Load Source Files
The following sections show you the three ways you can load source files for
debugging.

Note: For demonstration purposes, before you begin this section, perform the
following from your shell:

% mkdir demos

% mkdir demos/jello

% cd demos/jello

% cp /usr/demos/WorkShop/jello/* .

% make
various messages appear

% cvd &

Load Directly into the Main View Window

Perform the following steps to load your source file directly into, or run your
executable from, the Debugger Main View window:

• Enter the source file directly. Enter the name (or full pathname, if necessary) of the
source file in the File field.

For example, enter the following if you launched cvd & from within the
jello/demos directory.:

File: jello.c

007–2579–008 35

3: Selecting Source Files

• Enter the executable directly. Enter the name (or full pathname, if necessary) of
the executable in the Command field.

For example, enter the following if you launched cvd & from within the
jello/demos directory:

Command: jello

Load from the File Browser Dialog Box

You can load source files from the File Browser dialog box, available as Views > File
Browser from the menu bar of the Main View window. The File Browser window is
shown in Figure 3-1.

Figure 3-1 File Browser Window

This dialog box provides you with a list of the source files that your executable file
can use, including any files in linked libraries.

• locate a file: to locate a file, enter your desired filename in the Search field.

• load a file: to load a file directly into the Main View window from the File
Browser dialog box, simply double-click on the file name.

36 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

You may be unable to locate some files because the source supports system routines.
Source for these routines may not be available on your system.

Load from the Open Dialog Box

You can load source files from the Open dialog box, available as Source > Open from
the menu bar of the Main View window. The standard dialog box lists all available
files and the currently selected directory in the Selection field. You can change this
directory as you wish.

File list
display area

Drop pocket

Selection field

Figure 3-2 Open Dialog Box

There are several ways to load a file. You can:

• double-click on the file name.

• type the full pathname of the file in the Selection field and click the OK button.

007–2579–008 37

3: Selecting Source Files

• drag the file icon into the drop pocket. (Use an application like fm to produce file
icons.)

If you specify a file name without a full path, the Debugger uses the current path
remapping information to try to locate the file (see Path Remapping, "Path
Remapping", page 38).

Path Remapping
Path remapping allows you to modify mappings to redirect file names, located in
your executable file, to their actual source locations on your file system. Because
WorkShop uses full (that is, absolute) path names, path remapping generally is not
necessary. However, if you have mounted executable files on a different tree from the
one on which they were compiled, you need to remap the root prefix to get access to
the source files in that hierarchy.

The most basic remapping is for “.”, which allows you to specify the directories to be
searched for files. This basic function works just like dbx and can be modified by
using use/full_path_name(blank) and dir/full_path_name(blank) in the command line.

Open the Path Remapping window (Admin > Remap Paths) from the menu bar of
the Main View window. The following window is displayed:

38 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 3-3 Path Remapping Dialog Box

For each prefix listed in the Prefix list, there is an ordered set of substitutions used to
find a real file. By default, path remapping is initialized so that “.” is mapped to the
current directory. The Substitution Set for ’.’ list shows the substitution list for the
currently highlighted item in the Prefix list. The Prefix list represents where the
source file(s) used to be and the Substitution Set indicates where the source file(s) are
currently. You can perform the following operations through the Path Remapping
dialog box:

• To view the substitution set for a different prefix, click that prefix.

• To add a new prefix, enter the new value in the Value field below the Prefix list
and click the Add button. A new substitution set is created with the prefix name
as the first element. Click on this element to highlight it.

Next, type the desired substitution in the Value field below the Substitution Set
list and insert it by clicking on either the Insert Before button or the Insert After
button.

• To modify the currently selected prefix, edit the string in the Value field and click
the Modify button.

007–2579–008 39

3: Selecting Source Files

• To remove the current prefix and its substitution set, select the prefix and click the
Remove button.

Case Example for Path Remapping

In some cases, if source files have been moved to new locations, path remapping is
required to help the Debugger find the source files again.

The following tutorial shows you a case for remapping. It includes demo files
bundled with your WorkShop Debugger:

1. Create a new directory in your_home_directory:

% mkdir jellodemos

2. Change to the new directory:

% cd jellodemos

3. Copy the Jello demo files from the Workshop demo directory into your new
directory:

% cp /usr/demos/WorkShop/jello/* .

4. Enter the following to ensure that the jello executable contains the jello
demos source path:

% make clobber

% make

5. Create another new directory in your jellodemos directory:

% mkdir ./newdir

6. Move the Jello source files to a new location:

% mv ./*.c newdir

7. Start the WorkShop Debugger:

% cvd ./jello &

The Main View window displays with no source in the source pane. The
following message appears:

Unable to find file <your_home_directory/newdir/jello.c

40 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

8. Choose the following from the menu bar in the Main View window: Admin >
Remap Paths.... The Path Remapping window displays.

9. In the Substitution Set for ’.’: dialog box:

a. Select your_home_directory/jellodemos/newdir/jello.c

The path/filename appears in the Value: field.

b. Enter the following:

.

10. Enter the following in the Value: field below the Substitution Set for ’.’: dialog
box:

newdir

11. Click on the Insert Before button.

The directory is inserted before the highlighted empty line in the Substitution Set
for ’.’: dialog box and after the first element, which was not highlighted.

Now, the source appears in the Main View source pane as
your_home_directory/newdir/jello.c

007–2579–008 41

Chapter 4

Tutorial: The jello Program

This chapter presents a short tutorial with the demonstration program jello,
provided with your software. This tutorial walks you through commonly
encountered debugging situations.

The chapter is divided into several parts:

• "Starting the Debugger", page 43

• "Run the jello Program", page 44

• "Perform a Search", page 46

• "Edit Your Source Code", page 48

• "Setting Traps", page 49

• "Examining Data", page 54

Before you begin this tutorial, you should be aware of the following:

• This tutorial must be run on an SGI workstation.

• WorkShop identifies files with the path names in which they were compiled. The
path names in the tutorial may not match the ones on your system.

Starting the Debugger
Use the following syntax to start the Debugger:

cvd [-pid pid] [-host host] [executable_file [corefile]] [-args arg1 arg2 arg3 ...][&]

The cvd command should be invoked in the same directory as your program source
code.

• The -pid option lets you attach the Debugger to a running process. You can use
this to determine why a live process is in a loop.

• The -host option lets you specify a remote host on which to run your program
while the Debugger runs locally. This option is seldom used, except under the
following circumstances:

007–2579–008 43

4: Tutorial: The jello Program

– You do not want the Debugger windows to interfere with the execution of your
program on the remote host.

– You are supporting an application remotely.

– You do not want to use the Debugger on the target machine for any other
reason.

Note: The host and local machines must be running the same version of
WorkShop. Also, the .rhost files on the machines must allow rsh commands
to operate between them.

• The executable_file argument is the name of the executable file for the process or
processes you want to run. This file is produced when you compile with the -g
option, which disables optimization and produces the symbolic information
necessary to debug with WorkShop. The -g option is most commonly used, but it
is optional; if you wish, you can invoke the Debugger first and specify the name
of the executable file later.

• Sometimes when a file is being executed, a core file is produced (its default name
is core). Use the following command to determine why a program crashed and
produced the core file:

cvd executable_file core

• The -args option passes program arguments to the executable to be debugged.

See "Run the jello Program", page 44, for more information.

Run the jello Program
In this part of the tutorial, you invoke the Debugger and start a typical process
running. The jello program simulates an elastic polyhedron bouncing around inside
of a revolving cube. The program’s functionality is mainly contained in a single loop
that calculates the acceleration, velocity, and position of the polyhedron’s vertices.

44 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Enter the following commands to run the jello program:

1. Go to the directory with the jello demo program:

> cd /usr/demos/WorkShop/jello

2. List the contents of this directory:

>ls

3. Enter the following to make the program if jello is not listed (from Step 2):

> make jello

4. Invoke the Debugger with the jello program:

> cvd jello &

The Main View window appears and scrolls automatically to the main function.

In addition to the Main View window, the Execution View icon also appears.
When you run the jello program, the command you used to invoke jello is
displayed in this window.

The Execution View window is the interface between the program and the user
for programs that use standard input/output or generate stderr messages.

The Main View window brings up the source file in read-only mode. You can
change this to read/write mode if you select Source > Make Editable from the
Main View window menu bar (provided you have the proper file access
permissions).

5. Click the Run button in the upper-right corner of the Main View window to run
the jello program.

The jello window opens on your display (see Figure 4-1, page 46). Enlarge this
window to watch the program execute. The polyhedron is initially suspended in
the center of the cube.

If you wish, you can perform the following with the jello program:

a. Click the left mouse button anywhere inside the jello window.

The polyhedron drops to the floor of the cube.

b. Hold down the right mouse button to display the pop-up menu and select
spin.

007–2579–008 45

4: Tutorial: The jello Program

The cube rotates and the polyhedron bounces inside the cube.

c. Hold down the right mouse button to display the pop-up menu and select the
display option.

This opens a submenu that allows you to change the appearance of the
jello polyhedron.

d. Feel free to select (right-click) from this menu to see how the jello display
changes.You may encounter flashing colors inside windows while running
jello. This is normal.

Figure 4-1 The jello Window

6. Right-click and select exit from the pop-up menu to exit this demonstration
executable.

Perform a Search
This part of the tutorial covers the search facility in the Debugger. You will search
through the jello source file for a function called spin. The spin function
recalculates the position of the cube.

1. Select Source > Search from the Main View menu bar.

46 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

The Search dialog box appears.

2. Type spin in the Search field in the dialog box.

3. Click the Apply button.

The search takes place on the displayed source files. Each instance of spin is
highlighted in the source code and flagged with target indicators in the scroll bar
to the right of the display area. (See the search target indicators on the right side
of the screen in Figure 4-2, page 48.) The Next and Prev buttons in the Search
dialog box let you move from one occurrence to the next in the order indicated.

For more information on Search, see information about the Source menu in the
ProDev WorkShop: Debugger Reference Manual.

4. Click the Close button and the dialog box disappears.

5. Click the middle mouse button on the last search target indicator at the right side
of the source code pane (see the figure below). This scrolls the source code down
to the last occurrence of spin, the location of the spin function.

007–2579–008 47

4: Tutorial: The jello Program

Figure 4-2 Search Target Indicators

6. Proceed to "Edit Your Source Code" to edit your code.

Edit Your Source Code
To edit and recompile your source code, follow these steps:

48 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

1. Select Source > Fork Editor from the Main View menu bar. A text editor appears.
(In this case, if you are proceeding from "Perform a Search", page 46, notice that
the spin function is displayed.)

If you use source control, you can check out the source code through the
configuration management shell by selecting Source > Versioning > CheckOut
from the menu bar.

2. Edit the source code as follows:

Change all occurrences of 3600 to 3000 in the following code:

if ((a+=1)>3600) a -= 3600;

if ((b+=3)>3600) b -= 3600;

if ((c+=7)>3600) c -= 3600;

Save your changes.

3. Select Source > Recompile from the menu bar to recompile your code.

The Build View window displays and starts the compile. Your makefile
determines which files need to be recompiled and linked to form a new
executable.

Any compile errors are listed in the window, and you can access the related
source code by clicking the errors. This does not apply to warnings generated by
the compiler.

For more information on compiling, see Appendix A, "Using the Build Manager",
page 189.

When the code is successfully rebuilt, the new executable file reattaches
automatically to the Debugger and the Static Analyzer. Previously set traps are
intact unless you have traps triggered at line numbers and have changed the line
count.

Setting Traps
Stop traps (also called breakpoints and watchpoints) stop program execution at a
specified line in the code. This allows you to track the progress of your program and
to check the values of variables at that point. Typically, you set breakpoints in your
program prior to running it under the Debugger. For more information on traps, see
to Chapter 5, "Setting Traps (Breakpoints)", page 61.

007–2579–008 49

4: Tutorial: The jello Program

In this part of the tutorial, you set a breakpoint at the spin function.

1. Click the Run button to run the jello executable.

The demo window displays.

2. Click the left mouse button in the Main View source code annotation column next
to the line containing if ((a+=1)>3600) a -= 3600;, or if
((a+=1)>3000) a -= 3000;, if you are proceeding from the previous section).

A stop trap indicator appears in the annotation column as shown in Figure 4-3,
page 51.

3. Right-click on the jello window and select spin from the pop-up menu.

The program runs up to your stop trap and halts at the beginning of the next call
to the spin function. When the process stops, an icon appears and the line is
highlighted. Note that the Status field indicates the line at which the stop
occurs.

50 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 4-3 Stop Trap Indicator

4. Click the Continue button at the upper-left corner of the Main View window
several times. Observe that the jello window goes through a spin increment
with each click.

5. Select Views > Trap Manager from the Main View window menu bar.

The Trap Manager window appears as shown in Figure 4-4, page 53.

007–2579–008 51

4: Tutorial: The jello Program

The Trap Manager window lets you list, add, edit, disable, or remove traps in a
process. In Step 2, you set a breakpoint in the spin function by clicking in the
source code annotation column. The trap now displays in the trap display area of
the Trap Manager window.

The Trap Manager window also lets you to do the following:

• Define other traps.

• Set conditional traps in the Condition field near the top of the window.

• Specify the number of times a trap should be encountered before it activates
by using the Cycle Count field.

• Manipulate traps by using trap controls (Modify, Add, Clear, Delete).

• View all traps (active and inactive) in the trap display area.

52 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Trap specification

Trap condition specification

Cycle count

Current count

Trap controls

Trap display area

Search field

Figure 4-4 Trap Manager Window

6. Click the button to the left of the stop trap in the trap display area.

The trap is temporarily disabled. (If you click again in this box, the trap is
re-enabled.)

7. Click the Clear button, move the cursor to the Trap field, then type:

watch display_mode

Click the Add button.

This sets a watchpoint for the display_mode variable. A watchpoint is a trap
that causes an interrupt when a specified variable or address is read, written, or
executed.

007–2579–008 53

4: Tutorial: The jello Program

8. Click the Cont button in the Main View window to restart the process.

The process now runs somewhat slower but still at a reasonable speed for
debugging.

9. Hold down the right mouse button in the jello window to display the pop-up
menu. From this menu, select display and then select the conecs option with the
right mouse button.

This triggers the watchpoint and stops the process.

10. Go to the Trap Manager window and click the button next to the display_mode
watchpoint to deactivate it. Then, click the button next to the spin stop trap to
reactivate it.

11. Enter 100 in the Cycle Count field and click the Modify button. Notice how the
trap description changes in the Trap Manager window.

12. Click the Continue button in the Main View window.

This takes the process through the stop trap for the specified number of times
(100), provided no other interruptions occur.

The Current Count field keeps track of the actual number of iterations since the
last stop, which is useful if an interrupt occurs. Note that it updates at interrupts
only.

13. Select Close from the Admin menu to close the Trap Manager window.

Examining Data
This part of the tutorial describes how to examine data after the process stops. Note
that you can also examine data using the data diving techniques described in "Using
the Mouse for Data Diving", page 7.

1. Select Views > Call Stack from the Main View window menu bar.

The Call Stack window appears. The Call Stack window shows each frame in
the call stack at the time of the breakpoint, with the calling parameters and their
values. Through the Call Stack > Display menu, you can also display the calling
parameters’ types and locations, as well as the program counter (PC) . The
program counter is the address at which the program has stopped. For more

54 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

information about the program counter, see "Traceback Through the Call Stack
Window", page 81.

In this example, the spin and main stack frames are displayed in the Call Stack
window, and the spin stack frame is highlighted, indicating that it is the current
stack frame.

2. Select Admin > Active from the Call Stack window menu bar.

Notice that the Active toggle button is turned on. Active views are those that
have been specified to change their contents at stops or at call stack context
changes. If the toggle is on, the call stack is updated automatically whenever the
process stops.

3. Double-click the main stack frame.

This shifts the stack frame to the main function, scrolls the source code in the
Main View window (or Source View) to the place in main where spin was
called, and highlights the call. Any active views are updated according to the
new stack frame.

4. Double-click the spin stack frame.

This returns the stack frame to the spin function.

Select Variable Browser from the Views menu in the Main View window.

The Variable Browser window appears. This window shows you the value of
local variables at the breakpoint. The variables appear in the left column
(read-only), and the corresponding values appear in the right column (editable).

The jello program uses variables a, b, and c as angles (in tenths); ca, cb, cc as
their corresponding cosines; and sa, sb, sc as their sines. Whenever you stop at
spin, these values change.

5. Double-click some different frames in Call Stack and observe the changes to
Variable Browser and the Main View window.

These views update appropriately whenever you change frames in Call Stack.
Notice also the change indicators in the upper-right corners of the Result fields.
These appear if the value has changed. If you click the folded corner, the previous
value displays (and the indicator appears unfolded). You can then toggle back to
the current value.

007–2579–008 55

4: Tutorial: The jello Program

6. Select Close from the Admin menu in Variable Browser and Close from the
Admin menu in Call Stack to close them.

7. Select Expression View from the Views menu in the Main View window.

The Expression View window appears. It lets you evaluate an expression
involving data from the process. The expression can be typed in, or more simply,
cut and pasted from your source code. You can view the value of variables (or
expressions involving variables) any time the process stops. Enter the expression
in the left column, and the corresponding value appears in the right column. For
more information, see "Evaluating Expressions", page 84.

8. Hold down the right mouse button in the Expression column to bring up the
Language menu. Then hold down the right mouse button in the Result column
to display the Format menu.

The Language menu lets you apply the language semantics to the expression.

The Format menu (shown on the right side of the Expression View window) lets
you view the value, type, address, or size of the result. You can further specify
the display format for the value and address.

9. Click on the first Expression field in the Expression View window. Then enter
(a+1)>3600 in the field and press Enter.

This is a test performed in jello to ensure that the value of a is less than 3600.
This uses the variable a that was displayed previously in Variable Browser. After
you press Enter, the result is displayed in the right column; 0 signifies FALSE.

10. Select Admin > Close from the Expression View window menu bar to close that
window.

11. Select Views > Data Explorer from the Main View window to open the Data
Explorer.

12. Enter jello_conec in the Expression field and press Enter.

The Data Explorer window displays the structure for the given expression; field
names are displayed in the left column, and values in the right column. If only
pointers are available, the Data Explorer de-references the pointers automatically
until actual values are encountered. You can then perform any further
de-referencing by double-clicking pointer addresses in the right column of the
data structure objects. A window now appears.

56 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

13. Click once to focus, then double-click the address of the next field (in the right
column of the jello_conec structure).

Double-clicking the address corresponding to a pointer field de-references it.
Double-clicking the field name displays the complete name of the field in the
Expression field at the top of the Data Explorer window.

14. Select Close from the Admin menu of Data Explorer window to close it.

15. Select Views > Array Browser from the Main View window menu bar.

The Array Browser lets you see or change values in an array variable. It is
particularly valuable for finding bad data in an array or for testing the effects of
values you enter.

16. Type shadow in the Array field and press Enter.

You can now see the values of the shadow matrix, which displays the
polyhedron’s shadow on the cube. The Array Browser template should resemble
Figure 4-5, page 58, but with different data values. If any areas are hidden, hold
down the left mouse button and drag the sash buttons at the lower right of the
array specification and subscript control areas to expose the area.

007–2579–008 57

4: Tutorial: The jello Program

Array specification
area

Subscript control
area

Spreadsheet area

Figure 4-5 Array Browser Window for shadow Matrix

17. Select the Col button next to the $k index in the Subscript Controls pane (you
may need to scroll down to it).

The Array Browser can handle matrices containing up to six dimensions but
displays only two dimensions at a time. Selecting the Col button for $k has the
effect of switching from a display of $i by $j to a display of $i by $k.

Figure 4-6, page 59, shows a close-up view of the subscript control area.

58 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Row/column toggles
Index identifiers
Index values
Index sliders
Index minimums
Index maximums
Horizontal scroll bar
Step indicators
Vertical scroll bar

Figure 4-6 Subscript Controls Panel in Array Browser Window

The row and column toggles indicate whether a particular dimension of the array
appears as a row, column, or not at all in the spreadsheet area. Although an array
may be of 1 to 6 dimensions, you can view only one or two dimensions at a time.
The index values shown as Min and Max initially exhibit the lower and upper
bounds of the dimension indicated. The values may be changed to allow the user
to display a subset of the available index range in that dimension. The index
sliders let you move the focus cell along the particular dimension. The focus cell
may also be changed by selecting a cell with the left mouse button. The index
slider for a dimension whose row and column toggles are both off may be used to
select a different two–dimensional plane of a multidimensional array. Use the
horizontal and vertical scroll bars to expose hidden portions of the Array Browser
window.

18. Select Surface from the Render menu.

The Render menu displays the data from the selected array variable graphically,
in this case as a three-dimensional surface. The selected cell is highlighted by a
rectangular prism. The selected subscripts correspond to the x- and y-axes in the
rendering with the corresponding value plotted on the z-axis. The data can be
rendered as a surface, bar chart, multiple lines, or points.

007–2579–008 59

4: Tutorial: The jello Program

Exiting the Debugger
There are several ways to exit the Debugger:

• Select Exit from the Admin menu.

• Type quit at the Debugger command line as follows:

cvd> quit

• Double-click on the icon in the upper-left corner of the Main View window.

• Press Ctrl-c in the same window where you entered the cvd command.

60 007–2579–008

Chapter 5

Setting Traps (Breakpoints)

Traps are also referred to as breakpoints, watchpoints, samples, signals, and system
calls. Setting traps is one of the most valuable functions of a debugger or performance
analyzer. A trap enables you to select a location or condition within your program at
which you can stop the execution of the process, or collect performance data and
continue execution. You can set or clear traps from the Main View window or the
Trap Manager window. You can also specify traps in the Debugger command line at
the bottom of the Main View window. For signal traps, you can also use the Signal
Panel window; and for system call traps, use the Syscall Panel window.

When you are debugging a program, you typically set a trap in your program to
determine if there is a problem at that point. The Debugger lets you inspect the call
stack, examine variable values, or perform other procedures to get information about
the state of your program.

Traps are also useful for analyzing program performance. They let you collect
performance data at the selected point in your program. Program execution continues
after the data is collected.

This chapter covers the following topics:

• "Traps Terminology ", page 61

• "Setting Traps", page 64

• "Setting Traps in the Trap Manager Window", page 66

• "Setting Traps by Using Signal Panel and System Call Panel", page 74

For a tutorial on the use of traps, see "Setting Traps", page 49.

Traps Terminology
A trap is an intentional process interruption that can either stop a process or capture
data about a process. It has two parts: the trigger that specifies when the trap fires
and the action that specifies what happens when the trap fires.

007–2579–008 61

5: Setting Traps (Breakpoints)

Trap Triggers

You can set traps at a specified location in your program or when a specified event
occurs. You can set a trigger at any of the following points:

• At a given line in a file (often referred to as a breakpoint)

• At a given instruction address

• At the entry or exit for a given function

• After set time intervals (referred to as a pollpoint)

• When a given variable or address is read, written, or executed (referred to as a
watchpoint)

• When a given signal is received

• When a given system call is entered or exited

In addition, you can use an expression to specify a condition that must be met before
a trap fires. You can also specify a cycle count, which specifies the number of passes
through a trap before firing it.

When you set a breakpoint in C++ code that uses templates, that breakpoint is set in
each instantiation of the template.

Trap Types

Traps can affect any of a number of actions in your debugging process. The following
is a list of the variety of traps and their functions. See "Syntaxes", page 69 for trap
syntaxes.

• A stop trap causes one or all processes to stop. In single process debugging, a stop
trap stops the current process. In multiprocess debugging, you can specify a stop
trap to stop all processes or only the current process.

• A pending trap is a trap with a destination address that does not resolve at the
initial startup of the debugger: it allows you to place breakpoints on names that
do not yet exist. By enabling pending traps, you make unknown function names
acceptable breakpoint locations or entries. Because of this, the trap manager will
not error a pending trap off if it can not be found in the executable. Instead, when
a dlopen of a DSO (dynamic shared object) occurs, and the function name is found
that matches the trap, the trap is resolved and becomes active.

