
IRIX® Admin: Disks and Filesystems
007-2825-009

CONTRIBUTORS
Written by Susan Ellis, Steven Levine
Illustrated by Dany Galgani
Production by Glen Traefald

COPYRIGHT
© 1999-2001, Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, CHALLENGE, Indy, IRIX and IRIS are registered trademarks, SGI and the SGI logo, XFS, Extent File System, Origin2000, IRIS
InSight, Origin, and REACT are trademarks of Silicon Graphics, Inc. Macintosh is a trademark of Apple Computer, Inc. EXABTYE is a trademark
of EXABTYE Corporation. FLEXlm is a trademark of Globetrotter Software, Inc. IBM is a trademark of International Business Machines
Corporation. NetWorker is a registered trademark of Legato Systems, Inc. NFS is a registered trademark of Sun Microsystems. UNIX is a
registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications

What’s New in This Guide

New Features Documented

For the IRIX 6.5.14 release, XFS version 2 directories are the default for all new
filesystems crated with mkfs. The mkfs examples have been updated to account for this.
007-2825-009 iii

Record of Revision

005 July 1999
Incorporates information for the IRIX 6.5.5 release

006 December 1999
Incorporates information for the IRIX 6.5.7 release

007 July 2000
Incorporates information for the IRIX 6.5.9 release

008 June 2001
Incorporates information for the IRIX 6.5.13 release

009 September 2001
Incorporates information for the IRIX 6.5.14 release
007-2825-009 v

Contents

Figures . . xv

Tables . xvii

Examples . xix

IRIX Admin Manual Set . . xxi

About This Guide. . xxiii
What This Guide Contains xxiii
Conventions Used in This Guide xxiv
How to Use This Guide . xxvi
Product Support . xxvii
Additional Resources . . xxvii
Reader Comments . . xxviii

1. Disk Concepts . . 1
Disk Drives on Silicon Graphics Systems 2
Physical Disk Structure . 3
Disk Partitions . . 4
System Disks, Option Disks, and Partition Layouts 6
Partition Types . . 11
Volume Headers . 12
Device Files. . 14

Block and Character Devices 15
Device Permissions and Owner 16
Major and Minor Devices 16
Device Names . . 16
007-2825-009 vii

Contents
2. Performing Disk Administration Procedures 19
Listing the Disks on a System With hinv 20
Formatting and Initializing a Disk With fx 21
Adding Files to the Volume Header With dvhtool 22
Removing Files in the Volume Header With dvhtool 24
Displaying a Disk’s Partitions With prtvtoc 26
Repartitioning a Disk With xdkm 26
Repartitioning a Disk With fx 27

Before Repartitioning . . 28
Invoking fx From the Command Monitor 28
Invoking fx From IRIX . 30
Creating Standard Partition Layouts 31
Creating Custom Partition Layouts 32
After Repartitioning . 36

Creating Mnemonic Names for Device Files With ln 36
Creating a System Disk From the PROM Monitor 37
Creating a New System Disk From IRIX. 42
Creating a New System Disk by Cloning 46
Adding a New Option Disk . 49

3. XLV Logical Volume Concepts 51
Introduction to XLV Logical Volumes 51
Composition of XLV Logical Volumes 54

Volumes . 56
Subvolumes . 57
Plexes . 59
Volume Elements . . 62

Single-Partition Volume Elements 62
Striped Volume Elements 63
Multipartition Volume Elements 64

XLV Logical Volume Names 65
XLV Daemons . . 65
XLV Error Policy . 66
viii 007-2825-009

Contents
XLV Logical Volume Planning 66
When to Avoid Using XLV 66
Selecting Subvolumes . 67
Choosing Subvolume Sizes 67
Choosing Whether To Plex 68
Choosing Whether To Stripe 68
Choosing Whether to Concatenate Disk Partitions 69

4. Creating and Administering XLV Logical Volumes 71
Verifying That Plexing Is Supported 72
Creating Volume Objects With xlv_make 72

Example 1: Creating A Simple XLV Logical Volume 73
Example 2: Creating A Striped, Plexed XLV Logical Volume 75
Example 3: Creating A Plexed XLV Logical Volume for an XFS Filesystem With an
External Log . 76

Displaying XLV Logical Volume Objects 79
Adding a Volume Element to a Plex (Growing an XLV Logical Volume) 80
Adding a Plex to an XLV Logical Volume 82
Detaching a Plex From an XLV Logical Volume 84
Deleting an XLV Object . 85
Removing and Mounting a Plex 86
Replacing a Disk For a Plexed Volume 89

Remove the Volume Element From XLV 90
Physically Replace the Disk Drive 91
Remake the XLV Volume Element Using the New Drive 92

Creating a Plexed XLV Logical Volume for Root 92
Booting the System Off an Alternate Plex 95

CHALLENGE L, CHALLENGE XL, and CHALLENGE DM 95
All Other Models . . 96

Configuring the System for More Than Ten XLV Logical Volumes 97
Converting lv Logical Volumes to XLV Logical Volumes. 97
Creating a Record of XLV Logical Volume Configurations 99
007-2825-009 ix

Contents
5. Filesystem Concepts . 101
IRIX Directory Organization 102
General Filesystem Concepts 105

Inodes . 107
Types of Files . . 108
Hard Links and Symbolic Links 108
Filesystem Names . . 110

XFS Filesystems. . 110
CXFS Filesystems . . 112
EFS Filesystems . . 113
Network File Systems (NFS) 113
Cache File Systems (CacheFS). 114
 /proc Filesystem . 114
/hw Filesystem . . 115
Foreign Filesystems . 118
XFS Filesystem Creation . 118
Filesystem Mounting and Unmounting 119
XFS Filesystem Checking 120
Filesystem Reorganization 121
Filesystem Administration From the Miniroot 121
How to Add Filesystem Space 121

Mount a Filesystem as a Subdirectory 122
“Steal” Space From Another Filesystem 122
Grow an XFS Filesystem Onto Another Disk 122

Disk Quotas . . 123
Filesystem Corruption . . 124
x 007-2825-009

Contents
6. Creating and Growing Filesystems. 125
Planning an XFS Filesystem 125

Prerequisite Software. .125
Choosing the Filesystem Block Size and Extent Size 126
Choosing the Filesystem Directory Format and Directory Block Size 127
Choosing the Log Type and Size 128
Choosing Allocation Groups and Stripe Units 130
Disk Repartitioning . .131

Making an XFS Filesystem .132
Making a Filesystem From inst 137
Making a Foreign Filesystem. 138
Growing an XFS Filesystem Onto Another Disk 138
Converting Filesystems on the System Disk From EFS to XFS 140
Converting a Filesystem on an Option Disk From EFS to XFS 148
Checking for Adequate Free Disk Space When Converting to XFS Filesystems 149
Dump and Restore Requirements When Converting to XFS Filesystems 151

7. Maintaining Filesystems . .153
Routine Filesystem Administration Tasks 153
Mounting and Unmounting Filesystems 154

Manually Mounting Filesystems 154
Mounting Filesystems Automatically With the /etc/fstab File 156
Mounting a Remote Filesystem Automatically 157
Unmounting Filesystems 157
007-2825-009 xi

Contents
Managing Disk Space . . 159
Monitoring Free Space and Free Inodes. 160
Monitoring Key Files and Directories 160
Cleaning Out Temporary Directories 161
Locating Unused Files. 163
Identifying Accounts That Use Large Amounts of Disk Space 164

Checking Disk Space Usage With du 164
Checking Disk Space Usage With find 165
Monitoring Disk Space Usage with Disk Quota Accounting 165
Checking Disk Space Usage With quot. 166
Checking Disk Space Usage on XFS Filesystems With quota 167
Checking Disk Space Usage With diskusg 167

Running Out of Space in the Root Filesystem 168
Using Disk Quotas on XFS Filesystems 169