62 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

There are two ways to enable pending traps.

– You can add the following line to your .Xdefaults file:

*AllowPendingTraps: true

– You can enable pending traps by entering the following in the cvd> pane of
the Main View window:

set $pendingtraps=true

The default for this variable is false.

Only “stop entry”, “stop in”, and “stop exit” traps can be pending traps, not “stop
at” traps. The debugger only accept a “stop at” trap on a DSO (dynamic shared
object) and line number loaded at startup. (See "Syntaxes", page 69 for trap
syntaxes.)

To get around this, set a pending “stop in” trap and run to the trap location. Now
you can set “stop at” traps because the DSO is loaded. The debugger then
remembers these traps if you run, kill, and re-run within a single session.

Pending traps display with the prefix (pending) preceding the normal trap
display line.

Breakpoints on misspelled names are not flagged as errors when pending traps are
enabled. This is because the Debugger has no way of knowing if a pending trap
will ever be tripped.

• A sample trap collects performance data. Sample traps are used only in performance
analysis, not in debugging. They collect data without stopping the process. You
can specify sample traps to collect such information as call stack data, function
counts, basic block counts, PC profile counts, mallocs/frees, system calls, and
page faults. Sample traps can use any of the triggers that stop traps use. Sample
traps are often set up as pollpoints so that they collect data at set time intervals.

• An exception trap fires when a C++ exception is raised.

You can add a conditional expression to an exception trap through the Trap
Manager window. However, the context in which the expression is evaluated is not
that of the throw; the context is the exception handling of the C++ runtime library.
Therefore, only global variables have unambiguous interpretation in the if clause.

You should not include complex expressions involving operators such as * and &
in your type specification for an exception trap. If you create an exception trap

007–2579–008 63

5: Setting Traps (Breakpoints)

with a specific base type, however, you also stop your program on throws of
pointer, reference, const, and volatile types. For example, if you use the following,
your program stops at type char, char*, char&, const char&, and so forth.:

cvd> stop exception char

Setting Traps
You can set traps directly in the Main View window by using the Traps menu or by
clicking the mouse in the source annotation column. You can also specify traps at the
Debugger cvd command line.

The following sections describe the ways that traps can be set:

• "Setting Traps with the Mouse", page 64

• "Setting Traps Using the cvd Command Line", page 65

• "Setting Traps Using the Traps Menu in the Main View Window", page 65

Setting Traps with the Mouse

The following lists ways to set traps by using your mouse:

• The quickest way to set a trap is to click to the left of the source code in the Main
View or Source View windows. As you scroll the cursor up and down along the
source code, the word “Stop” appears. Click the left mouse button to add or
remove a trap. A menu is also available for setting and modifying the trap by
holding down the right mouse button in the source annotation column (to the left
of the source code).

A subsequent click on the trap removes the trap.

• If data collection mode has been specified in the Performance Data window,
clicking produces a sample trap; otherwise, a stop trap is entered.

To determine if data collection is on, look at the upper-right corner of the Main
View window to see which debugging option is selected (Debug Only,
Performance, or Purify).

When the trap is set, a trap icon appears.

64 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Setting Traps Using the cvd Command Line

The cvd command line is discussed in the cvd(1) man page. stop commands similar
to those found in dbx, or as documented in "Setting Single-Process and Multiprocess
Traps", page 67, may be entered into the command line portion of the Main View
window as an alternative way to set traps.

Setting Traps Using the Traps Menu in the Main View Window

To set a trap using the Traps menu, you first need to know which type of trap you
wish to set, then select the location in your program at which to set the trap.

To set a stop trap or sample trap at a line displayed in the Main View window (or the
Source View window), click in the source code display area next to the desired line in
the source code, or click-drag to highlight the line. Then, select either Traps > Set
Trap > Stop or Traps > Set Trap > Sample from the menu bar.

For a trap at the beginning or end of a function, highlight the function name in the
source code display area and select one of the following from the Traps > Set Traps
submenu as is appropriate to your needs:

• Stop At Function Entry

• Stop At Function Exit

• Sample At Function Entry

• Sample At Function Exit

Traps are indicated by icons in the source annotation column (and also appear in the
Trap Manager window if you have it open). Sampling is indicated by a dot in the
center of the icon. Traps appear in normal color or grayed out, depending on whether
they are active or inactive. A transcript of the trap activity appears in the Debugger
command line area. The active/inactive nature of traps is discussed in "Enabling and
Disabling Traps", page 74.

The Clear Trap selection in the Traps menu deletes the trap on the line containing the
cursor. You must designate a Stop or Sample trap type, since both types can exist at
the same location appearing superimposed on each other.

When the Group Trap Default toggle is checked (ON), the pgrp option is added into
the resulting trap when a trap is set. This option causes the trap to apply to all
processes/pthreads in the group of which the current process is a member.

007–2579–008 65

5: Setting Traps (Breakpoints)

When the Stop All Defaults toggle is checked (ON), the all option is added into the
resulting trap when a trap is set. This option causes the trap to apply to all
processes/pthreads in the current debugging session.

Setting Traps in the Trap Manager Window
The Trap Manager window is brought up by selecting Views > Trap Manager from
the Main View window menu bar. This tool helps you manage all traps in a process.
Its major functions are to:

• List all traps in the process (except signal traps).

• Add, delete, modify, or disable the traps listed.

• Navigate the user code. Diving or double-clicking on a trap repositions the source
in the Main View to the trap location.

The Trap Manager window appears in Figure 5-1 with the Config, Traps, and
Display menus shown.

66 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Trap specification

Trap condition
specification

Cycle Count

Current Count

Trap controls

Trap display area

Search field

Figure 5-1 Trap Manager Config, Traps, and Display Menus

Setting Single-Process and Multiprocess Traps

New or modified traps are entered in the Trap field. Traps have the following general
form:

[stop|sample] [all] [pgrp] location | condition

The [stop|sample] option refers to the trap action. You can set a default for the
action by using the Stop Trap Default or Sample Trap Default selections of the Traps
menu and omitting it on the command line.

007–2579–008 67

5: Setting Traps (Breakpoints)

The [all] and [pgrp] options are used in multiprocess analysis. The [all] entry
causes all processes in the process group to stop or sample when the trap fires. The
[pgrp] entry sets the trap in all processes within the process group that contains the
code where the trap is set. You can set a default for the action by setting the Stop All
Default or Group Trap Default toggles in the Traps menu.

After you enter the trap (by using the Add or Modify button or by pressing Enter),
the full syntax of the specification appears in the field. The Clear button clears the
Trap and Condition fields and the cycle fields.

Some typical trap examples are provided in Figure 5-2, page 68. The entries made in
the Trap field are shown in the left portion of the figure, the trap display in the Trap
Manager window resulting from these entries is shown on the right, and the trap
display shown at the command line in the Main View window is shown at the bottom.

Trap entries

Resulting command line
display in Main View

Figure 5-2 Trap Examples

68 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Syntaxes

Specific command syntaxes that may be entered in the Trap text field are shown in
the following list.

• Setting a Trap in filename at line-number:

[stop|sample] [all][pgrp] at [{file]filename][[line]line-number]

This command sets a trap at the specified line in the specified file, for example:
Trap: stop at 1449.

• Setting a Trap on instruction-address:

[stop | sample] [all] [pgrp] addr instruction-address

This command sets a trap on the specified instruction address. Instruction
addresses may be obtained from the Disassembly View window, which is brought
up from the Views submenu on the Main View window menu bar. The addresses
may be entered as shown, such as ’0af8cbb8’X, or as 0x0af8cbb8. For
example:

Trap: stop addr 0x0af8cbb8

• Setting a Trap on Entry to function:

[stop|sample] [all] [pgrp] entry function[[file] filename]

[stop|sample][all] [pgrp] in function[[file]filename]

This command sets a trap on entry to the specified function. For example:

Trap: stop entry anneal

or

Trap: stop in anneal

If the filename is given, the function is assumed to be in that file’s scope.

• Setting a Trap on Exit from function:

007–2579–008 69

5: Setting Traps (Breakpoints)

[stop|sample][all][pgrp] exit function[[file]filename]

This command sets a trap on exit from the specified function. For example:

Trap: stop exit anneal file generic.c

If the filename is given, the function is assumed to be in that file’s scope.

• Setting a Watchpoint on Specified expression:

[stop|sample][all][pgrp] watch expression[[for] read|write|execute
[access]]

This command sets a watchpoint on the specified expression (using the address
and size of the expression for the watchpoint span). The watchpoint may be
specified to fire on write, read, or execute (or some combination thereof). If
not specified, the write condition is assumed. This syntax has no provision for
looking on only a portion of an array. The next syntax item can handle such a
request. For example:

Trap: stop watch x for write

• Setting a Watchpoint for address and size:

[stop|sample][all][pgrp] watch addr[ess]address[[size]size]
[[for] read|write|execute[access]]

This command sets a watchpoint for the specified address and size in bytes.
Typically the expression is the name of a variable. The watchpoint may be
specified to fire on write, read, or execute (or some combination thereof) of
memory in the given span. If not specified, the size defaults to 4 bytes. Also, if
not specified, the write condition is assumed. Addresses may be found by
choosing the following from the Main View window menu bar: Views > Variable
Browser or Views > Data Explorer.

The window displays addresses for arrays and has options to display addresses
for other variables. Addresses may be entered in the form 0x0123fabc or
’0123fabc’X. For example:

Trap: stop watch addr 0x0123fabc 16

70 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

If the array you are watching at address 0x0123fabc is defined such that each
element is 4 bytes long, this example trap would be watching 4 adjacent array
elements and would cause a stop if any of those 4 elements were updated, since a
size of 16 is specified.

• Setting a Trap at signal-name:

[stop|sample] [all] [pgrp] signal signal-name

This command sets a trap upon receipt of the given signal. This is the same as the
dbx(1) catch subcommand. (For a list of signals, or an alternative way to set
traps involving signals, see "Setting Traps by Using Signal Panel and System Call
Panel", page 74.) For example:

Trap: stop signal SGIFPE

• Setting a Trap on Entry to sys-call-name:

[stop|sample] [all] [pgrp] syscall entry sys-call-name

This command sets a trap on entry to the specified system call. This is slightly
different from setting a trap on entry to the function by the same name. A syscall
entry trap sets a trap on entry to the actual system call. A function entry trap sets
a trap on entry to the stub function that calls the system call. (For a list of system
calls, or an alternative way to set traps involving system calls, see "Setting Traps
by Using Signal Panel and System Call Panel", page 74.) For example:

Trap: stop syscall entry write

• Setting a Trap on Exit from sys-call-name:

[stop|sample] [all] [pgrp] syscall exit sys-call-name

This command sets a trap on exit from the specified system call. This is slightly
different from setting a trap on exit from the function by the same name. A syscall
exit trap sets a trap on exit from the actual system call. A function exit trap sets a
trap on exit from the stub function that calls the system call. (For a list of signals,

007–2579–008 71

5: Setting Traps (Breakpoints)

or an alternative way to set traps involving signals, see "Setting Traps by Using
Signal Panel and System Call Panel", page 74.) For example:

Trap: stop syscall exit read

• Setting a Trap at time Interval:

[stop|sample] pollpoint [interval] time [seconds]

This command sets a trap at regular intervals of seconds. This is typically used
only for sampling. For example:

Trap: stop pollpoint 3

• Setting a Trap for C++ Exception

[stop|sample] exception [all | item] itemname

This command sets a trap on all C++ exceptions, or exceptions that throw the base
type item.

[stop|sample] exception unexpected [all|[item[, item]]]

Stops on all C++ exceptions that have either no handler or are caught by an
unexpected handler. If you specify item, stops on executions that throw the base
type item.

Setting a Trap Condition

The Condition field in the Trap Manager window lets you specify the condition
necessary for the trap to be fired. A condition can be any legal expression and is
considered to be true if it returns a nonzero value when the corresponding trap is
encountered.

The expression must be valid in the context in which it will be evaluated. For
example, a Fortran condition like a .gt .2 cannot be evaluated if it is tested while
the program is stopped in a C function.

There are two possible sequences for entering a trap with a condition:

72 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

1. Define the trap.

2. Define the condition.

3. Click Add.

or

1. Define the trap.

2. Click Add.

3. Define the condition.

4. Click Modify (or press Enter).

An example of a trap with a condition is shown in Figure 5-2, page 68. The
expression i==1 has been entered in the Condition field. (If you were debugging in
Fortran, you would use the Fortran expression i .eq .1 rather than i==1.) After
the trap has been entered, the condition appears as part of the trap definition in the
display area. During execution, any requirements set by the trigger must be satisfied
first for the condition to be tested. A condition is true if the expression (valid in the
language of the program you are debugging) evaluates to a nonzero value.

Setting a Trap Cycle Count

The Cycle Count field in the Trap Manager window lets you pass through a trap a
specific number of times without firing. If you set a cycle count of n, the trap fires
every nth time the trap is encountered. The Current Count field indicates the number
of times the process has passed the trap since either the cycle count was set or the
trap last fired. The current count updates only when the process stops.

Setting a Trap with the Traps Menu

The Traps menu of the Trap Manager window lets you specify traps in conjunction
with the Main View or Source View windows. Clicking At Source Line sets a trap at
the line in the source display area that is currently selected. To set a trap at the
beginning or end of a function, highlight the function name in the source display and
click Entry Function or Exit Function.

007–2579–008 73

5: Setting Traps (Breakpoints)

Moving around the Trap Display Area

The trap display area displays all traps set for the current process. There are vertical
and horizontal scroll bars for moving around the display area. The Search field lets
you incrementally search for any string in any trap.

Enabling and Disabling Traps

Each trap has an indicator to its left for toggling back and forth between active and
inactive trap states. This feature lets you accumulate traps and turn them on only as
needed. Thus, when you do not need the trap, it is not in your way. When you do
need it, you can easily activate it.

Saving and Reusing Trap Sets

The Load Traps selection in the Config menu lets you bring in previously saved trap
sets. This is useful for reestablishing a set of traps between debugging sessions. The
Save Traps... selection of the Config menu lets you save the current traps to a file.

Setting Traps by Using Signal Panel and System Call Panel
You can trap signals by using the Signal Panel and set system calls by using System
Call Panel (see Figure 5-3, page 75).

74 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 5-3 Signal Panel and System Call Panel

You can select either panel from the Views menu of the Main View window menu
bar. The Signal Panel sets a trap on receipt of the signal(s) selected. The System Call
Panel sets a trap at the selected entry to or return from the system call.

Note: When debugging IRIX 6.5 pthreads, the Signal Panel is inaccessible if more
than one thread is active.

007–2579–008 75

Chapter 6

Controlling Program Execution

This chapter shows you how to control the execution of your program with
WorkShop Debugger. It includes the following topics:

• "The Main View Window Control Panel", page 77

• "Controlling Program Execution Continue To/Jump To", page 79

• "Execution View", page 80

The Main View Window Control Panel
The Main View window control panel allows you to choose an executable, and
control its execution:

Figure 6-1 The Main View Window Control Panel

Features of the Main View Window Control Panel

The control panel includes the following items:

• Command field: use this field to enter shell commands (with arguments) to run
your program.

• Execution control buttons, which enable control of the program. These buttons are
described in more detail in "Execution Control Buttons", page 78.

007–2579–008 77

6: Controlling Program Execution

• Status field: displays information about the execution status of your program. The
top line in this box indicates whether the program is running or stopped. The
message No executable displays if no executable is loaded. When your program
stops at a breakpoint, an additional status line lists the current stack frame.

To see all of the stack frames, select Views > Call Stack from the Menu Bar.

Execution Control Buttons

The execution control buttons enable you to control program execution. Most of these
buttons are not active until the Run button has been selected and the program is
executed. The Print button does not affect program execution. It is described in the
ProDev WorkShop: Debugger Reference Manual.

• Kill: kills the active process.

• Run: creates a new process for your program and starts its execution. The Run
button is also used to re-run a program.

• All/Single: if set to All, the Cont, Stop, Step, Next, and Return actions apply to
all processor or threads. If set to Single, then only the currently focused process
or thread is acted upon.

• The lock icon (Stay Focused/Follow Interesting): if the lock icon is locked, it
indicates that the focus of Main View will attempt to stay focused on this thread.
If the lock is unlocked, the debugger follows the interesting thread. This means it
focuses on threads that reach a user breakpoint.

• Cont: resumes program execution after a halt and continues until a breakpoint or
other event stops execution.

• Stop: stops execution of your program. When program execution stops, the
current source line is highlighted in the Main View window and annotated with
an arrow.

• Step: step into function or subroutine calls by default if the function that is
stepped into was compiled with -g (full debugging information). For libraries like
libc.so, step does not step into it by default.

• Next: steps over function or subroutine calls to the next source line. To step a
specific number of lines, right-click on this button to display a pop-up menu. You
can select one of the fixed values or enter your own number of steps by selecting

78 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

N. If you select N, a dialog box appears, allowing you to enter the number of
instructions to step over.

• Return: executes the remaining instructions in the current function or subroutine,
and stops execution at the return from this subprogram.

• Sample: collects performance data. Before this button is operative, a performance
task must have been previously specified in the Performance Task window and
data collection must have been enabled.

For further information about using the Performance Analyzer, see ProDev
WorkShop: Performance Analyzer User’s Guide

Controlling Program Execution Continue To/Jump To
The PC (program counter) menu is accessible by holding the mouse down over a line
of code in the Source View window in the Main View window. The Continue To and
Jump To menu picks allow you to control program execution without setting
breakpoints.

These tools are inoperative until a process has been executing and is stopped. At that
point, you must place your cursor on a source line that you wish to target, then hold
down the mouse button and select an item from the PC menu depending on your
requirements.

• Continue To: this tool lets you select a target location in the current program (by
placing the cursor in the line). The process proceeds from the current program
counter to that point, provided there are no interruptions. It then stops there, as it
would for a stop trap. Continue To is equivalent to setting a one-time trap. If the
process is interrupted before reaching your target location, then the command is
cancelled. Continue To is useful to move past the end of a for or while loop
that is stepped in, but which has no further interest to you.

• Jump To: this tool lets you select a target location in the current program (by
placing the cursor in the line). This location must be in the same function. Instead
of starting from the current program counter, Jump To skips over any intervening
code and restarts the process at your target. This is particularly useful if you want
to get around bad code or irrelevant portions of the program. It also lets you back
up and reexecute a portion of code.

007–2579–008 79

6: Controlling Program Execution

Execution View
The Execution View window is a simple shell that lets you set environment variables
and inspect error messages. If your program is designed to be interactive using
standard I/O, this interaction takes place in the Execution View window. Any
standard I/O that is not redirected by your Target Command is displayed in the
Execution View window.

When you launch the debugger, the Execution View window is launched in iconified
form.

80 007–2579–008

Chapter 7

Viewing Program Data

After you set traps (breakpoints) in your program, use the Run button to execute
your program. When a trap stops a process, you can view your program data using
the tools described in this chapter. This chapter covers:

• "Traceback Through the Call Stack Window", page 81

• "Options for Viewing Variables", page 82

• "Evaluating Expressions", page 84

The Debugger also lets you examine data at the machine level. The tools for viewing
disassembled code, machine registers, and data by specific memory location are
described in the ProDev WorkShop: Debugger Reference Manual.

Traceback Through the Call Stack Window
The Views menu may be used to bring up the Call Stack window. This window
displays the functions/subroutines (that is, the “frames”) in the call stack when the
process associated with your program has stopped. This display provides a traceback
of subprograms from the system routine which starts your executable, found at the
bottom of the list, to the routine in which you are currently stopped, found at the top
of the list.

If the trap/breakpoint at which you are currently stopped is located in your source
code, that code is displayed in the source pane of the Main View window. If the
trap/breakpoint is located in a system routine, the Call Stack allows you to
double-click on another routine’s name to bring up that routine’s source and
associated data.

The Call Stack window lets you see the argument names, values, types, and locations
of functions, as well as the program counter (PC).

If symbolic information for the arguments has been stripped from the executable file,
the label <stripped> appears in place of the arguments. By default call stack depth
is set to 10, but you can reset the depth of the Call Stack by selecting Config >
Preferences from the Main View window.

To move through the call stack, double-click a frame in the stack. The frame becomes
highlighted to indicate the current context. The source display in the Main View or

007–2579–008 81

7: Viewing Program Data

Source View windows scrolls automatically to the location where the function was
called and any other active views update.

The source display has two special annotations:

• The location of the current program state is indicated by a large arrow. This
represents the PC (program counter).

• The location of the call to the function selected in the Call Stack window is
indicated by a smaller arrow. This represents the current context, and the source
line is highlighted.

Options for Viewing Variables
The WorkShop Debugger provides several options for viewing variables or
expressions involving these variables. In this section only brief descriptions of these
options are provided along with references where further information may be
obtained elsewhere in this document.

Using the cvd Command Line

At the bottom of the Main View window is the cvd command/message pane. Here,
you can enter print xxx commands to obtain the current value of variable xxx.

For examples of these commands, see "Viewing Variables Using the cvd Command
Line", page 18.

For the syntax of these commands (such as assign, print, printd, printo,
printx, and so on), see the ProDev WorkShop: Debugger Reference Manual.

Using Click to Evaluate

In the Main View window’s source pane, a click of the right mouse button brings up
a pop-up menu from which you can select Click to Evaluate. When this option is on,
a click on a variable causes its value to appear. If you click on a subscript variable, its
address appears. If you hold down the left mouse button and wipe across a variable
and its subscripts to highlight them, the current value is displayed. The same is true
if an expression in the source is highlighted.

82 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Using the Array Browser

To view values of arrays, select Views > Array Browser from the Main View menu bar.

This calls up the Array Browser window. When the name of an array is entered into
the Array field, the values of 1–dimensional arrays or the values in a selected plane of
a multi-dimensional array are displayed.

See "Viewing Variables Using the Array Browser", page 21 for short description of the
Array Browser. The ProDev WorkShop: Debugger Reference Manual provides a more
detailed description and graphic of the window and associated submenus.

Using the Data Explorer

To view C structures, select Views > Data Explorer from the Main View menu bar.

This calls up the Data Explorer window. When the name of a structure is entered into
the Expression field, the objects in the structure display in the lower portion of the
window. The ProDev WorkShop: Debugger Reference Manual provides a more detailed
description and graphic of the window and associated submenus.

Using the Variable Browser

To call up the Variable Browser window, select Views > Variable Browser from the
Main View menu bar.

This window lists the names and values of variables associated with the current
routine in which the process has stopped.

See "Viewing Variables Using the Variable Browser", page 20 for a short description
of the Variable Browser. The ProDev WorkShop: Debugger Reference Manual provides a
more detailed description and graphic of the window and associated submenus.

Using the Expression View

Select the following from the Main View menu bar to bring up the Expression View
window: Views > Expression View.

Expressions may be entered into this window in the Expression column; and the
corresponding Results entry displays the value of the evaluated expression using

007–2579–008 83

7: Viewing Program Data

values of variables associated with the current routine in which the process has
stopped.

See "Viewing Variables Using the Expression View Window", page 20 for a short
description of the Expressions View window. The ProDev WorkShop: Debugger
Reference Manual section on the Expression View Window provides a more detailed
description and graphic of the window and associated submenus.

The next section of this chapter, “Evaluating Expressions”, gives further details on
how to create acceptable expressions for the Expression View.

Using the Data View Window

When you “dive” on a variable in the Source View window (click the right mouse
button over a variable), the Data View window appears, displaying that variable’s
information. Pointers and structures can be re-selected (re-dived) in the Data View
window to expand portions of the object that is of interest.

Evaluating Expressions
You can evaluate any valid expression at a stopping point and trace it through the
process. Expressions are evaluated by default in the frame and language of the
current context. Expressions may contain data names or constants; however, they may
not contain names known only to the C preprocessor, such as in a #define directive
or a macro.

To evaluate expressions, you can use Expression View, which lets you evaluate
multiple expressions simultaneously, updating their values each time the process
stops.

You can also evaluate expressions from the command line. See the ProDev WorkShop:
Debugger Reference Manual for more information.

Expression View Window

The Expression View window has two pop-up menus, the Language menu and the
Format menu:

• The Language menu is invoked by holding down the right mouse button while
the cursor is in the Expression column.

84 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

• The Format menu is displayed by holding down the right mouse button in the
Result column.

To specify the expression to be evaluated, click in the Expression column and then
enter the expression in the selected field. It must be a valid expression in the current
or selected language: Ada, C, C++, or Fortran. To change languages, display the
Language menu and make your selection. When you press Enter, the result of the
expression is displayed in the Result column.

To change the type of result information displayed in the right column, hold down
the right mouse button over the right column. This displays the Format menu. From
here you can select the following:

• Select the Default Value menu to see the value as decimal, unsigned, octal, hex,
float, char, or string characters.

• Select the Type Address Of menu to display the address in decimal, octal, or
hexadecimal.

• Select Bit Size to specify the size of the result, in bits.

!
Caution: The Debugger uses the symbol table of the target program to determine
variable type. Some variables in libraries, such as errno and _environ, are not fully
described in the symbol table. As a result, the Debugger may not know their types.
When the Debugger evaluates such a variable, it assumes that the variable is a
fullword integer. This gives the correct value for fullword integers or pointers, but the
wrong value for non-fullword integers and for floating-point values.

To see the value of a variable of unknown type, use C type cast syntax to cast the
address of the variable to a pointer that points to the correct type. For example, the
global variable _environ should be of type char**. You can see its value by
evaluating *(char***)&_environ.

After you display the current value of the expression, you may find it useful to leave
the window open so that you can trace the expression as it changes value from trap
to trap (or when you change the current context by double-clicking in the call stack).
Like other views involved with variables, Expression View has variable change
indicators for value fields that let you see previous values.

Another useful technique is to save your expressions to a file for later reuse. To save
expressions, select Config > Save Expressions from the Main View menu bar.

To load expressions, select Config > Load Expressions from the Main View menu bar.

007–2579–008 85

7: Viewing Program Data

Assigning Values to Variables

To assign a value to a variable, click the left column of the Expression View window
and enter the variable name. The current value appears in the right column. If this
Result field is editable (highlighted), you can click it and enter a new value or legal
expression. Press Enter to assign the new value. You can perform an assignment to
any expression that evaluates to a legal lvalue (in C). The C operator “=” is not
valid in Expression View. Valid expression operations are shown in the following
paragraphs.

Evaluating Expressions in C

The valid C expressions are shown in Table 7-1.

Table 7-1 Valid C Operations

Operation Symbol

Arithmetic1
+ - ++ --

Arithmetic (binary)
+ - * / %

Logical
&& || !

Relational
< > <= >= == !=

Bit
& | ^ << >> ~

Dereference
*

Address
&

Array indexing
[]

Conditional
? :

1 Unary - increment and decrement do not have side-effects

86 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Operation Symbol

Member extraction2
. ->

Assignment3
= += -= /= %= >>= <<= &= ^= |=

Sizeof

Type-cast

Function call

C Function Calls

Function calls can be evaluated in expressions, as long as enough actual parameters
are supplied. Arguments are passed by value. Following the rules of C, each actual
parameter is converted to a value of the same type as the formal parameter, before
the call. If the types of the formal parameters are unknown, integral arguments are
widened to full words, and floating-point arguments are converted to doubles.

Functions may return pointers, scalar values, unions, or structs. Note that if the
function returns a pointer into its stack frame (rarely a good programming practice),
the value pointed to will be meaningless, because the temporary stack frame is
destroyed immediately after the call is completed.

Function calls may be nested. For example, if your program contains a successor
function succ, the Debugger evaluates the expression succ(succ(succ(3))) to 6.

Evaluating Expressions in C++

C++ expressions may contain any of the C operations. You can use the word this to
explicitly reference data members of an object in a member function. When stopped
in a member function, the scope for this is searched automatically for data
members. Names may be used in either mangled or de-mangled form. Names
qualified by class name are supported (for example, Symbol::a).

If you wish to look at a static member variable for a C++ class, you need not specify
the variable with the class qualifier if you are within the context of the class. For

2 These operations are interchangeable.
3 A new assignment is made at each stepping point. Use Assignments with caution to avoid inadvertently modifying

variables.

007–2579–008 87

7: Viewing Program Data

example, you would specify myclass::myvariable for the static variable
myvariable outside of class myclass and myvariable inside myclass.

Limitations

Constructors may be called from Expression View, just like other member functions.
To call a constructor, you must pass in a first argument that points to the object to be
created. C++ function calls have the same possibility of side effects as C functions.

Evaluating Expressions in Fortran

You can enter any Fortran expression under the Expression heading and its current
value appears in the same row under the Results column. Fortran expressions may
contain any of the arithmetic, relational, or logical operators. Relational and logical
operator keywords may be spelled in upper case, lower case, or mixed case.

The usual forms of Fortran constants, including complex constants, may be used in
expressions. String constants and string operations, however, are not supported. The
operators in Table 7-2 are supported on data of integer, real, and complex types.

Table 7-2 Valid Fortran Operations

Operation Symbol

Arithmetic (unary)
- +

Arithmetic (binary)
- + * / **

Logical
.NOT. .AND. .OR. .XOR. .EQV .NEQV.

Relational
.GT. .GE. .LT. .LE. .EQ. .NE.

Array indexing
()

Intrinsic function calls (except
string intrinsics)

88 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Operation Symbol

Function subroutine calls

Assignment4
=

Fortran Variables

Names of Fortran variables, functions, parameters, arrays, pointers, and arguments
are all supported in expressions, as are names in common blocks and equivalence
statements. Names may be spelled in upper case, lower case, or mixed case.

Fortran Function Calls

The Debugger evaluates function calls the same way that compiled code does. If it
can be, an argument is passed by reference; otherwise, a temporary expression is
allocated and passed by reference. Following the rules of Fortran, actual arguments
are not converted to match the types of formal arguments. Side effects can be caused
by Fortran function calls. A useful technique to protect the value of a parameter from
being modified by a function subroutine is to pass an expression such as
(parameter + 0)instead of just the parameter name. This causes a reference to a
temporary expression to be passed to the function rather than a reference to the
parameter itself. The value is the same.

4 A new assignment is made at each stepping point. Use assignments with caution to avoid inadvertently modifying
variables.

007–2579–008 89

Chapter 8

Debugging with Fix+Continue

Fix+Continue allows you to make changes to a C++ program you are debugging
without having to recompile and link the entire program. With Fix+Continue you can
edit a function, parse the new function, and continue execution of the program being
debugged.

Fix+Continue is an integral part of the Debugger. You issue Fix+Continue commands
graphically from the Fix+Continue submenu of the Main View window, or from the
cvd command line prompt in the Command/Message pane of the Main View
window.

This chapter provides an introduction to the Fix+Continue functionality as well as a
tutorial to demonstrate many of the Fix+Continue functions.

Fix+Continue Functionality
Fix+Continue lets you perform the following activities:

• Redefine existing function definitions.

• Disable, re-enable, save, and delete redefinitions.

• Set breakpoints in redefined code.

• Single-step within redefined code.

• View the status of changes.

• Examine differences between original and redefined functions.

A typical Fix+Continue cycle proceeds as follows:

1. You redefine a function with Fix+Continue. When you continue executing the
program, the Debugger attempts to call the redefined function. If it cannot, an
information pop-up window appears and the redefined function is executed the
next time the program calls that function.

2. You redefine other functions, alternating between debugging, disabling,
re-enabling, and deleting redefinitions. You might save function redefinitions to
their own files, or save files to a different name, to be used later with the present
or with other programs.

007–2579–008 91

8: Debugging with Fix+Continue

During debugging you can review the status of changes by listing them, showing
specific changes, or looking at the Fix+Continue Status View. You can compare
changes to an individual function or to an entire file with the compiled versions.
When you are satisfied with the behavior of your application, save the changed file as
a replacement for the compiled source.

Fix+Continue Integration with Debugger Views

Fix+Continue interacts with the following Views:

• The Views main view, the Source View, and Fix+Continue Status windows
distinguish between compiled and redefined code, and allow editing in redefined
code.

• The following status windows elements work with redefined code:

– Call Stack window

– Trap Manager

– Debugger command line

How Redefined Code Is Distinguished from Compiled Code

Redefined functions have an identification number and special line numbers. They are
color-coded according to their state (that is, edited, parsed, and so on).

Line numbers in the compiled file stay the same, no matter how redefined functions
change. However, when you begin editing a function, the line numbers of the
function body are represented in decimal notation (n.1, n.2, ..., n.m), where n is the
compiled line number where the function body begins, and m is the line number
relative to the beginning of the function body, starting with the number 1.

The Call Stack window and the Trap Manager functions both use function-relative
decimal notation when referring to a line number within the body of a redefined
function.

The Debugger command line reports ongoing status. In addition to providing the
same commands available from the menu, edit commands allow you to add, replace,
or delete lines from files. Therefore, you can operate on several files at once.

92 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

The Fix+Continue Interface

You can access Fix+Continue through the Fix+Continue menu. It includes three
supporting windows: Status, Message, and Build Environment. These windows are
part of Fix+Continue, and do not operate unless it is installed.

Debugger with Fix+Continue Support

Without Fix+Continue, the Debugger source views are Read-Only by default. That is
so you can examine your files with no risk of changing them. When you select Edit
from the Fix+Continue menu, the Debugger source code status indicator (in the
lower-right corner of the Debugger window) remains Read-Only. This is because
edits made using Fix+Continue are saved in an intermediate state. Instead, you must
choose Save File > Fixes As to save your edits.

When you edit a function, it is highlighted in color; and if you switch to the compiled
version of your code, the color changes to show that the function has been redefined.
If you try to edit the compiled version of your code, the Debugger beeps indicating
Read-Only status.

When you have completed your edits and want to see the results, select Parse and
Load. When the parse and load has executed successfully, the color changes again. If
the color does not change, there may be errors: check the Message Window.

Change ID, Build Path, and Other Concepts

The Fix+Continue features finding files and accessing functions through ID numbers
as follows:

• Each redefined function is numbered with a change ID. Its status may be shown as
redefined, enabled, disabled, deleted, or detached.

• Fix+Continue needs to know the location of include files and other parameters
specified by compiler build flags. You can set the build environment for all files or
for a specific file. You can display the current build environment from the
Fix+Continue menu, the command line, or the Fix+Continue Status Window.
When you finish a Fix+Continue session, you can unset the build environment.

• Output from a successful run is displayed in the Execution View. This
functionality is the same as it is in the Debugger without Fix+Continue.

007–2579–008 93

8: Debugging with Fix+Continue

Restrictions on Fix+Continue
Fix+Continue has the following restrictions:

• When you work with C code, you must use the -o32 compiler option.

• Fix+Continue does not support C++ templates.

• You may not add, delete, or reorder local variables in a function.

• You may not change the type of a local variable.

• You may not change a local variable to be a register variable and vice- versa.

• You may not add any function calls that increase the size of the parameter area.

• You may not add an alloca function to a frame that did not previously use an
alloca function.

• Both the old and new functions must be compiled with the -g option.

In other words, the layout of the stack frames of both the old and new functions
must be identical for you to continue execution in the function that is being
modified. If not, execution of the old function continues and the new function is
executed the next time the function is called.

• If you redefine functions that are in but not on top of the call stack, the modified
code is not executed when they combine. Modified functions are executed only on
their next call or on a rerun.

For example, consider the following call stack:

foo()
bar()

foobar()

main()

– If you redefine foo(), you can continue execution, provided that the layout of
the stack frames are the same.

– If you redefine main() after you have begun execution, the redefined main() is
executed only when you rerun.

– If you redefine bar() or foobar(), the new code is not executed when
foo() returns. It is executed only on the next call of bar() or foobar().

94 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Fix+Continue Tutorial
This tutorial illustrates several features of Fix+Continue. The demo files included in
/usr/demos/WorkShop/time1 contain the complete C++ source code for the
program time1. Use this program for your tutorial. Here you see how Fix+Continue
can modify functions without recompiling and linking the entire program.

This section contains the following subsections:

• "Setting up the Sample Session", page 95.

• "Redefining a Function: time1 Program", page 96.

• "Setting Breakpoints in Redefined Code", page 101.

• "Comparing Original and Redefined Code", page 103.

• "Ending the Session", page 105.

Setting up the Sample Session

For this tutorial, use the demo files in the /usr/demos/WorkShop/time1 directory
that contains the complete source code for the C++ application time1. To prepare for
the session, you must create the fileset and launch Fix+Continue from the Debugger
as shown below:

1. Enter the following commands:

% cd demos
% mkdir time1

% cd time1

% cp /usr/demos/WorkShop/time1/* .

% make time1

% cvd time1 &

The cvd command brings up the Debugger, from which you can use the
Fix+Continue utility. The Execution View icon and the Main View window
appear. Note that the Debugger shows a source code status indicator of (Read
Only).

2. Open the Execution View window and position it next to the Main View window.

3. Click Run to run time1.

The Execution View shows the program output (see Figure 8-1).

007–2579–008 95

8: Debugging with Fix+Continue

Figure 8-1 Program Results in Execution View

Redefining a Function: time1 Program

In this section, you will do the following in the time1 program:

• Edit a C/C++ function.

• Change the code of an existing C/C++ function and then parse and load the
function, rebuilding your program to see the effect of your changes on program
output (without recompiling).

• Save the changed function to its own separate file.

Editing a Function

Perform the following in the Debugger Main View window (the time1 program
should be displayed) to edit a function:

1. Select Display > Show Line Numbers from the Main View window menu bar to
show line numbers.

2. Click on the source annotation column to the left of line 17 to set a breakpoint at
that point.

96 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

3. Set a breakpoint at line 20 from the cvd command line as follows:

cvd> stop at 20

4. Click on the Run button to execute the program.

The following output appears in the Execution View window:

First printing of time:

08:20:50

5. Enter the following at the cvd command line to choose a class member function
to edit (in this case, printTime, a C++ member function of class Time):

cvd> func Time::printTime

This command opens the time1/time1.c file, which contains the
implementation of class Time. The cursor is placed at the beginning of the
printTime function. See Figure 8-2, page 97. The syntax of the func command
is as follows:

• For C++ class member functions:

cvd> func className::classMemberFunction

• For all other C/C++ functions:

cvd> func functionName

Figure 8-2 Selecting a Function for Redefinition

007–2579–008 97

8: Debugging with Fix+Continue

6. Select Fix+Continue > Edit from the menu bar to highlight the function to be
edited. You can also use Alt-Ctrl-e to do this.

Note the results as shown in Figure 8-3, page 98. Line numbers changed to a
decimal notation based on the first line number of the function body. The
function body highlights to show that it is being edited. The line numbers of the
rest of the file are not affected.

Line number
notation

Highlight

Figure 8-3 Redefined Function

Changing Code

1. To change the time output as shown in Step 5 in "Editing a Function", page 96,
delete the 0 from "0" in line 23.2.

2. Select Fix+Continue > Parse And Load from the menu bar to parse the modified
function and load it for execution.

An icon for the Fix+Continue Error Messages window displays and the
following message appears in the cvd window:

Change id: 1 modified

If there are errors:

a. Go to the error location(s) by double-clicking the related message line in the
Fix+Continue Error Messages window.

b. Correct the errors.

c. Repeat steps 1 and 2.

98 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Continue to step 3 when you see the change ID and the following messages:

Change id: 1 redefined
Change id: 1 saved func

Change id: 1 file not saved

Change id: 1 modified

The new function value is not active until the function is called.

3. Click on the Continue button to continue program execution.

The following output appears in the Execution View window:

Second printing of time:

8:20:50

Notice how the time printout has changed from 08:20:50 to 8:20:50.

Deleting Changed Code

To cancel any of your changes, you must bring up the source file in which the change
was made and perform the following steps:

1. Enter the following at the cvd command line:

cvd> func Time::printTime

2. Select Fix+Continue > Delete Edits from the menu bar to delete your changes.

The Verify before deleting dialog displays.

3. Click OK in the Verify before deleting dialog.

Your deletion is complete.

Changing Code from the Debugger Command Line

You can redefine a C++ class member function from the Debugger command line as
follows:

1. Click on the Kill button in the Main View window.

2. Click on the Run button to re-run the program.

007–2579–008 99

8: Debugging with Fix+Continue

3. Choose a class member function (in this case, printTime) to edit by entering the
following at the cvd command line:

cvd> func Time::printTime

4. Use the redefine command to edit the function:

cvd> redefine Time::printTime

Note the results as shown in Figure 8-3, page 98. Here, line numbers have
changed to decimal notation based on the first line number of the function body.
Note also that the command line prompt has changed.

5. Enter the following at the prompt:

"/path/name/time1.C":23.1> .

6. Change the function source by entering the following at the command line:

cvd> replace_source "time1.C":23.2

"time1.C:23.2> cout << (hour < 10 ? "" : "") << hour << ":"

"time1.C:23.3> .

Parse and Load is executed at this point. You exit out of the function edit mode
are return to the main source code. The following messages appear in the
command/message pane:

Change id: 2 redefined
Change id: 2 save func

Change id: 2 file not saved

Change id: 2 modified

Change id: 2 , build results:

2 enabled .../time1.C Time::printTime(void)

Note: 2 in these messages is the redefined function ID. You use this ID in the
procedure in "Switching between Compiled and Redefined Code", page 103. The
new function value is not active until the function is called.

7. Continue execution by entering the following command at the cvd command line:

cvd> continue

100 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

The following displays in the Execution View window:

Second printing of time:

8:20:50

If you prefer to use the command line, experiment with add_source and other
commands that give you the same functionality described for the menu commands.
For details on each command, see the ProDev WorkShop: Debugger Reference Manual.

Saving Changes

Your original source files are not updated until the changed source file is saved. You
could save redefined function changes to the time1.C file. However, if you did, the
file would not match the tutorial. So perform the following steps:

1. Enter the following command:

cvd> func Time::printTime

2. Select Fix+Continue > Save As from the menu bar.

A file_name dialog box opens.

3. The dialog box enables you to save your file changes back to the original source
files or save them to a different file. However, since you do not want to save your
changes, press the Cancel button on the bottom of the dialog box.

Note: You should wait until you are finished with Fix+Continue before you save your
changes. In addition to the method described above, you can also save your changes
by selecting Fix+Continue > Save All Files.

Setting Breakpoints in Redefined Code

To see how the Debugger works with traps in redefined code, this section shows you
how to set breakpoints, run the Debugger, and view the results.

007–2579–008 101

8: Debugging with Fix+Continue

1. Reset to the beginning of program execution by entering the following at the cvd
command line:

cvd> kill

cvd> run

2. Bring up the time1.C source file by entering the following at the cvd command
line:

cvd> func Time::printTime

3. Select Fix+Continue > Edit from the menu bar. You can also use the
Alt-Ctrl-e accelerator to do this.

4. Enter the following after line 23.4 in the source pane of the Main View window:

cout << " AM"<< endl;

5. Select Fix+Continue > Parse And Load from the menu bar.

6. Bring up the time1.C source file again by entering the following command at
the cvd command line:

cvd> func Time::printTime

7. Set a breakpoint at line 23.6 by entering the following message at the cvd
command line:

cvd> stop at 23.6

The following message appears in the Command/Message pane:

[2] Stop at file /path/name/time1.C line 23.6

8. Click on the Cont button in the Main View window.

9. Select the following from the menu bar to see the results of continuing to the
breakpoint: Views > Call Stack.

10. Select the following from the menu bar to view the locations of the breakpoints:
Views > Trap Manager.

11. Remove the breakpoint by clicking on the source annotation column to the right
of line 23.6.

To view status, select the following from the menu bar: Fix+Continue > View >
Status Window. The Fix+Continue Status window opens.

102 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Comparing Original and Redefined Code

You can use Fix+Continue to compare original code with and modified code. This
section shows you several ways to view your changes.

Switching between Compiled and Redefined Code

Follow these steps to see how the redefined code affects your executable:

1. Click the Run button to view your redefined code. If you are following
procedures in order in this section, you should see the following display:

8:20:50 AM

2. Enter the following at the cvd command line:

cvd> func Time::printTime

3. Select Fix+Continue > Parse and Load from the menu bar.

4. Select Fix+Continue > Edited<–>Compiled from the menu bar to disable your
changes.

5. Click the Continue button to see the printing of Time as in the original
executable. The following displays:

08:20:50

6. Re-enter the following at the cvd command line:

cvd> func Time::printTime

7. Select Fix+Continue > Edited<–>Compiled from the menu bar to re-enable your
changes.

8. Click on the Run button to see the changed printout of Time. The following
displays:

08:20:50 AM

Comparing Function Definitions

1. Place the cursor in the time1.C function.

2. Select Fix+Continue > Show Difference > For Function from the menu bar.

A window opens to display an xdiff comparison of the files as follows:

007–2579–008 103

8: Debugging with Fix+Continue

Figure 8-4 Comparing Compiled and Redefined Function Code

You can get the same result by entering the show_diff # command from the
Debugger command line, where # is the redefined function ID.

If you do not like xdiff, you can change the comparison tool by selecting
Fix+Continue > Show Difference > Set Diff Tool from the menu bar.

Comparing Source Code Files

If you have made several redefinitions to a file, you may need a side-by-side
comparison of the entire file. To see how changes to the entire file look, select
Fix+Continue > Show Difference > For File from the menu bar. This opens an
xdiff window that displays the entire file rather than just the function.

You can get the same comparison results from the Debugger command line if you
enter the following command:

show_diff -file time1.C

104 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Ending the Session

Exit the Debugger by selecting Admin > Exit from the menu bar.

007–2579–008 105

Chapter 9

Detecting Heap Corruption

The heap is a portion of memory used to support dynamic memory
allocation/deallocation via the malloc and free function. This chapter describes
heap corruption detection and covers the following topics:

• "Typical Heap Corruption Problems", page 107

• "Finding Heap Corruption Errors", page 107

• "Heap Corruption Detection Tutorial", page 111

Typical Heap Corruption Problems
Due to the dynamic nature of allocating and deallocating memory, the heap is
vulnerable to the following typical corruption problems:

• boundary overrun: a program writes beyond the malloc region.

• boundary underrun: a program writes in front of the malloc region.

• access to uninitialized memory: a program attempts to read memory that has not yet
been initialized.

• access to freed memory: a program attempts to read or write to memory that has
been freed.

• double frees: a program frees some structure that it had already freed. In such a
case, a subsequent reference can pick up a meaningless pointer, causing a
segmentation violation.

• erroneous frees: a program calls free() on addresses that were not returned by
malloc, such as static, global, or automatic variables, or other invalid expressions.
See the malloc(3f) man page for more information.

Finding Heap Corruption Errors
To find heap corruption problems, you must relink your executable with the
-lmalloc_ss library instead of the standard -lmalloc library. By default, the
-lmalloc_ss library catches the following errors:

007–2579–008 107

9: Detecting Heap Corruption

• malloc call failing (returning NULL)

• realloc call failing (returning NULL)

• realloc call with an address outside the range of heap addresses returned by
malloc or memalign

• memalign call with an improper alignment

• free call with an address that is improperly aligned

• free call with an address outside the range of heap addresses returned by
malloc or memalign

If you also set the MALLOC_FASTCHK environment variable, you can catch these errors:

• free or realloc calls where the words prior to the user block have been
corrupted

• free or realloc calls where the words following the user block have been
corrupted

• free or realloc calls where the address is that of a block that has already been
freed. This error may not always be detected if the area around the block is
reallocated after it was first freed.

Compiling with the Malloc Library

You can compile your executable from scratch as follows:

% cc -g -o targetprogram targetprogram.c -lmalloc_ss

You can also relink it by using:

% ld -o targetprogram targetprogram.o -lmalloc_ss ...

An alternative to rebuilding your executable is to use the _RLD_LIST environment
variable to link the -lmalloc_ss library. See the rld(1) man page.