Turning on Disk Quotas for Users on XFS Filesystems 169
Turning on Disk Quotas for Projects on XFS Filesystems 169
Setting Disk Quota Limits for Users on XFS Filesystems. 170
Setting Disk Quota Limits for Projects on XFS Filesystems 171
Displaying Disk Quota Information on XFS Filesystems. 171
Administering Disk Quotas on XFS Filesystems 173

Copying XFS Filesystems With xfs_copy 174
Checking XFS Filesystem Consistency With xfs_check and xfs_repair 174

Checking Filesystem Consistency 174
Repairing Inconsistent Filesystems 176

Checking Foreign Filesystem Consistency With fpck 178
Repairing XFS Filesystem Problems 178

Common Error Messages 178
Error Messages When Files Are in lost+found 180
What to Do If xfs_repair Cannot Repair a Filesystem 181
Mounting A Filesystem Without Log Recovery 181

Running xfs_repair on the Root Filesystem 182
xii 007-2825-009

Contents
8. System Administration for Guaranteed-Rate I/O 183
Guaranteed-Rate I/O Overview184
GRIO Guarantee Types . .187

Per-File and Per-Filesystem Guarantees 187
Private and Shared Guarantees 187
Rotor and Non-Rotor Guarantees 187
An Example Comparing Rotor and Non-Rotor Guarantees188
Real-Time Scheduling, Deadline Scheduling, and Nonscheduled Reservations 189

GRIO System Components 190
Hardware Configuration Requirements for GRIO. 191
Configuring a System for GRIO 191
Additional Procedures for GRIO. 195

Disabling Disk Error Recovery 195
Restarting the ggd Daemon 198
Running ggd as a Real-time Process 198

Using Real-Time Subvolumes 199
Files on the Real-Time Subvolume and Commands 199
File Creation on the Real-Time Subvolume 200

GRIO File Formats. .200
/etc/grio_disks File Format200
/etc/config/ggd.options File Format 202

A. EFS Filesystems . .203
EFS Filesystem Overview. .203
EFS Filesystem Creation . .205
EFS Filesystem Creation Procedure 205
Growing an EFS Filesystem Onto Another Disk 207
EFS Filesystem Checking . .208

Checking Unmounted Filesystems 209
Checking Mounted Filesystems210

EFS Filesystem Reorganization 210
EFS Filesystem Disk Space Management 211
007-2825-009 xiii

Contents
Using Disk Quotas on EFS Filesystems 211
Imposing Disk Quotas on EFS Filesystems 211
Monitoring Disk Quotas on EFS Filesystems 213

Repairing EFS Filesystem Problems 213
General Errors . . 213
Initialization Phase . 214
Phase 1 Check Blocks and Sizes 215

Phase 1 Error Messages 215
Phase 1 Responses 217
Phase 1B Rescan for More Bad Dups 218

Phase 2 Check Pathnames 218
Phase 2 Error Messages 218
Phase 2 Responses 220

Phase 3 Check Connectivity 220
Phase 3 Error Messages 220
Phase 3 Responses 221

Phase 4 Check Reference Counts. 222
Phase 4 Error Messages 222
Phase 4 Responses 224

Phase 5 Check Free List 225
Phase 5 Error Messages 225
Phase 5 Responses 226

Phase 6 Salvage Free List 226
Cleanup Phase . . 226

Cleanup Phase Messages. 226

Index . . 229
xiv 007-2825-009

Figures

Figure 1-1 Controllers and Disk Drives 2
Figure 1-2 Physical Disk Structure 3
Figure 1-3 Disk Partitions 5
Figure 1-4 Partition Layout of System Disks With Separate Root and Usr . . 7
Figure 1-5 Partition Layout of System Disks With Separate Root and Usr

and an XFS Log Partition 8
Figure 1-6 Partition Layout of System Disks With Combined Root and Usr . . 9
Figure 1-7 Partition Layout of Option Disks 9
Figure 1-8 Partition Layouts of Options Disks With XLV Log Subvolumes . . 10
Figure 3-1 Writing Data to a Non-Striped Logical Volume. 53
Figure 3-2 Writing Data to a Logical Volume 53
Figure 3-3 XLV Logical Volume Example 55
Figure 3-4 Volume Composition 57
Figure 3-5 Subvolume Composition 58
Figure 3-6 Plexed Subvolume Example 60
Figure 3-7 Plex Composition 61
Figure 3-8 Single-Partition Volume Element Composition. 62
Figure 3-9 Striped Volume Element Composition 63
Figure 3-10 Multipartition Volume Element Composition 64
Figure 5-1 The IRIX Filesystem 106
Figure 5-2 Part of a Typical Hwgraph 116
Figure 5-3 Mounting a Filesystem. 119
007-2825-009 xv