Setting Environment Variables

After compiling, invoke the Debugger with your executable as the target. In
Execution View, you can set environment variables to enable different levels of heap
corruption detection from within the malloc library, as follows:

108 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

MALLOC_CLEAR_FREE

Clears data in any memory allocation freed by free. It requires that
MALLOC_FASTCHK be set.

MALLOC_CLEAR_FREE_PATTERN pattern

Specifies a pattern to clear the data if MALLOC_CLEAR_FREE is
enabled. The default pattern is 0xcafebeef for the 32-bit version,
and 0xcafebeefcafebeef for the 64-bit versions. Only full words
(double words for 64-bits) are cleared to the pattern.

MALLOC_CLEAR_MALLOC

Clears data in any memory allocation returned by malloc. It
requires that MALLOC_FASTCHK be set.

MALLOC_CLEAR_MALLOC_PATTERN pattern

Specifies a pattern to clear the data if MALLOC_CLEAR_MALLOC is
enabled. The default pattern is 0xfacebeef for the 32-bit version,
and 0xfacebeeffacebeef for the 64-bit versions. Only full words
(double words for 64-bits) are cleared to the pattern.

MALLOC_FASTCHK

Enables additional corruption checks when you call the routines in
this library. Error detection is done by allocating a space larger than
the requested area, and putting specific patterns in front of and
behind the area returned to the caller. When free or realloc is
called on a block, the patterns are checked, and if the area was
overwritten, an error message is printed to stderr using an internal
call to the routine ssmalloc_error. Under the Debugger, a trap
may be set at exit from this routine to catch the program at the error.

MALLOC_MAXMALLOC n

Where n is an integer in any base, sets a maximum size for any
malloc or realloc allocation. Any request exceeding that size is
flagged as an error, and returns a NULL pointer.

007–2579–008 109

9: Detecting Heap Corruption

MALLOC_NO_REUSE

Specifies that no area that has been freed can be reused. With this
option enabled, no actual free calls are made and process space and
swap requirements can grow quite large.

MALLOC_TRACING

Prints out all malloc events including address and size of the
malloc or free. When running a trace in the course of a
performance experiment, you need not set this variable because
running the experiment automatically enables it. If the option is
enabled when the program is run independently, and the
MALLOC_VERBOSE environment variable is set to 2 or greater, trace
events and program call stacks are written to stderr.

MALLOC_VERBOSE

Controls message output. If set to 1, minimal output displays; if set to
2, full output displays.

For further information, see the malloc_ss(3) man page.

Trapping Heap Errors Using the Malloc Library

If you are using the -lmalloc_ss library, you can use the Trap Manager to set a
stop trap at the exit from the function ssmalloc_error that is called when an error
is detected. Errors are detected only during calls to heap management routines, such
as malloc() and free(). Some kinds of errors, such as overruns, are not detected
until the block is freed or realloced.

When you run the program, the program halts at the stop trap if a heap corruption
error is detected. The error and the address are displayed in Execution View. You
can also examine the Call Stack at this point to get stack information. To find the
next error, click the Continue button.

If you need more information to isolate the error, set a watchpoint trap to detect a
write at the displayed address. Then rerun your program. Use
MALLOC_CLEAR_FREE and MALLOC_CLEAR_MALLOC to catch problems from
attempts to access uninitialized or freed memory.

110 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Note: You can run programs linked with the -lmalloc_ss library outside of the
Debugger. The trade-off is that you have to browse through the stderr messages
and catch any errors through visual inspection.

Heap Corruption Detection Tutorial
This tutorial demonstrates how to detect corruption errors by using the corrupt
program. The corrupt program has already been linked with the SpeedShop
malloc library (libmalloc_ss). The corrupt program listing is as follows:

#include <string.h>

void main (int argc, char **argv)

{
char *str;

int **array, *bogus, value;

/* Let us malloc 3 bytes */

str = (char *) malloc(strlen(‘‘bad’’));

/* The following statement writes 0 to the 4th byte */

strcpy(str, ‘‘bad’’);

free (str);

/* Let us malloc 100 bytes */

str = (char *) malloc(100);

array = (int **) str;

/* Get an uninitialized value */

bogus = array[0];

free (str);

/* The following is a double free */

free (str);

/* The following statement uses the uninitialized value as a pointer */
value = *bogus;

}

007–2579–008 111

9: Detecting Heap Corruption

To start the tutorial:

1. Enter the following:

% mkdir demos
% mkdir demos/mallocbug

% cd demos/mallocbug

% cp /usr/demos/WorkShop/mallocbug/* .

2. Invoke the Debugger by typing:

% cvd corrupt &

The Main View window displays with corrupt as the target executable.

3. Open the Execution View window (if it is minimized) and set the
_SSMALLOC_FASTCHK and _SSMALLOC_CLEAR_MALLOC environment variables.

If you are using the C shell, type:

% setenv _SSMALLOC_FASTCHK

% setenv _SSMALLOC_CLEAR_MALLOC

If you are using the Korn or Bourne shell, type:

$ _SSMALLOC_FASTCHK=

$ _SSMALLOC_CLEAR_MALLOC=

$ export _SSMALLOC_FASTCHK _SSMALLOC_CLEAR_MALLOC

4. To trap any malloc corruption problems, you must enter the following at the
cvd command line:

cvd> set $pendingtraps=true

cvd> stop exit ssmalloc_error

A stop trap is set at the exit from the malloc library ssmalloc_error.

5. Enter the following at the cvd command line:

cvd> run

The program executes. Observe Execution View as the program executes.

A heap corruption is detected and the process stops at one of the traps. The type
of error and its address display in Execution View (see example in Figure 9-1,
page 113.)

112 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 9-1 Heap Corruption Warning Shown in Execution View

6. Select Views > Call Stack from the Main View window menu bar.

Call Stack opens displaying the call stack frame at the time of the error (see
Figure 9-2).

Figure 9-2 Call Stack at Boundary Overrun Warning

7. Click the Continue button in the Main View window’s control panel. Watch the
Execution View and Call Stack windows.

007–2579–008 113

9: Detecting Heap Corruption

The process continues from the stop at the boundary overrun warning until it hits
the next trap where an erroneous free error occurs.

8. Click the Continue button again and watch the Execution View and Call Stack
windows.

This time the process stops at a bus error or segmentation violation. The PC stops
at the following statement because bogus was set to an uninitialized value:

value=*bogus

9. Enter p &bogus on the Debugger command line at the bottom of the Main View
window.

This gives us the address for the bogus variable and has been done in Figure 9-3,
page 115. We need the bad address so that we can set a watchpoint to find out
when it is written to.

114 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 9-3 Main View at Bus Error

10. Deactivate the stop trap by clicking the toggle button next to the trap description
in the Trap Manager window, and click the Kill button in the Main View window
to kill the process.

11. Click on the Clear button in the Trap Manager window.

007–2579–008 115

9: Detecting Heap Corruption

12. Type the following command in the Trap field. This includes the address you
obtained from the Debugger command line (see Figure 9-3, page 115). This sets a
watchpoint that is triggered if a write is attempted at that address.

Note: Use the address from your system, not the one shown here.

stop watch address 0x7fffaef4 for write

13. Click the Add button.

14. Click the Run button and observe the Main View window.

The process stops at the point where the bogus variable receives a bad value.
Details of the error display in the Main View window’s Status field.

116 007–2579–008

Chapter 10

Multiple Process Debugging

The WorkShop Debugger lets you debug threaded applications as well as programs
that use multiple processes spawned by fork or sproc. You can also control a single
process or all members of a process group, attach child processes, and specify that
spawned processes inherit traps from the parent process. The Trap Manager provides
special commands to facilitate debugging multiple processes by setting traps that
apply to the entire process group.

The Multiprocess Explorer window is for use by C, C++, and Fortran users. If you
are debugging Ada code, you should use the Task View window available through
the View menu of the Main View window (see the ProDev WorkShop: Debugger
Reference Manual for a description of that menu).

Currently, Multiprocess Explorer handles the following multiple process situations:

• True multiprocess program, which refers to a tightly integrated system of sproc’d
processes, generated by the MIPSpro Automatic Parallelization Option. For more
information on parallel processing, see the apo(5) man page.

• Auto-fork application, which is a process that spawns a child process and then runs
in the background.

• Fork application, which is a process that spawns child processes and can interact
with them.

• Locally distributed application, which is an application that involves two different
executables running in different processes on the same host coordinated by a
rendezvous mechanism.

• MPI single system image application, which is an MPI application that runs on the
same host.

This chapter discusses the details of multiprocess debugging in WorkShop and
includes the following topics:

• "Using the Multiprocess Explorer Window", page 118

• "Debugging a Multiprocess C Program", page 122

• "Debugging a Multiprocess Fortran Program", page 128

007–2579–008 117

10: Multiple Process Debugging

• "Debugging a Pthreaded Program", page 133

• "Debugging an MPI Single System Image Application", page 143

• "Debugging an OpenMP Application", page 151

Using the Multiprocess Explorer Window
The Multiprocess Explorer window is brought up by selecting Admin >
Multiprocess Explorer from the menu bar of the Main View window.

This window can display individual processes or operate on a process group. By
default, a process group includes the parent process and all descendants spawned by
sproc. Processes spawned with fork during the session can be added to the process
group automatically when they are created. For a program compiled with the
MIPSpro Automatic Parallelization Option, a process group includes all threads
generated by the option. Any process to which you have read/write access can also
be added to the process group. All sproc’d processes must be in the same process
group, since they share information.

Note: Any child process that performs an exec with setuid (set user ID) enabled
does not become part of the process group.

Each process in the session can have a standard main view window session
associated with it. However, all processes in a process group appear on a single
Multiprocess Explorer window.

When debugging multiprocess applications, you should disable the SIGTERM signal
by selecting Views > Signal Panel from the Main View window menu bar. Although
multiprocessing debugging is possible with SIGTERM enabled, the multiprocess
application may not terminate gracefully after execution is complete.

Starting a Multiprocess Session

The first step in debugging multiple processes is to invoke the Debugger with the
parent process. Then select Admin > Multiprocess Explorer from the menu bar.

The following figure shows a typical Multiprocess Explorer window.

118 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 10-1 Multiprocess Explorer

Viewing Process Status

The process display area of the Multiprocess Explorer lists the status of all processes
and threads in the process group. For definitions of the various statuses and states,
see the ProDev WorkShop: Debugger Reference Manual.

To get more information about a process or thread displayed in the process display
area, right-click on the process or thread entry. A Process menu pops up which is
applicable to the selected entry. From this menu you can do the following:

• change Main View focus to a different process or thread

• create a Main View window for a different process and/or thread

• focus Main View attention to a user-entered thread

• show process or thread-specific details

• add or remove a process entry

007–2579–008 119

10: Multiple Process Debugging

For complete details about the Process menu, see the ProDev WorkShop: Debugger
Reference Manual.

Using Multiprocess Explorer Control Buttons

The Multiprocess Explorer window uses the same control buttons as the Main View
window with the following exceptions:

• Buttons are applied to all processes as a group.

• There are no Return, Print, or Run buttons.

Control buttons in the Multiprocess Explorer window have the same effect as clicking
the corresponding button in the Main View window of each individual process. For
definitions of the buttons, see the ProDev WorkShop: Debugger Reference Manual.

Multiprocess Traps

As discussed in Chapter 5, "Setting Traps (Breakpoints)", page 61, the trap qualifiers
[all] and [pgrp] are used in multiprocess analysis. The [all] entry stops or
samples all processes when a trap fires. The [pgrp] entry sets the trap in all
processes within the process group that contains the trap location. The qualifiers can
be entered by default by using the Stop All Default and Group Trap Default
selections, respectively, in the Traps menu of Trap Manager. The Trap Manager is
brought up from the Views menu of the Main View window.

Viewing Multiprocess and Pthreaded Applications

The Multiprocess Explorer supports a hierarchical view of your pthreaded
applications. Select the folder icons of your choosing to get more information about a
process or thread.

Perform the following from within the Multiprocess Explorer window to get
additional information about a process or thread:

In Display > Process mode:

1. Double-click on a folder icon.

The process display expands to show its pthreads, if any. If there are no pthreads,
the call stack for the process is displayed if the process is displayed.

120 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

2. Double-click to select the pthread of your choosing.

The call stack for that pthread displays if the pthread is stopped.

In Display > Status mode:

1. Double-click on a folder icon.

The status display expands to show a list of processes.

2. Double-click to select the process of your choosing.

The process display expands to show its pthreads if any. If there are no pthreads,
the call stack for the process is displayed if the process is stopped.

3. Double-click to select the pthread of your choosing.

The call stack for the selected pthread is displayed if the pthread is stopped.

Adding and Removing Processes

To add a process, select Add from the Process menu. In the Switch Dialog dialog
window, select one of the listed processes or enter a process ID in the Process ID field
and click the OK button.

To remove a process, click on the process name in the Multiprocess Explorer window
and select Remove from the Process menu. Be aware that a process in a sproc
process group cannot be removed. Likewise, you cannot remove a pthread from a
pthread group.

Multiprocess Preferences

The Preferences option in the Config menu brings up the Multiprocess Explorer
Preferences dialog. The preferences on this dialog let you determine when a process
is added to the group, specify process behavior, specify the number of call stack levels
to display, and so forth.

For details about Multiprocess Explorer Preference options, see the ProDev WorkShop:
Debugger Reference Manual.

007–2579–008 121

10: Multiple Process Debugging

Bringing up Additional Main View Windows

To create a Main View window for a process, highlight that process in the
Multiprocess Explorer window. Then, select Process > Create new window in the
Multiprocess Explorer window. Starting with WorkShop 2.9.2, the user can “dive”
via the mouse button on entries in the Multiprocess Explorer window. In the above
example, the right mouse button can be held over the process selection and a
dynamic process menu is displayed. You can then select Create new window.

Debugging a Multiprocess C Program
This section uses a C program that generates numbers in the Fibonacci sequence to
demonstrate the following tasks when using the debugger to debug multiprocess code:

• Stopping a child process on a sproc

• Using the buttons in the Multiprocess Explorer window

• Setting traps in the parent process only

• Setting group traps

The fibo program uses sproc to split off a child process, which in turn uses sproc
to split off a grandchild process. All three processes generate Fibonacci numbers until
stopped. You can find the source for fibo.c in the /usr/demos/WorkShop/mp
directory. A listing of the fibo.c source code follows:

#include <stdio.h>

#include <sys/types.h>

#include <sys/prctl.h>

int NumberToCompute = 100;
int fibonacci();

void run(),run1();

int fibonacci(int n)

{
int f, f_minus_1, f_plus_1;

int i;

f = 1;

f_minus_1 = 0;

122 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

i = 0;

for (; ;) {

if (i++ == n) return f;

f_plus_1 = f + f_minus_1;

f_minus_1 = f;
f = f_plus_1;

}

}

void run()

{
int fibon;

for (; ;) {

NumberToCompute = (NumberToCompute + 1) % 10;

fibon = fibonacci(NumberToCompute);

printf("%d’th fibonacci number is %d\n",
NumberToCompute, fibon);

}

}

void run1()

{
int grandChild;

errno = 0;

grandChild = sproc(run,PR_SADDR);

if (grandChild == -1) {

perror("SPROC GRANDCHILD");

}

else

printf("grandchild is %d\n", grandChild);
run();

}

void main ()

{

int second;

second = sproc(run1,PR_SADDR);

007–2579–008 123

10: Multiple Process Debugging

if (second == -1)
perror("SPROC CHILD");

else

printf("child is %d\n", second);

run();
exit(0);

}

Launch the Debugger in Multiprocess Explorer

Perform the following to start, compile the program, and run the Debugger:

1. Copy the program source from the demo directory as follows:

% cp /usr/demos/WorkShop/mp/* .

2. Compile fibo.c by entering the following command:

% cc -g fibo.c -o fibo

3. Invoke the Debugger on fibo as follows:

% cvd fibo &

4. Call up the Multiprocess Explorer by selecting Admin > Multiprocess Explorer
from the Main View menu bar.

The next section uses the fibo program to illustrate some of the functionality of the
Multiprocess window.

Using Multiprocess Explorer to Control Execution

To examine each process as it is created, you must set preferences so that each child
process created stops immediately after being created. The following steps show how
this can be done:

1. Select Config > Preferences from the menu bar in the Multiprocess Explorer
window.

2. Toggle off Resume child after attach on sproc in the Multiprocess Explorer
Preferences window.

124 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

3. Toggle off Copy traps to sproc’d processes so you can experiment with setting
traps later.

4. Click on the OK button to accept the changes.

5. Click on the Run button in the Main View window to execute the fibo program.

Watch the Multiprocess Explorer window, you will see the main process appear
and spawn a child process, which stops as soon as it appears. This is because you
turned off the Resume child after attach on sproc option. Notice also that the
Main View window switched to the stopped child process.

6. Click on the Stop button in the Multiprocess Explorer window.

The control buttons on the Multiprocess Explorer window may be used to
control all processes simultaneously, or the control buttons on any Main View
window may be used to control that individual process separately.

7. Click on the first line (that is, the main process) in the process pane of the
Multiprocess Explorer window to highlight this line.

Figure 10-2 Multiprocess Explorer with highlighted process

8. Select Process > Create new window from the menu bar of the Multiprocess
Explorer window.

A new Main View window displays with a debug session for the main process.

007–2579–008 125

10: Multiple Process Debugging

Note: You may get a warning that .../write.s is missing. This refers to assembly
code and can be ignored. The new Main View window does not have source in
its source pane.

9. Select Views > Call Stack from the menu bar of the Main View window you just
created to create a Call Stack window.

10. Double-click on the line in the Call Stack window that contains run (). This
brings up the fibo.c source for the main process in the Main View window.

11. Select Admin > Close from within the Call Stack window to close it.

12. Click on Cont in the Multiprocess Explorer window. The first child, created in
Step 5, now spawns a grandchild process that stops in _nsproc.

13. A Main View window switches to the new stopped process. Click on Stop in the
Multiprocess Explorer window.

14. Repeat steps 7 through 11 to bring up a Main View window for the parent process.

Using the Trap Manager to Control Trap Inheritance

The instructions in this section assume that you have just run the tutorial in "Using
Multiprocess Explorer to Control Execution", page 124.

This section shows you how to use the Trap Manager to set traps that affect one or all
processes in the fibo process group. For complete information on using the Trap
Manager, refer to Chapter 5, "Setting Traps (Breakpoints)", page 61.

1. Select Views > Trap Manager from the Main View window for the parent process.
Traps are specific to the processes in the Main View window in which they are set.

2. Select Display > Show Line Numbers (from the same Main View window) to
turn on line numbering in the source pane, if not already showing.

3. Click to the left of line 32, to set a breakpoint/stop trap for the parent process.
Line 32 reads as follows:

32 Number to Compute = (NumberToCompute + 1) % 10

Line 32 highlights in red to indicate that a breakpoint has been set. A
corresponding trap command appears in the Trap text box in the Trap Manager

126 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

window; and the trap is added to the list on the Active Traps list of the same
window. Remember, this trap affects only the parent process.

4. Click on the Cont button in the Multiprocess Explorer window. The parent
process has stopped, but the other processes are probably still running.

5. Insert the word pgrp (that is, “process group”) after the word stop in the Trap
field of the Trap Manager window.

The trap should now read Stop pgrp at As the command suggests,
pgrp affects the whole process group.

6. Click on the Modify button.

The trap now affects two child processes. Watch the Multiprocess Explorer
window to see the running processes in the process group stop at the trap on line
32.

Figure 10-3 Multiprocess Explorer with running processes stopped

7. Select Traps > Group Trap Default from the Trap Manager window. Any
additional traps that you set using the Trap Manager affect the entire process
group. Any previously set traps are not be affected.

8. Select the text of line 23, found in the source pane of the Main View window
associated with the parent process. This line reads as follows:

23 f_minus_1 = f;

9. Select Traps > At Source Line from the menu bar of the Trap Manager window.
The trap you have just set includes the modifier pgrp.

007–2579–008 127

10: Multiple Process Debugging

10. Select Admin > Exit from any Main View window to close your session and end
this tutorial.

Debugging a Multiprocess Fortran Program
The section of this chapter presents a few standard techniques to assist you in
debugging a parallel program. This section shows you how to debug the sample
program.

See also Chapter 2, "Basic Debugger Usage", page 9 for important related information.

General Fortran Debugging Hints

Debugging a multiprocessed program is more involved than debugging a
single-processor program. Therefore, you should debug a single-processor version of
your program first and try to isolate the problem to a single parallel DO loop.

After you have isolated the problem to a specific DO loop, change the order of
iterations in a single-processor version. If the loop can be multiprocessed, then the
iterations can execute in any order and produce the same answer. If it cannot be
multiprocessed, you will see that changing the order in which the loops execute
causes the single-processor version to produce wrong answers. If wrong answers are
produced, you can use standard single-process debugging techniques to find the
problem. (See Chapter 2, "Basic Debugger Usage", page 9 for important related
information.)

If this technique fails, you must debug the multiprocessed version. To do this,
compile your code with the -g and -FLIST:=ON flags. The -FLIST:=ON flags save
the file containing the multiprocessed DO loop Fortran code in a file called
total.w2f.f and a file tital.rii and an rii_files directory.

Fortran Multiprocess Debugging Session

This section shows you how to debug a small segment of multiprocessed code. The
source code for this tutorial, total.f, can be found in the directory
/usr/demos/WorkShop/mp.

A listing of this code is as follows:

128 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

program driver
implicit none

integer iold(100,10), inew(100,10),i,j

double precision aggregate(100, 10),result

common /work/ aggregate

result=0.
call total(100, 10, iold, inew)

do 20 j=1,10

do 10 i=1,100

result=result+aggregate(i,j)

10 continue

20 continue
write(6,*)’ result=’,result

stop

end

subroutine total(n, m, iold, inew)
implicit none

integer n, m

integer iold(n,m), inew(n,m)

double precision aggregate(100, 100)

common /work/ aggregate

integer i, j, num, ii, jj
double precision tmp

C$DOACROSS LOCAL(i,ii,j,jj,num)

do j = 2, m-1

do i = 2, n-1
num = 1

if (iold(i,j) .eq. 0) then

inew(i,j) = 1

else

num = iold(i-1,j) +iold(i,j-1) + iold(i-1,j-1) +
& iold(i+1,j) + iold(i,j+1) + iold(i+1,j+1)

if (num .ge. 2) then

inew(i,j) = iold(i,j) + 1

else

inew(i,j) = max(iold(i,j)-1, 0)

end if
end if

ii = i/10 + 1

007–2579–008 129

10: Multiple Process Debugging

jj = j/10 + 1
aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)

end do

end do

end

In the program, the local variables are properly declared. The inew always appears
with j as its second index, so it can be a share variable when multiprocessing the j
loop. The iold, m, and n are only read (not written), so they are safe. The problem is
with aggregate. The person analyzing this code deduces that, because j is always
different in each iteration, j/10 is also different. Unfortunately, since j/10 uses
integer division, it often gives the same results for different values of j.

While this is a fairly simple error, it is not easy to see. When run on a single processor,
the program always gets the right answer. Sometimes it gets the right answer when
multiprocessing. The error occurs only when different processes attempt to load from
and/or store into the same location in the aggregate array at exactly the same time.

Debugging Procedure

Perform the following to debug this code:

1. Create a new directory for this exercise:

% mkdir demos/mp

2. cd to the new directory and copy the following program source into it:

% cp /usr/demos/WorkShop/mp .

3. Edit the total.f file in a shell editor, such as vi:

% vi total.f

4. Reverse the order of the iterations for demonstration purposes.

Replace

do j = 2, m-1

with

do j = m-1, 2, -1

This still produces the right answer with one process running, but the wrong
answer when running with multiple processes. The local variables look right,

130 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

there are no equivalence statements, and inew uses only simple indexing. The
likely item to check is aggregate. Your next step is to look at aggregate with
the Debugger.

5. Compile the program with -g option as follows:

% f77 -g -mp total.f -o total

6. If your debugging session is not running on a multiprocessor machine, you can
force the creation of two threads, for example purposes, by setting an
environment variable. If you use the C shell, type:

% setenv MP_SET_NUMTHREADS 2

Is you use the Korn or Bourne shell, type:

$ MP_SET_NUMTHREADS=2

$ export MP_SET_NUMTHREADS

7. Enter the following to start the Debugger:

% cvd total &

The Main View window displays.

8. Select Display > Show Line Numbers from the Main View menu bar to show the
line numbers.

9. Select Source > Go To Line from the Main View menu bar.

And enter 44.

Line 44 is as follows:

aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)

10. You will now set a stop trap at this line, so you can see what each thread is doing
with aggregate, ii, and jj. You want this trap to affect all threads of the
process group. One way to do this is to turn on trap inheritance in the
Multiprocess Explorer Preferences dialog. To open this dialog, select > Admin >
Multiprocess Explorer from the Main View menu bar to open the Multiprocess
Explorer window.

Then, select Config > Preferences from within the Multiprocess Explorer window.

Another way is to use the Trap Manager to specify group traps, as follows.

007–2579–008 131

10: Multiple Process Debugging

a. Select Views > Trap Manager from the Main View window menu bar to open
the Trap Manager.

b. Select Traps > Group Trap Default from the Trap Manager window.

11. Click-drag to select line 44 in the Main View window.

12. Open the Trap Manager window from the Main View window menu bar by
using Views > Trap Manager.

Then select Traps > At Source Line from the Trap Manager window.

This sets a stop trap that reads as follows in the cvd pane of the Main View
window:

Stop pgrp at file /usr/demos/WorkShop/mp/total.f line 44

13. Select Admin > Multiprocess Explorer from the menu bar in the Main View
window to monitor status of the two processes.

You are now ready to run the program.

14. Click the Run button in the Main View window.

As you watch the Multiprocess Explorer, you see the two processes appear, run,
and stop in the function _mpdo_total_1. It is unclear, however, if the Main
View window is now relative to the master process, or if it has switched to the
slave process.

Figure 10-4 Multiprocess Explorer: stopped at breakpoint

132 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

15. Right-click on the name of the slave process in the Multiprocess Explorer
window and select Process > Create a new window.

A new window is displayed that launches a debug session for the process. Now,
both master and slave processes should display in respective Main View windows.

16. Invoke the Variable Browser as follows from the Menu Bar of each process:
Views > Variable Browser.

17. Look at the values for ii and jj. They have the same values in each process;
therefore, both processes may attempt to write to the same member of the array
aggregate at the same time. So aggregate should not be declared as a share
variable. You have found the bug in your parallel Fortran program.

Debugging a Pthreaded Program
Using the Debugger you can view pthread creation and execution through the
Multiprocess Explorer window. Through this window you can:

• View a hierarchal display of a threaded application

• View a process/pthread relationship

• Expand individual call stacks

C, C++, and Fortran users should use the Multiprocess Explorer window when
debugging pthreads. Ada users should use the Task View window.

The next sections give hints on debugging pthreaded programs and illustrate how to
debug a program that uses IRIX 6.5 pthreads.

User-Level Continue of Single 6.5 POSIX Pthread

The ability to “continue” or “free run” a single POSIX pthread under IRIX 6.5 is
available at the user level with WorkShop release 2.8. However, use of this new
debugging feature can, in certain specific circumstances, lead to anomalous and
possibly confusing behavior. Such behavior occurs when the single thread that is
continued or free run encounters either a “blocking” or “scheduling” situation in the
operating system or the pthreads library.

When such situations arise, the operating system (or, in some cases, the pthreads
library) must take action to dispose of the single continued or free run thread and,

007–2579–008 133

10: Multiple Process Debugging

possibly, newly created threads. In the course of this action the debugging user sees
things occur, with both the single continued or free run thread as well as all other
threads, that are confusing because complex thread scheduling algorithms are
invoked by both the operating system and the pthreads library to recover from the
original blocking or scheduling incident. Debugging true POSIX pthreads is difficult,
and users of this new feature, allowing a continue or free run of a single 6.5 POSIX
pthread, gain even more appreciation of this fact.

This feature has been used internally for some time by the WorkShop debugger. The
continue or free run of a single 6.5 pthread is used each time a user requests a single
thread step-over of a function. The single thread is allowed to free run through the
function which is being stepped over. Thus, if any blocking or scheduling situations
occur in the course of this stepping over and associated free run of a single thread,
then anomalous behavior can, and does, occur. This is described in the following
subsections.

Scheduling Anomalies

Scheduling anomalies may occur when the single 6.5 POSIX pthread which is being
continued or free run creates a new pthread via a call to the pthread_create
routine. At the time of the call to pthread_create the OS kernel and the pthreads
library get into a complex algorithm in deciding how to create the new child pthread.
An actual OS kernel thread (OS kernel threads are not available at the user level —
they differ from the user level pthread) must be either created anew or found
elsewhere to support the user’s new child pthread.

First, assume the OS kernel thread is to be found elsewhere, depending on a vast
number of things (for example, number of CPUs, environment variables, and so on).
The OS kernel may (this is very non-deterministic) decide to just put the child pthread
on a ready queue, in need of an OS kernel thread. Thus the child does nothing
immediately.

Meanwhile, if the parent pthread (via a call to the pthread_cond_wait routine)
monitors the child pthread’s struggle for life, it (the parent) gets parked on a mutex
(mutual exchange lock) because the child obviously has not been created yet; it is on
the ready queue.

The parent pthread’s OS kernel thread becomes available, which causes the OS
scheduler to check for work for this newly freed OS kernel thread. It finds the child
sitting in the ready queue and assigns the parent’s OS kernel thread to the new child
pthread. The child then runs to completion and releases its (parent’s old) OS kernel

134 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

thread. The parent, checking for the child’s new life via pthread_cond_wait, now
recaptures its OS kernel thread and things appear to work correctly.

Now, assume the OS kernel thread required by the new child pthread must be created
anew. The child is not placed on the ’ready queue’. Again, this is a non-deterministic
decision which depends on a large number of variables (number of CPUs, and so on).
The OS kernel creates a new OS kernel thread for the child pthread and “engages” it
(the child) to that new OS kernel thread.

However, “marriage” of the OS kernel thread and the new child pthread cannot occur
until the new OS kernel thread actually runs. This never occurs because, in allowing
the single parent 6.5 pthread to continue or run free, it was requested that only one
user pthread be run — the parent.

If the parent, however, is using pthread_cond_wait to monitor the new life of its
child, then it (the parent) is parked on a mutex waiting for the child to run. The
parent awaits the child but the child cannot run because only one pthread, the parent,
has been requested to run. The debugger displays “running” as the overall status and
this is because no events of interest are occurring. Everything is waiting on
everything else. Things are not working.

Blocking Anomalies

Blocking anomalies occur when the single 6.5 POSIX thread which is being continued
or free run encounters a blocking condition in the course of its running. Blocking has
three distinct types:

• Blocking syscalls in the OS kernel (see the ProDev WorkShop: Debugger Reference
Manual for a list). When one of these kernel syscalls is blocked by another thread’s
usage, the OS kernel decides what the next move is regarding the OS kernel
thread attached to the user pthread making the call. Control could just transfer to
another application, to disk I/O, or whatever.

These syscalls are all I/O-related. The OS kernel thread is, in effect, “blocked”,
and it is immediately available for reassignment. The best example of a blocking
kernel syscall is writev, which is used by the common library routine printf.

• Various lock blocking in the pthread library, such as mutex (mutual exchange
lock). This occurs in user space (libc, user code, and so on). The pthread library
senses that a pthread is going to block due to another pthread’s usage. Control
transfers to the usync_control routine, which eventually calls a blocking kernel
syscall (see the preceding item in this list). Again, the OS kernel decides the fate
of the associated OS kernel thread. Unexpected things could start running.

007–2579–008 135

10: Multiple Process Debugging

• Other lock blocking in the pthread library, whereby the pthread library senses that
a user pthread is going to block but does not go off to usync_control. Instead it
goes to the pthread_scheduler in the pthread library for the disposition of the
associated OS kernel thread. The pthread_scheduler then reassigns the
associated OS kernel thread to another user pthread and unexpected things could
start running.

How to Continue a Single POSIX 6.5 Pthread

To continue (or free run) a single POSIX 6.5 pthread, simply click on the Continue
button in the Main View window. Note that this is different from the function of the
Continue button in the Multiprocess Explorer window, which continues all threads.

Other Pthread Debugging Hints

Observe the following guidelines when debugging pthreaded programs:

• Be aware that the cvmain (Main View) for release 2.8 (and later) contains options
(such as Continue, StepOver, StepInto, and Return) that are for a single 6.5
pthread — the pthread that is displayed, or the focus thread. Do not use the Main
View options unless you intend to use them for a single thread.

• C++ exception handling works per process not per thread.

• Using the step over function on a pthread_exit may produce unexpected
results.

• Use Multiprocess Explorer not Task View.

• Use the WorkShop tools instead of dbx for 6.5 pthread debugging whenever
possible.

• Do not do a Next of printf.

Pthread Debugging Session

Pthread debugging is highly variable not only from environment to environment but
also from IRIX release to IRIX release. Because of this, it is not possible to provide a
representative pthread debugging tutorial that can be used by all users. However, a
pthread example is provided in this section.

136 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

See "User-Level Continue of Single 6.5 POSIX Pthread", page 133, for an in-depth
description of current pthread implementation in IRIX.

pthread example

The following is a sample program used in this pthread example:

#################### begin highlight program###########################
#include <unistd.h>

#define PTMAX 4

#define ERR(t,m) if (t) {printf("%s\n",m); exit(1);}

pthread_t phandle[PTMAX];

int arg[PTMAX];

int foo(int *threadnum)

{

int num, val = 0;

num = (*threadnum) & 0x0000000F;

printf("enter foo (0x%08x)\n", *threadnum);

switch (num) {
case 1: val = foo1(*threadnum); break;

case 2: val = foo2(*threadnum); break;

case 3: val = foo3(*threadnum); break;

case 4: val = foo4(*threadnum); break;

default: {printf("ERROR: foo(%d)\n",num); break;}
}

return val;

}

int foo1(int threadnum)
{

return threadnum;

}

int foo2(int threadnum)
{

007–2579–008 137

10: Multiple Process Debugging

return threadnum;
}

int foo3(int threadnum)

{

int l0,j0;
l0 = threadnum;

j0 = l0+threadnum;

return j0;

}

int foo4(int threadnum)
{

return threadnum;

}

void create(int threadnum)
{

int stat;

arg[threadnum]=threadnum+1;

printf("create: threadnum=0x%08x\n",arg[threadnum]);

stat= pthread_create(&phandle[threadnum],0,(void *(*)(void *))&foo,&arg[threadnum]);

ERR(stat!=0,"pthread_create failed");

}

void join(int threadnum)
{

int out, stat;

printf("join : threadnum=0x%08x\n",threadnum+1);

stat= pthread_join(phandle[threadnum],(void **)&out);
ERR(stat!=0,"pthread_join failed");

printf("return: threadnum=0x%08x: out=0x%08x\n",threadnum+1,out);

}

int main(int argc, char **argv)

{
int threadnum;

138 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

for(threadnum=0; threadnum<PTMAX; threadnum++) {
create(threadnum);

sleep(1);

}

for(threadnum=0; threadnum<PTMAX; threadnum++) {
join(threadnum);

}

}

#################### end highlight program###########################

The pthreaddemo is a simple program that creates 4 pthreads. Each pthread is
created via the pthread_create() routine, which in turn calls its start routine.
Then pthread 0x10001 calls foo1(), pthread 0x10002 calls foo2(), pthread 0x10003
calls foo3(), and finally pthread 0x10004 calls foo4(). The master will sleep 1
second after each call just to make this example more predictable. As each routine
encounters a breakpoint, control is given back to the user.

Perform the following to stat, compile the program, and run the Debugger:

1. Copy the program source from the demo directory as follows:

% cp /usr/demos/WorkShop/pthread/* .

2. Compile pthreaddemo.c by entering the following command:

% cc -g -o pthreaddemo pthreaddemo.c -lpthread -lc

3. Invoke the Debugger on pthreaddemo as follows:

% cvd pthreaddemo

4. Invoke the Multiprocess Explorer by selecting Admin > Multiprocess Explorer
from the Main View menu bar.

The next section uses the pthreaddemo program to illustrate some of the
functionality of the Multiprocess window when using 6.5 pthreads.

5. At the cvd prompt in the Main View window, enter the following to set
breakpoints:

cvd> stop in foo1

cvd> stop in foo2
cvd> stop in foo3

cvd> stop in foo4

007–2579–008 139

10: Multiple Process Debugging

This sets a breakpoint in a unique routine that will be called by each pthread.

6. Click the Run button in the Debugger Main View window to run the program.
The breakpoint in pthread 0x10001 should stop in foo1().

7. In the Main View window, you should be able to confirm this by noting the
program counter (PC) being highlighted in the source. Also, in the Multiprocess
Explorer you should see the following:

Figure 10-5 Pthread stopped on entry

8. At the cvd command prompt at the bottom of the Main View window, enter the
following command:

cvd> print threadnum
thread = 1

It should be the same number as the pthread you are focused on (for example, 1
for 0x10001 at this breakpoint.)

9. Click the Cont button in the Main View window. The second breakpoint, the one
set in pthread 0x10002, should stop in foo2().

10. In the Main View window, you should be able to confirm this by noting the green
program counter (PC) being highlighted in the source. Also, in the Multiprocess
Explorer you should see:

Thread:0x10002 Stopped on entry foo2

The Multiprocess Explorer should confirm this location for pthread 0x10002.

140 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

11. Click the Cont button in the Multiprocess Explorer. The third breakpoint, the one
set in pthread 0x10003, should stop in foo3(). Both the Main View window and
the Multiprocess Explorer window should confirm this location for pthread
0x10003.

Figure 10-6 Pthread stopped on entry 3

12. In the Debugger Main View window toggle the button below the lock to Single.
Toggling this button to Single ensures the Debugger commands (cont, next,
etc.) will only pertain to the Single pthread currently focused on in the Main
View window.

Figure 10-7 “All” toggle button

Figure 10-8 “Single” toggle button

007–2579–008 141

10: Multiple Process Debugging

13. Click on the Next button in the Main View window. Only pthread 0x10003
should advance one source line.

14. Clicking on the Return button in the Main View window should return pthread
0x10003 to its calling function.

15. Click the Cont button in the Multiprocess Explorer. The Main View window
should stop at the fourth and final breakpoint in foo4().

16. A final click on the Cont button in the Mulitprocess Explorer should continue to
completion.

Using StepOver of Function Calls on IRIX 6.5+ Systems

When debugging IRIX 6.5 (or greater) pthreads, if you attempt to ’step over’ a
function call, there is a possibility that pthreads will block. This blocking can occur if
you attempt to step-over either a direct or indirect call to one of the following:

• One of several blocking pthread library routines (see "Blocking pthreads Library
Routines", page 143)

• One of several blocking kernel syscalls (see the ProDev WorkShop: Debugger
Reference Manual for a list of the syscalls).

If a pthread does block in either of these situations, an internal breakpoint is reached
at _SGIPT_sched_block (for blocking pthread library routines) or
_SGIPT_libc_blocking (for blocking kernel syscalls).

Without these internal breakpoints, when a pthread blocks, control is returned to the
OS kernel, at which point any number of events could occur, including a recycling of
the kernel micro-thread attached to the user pthread. This might allow another user
pthread to resume execution, thereby causing the debugger to appear to be running
or appear to be hung because the original thread which blocked is not allowed to run
to its return point (since it had its microthread swapped out underneath it).

The OS kernel uses complex algorithms to determine what action to take when a
pthread blocks. The debugger’s use of the internal breakpoints allows you to take
back a degree of control over these complex algorithms by deciding what to do with
a thread that has blocked in either _SGIPT_sched_block or
_SGIPT_libc_blocking.

Usually you can simply use Continue All Pthreads to release the blocking condition
or continue a different individual pthread (different from the one that blocked).

142 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Blocking Kernal Syscall Routines

For OS level 6.5 pthreads, the Libpthread entry point _SGIPT_libc_blocking is
entered when a specific pthread blocks in a kernel syscall. See the ProDev WorkShop:
Debugger Reference Manual for a list of these syscalls.

There are many library routines that can call one of these blocking system calls; it is
impossible to list all such routines which utilize a blocking system call. Users must be
knowledgeable enough to know that if, for example, they call the library routine
printf, it eventually calls writev() which is a blocking system call and thus may
block.

Blocking pthreads Library Routines

For OS level 6.5 pthreads, the Libpthread entry point _SGIPT_sched_block is
entered when a specific pthread blocks in the pthread library. The following routines
are known to block:

• pthread_cond_wait()

• pthread_cond_timedwait()

• pthread_mutex_lock()

• pthread_join()

• pthread_exit()

• pthread_rwlock_rdlock()

• pthread_rwlock_wrlock()

• sem_wait()

Debugging an MPI Single System Image Application
The Debugger supports the debugging of a single system image MPI application. The
debugging session is set up so that, initially, mpirun is being debugged.

The following is the typical command line used to invoke cvd on an MPI application:

% cvd mpirun -args -np 2 MPI_app_name

007–2579–008 143

10: Multiple Process Debugging

This example command line indicates that the -np 2 MPI_app_name arguments are
passed to mpirun and that cvd is initially focused on the mpirun process.

An entry point into the MPI application can be used to set a pending trap
(breakpoint) in the MPI application. This breakpoint is resolved when the Run button
is activated and the actual MPI application is running. If the breakpoint target is
valid, the MPI application stops at the breakpoint and further debugging can be done.

Note: As of the WorkShop 2.9.2 release, cvd stops first in a special breakpoint in the
mpirun command. If you have set a pending breakpoint in the actual MPI
application, use the Multiprocess Explorer continue button to reach the breakpoint.

The use of the Multiprocess Explorer for debugging MPI applications is very similar
to presentations in the previous and following sections of this chapter. The current
implementation does not filter out other processes created by login shells so some
extra processes may be shown in the Multiprocess Explorer window.

MPI Debugging Session

MPI debugging is highly variable, not only from environment to environment but
also from IRIX release to IRIX release and the version of MPT installed on the system.
Because of this, it is not possible to provide a representative MPI debugging tutorial
that can be used by all users. However, an MPI example is provided in this section.

The following sample program is used in this pthread example
(/usr/demos/WorkShop/mp/mpidemo.c):

#include <alloca.h>

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>
#include <mpi.h>

#if __linux

#include <malloc.h>

#endif

#define ALIGN 16384

main(int argc, char **argv)

144 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

{
MPI_Status status;

int i, len, num, tag, size, rank, peer;

double s, t, min, max, ave, *vec;

char *stmp, *rtmp;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

len = 0;
num = 10000;

if (argc > 1) len = atoi(argv[1]);

if (argc > 2) num = atoi(argv[2]);

vec = alloca(num * sizeof(double));

stmp = memalign(ALIGN, len + 163840);

assert(stmp);

rtmp = stmp + 128;

tag = 0;

switch (rank) {
case 0:

peer = 1;

MPI_Send(stmp, len, MPI_BYTE, peer, tag++, MPI_COMM_WORLD);

MPI_Recv(rtmp, len, MPI_BYTE, peer, tag++, MPI_COMM_WORLD, &status);
t = MPI_Wtime();

s = MPI_Wtime();

for (i=0; i<num; i++) {

MPI_Send(stmp, len, MPI_BYTE, peer, tag++, MPI_COMM_WORLD);
MPI_Recv(rtmp, len, MPI_BYTE, peer, tag++, MPI_COMM_WORLD, &status);

007–2579–008 145

10: Multiple Process Debugging

t = MPI_Wtime();

vec[i] = t - s;

s = t;

}

min = 100000000.0;

max = 0.0;

ave = 0.0;

for (i=0; i<num; i++) {
t = vec[i];

if (min > t) min = t;

if (max < t) max = t;

ave += t;

}

if (num) {

ave /= num;

printf("%d bytes @ %d reps best: %f MB/s %f us average: %f MB/s %f us\n",

len, num, 2.0e-6*len/min, 0.5e6*min, 2.0e-6*len/ave, 0.5e6*ave);

}

break;

case 1:

peer = 0;

MPI_Recv(rtmp, len, MPI_BYTE, peer, tag++, MPI_COMM_WORLD, &status);
MPI_Send(stmp, len, MPI_BYTE, peer, tag++, MPI_COMM_WORLD);

for (i=0; i<num; i++) {

MPI_Recv(rtmp, len, MPI_BYTE, peer, tag++, MPI_COMM_WORLD, &status);

MPI_Send(stmp, len, MPI_BYTE, peer, tag++, MPI_COMM_WORLD);

}

break;

146 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

default:

break;

}

while (num == 0) ;

MPI_Finalize();

return 0;

}

Perform the following commands to stat, compile the program, and run the
Debugger. MPI must be installed on the system to compile and run this program.
Array services must be running to run the actual MPI application:

1. Copy the program source from the demo directory as follows:

% cp /usr/demos/WorkShop/mp/mpidemo.c .

2. Compile mpidemo.c by entering the following command:

% cc -g -o mpidemo mpidemo.c -lmpi -lc

3. Load the mpirun command into cvd with the mpidemo executable and 4
processors as the arguments of to mpirun (see the mpirun man page for more
information about mpirun arguments).

% cvd mpirun -args -np 4 mpidemo

cvd> run

This executes the command mpirun -np 4 mpidemo under cvd control.

4. The MultiProcess Explorer should stop with the following output when Display
by Process mode is selected (PID values will differ from run to run):

007–2579–008 147

10: Multiple Process Debugging

Figure 10-9 Multiprocess Explorer: Display by Process

The mpirun command is now stopped at a special breakpoint for debuggers.

The process running mpidemo with no Rank value (PID:167060 in this example) is
an MPI daemon process that controls the Rank children which are running the
actual mpidemo MPI program. In some cases after the initial run command from
cvd, cvd may stop this process in _fork. Use the Multiprocess Explorer
continue button to continue the launching of the mpidemo program. After the
mpidemo MPI rank children appear in the Multiprocess Explorer display, the
Multiprocess Explorer focuses the Main View on the MPI rank 0 process and
stops.

Depending on what shell is running, other processes that mpirun used to launch
mpidemo may appear. In this example using ksh, the uname process shows up as
a terminated process. You can ignore any terminated processes, the MPI daemon
process, and the mpirun command.

The real MPI processes of interest are the MPI rank children processes. Those
are displayed with the string Rank:N prior to the PID string. N is an integer from
0 to number of MPI processes -1. The number of MPI processes is the value of the
argument to the mpirun -np option. In this case, N is an integer from 0-3. After
the MPI rank children are launched, the Multiprocess Explorer displays them as
"Stopped while sleeping within the read system call" and focuses the Main View
on the MPI rank 0 process.

148 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

5. At this point, you are now ready to set a breakpoint in mpidemo.c.

cvd> file mpidemo.c

This brings the mpidemo.c file into the Source View pane of the MainView window.

Issue the following command to set a breakpoint at line 45:

cvd> stop at 45

Figure 10-10 Set MPI breakpoint

6. Continue running the demo with the Continue command (all must be selected),
or use the Multiprocess Explorer continue button::

cvd> continue

This continues all the MPI processes and the MPI rank chilren until one (or more)
of the rank children hits the breakpoint at line 45 of mpidemo.c. The following
screen shows the Display by Status mode with the node entry for the processes
"Stopped on breakpoint at: main ["mpidemo.c":45,0x100010fc]” opened.

007–2579–008 149

10: Multiple Process Debugging

Figure 10-11 Multiprocess Explorer: Display by Status

7. The Multiprocess Explorer focuses the Main View window on the first MPI rank
process that reaches the breakpoint.

Figure 10-12 MPI rank process status

Note: Depending on system load and other OS issues, some MPI rank children
may not reach the breakpoint. If you need all rank children (or a specific rank
child) to be at the breakpoint, you will need to put Main View into single mode
and then use the Multiprocess Explorer "Change MainView focus to this entry"
methods to select a rank child process not yet at the breakpoint and issue a
continue (single) from Main View.