Tables

Table 1-1 Standard Partition Numbers, Names, and Functions 6
Table 1-2 Partition Types and Uses 11
Table 1-3 Processor Types and sash Versions 13
Table 1-4 Device Name Construction 17
Table 2-1 sash and fx Versions 29
Table 5-1 Standard Directories and Their Contents 102
Table 5-2 Types of Files 108
Table 6-1 dump Arguments for Filesystem Backup 143
Table 7-1 Forms of the umount Command158
Table 7-2 Files and Directories That Tend to Grow 160
Table 8-1 Examples of Values of Variables Used in Constructing an XLV

Logical Volume Used for GRIO 193
Table 8-2 Disk Drive Parameters for GRIO195
Table 8-3 Disks in /etc/grio_disks by Default 201
Table 8-4 Optimal I/O Sizes and the Number of Requests per Second

Supported 201
Table A-1 Meaning of fsck Phase 1 Responses 217
Table A-2 Meaning of Phase 2 fsck Responses 220
Table A-3 Meaning of fsck Phase 3 Responses 221
Table A-4 Meaning of fsck Phase 4 Responses 224
Table A-5 Meanings of Phase 5 fsck Responses226
007-2825-009 xvii

Examples

Example 6-1 mkfs Command for an XFS Filesystem Using Defaults 133
Example 6-2 mkfs Command for an XFS Filesystem With an Internal Log . . .134
Example 6-3 mkfs Command for an XFS Filesystem With an External Log. . .135
Example 6-4 mkfs Command for an XFS Filesystem With a Real-Time

Subvolume 135
Example 6-5 mkfs Command for an XFS Filesystem Specifying Directory

Block Size 136
Example 6-6 mkfs Command for an XFS Filesystem with Version 1 Directory

Format 136
Example 8-1 Configuration File for a Volume Used for GRIO 194
007-2825-009 xix

IRIX Admin Manual Set

This guide is part of the IRIX Admin manual set, which is intended for administrators:
those who are responsible for servers, multiple systems, and file structures outside the
user’s home directory and immediate working directories. If you maintain systems for
others or if you require more information about IRIX than is in the end-user manuals,
these guides are for you.
007-2825-009 xxi

IRIX Admin Manual Set
The IRIX Admin guides are available through the IRIS InSight online viewing system.
The set consists of these volumes:

• IRIX Admin: Software Installation and Licensing—Explains how to install and license
software that runs under IRIX, the Silicon Graphics implementation of the UNIX
operating system. Contains instructions for performing miniroot and live
installations using the inst command. Identifies the licensing products that control
access to restricted applications running under IRIX and refers readers to licensing
product documentation.

• IRIX Admin: System Configuration and Operation—Lists good general system
administration practices and describes system administration tasks, including
configuring the operating system; managing user accounts, user processes, and disk
resources; interacting with the system while in the PROM monitor; and tuning
system performance.

• IRIX Admin: Disks and Filesystems (this guide)—Explains disk, filesystem, and
logical volume concepts. Provides system administration procedures for SCSI disks,
XFS™ and EFS filesystems, XLV logical volumes, and guaranteed-rate I/O.

• IRIX Admin: Networking and Mail—Describes how to plan, set up, use, and maintain
the networking and mail systems, including discussions of sendmail, UUCP, SLIP,
and PPP.

• IRIX Admin: Backup, Security, and Accounting—Describes how to back up and restore
files, how to protect your system’s and network’s security, and how to track system
usage on a per-user basis.

• IRIX Admin: Resource Administration—Provides an introduction to system resource
administration and describes how to use and administer various IRIX resource
management features, such as IRIX job limits, the Miser Batch Processing System,
the Cpuset System, and Comprehensive System Accounting (CSA).

• IRIX Admin: Peripheral Devices—Describes how to set up and maintain the software
for peripheral devices such as terminals, modems, printers, and CD-ROM and tape
drives. Also includes specifications for the associated cables for these devices.

• IRIX Admin: Selected Reference Pages (not available in InSight)—Provides concise
reference page (manual page) information on the use of commands that you may
need while the system is down. Generally, each reference page covers one
command, although some reference pages cover several closely related commands.
Reference pages are available online through the man(1) command.
xxii 007-2825-009

About This Guide

IRIX Admin: Disks and Filesystems is one guide in the IRIX Admin series of IRIX system
administration guides. It discusses important concepts and administration procedures
for disks, filesystems, logical volumes, and guaranteed-rate I/O.

What This Guide Contains

The types of disks, filesystems, and logical volumes covered in this guide are:

• SCSI disks. Systems that run IRIX 6.2 or later use only SCSI disks.

• The XFS filesystem. The XFS filesystem, a high-performance alternative to the
earlier EFS filesystem developed by Silicon Graphics, was first released for IRIX 5.3.

• The Extent File System(EFS). The EFS filesystem, a filesystem developed by Silicon
Graphics, was the filesystem used by IRIX for many years.

• XLV logical volumes. The XLV logical volume system, a high-performance logical
volume system with many advanced features was developed by Silicon Graphics
and released first for IRIX 5.3.

Note: This guide does not document administration of CXFS filesystems or XVM logical
volumes. For information on CXFS filesystems, see the CXFS Software Installation and
Administration Guide and for information on XVM logical volumes see the XVM Volume
Manager Administrator’s Guide.

This guide is organized into chapters that provide reference information (the “concepts”
chapters) and chapters that give procedures for performing disk and filesystem
administration tasks. Appendices provide in-depth information about repairing
inconsistent filesystems. These chapters and appendices are:

• Chapter 1, “Disk Concepts,” provides information about the structure of disks, disk
partitioning, and disk partition device files.
007-2825-009 xxiii

About This Guide
• Chapter 2, “Performing Disk Administration Procedures,” describes disk
administration tasks such as listing disks, initializing disks, modifying volume
headers, repartitioning disks, creating device files, and adding new disks to
systems.

• Chapter 3, “XLV Logical Volume Concepts,” describes the general concepts of
logical volumes and the specifics of XLV logical volumes.

• Chapter 4, “Creating and Administering XLV Logical Volumes,” provides
administration procedures for creating and administering XLV logical volumes and
converting lv logical volumes (an older type of logical volume that is no longer
supported) to XLV.

• Chapter 5, “Filesystem Concepts,” provides information about the IRIX filesystem
layout, general filesystem concepts, details of the XFS filesystem types, and
discussions of creating, mounting, checking, and growing filesystems.

• Chapter 6, “Creating and Growing Filesystems,” describes filesystem
administration procedures such as making filesystems, mounting them, growing
them, and converting from EFS to XFS.

• Chapter 7, “Maintaining Filesystems,” describes filesystem administration
procedures that need to be performed routinely or on an as-needed basis, such as
checking filesystems and managing disk usage when the amount of free disk space
is low.

• Chapter 8, “System Administration for Guaranteed-Rate I/O,” provides
information about guaranteed-rate I/O and the administration procedures required
to support its use by applications.

• Appendix A, “EFS Filesystems”, provides information about EFS filesystems and
their administration.

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

command This fixed-space font denotes literal items (such as commands, files,
routines, pathnames, signals, messages, programming language
structures, and e-mail addresses) and items that appear on the screen.

variable Italic typeface denotes variable entries and words or concepts being
defined.
xxiv 007-2825-009

About This Guide
user input This bold, fixed-space font denotes literal items that the user inters in
interactive sessions. Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

When a procedure provided in this guide can also be performed using the Disk Manager
in the System Toolchest or additional information on a topic is provided in the Personal
System Administration Guide, a Tip describes the information you can find in that
document. For example:

Tip: You can use the Disk Manager in the System Toolchest to get information about the
disks on a system. For instructions, see the “Checking Disk Setup Information” section
in the Personal System Administration Guide.