8. You can use the Multiprocess Explorer continue button to continue program
execution to termination (depending on where the rank children processes are
stopped, more than one continue may be needed) or use the Multiprocess
Explorer kill button to terminate this example.

150 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Debugging an OpenMP Application
Improvements have been made to OpenMP debugging for the WorkShop 2.9.2
release. The Array Visualizer, Data Browser, Variable Browser, and command line
views now display OpenMP shared and private variables accurately, across all storage
types and language nuances, to truly reflect parallel processing. Correct evaluation
and display of shared and private entities in both $omp parallel and $omp do
regions, across pertinent WorkShop views, for both C/C++ (especially in the use of
stack variables) and FORTRAN 77 and Fortran90, have been addressed.

Stability improvements have been made in both the client and server portions of
WorkShop cvd and the user will see fewer error and outright abort conditions while
doing OpenMP debugging. Internal compiler errors, WorkShop view aborts, and
server internal errors have been addressed extensively.

The following debug examples (one each for C and Fortran), illustrate the
improvements that have been made. Use of these scenarios with earlier versions of
WorkShop yields different and unsatisfactory results.

C/C++ OpenMP Debug Example

The following sample program is used with this debug example:

#include <ctype.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

void init(int *tablo, int *sum, int *indi) {

bzero(tablo, sizeof(int) * 10);

*sum = 0;

*indi = 0;

}

void test_06(int ncpus) {

int tablo[10];

int sum = 0;
int indi = 0;

int mycpu;

007–2579–008 151

10: Multiple Process Debugging

init(tablo, &sum, &indi);

#pragma omp parallel private(indi, mycpu) shared(sum, tablo, ncpus)

{

mycpu = mp_my_threadnum();
for (indi = 0; indi < 10; indi++) {

tablo[indi] = tablo[indi] + indi;

sum += indi*mycpu + indi;

}

}

}

static void fun(int ncpus) {

test_06(ncpus);

}

int main(void) {

char *mp_set_numthreads_env;

int mp_set_numthreads;

if ((mp_set_numthreads_env = getenv("MP_SET_NUMTHREADS")) == NULL) {

fprintf(stderr, "MP_SET_NUMTHREADS not defined\n");
return 1;

}

mp_set_numthreads = atoi(mp_set_numthreads_env);

fun(mp_set_numthreads);
return 0;

}

Prior to starting the debugging session, set the number of CPUs to run:

% setenv MP_SET_NUMTHREADS 4

1. Compile the program and use the debugger on the resulting test file:

% cc -g -mp -o test test.c

% cvd ./test

2. At the cvd prompt in the Main View window, enter the following:

152 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

cvd> stop at 26

This sets a breakpoint in the program in the pragma omp parallel region.

3. Click the run button in the Debugger Main View window to run the program
with the breakpoint.

4. In the Debugger Main View window, click on the lock icon on the left side of the
screen. Also toggle the button below lock to single. When the lock button is set
to lock, it ensures that the OpenMP thread that is currently in focus remains in
focus. Toggling the button below the lock to Single ensures that the Debugger
commands (cont, next, etc.) will only pertain to the focused Single OpenMP
thread.

Figure 10-13 Main View Unlock icon

Figure 10-14 Main View Lock icon

5. At the cvd command prompt at the bottom of the Main View window, enter the
following commands:

cvd> print mycpu

mycpu is a private variable, unique to a master/slave process. OmpThread0
(master) should be first to reach the breakpoint.

cvd> next 10 times

Again, via the lock button, select single process and lock.

cvd> print sum

This is a shared variable that sums across all CPUs; it should return 6 (or a
number close to that) after the previous 10 next command. It will not change
when shifting focus (via Multiprocess Explorer) to another CPU.

007–2579–008 153

10: Multiple Process Debugging

6. Select Admin > Multiprocess Explorer to bring up the Multiprocess Explorer.
Note in the Multiprocess Explorer window that OmpThread0 is the ’master’ and
the other ’OmpThread’ entries are the true ’slaves’. All should be stopped on the
breakpoint.

Figure 10-15 Multiprocess Explorer: OMP threads stopped at breakpoints

7. Select Views > Variable Brower. Note all 5 local variables are displayed correctly.
Because you are still focused on OmpThread0 (the master) in the MainView
window, the value of the private (for OmpThread0 only) variable indi should be
3 (approximately) and the value of the shared (all OmpThreads) variable sum
should be approximately 6 after the next 10 commands issued previously.

Figure 10-16 Variable Browser

154 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

8. Select Views > Data Explorer in the Main View window. Click on the private
variable indi and the shared variable sum. Only the private variable should
change with the next step.

9. In the Multiprocess Explorer window, select one of the slave proceses (for
example, OmpThread2) by using the left mouse to highlight the name.

Note in the Variable Browser that indi now has a value of 0 because
OmpThread2 has not been stepped. The shared variable sum still has a value of 6
and the private variable mycpu has a value of 2 to reflect the OmpThread2 now
in focus in the Main View window.

Note in the Data Explorer window that indi, sum and mycpu have same values
as those shown in the Variable Browser.

10. In the cvd command line of the Main View window, enter the following
commands:

cvd> print mycpu

The value will be 2, showing the “private” nature of mycpu.

Make sure that the single and the lock are chosen on the lock icon. Only
OmpThread2 will advance.

cvd> next 15 times

cvd> print indi

The value returned should be approximately 5. This private value is unique to
OmpThread2.

cvd> print sum

The value returned should be approximately 66. This shared value is accessible to
all OmpThreads.

Note in the Variable Browser and the DataExplorer that the values for mycpu,
indi and sum agree with those printed in the cvd command line with the print
command.

11. Using the Multiprocess Explorer, click the right mouse button over the process
entry to switch the MainView focus back to the master process (OmpThread0).

12. In the cvd command line portion of the Main View window, enter the following
commands:

007–2579–008 155

10: Multiple Process Debugging

cvd> print mycpu

The value should be 0 for OmpThread0, which is a private variable.

cvd> print indi

This should still be 3 because OmpThread2 (not OmpThread0) was just recently
stepped in the sequence of 15 steps. OmpThread0’s private value of indi cannot
change while stepping OmpThread2.

cvd> print sum

This is a shared variable, so it should still show changes from the next 15 times
for OmpThread2 above. Its value should still be about 66.

Note in the Variable Browser and Data Explorer that the values for mycpu, indi and
sum agree with those printed in the command line with the print command.

This is the end of the C/C++ OpenMP debugging example. If this is used with
WorkShop versions prior to 2.9.2, unsatisfactory results ocur.

To exit this example, select Admin > Exit from any Debugger window.

Fortran OpenMP Debug Example

The following sample program is used in this example:

program main

implicit none

integer n,m,mits
double precision tol,relax,alpha

common /idat/ n,m,mits

common /fdat/tol,alpha,relax

n = 3
m = 5

alpha = 4.4444

relax = 3

tol = 10

mits = 50
call driver ()

stop

156 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

end

subroutine driver ()

implicit none

integer n,m,mits,mtemp
double precision tol,relax,alpha

common /idat/ n,m,mits,mtemp

common /fdat/tol,alpha,relax

double precision u(n,m),f(n,m),dx,dy
call initialize (n,m,alpha,dx,dy,u,f)

call jacobi (n,m,dx,dy,alpha,relax,u,f,tol,mits)

return

end

subroutine initialize (n,m,alpha,dx,dy,u,f)

implicit none

integer n,m

double precision u(n,m),f(n,m),dx,dy,alpha

integer i,j, xx,yy

double precision PI
parameter (PI=3.1415926)

dx = 2.0 / (n-1)

dy = 2.0 / (m-1)

do j = 1,m
do i = 1,n

xx = -1.0 + dx * dble(i-1) ! -1 < x < 1

yy = -1.0 + dy * dble(j-1) ! -1 < y < 1

u(i,j) = 0.0

f(i,j) = -alpha *(1.0-xx*xx)*(1.0-yy*yy) -2.0*(1.0-xx*xx)-2.0
enddo

enddo

return

end

subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)
implicit none

integer n,m,maxit

007–2579–008 157

10: Multiple Process Debugging

double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
integer i,j,k,l

double precision error,resid,ax,ay,b

double precision error_local, uold(n,m)

ax = 1.0/(dx*dx) ! X-direction coef
ay = 1.0/(dy*dy) ! Y-direction coef

b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff

error = 10.0 * tol

k = 1

do while (k.le.maxit .and. error.gt. tol)

error = 0.0
!$omp parallel

!$omp do

do j=1,m

do i=1,n

uold(i,j) = u(i,j)
enddo

enddo

!$omp do private(resid) reduction(+:error)

do l = 2,m-1

do i = 2,n-1

resid = (ax*(uold(i-1,l)+uold(i+1,l))+b*uold(i,l)-f(i,l))/b
u(i,l) = uold(i,l) - omega * resid

error = error + resid*resid

end do

enddo

!$omp enddo nowait
!$omp end parallel

k = k + 1

error = sqrt(error)/dble(n*m)

enddo ! End iteration loop

print *, ’Total Number of Iterations ’, k
print *, ’Residual ’, error

return

end

Prior to starting the debugging session, set the number of CPUs to run:

% setenv MP_SET_NUMTHREADS 5

158 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

1. Compile the program and use the debugger on the resulting test file:

% f90 -g -mp -o test test.f90
% cvd ./test

2. At the cvd prompt in the Main View window, enter the following:

cvd> stop at 74

This stops the program in the parallel region.

3. Click the run button in the Main View window to run the program with the
breakpoint.

4. At the cvd command prompt at the bottom of the Main View window, enter the
following commands:

cvd> print f

cvd> print j

f is an atuomatic array with a default of shared. The bounds are dynamically set
to 3x5. The value of j should be 1 because no stepping has been done yet.

5. Select Views > Array Browser. Enter f for the array and you will see that the
values displayed are identical to those shown via the command line commands
used previously.

6. Select Admin > Multiprocess Explorer. Notice that OmpThread0 is the ’master’
and the other ’OmpThread’ entries are the true ’slaves’. All threads should be
stopped on the breakpoint. There should be 5 of these corresponding to the
MP_SET_NUMTHREADS 5 command issued previously. Each iteration of the outer
j loop has been allocated to a separate thread. The Variable Browser (used in the
next step) confirms this.

007–2579–008 159

10: Multiple Process Debugging

Figure 10-17 Multiprocess Explorer: OmpThreads stopped at breakpoint

7. Select Views > Variable Browser. Notice that the value of j should be 1 because
the OmpThread0 (master) thread gets the first iteration of the j loop.

160 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 10-18 Variable Browser display

8. Select Views > Data Explorer and click on the variable j. Notice that the value
agrees with that from both the Variable Browser and from the command line
print command.

007–2579–008 161

10: Multiple Process Debugging

Figure 10-19 Data Explorer

Note that the lists of variables for the Data Explorer and the Variable Browser
windows agree in length, name, etc.

9. In the Main View window, make sure that the single and the lock are chosen on
the lock icon to ensure that a single OpenMP thread will be affected. In the cvd
command line of the Main View window, enter the following commands:

cvd> next 4 times

cvd> print i

The value returned should be 3 after the next 4 commands issued previously.

cvd> print uold

This is an automatic, stack-based array; the default is shared. The bounds are
dynamically set to 3x5. Note that the previous next commands have initialized a
portion of uold to zeroes from another automatic array u.

10. Using the Multiprocess Explorer, select one of the slave proceses (for example,
OmpThread2) using the left mouse button to highlight the thread. The value of j
(should be 3 for OmpThread2) shown in the Variable Browser should correspond

162 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

to the iteration of the outer j loop assigned to this slave. The value of i should
be 1 because this slave (OmpThread2) has not been stepped yet.

11. In the cvd command line portion of the Main View window, enter the following
commands:

cvd> print B

This is an OpenMP shared variable whose value does not change when switching
threads. Note its value.

Make sure that the single and the lock are chosen on the lock icon to ensure that
a single OpenMP thread will be affected.

cvd >next 2 times

cvd >print i

The value returned should be 2 after the 2 next commands previously. This
value of i is private, or unique, to the slave that is in focus (that is, OmpThread2).

12. Using the Multiprocess Explorer, click the right mouse button over the process
entry to switch the MainView focus back to the master process (OmpThread0).

Note in the Variable Browser and Data Explorer that the values for i and j,
private to each master/slave, now change to reflect the new OpenMP thread
chosen (OmpThread0). and sum agree with those printed in the command line
with the print command. Variables that are shared (for example, B) should not
change value.

This concludes the Fortran example. To exit this example, select Admin > Exit from
any Debugger window.

OpenMP Debugging Tips

This section contains some pointers on using the Debugger on code that contains
OpenMP constructs.

Setting Breakpoints in a Parallel Region

It is best to select Group Trap Default for your Traps Preference. That way, if you
delete a breakpoint, the deletion will occur in the master and all the slaves, not just
the current master or slave. This saves having to delete the breakpoint for every slave.

007–2579–008 163

10: Multiple Process Debugging

OMP_DYNAMIC daemon process

The daemon process used by OpenMP to handle creation and annihilation of threads
in support of OMP_DYNAMIC is problematic for the WorkShop Debugger. This daemon
is present by default and unless you are using the schedule dynamic feature of the
OpenMP specification, it is unnecessary. The daemon does not allow clean
termination of a debugging session and will end with itself in a SIGTERM error and
the master ’hung’.

No known actual functionality is lost with this circumstance but it can be unnerving
to the user. So, unless you are using schedule dynamic in your OpenMP program,
issue a setenv OMP_DYNAMIC false command at the beginning of your
debugging session. This allows clean termination of the master and all slaves and
eliminates the SIGTERM error for the daemon process itself.

Consecutive and/or Nested OpenMP regions

Consider the following OpenMP C code snippet:

#pragma omp parallel

{

<1st section code - parallel>

}
...

... intervening code

...

#pragma omp for

for (....) {
<2nd section code - parallel??

}

If a breakpoint is set in the first section of parallel code and another is set in the
second section of parallel code, then only the master thread will reach the second
breakpoint upon continue and deletion of all occurrences of the first breakpoint. All
slaves will be put to ’sleep’ after doing their work in the first section of parallel code.
This occurs because the notion of ’dynamic extent of an enclosing parallel region’
applies (see section 2.8 “Directive Nesting” in the OpenMP C/C++ 2.0 standard or
section 2.9 “Directive Nesting” in the OpenMP Fortran 2.0 standard). There is a
clause in these sections which states:

Any directive that is permitted when executed dynamically inside a parallel region is also
permitted when executed outside a parallel region. When executed outside a user-specified
parallel region, the directive is executed by a team composed of only the master thread.

164 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Thus the second section of code above will only be run by the master. Note that a
similar test case for Fortran could be built using !$omp do (and not !$ omp
parallel do). The second pragma as written is legal, but will not in fact be
executed in parallel as it is not within the ’dynamic extent of an enclosing parallel
region’; that is, it is not already in the middle of a parallel region that started
somewhere up the call chain.

What probably occurred here is an error, but it is legal. The user probably assumed or
wanted parallel execution (that is, . master and slaves) in the second section of code.
The trouble here is that the second pragma should read as follows to ensure parallel
execution:

#pragma omp parallel for

Note the addition of parallel. This allows both master and slaves to reach the
breakpoint in the second section of code.

Unexpected Stops in Routine nsproc

On occasion the user might find the master or slave stopped (use MpView to see this)
in internal routine nsproc. This is harmless and can be remedied immediately with a
Continue All in the MpView. This occurs because, as noted in "Consecutive and/or
Nested OpenMP regions", the debugger causes slight timing variations that would not
otherwise exist. The debugger also has internal breakpoints in the routine nsproc
because it is this routine that creates new OpenMP threads, and important information
needs to be captured by the debugger at the point of OpenMP thread creation.

Creation of OpenMP Slave Threads

Consider the following OpenMP code scenario:

There exists an OpenMP region (via #pragma omp parallel) in a routine called
foobar. The main routine calls foobar(). Assume OMP_NUM_THREADS is set to 4
or so. Set a breakpoint at the CALL SITE for foobar and then run to the breakpoint.

At the breakpoint, do a stepOver of the call to foobar() Using MultiProcess View,
observe that the slave threads are asleep and the master has actually done the
stepOver’. Reasonably, the slaves should be gone because all parallel work is within
foobar and that work is done.

However, that’s not the case. Process creation/destruction is a comparatively
expensive task, and thus slaves are not created/destroyed at each parallel region.
They are created once, the first time they are needed, and then kept. Setting the

007–2579–008 165

10: Multiple Process Debugging

environment variable MP_CREATE causes the slave processes to be created at startup,
to exist prior to the call to foobar(), and to continue existing after the call.

OpenMP Slave Thread Call Ctacks

The slaves do not have a "well-formed" stack trace. They call a <nested> subroutine
representing the parallel region, without ever calling the enclosing parent routine.

166 007–2579–008

Chapter 11

X/Motif Analyzer

This chapter provides an introduction to the X/Motif Analyzer as well as a tutorial to
demonstrate most of the Analyzer functions. Motif is a library of routines that enable
you to create user interfaces in an X-environment. The Motif libraries handle most of
the low-level event handling tasks common to any GUI system. This way, you can
create sophisticated interfaces without having to contend with all of the complexity of
X.

The X/Motif Analyzer helps you debug code that calls Motif library routines. The
X/Motif Analyzer is integrated with the Debugger so you can issue X/Motif
Analyzer commands graphically. To access X/Motif analyzer subwindow select the
following from the Main View window menu bar: Views > X/Motif Analyzer.

Introduction to the X/Motif Analyzer
The Analyzer contains X/Motif objects (for example, widgets and X graphics
contexts) that can be difficult or impossible to inspect through ordinary debugging
procedures. It also allows you to set widget-level breakpoints and collect X–event
history information in the same manner as using . See the xscope(1) man page for
more information.xscope(blank)

Examiners Overview

When the X/Motif Analyzer first displays, it is set to examine widgets. At this point,
the window may be blank, or it may display a widget found in the call stack of a
stopped process.

At the bottom of the X/Motif Analyzer window is a tab panel that shows the current
set of examiners. In addition to this tab, the Widget Examiner, Breakpoints, Trace,
and Tree Examiners tabs are at the bottom of the window. These four tabs are always
present. Other examiners are available from the Examine menu of the X/Motif
Analyzer window.

Some examiners cannot be manually selected. They appear only when appropriate to
the call stack context. For example, the Callback Examiner appears only when a
process is stopped somewhere in a widget callback.

007–2579–008 167

11: X/Motif Analyzer

Examiners and Selections

If you select text in one examiner and then choose another examiner by using the
Examine menu, the new examiner is brought up and the text is used as an expression
for it. If you selected text that is an inappropriate object for the new examiner, an
error is generated.

Alternatively, you can select text, pull down the Examine menu, and choose
Selection. Here, the X/Motif Analyzer attempts to select an appropriate examiner for
the text. If the type of text is unknown, the following message displays:

Couldn’t examine selection in more detail

Otherwise, the appropriate examiner is chosen and the text is evaluated.

You can also accomplish this by triple-clicking on a line of text. If the type of text is
unknown, nothing happens. Otherwise, the appropriate examiner is chosen and the
text is evaluated.

Inspecting Data

X/Motif applications consist of collections of objects (that is, Motif widgets) and make
extensive use of X resources such as windows, graphics context, and so on. The
construction model of an X window system hinders you from inspecting the internal
structures of widgets and X resources because you are presented with ID values. The
X/Motif Analyzer lets you to see the data structures behind the ID values.

Inspecting the Control Flow

Traditional debuggers enable you to set breakpoints only in source lines or functions.
With the X/Motif Analyzer, you can set breakpoints for specific widgets or widget
classes, for specific control flow constructs like callbacks or event handlers, and for
specific X events or requests.

Tracing the Execution

The X/Motif Analyzer can trace Xlib-level server events and client requests, Xt-level
event dispatching information, widget life cycle, and widget status information.

168 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Restrictions and Limitations
The X/Motif Analyzer has the following restrictions and limitations:

• The Breakpoints Examiner is active only after you have stopped a process and if
you have changed $LD_LIBRARY_PATH. See "Launching the X/Motif Analyzer",
page 170 for more information regarding the correct $LD_LIBRARY_PATH.

• Sometimes, gadget names may be unavailable and are displayed as <object>.
You can minimize this condition by first loading the widget tree.

• editres requests (such as, widget selection and widget tree) work only if the
process is running or if the process is stopped outside of a system call. This can be
annoying when the process is stopped in select(), waiting for an X server event.

• The process state and appearance of the Main View window flickers while the
X/Motif Analyzer tries to complete an editres request when the process is
stopped.

• editres requests may be unreliable if the process is stopped.

X/Motif Analyzer Tutorial
This section illustrates several features of the X/Motif Analyzer. The demo files in the
/usr/demos/WorkShop/bounce directory are used to demonstrate the debugging
of a running X-application. These files contain the complete C++ source code for the
bounce program.

This section includes the following subsections:

• "Setting up the Sample Session", page 170.

• "Launching the X/Motif Analyzer", page 170.

• "Navigating the Widget Structure", page 171.

• "Examining Widgets", page 174.

• "Setting Callback Breakpoints", page 176.

• "Using Additional Features of the Analyzer", page 178.

• "Ending the Session", page 182.

007–2579–008 169

11: X/Motif Analyzer

Setting up the Sample Session

Perform the following to prepare for this session:

1. Enter the following commands:

% mkdir demos/bounce
% cd demos/bounce

% cp /usr/demos/WorkShop/bounce/* .

% make clean

% make bounce

% cvd bounce &

The Debugger is launched, from which you can use the X/Motif Analyzer. Upon
invocation, you see the Execution View icon and the Main View window.

2. Double-click the Execution View icon to open the window. Then, tile your
windows so you can clearly see all windows.

3. Click on the Run button in the Main View window to run the bounce program.

The Execution View window updates with the command that cvd is executing.

4. Click Run in the Bounce window. You see no action until you have finished the
next steps.

5. Select Actors > Add Red Ball from the menu bar of the Bounce program window.

6. Click on the Kill button in the Main View window to terminate the process that
has been running.

7. The Execution View shows the program output.

Launching the X/Motif Analyzer

Once the bounce fileset is built and the debugger is active, you need to launch the
X/Motif Analyzer as follows:

1. Select Views > X/Motif Analyzer from the menu bar of the Main View window.

2. Click OK when asked if you want to change your $LD_LIBRARY_PATH
environment variables to include .../usr/lib/WorkShop/Motif. There are
no instrumented MIPS/ABI versions of the libraries.

170 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

This includes instrumented versions of the SGI libraries Xlib, Xt, and Xm. These
libraries provide debugging symbols and special support for the X/Motif
Analyzer. You are now ready to begin the sample session.

Note: Follow the steps in this tutorial precisely as written.

Navigating the Widget Structure

When the X/Motif Analyzer is launched, it brings up the X/Motif Analyzer window
with an empty Widget Examiner tab panel. The tab panels also show the
Breakpoints, Trace, and Tree Examiner tab panels (see Figure 11-1, page 172).

007–2579–008 171

11: X/Motif Analyzer

Figure 11-1 First View of the X/Motif Analyzer (Widget Examiner)

1. Widen the X/Motif Analyzer window shown in Figure 11-1, page 172. This
makes it easier to understand what you are asked to do in this tutorial.

2. Click Run in the Main View window to re-run the bounce program.

The instrumented versions of the Motif libraries will now be used.

3. When the Bounce window appears, re-size it to make it taller.

4. Click Run in the Bounce window. You do not see any action until you perform
the next steps.

5. Position the X/Motif Analyzer and Bounce windows side-by-side.

172 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

6. Click on the Select button in the X/Motif Analyzer window.

This brings up an information dialog and changes the cursor to a plus sign (+).
Do not click on the OK button in this dialog.