When a procedure could result in the loss of files if not performed correctly or should be
performed only by knowledgeable users, the procedure is preceded by a Caution. For
example:

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

Some features described in this guide are available only when software option products
are purchased. These features and their option products are identified in Notes. For
example:

Note: The plexing feature of XLV, which enables the use of the optional plexes, is
available only when you purchase the Disk Plexing Option software option.
007-2825-009 xxv

About This Guide
How to Use This Guide

IRIX Admin: Disks and Filesystems is written for system administrators and other
knowledgeable IRIX users who need to perform administration tasks on their disks,
filesystems, and logical volumes. It provides command line procedures for performing
administration tasks; these tasks are most relevant to administering servers and
workstations with many disks. Simple disk and filesystem administration using the
graphical user interface provided by the Disk Manager is described in the Personal System
Administration Guide.

Anyone with a basic knowledge of IRIX can use this guide to learn and perform basic
disk and filesystem administration procedures. However, some procedures in this guide
can result in loss of files on the system if the procedures are not performed correctly.
These procedures should be performed by people who are:

• Familiar with IRIX filesystem administration procedures

• Experienced in disk repartitioning using fx

• Experienced in performing administration tasks from the shell in the miniroot
environment provided by inst

• Familiar with filesystem backup concepts and procedures, particularly those using
dump

A Caution paragraph appears at the beginning of each procedure that should be
performed only by knowledgeable administrators. To learn more about system
administration, see the IRIX Admin: System Configuration and Operation guide.

To use several features described in this guide, you must obtain FLEXlm licenses by
purchasing separate software options. The features that require FLEXlm licenses are:

• The plexing feature of XLV logical volumes, which provides mirroring of disks up
to four copies. This feature is provided by the Disk Plexing Option software option.

• Guaranteed-rate I/O. Guaranteed-rate I/O (GRIO) is a feature of IRIX that enables
an application to request a fixed I/O rate and, if granted, be assured of receiving
that rate. By default, the system allows four guaranteed-rate I/O streams. To obtain
up to 40 streams, you must purchase the High Performance Guaranteed-Rate
I/O—5-40 Streams software option. An unlimited number of streams is provided
by the High Performance Guaranteed-Rate I/O—Unlimited Streams software
option.
xxvi 007-2825-009

About This Guide
Product Support

Silicon Graphics offers comprehensive product support and maintenance programs for
its products. For information about using support services for IRIX and the other
products described in this guide, refer to the release notes for IRIX and eoe.

Additional Resources

For more information about disk management on IRIX, see these sources:

• The Personal System Administration Guide provides basic information on system
administration of Silicon Graphics systems. Although it has not yet been updated to
include information on XFS and XLV, it provides basic information on many system
administration tasks.

• Online reference pages (man pages) on various disk information and management
commands are included in the standard system software and can be viewed online
using the man and xman commands or the Man Pages item on the Help menu of the
System Toolchest.

• The CXFS Software Installation and Administration Guide describes the administration
of CXFS filesystems.

• The XVM Volume Manager Administrator’s Guide describes the configuration and
administration of XVM logical volumes using the XVM Volume Manage.

For more information on developing applications that access XFS filesystems, see these
sources:

• Online reference pages for system calls and library routines relevant to XFS and
GRIO are provided in the IRIS Developer’s Option (IDO) software product.

• The REACT/Pro Programmer’s Guide provides information about developing
applications that use GRIO.

For instructions on loading the miniroot, see the IRIX Admin: Software Installation and
Licensing guide.

For information on acquiring and installing FLEXlm licenses that enable the Disk Plexing
and High Performance Guaranteed-Rate I/O software options, see IRIX Admin: Software
Installation and Licensing.
007-2825-009 xxvii

About This Guide
For additional information on changes in recent software releases of the software
documented in this guide, see the release notes for these products:

• IRIX

• eoe

• NFS

• dev

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and part number of the document
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy.
Mountain View, California, 94043-1351

• Send a fax to the attention of “Technical Publications” at:

+1 650 932 0801

We value your comments and will respond to them promptly.
xxviii 007-2825-009

Chapter 1

1. Disk Concepts

This chapter provides background information that helps you successfully set up the
disks and disk device files on your system.

The major sections in this chapter are:

• “Disk Drives on Silicon Graphics Systems” on page 2

• “Physical Disk Structure” on page 3

• “Disk Partitions” on page 4

• “System Disks, Option Disks, and Partition Layouts” on page 6

• “Partition Types” on page 11

• “Volume Headers” on page 12

• “Device Files” on page 14

If you are installing a disk drive, see the installation instructions furnished with the
hardware. Disk administration procedures are described in Chapter 2, “Performing Disk
Administration Procedures.” For information on XLV logical volumes and filesystems,
begin with Chapter 3, “XLV Logical Volume Concepts.”

Note: For information on disk layout and disk partitioning with the XVM Volume
Manager, see the XVM Volume Manager Administrator’s Guide.
007-2825-009 1

1: Disk Concepts
Disk Drives on Silicon Graphics Systems

Figure 1-1 shows how disk drives and other peripheral devices are connected to
controllers in systems.

Figure 1-1 Controllers and Disk Drives

Each disk drive is managed by a controller. Each type of controller can support a fixed
number of drives. Your workstation can support a fixed number of controllers. (For the
number and type of controllers supported by your model of workstation, see your
hardware owner’s guide.) SCSI controllers support up to seven disks per controller or up
to 15 disks per controller (depending upon the SCSI controller type), and VME
controllers support up to 14 disks per controller.

Controller 0
(integral SCSI)

Unit 1

Unit 2

Unit 3

Unit 4

Controller 1
(SCSI)

Unit 1

Unit 2

Unit 3

Unit 4

Unit 5
2 007-2825-009

Physical Disk Structure
Each disk is assigned a drive address (called the unit number in output from the hinv
command and also known as a SCSI ID). This address is set by a switch, a dial, or jumpers
on the disk, or by the physical location of the disk. See the hardware owner’s guide for
the system for information on setting the drive address of a disk.

Some SCSI devices, such as RAIDs (an array of disks with built-in redundancy), have an
additional identifying number called a logical unit number or lun. It is used to address
disks within the device.

Physical Disk Structure

Figure 1-2 shows the physical structure of a disk. A disk consists of circular plates called
platters. Each platter has an upper and lower oxide-coated surface. Recording heads, at
least one per surface, are mounted on arms that can be moved to various radial distances
from the center of the platters. The heads float very close to the surfaces of the platters,
never actually touching them, and read and record data as the platters spin around.

Figure 1-2 Physical Disk Structure

Track
(complete ring at
a radial distance
from the center on
a single surface)

Surface
(entire upper side)

Disk block
(512 byte portion

of a track)

Platter

Surface
(entire
lower side)
007-2825-009 3

1: Disk Concepts
As shown in Figure 1-2, a ring on one surface is called a track. Each track is divided into
disk blocks. Sometimes called sectors, these physical blocks on a disk are different from
filesystem blocks.

Formatting a disk divides the disk into tracks and disk blocks that can be addressed by
the disk controller, writes timing marks, and identifies bad areas on the disk (called bad
blocks). SCSI disk drives are shipped preformatted. They do not require formatting at any
time. Bad block handling is performed automatically by SCSI disks. Bad blocks are areas
of a disk that cannot reliably store data. Bad block handling maps bad blocks to substitute
blocks that are in a reserved area of disk that is inaccessible by normal IRIX commands.

Disk Partitions

Disks are divided into logical units called partitions. Figure 1-3 shows an example of a
partitioned disk. Partitions divide the disk into fixed-size portions that can be used by
IRIX or by users for different purposes. Partition sizes are measured in 512-byte disk
blocks. On SCSI disks, partitions only need to be integral numbers of disk blocks.
4 007-2825-009

Disk Partitions
Figure 1-3 Disk Partitions

Each disk block can belong to any number of partitions, including no partition (in which
case the disk space is unused or wasted). This means that partitions can overlap. For
example, a disk can be divided into several non-overlapping partitions and have an
additional partition defined that is the entire disk.