7. Select the Step widget by clicking on the Step button in the Bounce window
with the (+) cursor, as described in the cvmotif information dialog.

The Widget Examiner displays the Step widget structure.

8. Click the Tree tab in the X/Motif window.

The Tree Examiner panel displays the widget hierarchy of the target object (see
Figure 11-2, page 173).

Figure 11-2 Widget Hierarchy Displayed by the Tree Examiner

007–2579–008 173

11: X/Motif Analyzer

9. Double-click the Run node in the tree. (Run is in the upper-right area of the
window).

This brings up the Widget Examiner that displays the Run widget structure.
Notice that the parent text area displays the name of the current widget’s parent,
which is control.

10. Click on the word control displayed on the Parent button at the top of the
Widget Examiner in the X/Motif Analyzer window.

This switches the view to the Run widget’s parent, the control object, as shown
in the Name field. And, the Widget Examiner displays the Control widget
structure.

You can now navigate through the widget hierarchy using either the Widget
Examiner or the Tree Examiner.

Examining Widgets

1. In the Widget Examiner, click on the Children button to see the menu, and select
Run from that menu.

The Run widget structure displays in the examiner.

2. Select Actors > Add Red Ball from the Bounce window. You should see a
bouncing red ball.

3. Enter stop in Clock::timeout at the cvd command line in the Main View
window.

After you press Enter, the red ball stops bouncing.

4. Select Continue in the Main View window a few times to observe the behavior of
bounce with this breakpoint added.

5. Select the Breakpoints tab in the X/Motif Analyzer window. This calls up the
Breakpoints Examiner which allows you to set widget-level breakpoints.

6. In the Callback Name text field, enter activateCallback, then click on the
Add button to add a breakpoint for the activateCallback object of the Run
button widget. The result is displayed in Figure 11-3, page 175.

174 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Return button

Widget

specification

Parameter

specification

Breakpoints

Figure 11-3 Adding a Breakpoint for a Widget

7. Click on the red breakpoint down arrow in the Annotation Column of the Main
View window to remove the Clock::timeout breakpoint. If you click on the
line, but not the down arrow, the breakpoint is deleted; but the source pane still
displays the arrow.

8. Click on the Continue button in the Main View window.

9. Click on the Stop button in the Bounce window.

10. Click on the Run button in the Bounce window. The process stops in the Run
button’s registered activateCallback. This is the routine that was passed to
XtAddCallback routine. Notice that the Callback tab (for the Callback
Examiner) is added to the tab list.

007–2579–008 175

11: X/Motif Analyzer

Setting Callback Breakpoints

1. Click on the Breakpoints list item (the Active box will be checked) to highlight
the breakpoint in the X/Motif Analyzer Breakpoint Examiner window.

2. Delete the widget address in the Widget text field by backspacing over the text.

3. Click on the Modify button to change the activateCallback breakpoint to
apply to all push-button gadgets XmPushButtonGadget (see in the Class text
field) rather than just the Run button.

4. Click Continue in the Main View window.

5. Click Stop in the Bounce window.

The process now stops in the Stop button’s activateCallback routine.

6. Click the Callback tab in the X/Motif Analyzer window to go to the Callback
Examiner. This examiner displays the callback context and the appropriate
call_data structure (see Figure 11-4).

176 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Figure 11-4 Callback Context Displayed by the Callback Examiner

7. Double-click the window value in the callback structure, fourth line from bottom.

8. Select Examine > Window in the Callback Examiner. The X/Motif Analyzer
displays the window attributes for that window (the window of the Stop button).
Notice that the Window tab (for the Window Examiner) is added to the tab list.
See Figure 11-5.

Note: You can also accomplish the same action by triple-clicking the window
value in the callback structure of the Callback Examiner (Step 7). In general,
triple-clicking on an address brings you to that object in the appropriate examiner.

007–2579–008 177

11: X/Motif Analyzer

Figure 11-5 Window Attributes Displayed by the Window Examiner

Using Additional Features of the Analyzer

The following steps demonstrate additional Analyzer features.

1. In the X/Motif Analyzer window, click the Widget tab.

2. Double-click the widget_class value (on the fourth line) to highlight it.

3. Pull down Examine > Widget Class. The X/Motif Analyzer window displays the
class record for the XmPushButtonGadget routine. Notice that the Widget Class
tab (for the widget class examiner) is added to the tab list.

178 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

The same action can be accomplished by triple-clicking the widget_class value
in the Widget Examiner.

4. Triple-click the superclass value on the third line. The X/Motif Analyzer window
displays the class record for XmLabelGadget, the superclass of
XmPushButtonGadget.

5. Triple-click the superclass value on the right side of the third line. The X/Motif
Analyzer window displays the class record for XmGadget, the superclass of
XmLabelGadget.

6. Select the Widget tab to change to the Widget Examiner.

7. Triple-click the parent value on the fifth line. The X/Motif Analyzer window
displays the control widget, the parent of Run. This action produces the same
results as selecting the control text in the Parent text box.

8. Right-click on the tab overflow area (the area where the tabs overlap, to the far
left of the tab list) as labeled in Figure 11-6, and select the Breakpoints tab.

007–2579–008 179

11: X/Motif Analyzer

Figure 11-6 Selecting the Breakpoints Tab from the Overflow Area

9. Click on the word Callback in the Breakpoint Type text field of the Breakpoints
Examiner window to bring up a submenu, and select Resource-Change.

10. In the Class text field, enter: Any.

11. In the Resource Name text field, enter: sensitive.

180 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

12. Click Add. This adds a breakpoint. The Active: Breakpoints: list should now
include the following text:

[Any] Resource-Change,name=sensitive

13. Click Continue. The status updates to Stopped in the SetValues routine, since
the breakpoint set in the previous step was reached.

14. Select Views > Call Stack in the Main View window. Notice the call to
XtSetValues on the second line (see Figure 11-7).

Figure 11-7 Breakpoint Results Displayed by the Call Stack

15. In the Call Stack, double-click the Cmdinterface::activate line (just below
XtSetSensitive). This is where the sensitive resource was changed.

16. In the Widget Examiner window, double-click the widget address in the Widget
text field, press backspace, enter _w, and press Enter. The X/Motif Analyzer
displays the Run widget, which is the widget currently being changed.

17. Click Continue in the Main View window. The status updates to Stopped in the
SetValues routine, since the breakpoint set in the previous step was reached
again.

18. In the Call Stack, double-click on the Cmdinterface::activate line (just
below XtSetSensitive).

19. Perform the following sub-steps:

007–2579–008 181

11: X/Motif Analyzer

a. Double-click in Widget text field of the Widget Examiner.

b. Press backspace.

c. Enter _w.

d. Press Enter.

The X/Motif Analyzer window displays the Step widget, which is the widget
currently being changed.

Ending the Session

Select the following to close the X/Motif Analyzer: Admin > Close.

Select the following to exit the Debugger (from the Main View window): Admin >
Exit. If you exit the Debugger first, you exit the X/Motif Analyzer as well.

For more information on the X/Motif Analyzer, see the ProDev WorkShop: Debugger
Reference Manual.

182 007–2579–008

Chapter 12

Customizing the Debugger

This section shows you how you may customize the WorkShop Debugger specifically
to your environment needs.

Customizing the Debugger with Scripts
If there are Debugger commands or combinations of Debugger commands that you
use frequently, you may find it convenient to create a script composed of Debugger
commands. Debugger scripts are ASCII files containing one Debugger command and
its arguments per line. A Debugger script can in turn call other Debugger scripts.
There are three general methods for running scripts:

• Enter the source command and the filename at the Debugger command line.
This is useful for scripts that you need only occasionally.

• Include the script in a startup file. This is useful for scripts that you want
implemented every time you use the Debugger.

• Define a button in the graphical interface to run the script. Use this method for
scripts you use frequently but apply only at specific times during a debugging
session.

Using a Startup File

A startup file lets you preload your favorite buttons and aliases in a file that runs
when the Debugger is invoked. It also is useful if you have traps that you set the same
way each time. The suggested name for the startup file is .cvdrc. However, you can
select a different name as long as you specify its path in the CVDINIT environment
variable. The Debugger uses the following criteria when looking for a startup file:

• Checks the CVDINIT environment variable.

• Check for a .cvdrc file in the current directory.

• Checks for a .cvdrc file in the user’s home directory.

007–2579–008 183

12: Customizing the Debugger

Implementing User-Defined Buttons

You can implement buttons by providing a special Debugger startup file or by
creating them on the fly within a debugging session. Buttons appear in the order of
implementation in a row at the bottom of the control panel area. Currently, you can
define only one row of custom buttons. The definitions for the user-defined buttons
display in the Debugger command line area.

The syntax for creating a button is as follows:

button label command [$sel]

The syntax for creating a multiple-command button is as follows:

button label {command1 [$sel]; command2 [$sel]; ...}

The button command accepts the following options:

• label: specifies the button name. Button labels should be kept short since there is
only room for a single row of buttons. There can be no spaces in a label.

• command: specifies one of the Debugger commands, which are entered at the
command line at the bottom of the Main View window. See the ProDev WorkShop:
Debugger Reference Manual.

• $sel: provides a substitute for the current cursor selection and should be
appropriate as an argument to the selected command.

• commandn...: specifies Debugger commands to be applied in order. Commands
must be separated by semicolons (;) and enclosed by braces ({}). The
multiple-command button is a powerful feature; it lets you write a short script to
be executed when you click the button.

The following command displays a list of all currently defined buttons:

% button

The following command deletes the button corresponding to the label:

% unbutton label

184 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

You might use this command if you needed room to create a new button. The effect
of unbutton is temporary so that subsequently running the startup file reactivates
the button.

The following command displays the definition of the specified button, if it exists. If
the button does not exist, an error message is displayed:

% button label

Changing X Window System Resources

While there are many X Window System resources that you can change, we
recommend that you avoid modifying these resources if at all possible. In some cases,
there may be no way within WorkShop to make the desired change. If you must
modify resources, the following X Window System resources for the Debugger and its
views may be useful:

*AllowPendingTraps:

If set to true, enables support for pending traps.

The default value is false.

*autoStringFormat

If set to true, sets default format for *char results as strings in
Expression View, the Variable Browser, and the Data Explorer.

The default format is the hexadecimal address.

cvmain*sourceView*nameText.columns

Sets the length of the File field in the Main View window.

The default value is 30 characters.

Cvmain*disableLicenseWarnings and *disableLicenseWarnings

Disables the license warning message that displays when you start
the Debugger and the other tools.

*editorCommand

If you prefer to view source code in a text editor rather than in
Source View, lets you specify a text editor.

The default value is the vi editor.

007–2579–008 185

12: Customizing the Debugger

*expressionView*maxNumOfExpr

Lets you set the maximum number of expressions that can be read
from a file by Expression View.

The default value is 25.

*UseOldExprEval and *useOldExprEval

When set to true, allows you to use the older, dbx–like, expression
evaluator rather than the default C++ expression evaluator
introduced in WorkShop version 2.6.4. Using the older evaluator may
result in faster evaluation of some expressions.

The default value is false.

The following resources apply to Source View:

*svComponent*lineNumbersVisible

Displays source line numbers by default.

*sourceView*nameText.columns

Sets the length of the File field in Source View.

The default value is 30 characters.

*tabWidth

Sets the number of spaces for tabs in Source View.

The following resource applies to Build View:

*buildCommand

Is used to determine which program to used with make(1), smake(1),
clearmake(1), and so forth.

The default value is make(1).

*runBuild

Specifies whether cvmake(1) begins its build immediately upon being
launched.

186 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

The default value is true.

To change these resources, you need to set the desired value in your .Xdefaults
file, and run the xrdb(1) command. Then, restart your application so that the
resource gets picked up.

The following are the default font and scrollbar sizes for cvd:

cvarray*fontList: 6x13

cvdata*fontList: 6x13

cvstruct*fontList: 6x13

cvmachine*fontList: 6x13

cvmeter*fontList: 6x13
cvtaskview*fontList: 6x13

cvtaskview*boldLabelFont: 6x13

cvmp*fontList: 6x13

cvmain*fontList: 6x13

cvmotif*fontList: 6x13
cvstatic*fontList: 6x13

cvbuild*fontList: 6x13

cvpav*fontList: 6x13

cvperf*fontList: 6x13

cvxcov*fontList: 6x13

cvmake*fontList: 6x13
cvpathRemap*fontList: 6x13

*cvdHorizontalScrollBarSize: 25

*cvdVerticalScrollBarSize: 25

DUMPCORE Environment Variable
The DUMPCORE environment variable allows the Debugger to dump a core file in the
event that there is a debugger execution problem during the debug session. To enable
core files, enter either of the following before you startup your debug session:

• For the C shell, enter:

% setenv DUMPCORE 1

• For the Korn shell or Bourne shell, enter:

$ DUMPCORE=;export DUMPCORE = 1

007–2579–008 187

12: Customizing the Debugger

Other Variables
The user can set the following variables for the Debugger:

• set $prompt: specifies the prompt to be used in the command window.

• set $addrfmt: specifies the format for addresses.

• set $dbxEval: forces the command window to use the dbx evaluator for
Fortran and C/C++.

• set $dbxFortranEval: forces the command window to use the older, dbx-like
evaluator.

• set $dbxCEval: forces the cmmand window to use the dbx evaluator.

• set $pendingtraps: set to true, allows pending traps.

• set $sprocmode: set to true, toggles several settings suggested for debugging
sproc programs.

To see complete syntax for these variables, issue the following command at the cvd
command line:

cvd> help $variables

188 007–2579–008

Appendix A

Using the Build Manager

WorkShop lets you compile software without leaving the WorkShop environment.
Thus, you can look for problems using the WorkShop analysis tools (Static Analyzer,
Debugger, and Performance Analyzer), make changes to the source, suspend your
testing, and run a compile. WorkShop provides two tools to help you compile:

• Build View—for compiling, viewing compile error lists, and accessing the code
containing the errors in Source View (the WorkShop editor) or an editor of your
choice. Build View helps you find files containing compile errors so that you can
quickly fix them, recompile, and resume testing.

• Build Analyzer—for viewing build dependencies and recompilation requirements
and accessing source files.

Build View uses the UNIX make(1) facility as its default build software. Although
cvmake can be set up to run any program instead of make (for example, gnumake),
cvbuild will only parse and display standard makefiles (in particular, it does not
understand gnu make constructs).

Build View Window
You can access the Build View window from the WorkShop analysis tools, from the
command line (by typing cvmake), or from the Build Analyzer (see next section).

To access Build View from WorkShop, select Recompile from the Source menu in the
Main View window in the Debugger or from the File menu in Source View (for more
information on the Main View and Source View windows, refer to Chapter 1,
"WorkShop Debugger Overview", page 1). Selecting Recompile detaches the current
executable from the WorkShop analysis tools and displays Build View. You can edit
the Directory and Target(s): fields as needed and click Build to compile. If the source
compiles successfully, the new executable is reattached when you reenter the
WorkShop analysis tools.

The Build View window has three major areas:

• "Build Process Control Area", page 190

• "Transcript Area", page 191

• "Error List Area", page 191

007–2579–008 189

A: Using the Build Manager

Build Process Control Area
The build process control area lets you run or stop the build and view the status. See
Figure A-1.

Build command
directory

Target directory

Build process
control buttons

Status field

Figure A-1 Build Process Control Area in Build View Window

The directory in which the build will run displays in the Directory: field at the top of
the area. The current directory displays by default. You can specify the build using
make, smake, pmake, clearmake, or any other builder and any flags or options that
the builder understands (see "Build View Preferences", page 192, and "Build Options",
page 193). The target to be built is specified in the Target(s): field.

The build process control buttons let you control the build process. The following
buttons are available:

Build Runs (or reruns) a build. If you have modified any files
you will be prompted to save the new versions prior to
the compile.

Interrupt Stops a build.

Suspend Stops a build temporarily.

Resume Restarts a suspended build.

The status field is to the right of the build process control buttons. It indicates the
progress of the build.

190 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Transcript Area
The transcript area displays the verbatim output from the build. The vertical scroll
bar lets you go through the list; the horizontal scroll bar lets you see long messages
obscured from view. A sash between the compile transcript area and the error list
area lets you adjust the lengths of the lists displayed. See Figure A-2.

Transcript area

Error list area

Figure A-2 Build View Window with Typical Data

Error List Area
The error list area consists of the error list display and three control buttons. The
following buttons are available:

Next Error Brings up the default editor scrolled to the next error
location. This button is below the error list display.

Rescan Refreshes the error list display.

007–2579–008 191

A: Using the Build Manager

Clear Clears the error list display area.

The error list area displays compile errors (see Figure A-2, page 191). The errors are
annotated according to their severity level (fatal has a solid icon and the warning icon
is hollow). Double-clicking the text portion of an error brings up the default editor
scrolled to the error location and displays a check mark to help you keep track of
where you are in the error list. Check marks also display when you click the Next
Error button.

Build View Admin Menu
The Admin menu in Build View has two selections in addition to the standard
WorkShop entries:

• "Build View Preferences", page 192

• "Build Options", page 193

For information on the Launch Tool and Exit menu selections, see the ProDev
WorkShop: Debugger Reference Manual.

Build View Preferences

The Preferences selection brings up the dialog box shown in Figure A-3, page 193.
The options are:

Maker Program field

Lets you enter the program you use to build your executable.

Macro Settings field

Lets you enter build macros, such as

CFLAGS=-g.

Makefile field

Lets you enter the name of a makefile if you do not wish to use the
default.

192 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Discard Duplicate Errors button

Eliminates subsequent duplicates of errors in the error list area.

Show Warnings button

Toggles the option to display warnings in the list.

Figure A-3 Build View Preferences Dialog

Build Options

The Build Options Dialog lets you add the options shown in Figure A-4, page 194, to
your make command.

007–2579–008 193

A: Using the Build Manager

Figure A-4 Build Options Dialog

Using Build View

The steps in running a compile using Build View are as follows:

1. Bring up the Build View window.

2. Edit the Target(s): and Directory: fields as required.

3. Specify your preference regarding duplicate errors and warnings using the
Admin menu (optional).

4. Click Build to start the build. All compile information displays in the transcript
area. Errors are grouped in a list below.

5. Click Interrupt to terminate or Suspend for a temporary stop, if you want to stop
the build. The Resume button restarts a suspended build.

6. Double-click an error to bring up your preferred editor with the appropriate
source code. A check mark indicates that an error has been accessed.

194 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Note: The default editor is determined by the editorCommand resource in the
app-defaults file. The value of this resource defaults to wsh -c vi +%d,
which means run vi in a wsh window and scroll to the current line. If the editor
lets you specify a starting line, enter %d in the resource to indicate the new line
number.

7. Click Build to restart the build.

Build Analyzer Window
The Build Analyzer window displays a graph indicating the source files and derived
files in the build, and their dependency relationships and current status. Source files
refers to input files, such as code modules, documentation, data files, and resources.
Derived files refers to output files, such as compiled code. Your request builds in
Build Analyzer by either:

• Double-clicking a derived module

• Making a selection from the Build menu

You access Build Analyzer from WorkShop by selecting Launch Tool from the
Admin menu in Main View. Outside of WorkShop, you can access Build Analyzer by
typing cvbuild at the command line.

Build Specification Area
The three fields in the build specification area identify the working directory, makefile
script, and target file(s) for compilation. You can edit the Directory, Makefile, and
Targets fields directly. The Targets field also lets you specify a search string for
locating a file in the build graph.

Build Graph Area
The build graph area displays the specified source and derived files and their
dependency relationships. Files are depicted as rectangles; dependency relationships
are shown as arrows, with the supplying file at the base of the arrow and the

007–2579–008 195

A: Using the Build Manager

dependent file at the head. The colors used to depict the files depends on your color
scheme. Build Analyzer differentiates the two types of files by depicting one with
light characters on a dark background and the other with dark text on a light
background. If you double-click a source file icon, an editor is brought up for that
file. Double-clicking a derived file starts a build and displays Build View.

In addition to dependency relationships, Build Analyzer indicates the status of the
files and relationships as follows:

• Source file availability status: normal or checked out

– Normal means that the source file is read-only and needs to be made writable
to be edited. Normal files appear as light rectangles with black text.

– Checked out means that you have a writable version of this file available and
can thus edit it. A checked out file appears in a different color (from normal
files) with a shadow.

• Derived file compile status: current or obsolete

– When applied to a derived file, the term current means that none of the files on
which the derived file depends have been edited since the derived file was
created. Current derived files appear as dark rectangles with white text.

– Obsolete means that one or more of the source files have been modified since
the derived file was created. Obsolete files appear in the same color as current
derived files but with a colored outline.

• Dependency relationship: current or obsolete

– Current means that the derived file is up to date with the source files. Note
that a relationship can be current even if both files are obsolete. This happens
when a file on which both files are dependent has been modified. Current arcs
are black.

– Obsolete means that the source file has changed and the derived file has not
been updated accordingly. Obsolete arcs appear as colored arrows.

Some typical build graph icons are shown in Figure A-5, page 197.

196 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Derived file-normal state

Source file-normal state

Dependency arc-obsolete state
Source file-checked out state

Dependency arc-current state

Derived files-obsolete state

Figure A-5 Build Graph Icons

The main.c and hello.h source files are in their normal state. The source files
warn.c++ and foo.h are checked out and thus appear highlighted and with
dropped shadows. The derived file main.o is current, since it has not changed since
the last compile. The black dependency arcs indicate that the source and derived files
at either end are current with each other. When an arc is highlighted, it indicates that
the source has changed since the last compile. The derived files warn.o and a.out
are obsolete because warn.c++ has changed.

Build Graph Control Area
The build graph control area contains a row of graph control buttons similar to the
ones in the WorkShop Static Analyzer and the Call Graph View in the Performance
Analyzer. The Overview button is particularly useful in the Build Analyzer because
it helps you quickly find obsolete files where a lot of dependencies are involved.

The build graph control area is shown in Figure A-6, page 198.

007–2579–008 197

A: Using the Build Manager

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button (disabled)

Realign button

Rotate button

Figure A-6 Build Graph Control Area

Build Analyzer Overview Window

Since build graphs can get quite complicated, an overview mode (similar to those in
Static Analyzer and Profiling View) is supplied that lets you view the entire graph at
a reduced scale. To display the overview window, you click the overview icon (see
Figure A-6, page 198).

Figure A-7, page 199, shows a typical Build Analyzer Overview window with the
resulting graph. The window has a movable viewport that lets you select the portion
of the build graph displayed in Build Analyzer. Source files that have changed and
derived files needing recompilation are highlighted for easy detection. In this
particular color scheme, the Build Analyzer Overview window displays normal
source files in turquoise, checked out source files in pink, current derived files in dark
blue, and obsolete derived files in yellow. Arcs appear only in black in this window.

198 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Viewport

Figure A-7 Build Analyzer Overview Window with Build Analyzer Graph

Build Analyzer Menus

The Build Analyzer window contains the following menus:

• Admin

• Build

• Filter

• Query

Admin Menu

The Admin menu provides one selection Refresh Graph Display in addition to the
standard WorkShop selections.

007–2579–008 199

A: Using the Build Manager

Refresh Graph Display

Refreshes the window.

Launch Tool

Lets you execute the WorkShop tools. For more information, see the
ProDev WorkShop: Debugger Reference Manual.

Build Menu

The selections in the Build menu let you perform builds as follows:

Build Default Target

Performs a make with no arguments.

Build Selected Target(s)

Performs the build(s) as entered in the Target(s): field.

Show Build Rule

Displays a dialog box showing the makefile line for the selected node.

Filter Menu

The Filter menu has only one selection:

Select files to show in graph

Opens the File Filter dialog box that lets you enter a regular
expression to filter files displayed in the build graph.

The upper list area lets you specify files to be excluded from the build
graph. The lower list is for specifying files to appear in the graph.

Query Menu

The Query menu lets you request information about the build graph. The following
selections are available:

Why Is This File Out Of Date?

Identifies the source files requiring this file to be recompiled. This
query only applies to derived files.

200 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

What Will Changing This File Affect?

Shows all derived files dependent on this source file.

007–2579–008 201

Index

A

access to freed memory, 107
access to uninitialized memory, 107
action

traps term, 62
Active selection in Admin menu

described in jello tutorial, 55
adding a breakpoint

in X/Motif analyzer tutorial, 175
All or This button description, 17
all trap debugger command option, 68
All/Single button in the Main View window, 78
AllowPendingTraps

.Xdefaults variable, 63
arguments, command line, 77
Array Browser

subscript controls, 59
viewing variables with, 21, 83
Views menu option, 4

Array Browser selection in Views menu
in jello tutorial, 57

array variables, 4
assigning values to variables, 86
auto-fork application, 117

B

basic debugger usage, 9
blocking anomalies

and pthreads, 135
boundary overrun, 107
boundary underrun, 107
breakpoint, 4, 17

See also "traps", 3, 61
breakpoint results, viewing, 181

breakpoint, adding for a widget, 175
breakpoints tab, 179
breakpoints, setting (Fix+Continue tutorial), 102
breakpoints, setting for a class, 176
Build Analyzer

to examine build dependencies, 7
Build analyzer, 195
build dependencies

examine with Build Analyzer, 7
Build manager, 189
build path, 93
Build view, 189

C

C expressions, 86
C function calls, 87
C tutorial code example, 13
C++ exception trap, 63
C++ expressions, 87
Call Stack, 81
Call stack

Views menu option, 4
Call Stack selection in Views menu, 54
Call Stack Window

introduction to, 24
callback context, viewing, 177
callback examiner, 177
callstack view

in X/Motif analyzer tutorial, 181
change id, 93
change values

in Array Browser, 23
changing code from the command line, 99
checking for out-of-bounds array accesses, 28

007–2579–008 203

Index

checking for uninitialized variables used in
calculations, 29

classes, examining widget, 176
Clear button in Trap Manager

in jello tutorial, 53
Clear trap selection in Traps menu, 65
ClearCase, 6
Click To Evaluate

viewing variables with, 20
Click to Evaluate

viewing variables with, 82
code

redefined vs. compiled, 92
code, changing (tutorial), 98
code, changing from command line, 99
code, comparing original to redefined, 103
code, deleting changed, 99
code, switching between compiled and redefined

in Fix+Continue, 103
Col button in Array Browser

in jello tutorial, 58
Command field in the Main View window, 77
command syntaxes for traps, 69
comparing code, original vs. redefined, 103
comparing function definitions

(in Fix+Continue tutorial), 103
compiled code

distinguished from refined code, 92
compiling

introductory tips, 9
with the malloc library (heap corruption), 108

compiling with the malloc library, 108
Condition field in trap manager, 72
Config menu in trap manager, 67
Cont button description, 17
context sensitive help, 10
continue

of single 6.5 POSIX pthread, 133
Continue button in the Main View window, 51, 78
Continue To selection in PC menu, 79
control flow constructs, 168
controlling program execution options, 16

Copy traps to sproc’d processes
in multiprocess tutorial, 125

core file analysis
for scientific programs, 31

corrupt program
heap corruption tutorial program, 111

customizing the debugger, 183
changing X window system resources, 185
startup file for, 183
user-defined buttons, 184
with scripts, 183

cvd
Main View window (X/Motif analyzer

tutorial), 170
cvd command line

viewing variables with, 18
cvdrc file

for customizing the debugger, 183
Cycle Count field in Trap Manager

in jello tutorial, 54
Cycle count field in trap manager, 73

D

Data Explorer
viewing variables with (C code only), 83
Views menu option, 4

Data Explorer (C code only)
viewing variables with, 24

Data Explorer selection in views menu, 56
data structures, 4
Data View

Views menu option, 4
Debugger

exiting, 60
how to start, 43
program execution control, 77

debugger
how to customize, 183

204 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Main View window (X/Motif analyzer
tutorial), 170

Debugger command line, 2
Debugger main features, 1
Debugger views, 81
Debugger with Fix+Continue support

Fix+continue
debugger support with, 93

debugging
debugging a multiprocess C program, 122
debugging a multiprocess fortran program, 128
fortran multiprocess debugging session, 128
general fortran debugging hints, 128
tips and features, 9

debugging with the X/Motif analyzer, 8
deleting changed code (tutorial), 99
difference tools

in Fix+Continue, 104
disabling traps

in jello tutorial, 53
disassembled code, 5
Disassembly View

Views menu option, 5
DISPLAY environment variable for debugging, 9
Display menu

Main View window, 199
Display menu in traps manager, 67
divisions by zero

how to find in scientific programs, 30
double frees, 107
DUMPCORE environment variable, 187

E

edit source code
as shown in jello tutorial, 48

editors
fork editor, 6
how to access from the Main View window, 6

editres requests
and X/Motif analyzer, 169

environment variables
CVDINIT, 183
DUMPCORE, 187
MALLOC_CLEAR_FREE, 109
MALLOC_CLEAR_FREE_PATTERN, 109
MALLOC_CLEAR_MALLOC, 109
MALLOC_CLEAR_MALLOC_PATTERN, 109
MALLOC_FASTCHK, 109
MALLOC_MAXMALLOC, 109
MALLOC_NO_REUSE, 110
MALLOC_TRACING, 110
MALLOC_VERBOSE, 110
_RLD_LIST, 108
setting in Execution View, 80
setting to detect heap corruption, 108

environment variables for debugging, 9
erroneous frees, 107
evaluating expressions, 84
evaluating expressions in C++, 87
evaluating expressions in Fortran, 88
examiner

breakpoint, 175
callback, 177
tree examiner, 174
widget examiner, 173
window, 177

examiners
overview, in X/Motif analyzer, 167
selections, in X/Motif analyzer, 168

examining data, 4
in jello tutorial, 54

examining program data, 81
examining widget classes, 176
examining widgets

in X/Motif analyzer tutorial, 174
exception trap, 63
executable

run directly from the Main View window, 35
execution control buttons, 78

in Main View window, 78
Execution View, 80

007–2579–008 205

Index

Execution View description, 10
exiting the debugger, 60
Expression column in Expression View, 85
Expression field in Data Explorer

in jello tutorial , 56
Expression View

viewing variables with, 20
Expression view

Views menu option, 5
Expression View selection in Views menu

in jello tutorial, 56
Expression View Window

for evaluating expressions, 84
Expression View window

viewing variables with, 83
expressions

C++, 87
for C operations, 86
Fortran, 88

F

fibo program
Fibonacci program used in multiprocess

tutorial, 122
File Browser for locating and loading files, 36
files (source)

loading, 35
managing, 35

files, comparing source code with xdiff, 104
files, finding for Fix+Continue, 93
finding files for Fix+Continue, 93
Fix+ continue

change id, 93
Fix+Continue

comparing original to redefined code, 103
switching between compiled and redefined

code, 103
tutorial, 95

Fix+continue
basic cycle description, 91

breakpoints, 102
build path, 93
changing code (tutorial), 98
changing code from the command line, 99
deleting changed code (tutorial), 99
editing a function (tutorial), 96
functionality and features, 91
interface description, 93
introduction and tutorial, 91
overview, 7
redefining function, 96
redefining functions with, 91
restrictions, 94
sample session (tutorial), 95
setting traps for, 102
Status window, 103
WorkShop integration, 92

fork application, 117
fork editor, 6
fork processes, 118
Format menu in Expression View, 85

in jello tutorial, 56
fortran

debugging a multiprocess fortran program, 128
fortran multiprocess debugging session, 128
general fortran debugging hints, 128

Fortran 90 tutorial code example, 11
Fortran expressions, 88
Fortran function calls, 91
Fortran variables supported in expressions, 89
frames, 81
free call errors

heap corruption errors, 108
free run

of single 6.5 POSIX pthread, 133
function definitions, comparing

(in Fix+Continue tutorial), 103
function, editing, 96
function, redefining

Fix+continue, 96
functions, identifying, 93

206 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

G

-g option for compiling, 9
getstarted tutorial directory, 10
getting started with debugger: tutorial, 9
Group Trap Default toggle, 66

H

heap corruption
access to freed memory, 107
access to uninitialized memory, 107
boundary overrun definition, 107
boundary underrun definition, 107
compiling with malloc library, 108
detection, 107
double frees, 107
erroneous frees, 107
how to find heap corruption errors, 107
trapping errors using the malloc library, 110
typical problems, 107

I

identifying functions, 93
include files

and Fix+Continue, 93
integration of ProDev WorkShop tools, 5
introductory tips and features for debugging, 9

J

jello program, 44
Jump To selection in PC menu, 80

K

Kill button description, 17

Kill button in the Main View window, 78

L

Language menu in Expression View, 85
in jello tutorial, 56

launching debugger in Multiprocess Explorer, 124
launching the X/Motif analyzer, 8
launching X/Motif analyzer, 170
lint

option for debugging scientific programs, 28
-lmalloc_ss library

for finding heap corruption problems, 107
Load expressions selection in Expression

View—> Config menu, 85
load files

directly into the Main View window, 35
through the File Browser Window, 36
through the Open dialog box, 37
with File Browser, 37

Load traps... selection in config menu in trap
manager, 74

loading source files, 35
locally distributed application, 117
locate files

with File Browser, 36
Lock button description, 17

M

Main View window
All/Single button, 78
Command field, 77
Cont button, 78
control panel, 77
Display menu, 199
execution control buttons, 78
general description, 1
Kill button, 78

007–2579–008 207

Index

Next button, 79
PC menu, 79
Run button, 78
Sample button, 79
Status field, 78
Stay Focused/Follow Interesting button, 78
Step button, 78
Stop button, 78

Main View window (X/Motif analyzer
tutorial), 170

malloc call failing
heap corruption error, 108

malloc library
compiling with, 108

MALLOC_CLEAR_FREE_PATTERN, 109
MALLOC_CLEAR_MALLOC, 109
MALLOC_CLEAR_MALLOC_PATTERN, 109
MALLOC_FASTCHK, 109
MALLOC_FASTCHK environment variable

and heap corruption errors, 108
MALLOC_MAXMALLOC, 109
MALLOC_NO_REUSE, 110
MALLOC_TRACING, 110
MALLOC_VERBOSE, 110
managing source files, 35
memalign call with improper alignment

heap corruption error, 108
memory locations, 5
Memory View

Views menu option, 5
MPI application debugging, 143
MPI single system image application, 117
multiple process debugging

description and introduction, 117
multiprocess

add and remove processes, 121
additional main view windows for, 122
debugging a multiprocess fortran program, 128
fortran multiprocess debugging session, 128
multiprocess traps, 120
preferences, 121

using trap manager to control trap inheritance
(tutorial), 126

view control buttons, 120
viewing process status, 119

Multiprocess Explorer
launching debugger in, 124
to control execution, 124

Multiprocess Explorer window, 118
multiprocess traps, 67
Multiprocess View

Views menu option, 5
multiprocessing

debugging, 117

N

N selection in Next menu, 79
N selection in step into menu, 78
Next button, 10
Next button description, 17
Next button in the Main View window, 79

O

Open dialog box
loading files, 37

overflows
how to find in scientific programs, 30

P

path remapping , 38
path remapping case example, 40
PC menu, 79

Continue To, 79
Jump To, 80

PC menu in main view window, 79
pending trap

208 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

definition, 62
performance analyzer

how to access from Main View window, 5
performance data

Sample button, 79
pgrp trap debugger command option, 68
pollpoint, 4
preferences for multiprocesses, 121
preparing the fileset for X/Motif analyzer

tutorial, 170
process group, 118
Program counter

definition, 55
program counter, 79
Program data, 81
program execution

options for controlling, 16
program execution control, 77

Main View control panel, 77
PC menu, 79

program output, tracking, 94
pthreads

and blocking anomalies, 135
and scheduling anomalies, 134
debugging a pthreaded program, 133
debugging session, 136
how to continue a single pthread, 136
pthread debugging hints, 136
user-level continue of single 6.5 POSIX

pthread, 133
viewing pthreaded applications, 120

R

RCS, 6
Read-Only

debugger status, 93
realloc call errors

heap corruption error, 108
redefined code

distinguished from compiled code, 92

redefining a function in Fix+Continue (tutorial), 96
redefining functions, 91
Register View

Views menu option, 5
registers, 5
Remap paths selection in session menu, 39
removing traps with mouse, 64
restrictions and limitations of X/Motif analyzer, 169
Result column in Expression View, 85
Resume child after attch on sproc

in multiprocess tutorial, 124
Return button description, 17
Return button in the Main View window

Main View
Return button, 79

RUN button description, 17
Run button in the Main View window, 78

S

Sample button in the Main View window, 79
sample session

setting up for X/Motif analyzer, 170
sample session setup

Fix+continue, 95
sample trap, 63
sample trap command, 67
sample traps, 4
samples

See also "traps", 3, 61
Save expressions selection in Expression View

—>Config menu, 85
Save traps... selection in config menu in trap

manager, 74
saving changes to source file (Fix+Continue

tutorial), 101
scheduling anomalies

and pthreads, 134
scientific programs

checking for out-of-bounds array accesses, 28

007–2579–008 209

Index

checking for uninitialized variables used in
calculations, 29

core file analysis for, 31
finding divisions by zero and overflows, 30
suggestions for debugging serial execution of, 27
using lint for debugging, 28

scripts
for customizing the debugger, 183

Search field in trap manager, 74
Search window, 24
searching for character strings, 24
searching in the jello tutorial, 46
Set Trap

selection in Traps menu, 65
setting traps

in jello tutorial, 50
introduction, 17

setting traps at the cvd> command line, 65
setting traps with the mouse, 64
setting traps with the Traps menu, 65
Signal panel, 74
signal trap debugger command option, 71
signal traps, 4
signals

See also "traps", 3, 61
SIGTERM signal, 118
source annotation column

traps, 65
source code status indicator, 93
source control

using configuration management tools for, 6
source file

saving changes to (Fix+Continue tutorial), 101
source files

comparing code files with xdiff, 104
loading, 35
managing, 35

sproc processes, 118
ssmalloc_error, 110
stack frame, 55
stack frames, 81
starting the debugger, 43

starting, program execution, 78
startup file

for customizing the debugger, 183
static analyzer

how to access from the Main View window, 6
Status field in the Main View window, 77, 78
Status window

Fix+continue, 103
status, viewing, 103
Stay Focused/Follow Interesting button in the

Main View window, 78
Step button, 10
Step button in the Main View window, 78
Stop All Defaults toggle, 66
Stop button description, 17
Stop button in the Main View, 78
stop trap, 62
stop trap command, 67
stop traps, 4

in jello tutorial, 49
stopping, process execution, 78
subscript controls in Array Browser, 58
switching between compiled and redefined code

in Fix+Continue, 103
Syscall panel, 74
syscall trap debugger command option, 71
system calls

See also "traps", 3, 61
traps, 4

T

tab overflow area, 179
tabs, 180
tools integration, 5
tracking program output, 93
trap condition, 72
trap examples, 68
Trap Manager

in jello tutorial, 52

210 007–2579–008

ProDevTM WorkShop: Debugger User’s Guide

Trap manager menus, 66
Trap Manager Window

introduction to, 66
trap triggers, 62
trap types, 62
traps, 3

adding a breakpoint for a widget, 175
all trap debugger command option, 68
C++ exception trap, 63
command syntaxes for, 69
descriptive overview, 61
disabling in jello tutorial, 53
enabling and disabling, 74
for multiprocesses, 120
how to set, 64
in jello tutorial, 49
introduction, 17
multiprocess traps, 67
one-time, 79
pending trap, 62
pgrp trap debugger command option, 68
removing with mouse, 65
sample trap, 63
sample trap command, 67
setting at the cvd command line, 65
setting conditions, 72
setting cycle count, 73
setting with mouse, 64
setting with the Traps menu, 65, 73
Signal panel, 74
stop trap, 62
stop trap command, 67
Syscall panel, 74
trap examples, 68
triggering, 62

traps definition, 61
Traps menu in trap manager, 67, 73
traps terminology , 61
traps, setting (Fix+Continue tutorial), 102
tree examiner, 174
trigger

traps term, 62

triggering traps, 62
troubleshooting incorrect answers, 32
true multiprocess program, 117
tutorials

debugging a multiprocess C program, 122
Fix+Continue, 95
fortran multiprocess debugging session, 128
heap corruption tutorial, 111
how to load source files, 35
introductory: C code, 13
introductory: Fortran 90, 11
jello

running, 44
jello program, 43
path remapping, 40
starting a multiprocess session, 118
X/Motif analyzer, 169

U

uninitialized variables, 29
using the X/Motif analyzer, 167

V

Variable Browser
in jello tutorial, 55
View menu option, 5
viewing variables with, 20, 83

Variable Browser selection in Views menu, 55
variables

assigning values to, 86
options for viewing, 18, 82
viewing at the cvd command line, 82
viewing with Array Browser, 21
viewing with Click To Evaluate, 20
viewing with Click to Evaluate, 82
viewing with cvd> command line, 18
viewing with Data Explorer (C code only), 24

007–2579–008 211

Index

viewing with Expression View, 20
viewing with the Array Browser, 83
viewing with the Data Explorer (C code only), 83
viewing with the Expressions View window, 83
viewing with the Variable Browser, 83
viewing with Variable Browser, 20

versioning
and accessing configuration management tools, 6

view windows
Multiprocess Explorer, 118

viewing data, 4
viewing status (Fix+Continue tutorial), 103

W

watch command
in jello tutorial, 53

watch trap debugger command option, 70
Watchpoint

definition, 53
watchpoint, 53
watchpoints, 4

See also "traps", 3, 61
widget classes, examining, 176
widget hierarchy, 174

widget structure, navigating, 171
widgets, examining, 174
window attributes, viewing, 177
window examiner, 177
WorkShop integration, 92

X

X window system resources
changing to customizing the debugger, 185

X/Motif analyzer
“additional” features, 178
debugging with, 8
default view, 173
inspecting data with, 168
inspecting the control flow with, 168
launching, 170
navigating widget structure, 171
overview, 167
restrictions and limitations, 169
starting, 8
tracing execution with, 168

xdiff, 104
xhost setting for debugger, 9

212 007–2579–008

	New Features in this Guide
	Table of Contents
	List of Figures
	List of Tables
	List of Examples
	List of Procedures

	About This Guide
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	1. W orkShop Debugger Overview
	Main Debugger Features
	The Debugger Main View Window
	About Traps
	Viewing Program Data
	Integrating the Debugger with Other WorkShop Tools
	Using the Mouse for Data Diving

	Debugging with Fix+Continue
	Debugging with the X/Motif Analyzer
	Customizing the Debugger

	2. Basic Debugger Usage
	Getting Started with the Debugger
	Basic Tips and Features
	Fortran 90 Code Example and Short Tutorial
	C Example and Short Tutorial
	Options for Controlling Program Execution
	Setting Traps (Breakpoints)
	Options for Viewing Variables
	Searching
	Using the Call Stack
	Stopping at Functions or Subroutines

	Suggestions for Debugging for Serial Execution of Scientific Programs
	Step 1: Use lint
	Step 2: Check for Out-of-Bounds Array Accesses
	Step 3: Check for Uninitialized Variables Being Used in Calculations
	Step 4: Find Divisions by Zero and Over
ows
	Step 5: Perform Core File Analysis
	Step 6: Troubleshoot Incorrect Answers

	3. Selecting Source Files
	How to Load Source Files
	Load Directly into the Main View Window
	Load from the File Browser Dialog Box
	Load from the Open Dialog Box

	Path Remapping
	Case Example for Path Remapping

	4. Tutorial: The jello Program
	Starting the Debugger
	Run the jello Program
	Perform a Search
	Edit Your Source Code
	Setting Traps
	Examining Data
	Exiting the Debugger

	5. Setting Traps (Breakpoints)
	Traps Terminology
	Trap Triggers
	Trap Types

	Setting Traps
	Setting Traps with the Mouse
	Setting Traps Using the cvd Command Line
	Setting Traps Using the Traps Menu in the Main View Window

	Setting Traps in the Trap Manager Window
	Setting Single-Process and Multiprocess Traps
	Setting a Trap Condition
	Setting a Trap Cycle Count
	Setting a Trap with the Traps Menu
	Moving around the Trap Display Area
	Enabling and Disabling Traps
	Saving and Reusing Trap Sets

	Setting Traps by Using Signal Panel and System Call Panel

	6. Controlling Program Execution
	The Main View Window Control Panel
	Features of the Main View Window Control Panel
	Execution Control Buttons

	Controlling Program Execution Continue To/Jump To
	Execution View

	7. Viewing Program Data
	Traceback Through the Call Stack Window
	Options for Viewing Variables
	Using the cvd Command Line
	Using Click to Evaluate
	Using the Array Browser
	Using the Data Explorer
	Using the Variable Browser
	Using the Expression View
	Using the Data View Window

	Evaluating Expressions
	Expression View Window
	Assigning Values to Variables
	Evaluating Expressions in C
	Evaluating Expressions in C++
	Evaluating Expressions in Fortran

	8. Debugging with Fix+Continue
	Fix+Continue Functionality
	Fix+Continue Integration with Debugger Views
	How Redefined Code Is Distinguished from Compiled Code
	The Fix+Continue Interface
	Debugger with Fix+Continue Support
	Change ID, Build Path, and Other Concepts

	Restrictions on Fix+Continue
	Fix+Continue Tutorial
	Setting up the Sample Session
	Redefining a Function: time1 Program
	Setting Breakpoints in Redefined Code
	Comparing Original and Redefined Code
	Ending the Session

	9. Detecting Heap Corruption
	Typical Heap Corruption Problems
	Finding Heap Corruption Errors
	Compiling with the Malloc Library
	Setting Environment Variables
	Trapping Heap Errors Using the Malloc Library

	Heap Corruption Detection Tutorial

	10. Multiple Process Debugging
	Using the Multiprocess Explorer Window
	Starting a Multiprocess Session
	Viewing Process Status
	Using Multiprocess Explorer Control Buttons
	Multiprocess Traps
	Viewing Multiprocess and Pthreaded Applications
	Adding and Removing Processes
	Multiprocess Preferences
	Bringing up Additional Main View Windows

	Debugging a Multiprocess C Program
	Launch the Debugger in Multiprocess Explorer
	Using Multiprocess Explorer to Control Execution
	Using the Trap Manager to Control Trap Inheritance

	Debugging a Multiprocess Fortran Program
	General Fortran Debugging Hints
	Fortran Multiprocess Debugging Session

	Debugging a Pthreaded Program
	User-Level Continue of Single 6.5 POSIX Pthread
	Other Pthread Debugging Hints
	Pthread Debugging Session
	Using StepOver of Function Calls on IRIX 6.5+ Systems

	Debugging an MPI Single System Image Application
	MPI Debugging Session

	Debugging an OpenMP Application
	C/C++ OpenMP Debug Example
	Fortran OpenMP Debug Example
	OpenMP Debugging Tips

	11. X/Motif Analyzer
	Introduction to the X/Motif Analyzer
	Examiners Overview
	Examiners and Selections
	Inspecting Data
	Inspecting the Control Flow
	Tracing the Execution

	Restrictions and Limitations
	X/Motif Analyzer Tutorial
	Setting up the Sample Session
	Launching the X/Motif Analyzer
	Navigating the Widget Structure
	Examining Widgets
	Setting Callback Breakpoints
	Using Additional Features of the Analyzer
	Ending the Session

	12. Customizing the Debugger
	Customizing the Debugger with Scripts
	Using a Startup File
	Implementing User-Defined Buttons
	Changing X Window System Resources

	DUMPCORE Environment Variable
	Other Variables

	A. Using the Build Manager
	Build View Window
	Build Process Control Area
	Transcript Area
	Error List Area
	Build View Admin Menu
	Build View Preferences
	Build Options
	Using Build View

	Build Analyzer Window
	Build Specification Area
	Build Graph Area
	Build Graph Control Area
	Build Analyzer Overview Window
	Build Analyzer Menus

	Index