Partition
(contiguous tracks)
007-2825-009 5

1: Disk Concepts
Each partition on a disk has a number from 0 through 15. By convention, some of these
partition numbers have a particular function and a name. Table 1-1 shows these
numbers, names, and functions .

System Disks, Option Disks, and Partition Layouts

System disks contain the IRIX operating system. Specifically, they must contain a volume
header that includes sash (see “Volume Headers” on page 12),the root filesystem, a
swap partition, and possibly ausrfilesystem. Each workstation or server has one system
disk; IRIX is booted from this disk when the system is brought up. On workstations, the
system disk is on controller number 0 and drive address 1 by default. On some servers,
the default controller and drive address for the system disk is controller 1 and drive
address 1. The location of the system disk is reported by the nvram command; it is the
value of OSLoadPartition.

Table 1-1 Standard Partition Numbers, Names, and Functions

Partition Number Name Function

0 root Root partition, used for the root filesystem on system disks.

1 swap Swap partition, used by IRIX for temporary storage when there
is less physical memory than all of its processes need.

6 usr usr partition, used on system disks when separate root and
usr filesystems are used.

7 (none) The entire disk except the volume header and xfslog partition
(if present).

8 volhdr Volume header (see the section “Volume Headers” on page 12).

9 (none) Reserved partition (historically, this partition was the bad block
partition on non-SCSI drives).

10 volume The entire disk, including the volume header.

15 xfslog A small partition used for an XFS log (see “Partition Types” on
page 11).
6 007-2825-009

System Disks, Option Disks, and Partition Layouts
All disks on the system other than the system disk are known as option disks. Disks are
shipped from Silicon Graphics with one of several standard partition layouts which are
described and illustrated in this section. You can list the partitions of a disk with the
prtvtoc command (see the “Displaying a Disk’s Partitions With prtvtoc” in Chapter 2).

Note: When you use the XVM Volume Manager to create XVM logical volumes on a
disk, you first label the disk as an XVM disk. The XVM Volume Manager then controls
the partitioning on that disk. For information on partition layout under XVM, see the
XVM Volume Manager Administrator’s Guide.

Figure 1-4 and Figure 1-5 show the two common layouts of a system disk with separate
partitions for the root and usr filesystems. The layout in Figure 1-4 is used for EFS
filesystems and for XFS filesystems when the XFS log does not have its own partition (it
is an internal XFS log). Figure 1-5 shows the partition layout when an XFS log partition is
included (an external log).

Figure 1-4 Partition Layout of System Disks With Separate Root and Usr

Partition 8 (volhdr)

Partition 0 (root)

Partition 1 (swap)

Partition 7

Partition 6 (usr)

Partition 10
(volume)
007-2825-009 7

1: Disk Concepts
Figure 1-5 Partition Layout of System Disks With Separate Root and Usr and an XFS Log
Partition

Separate root and usr partitions were standard on older systems and are still used on
servers. In the original UNIX design, only the root filesystem needed to be mounted to
boot UNIX. This is not true for IRIX anymore—both filesystems must be mounted, so
there is no longer the concept of the root filesystem being a minimal subset of operating
system software.

Figure 1-6 shows the layout of a system disk with a single partition for a combined root
and usr filesystem and a swap partition. This arrangement is standard on most newer
systems. However, restrictions on making the root partition part of an XLV logical
volume may make separate root and usr partitions a better choice than a single
combined partition (see Chapter 3, “XLV Logical Volume Concepts,” for information
about XLV logical volume restrictions).

Partition 8 (volhdr)

Partition 0 (root)

Partition 1 (swap)

Partition 6 (usr)

Partition 10
(volume)

Partition 15 (xfslog)
8 007-2825-009

System Disks, Option Disks, and Partition Layouts
Figure 1-6 Partition Layout of System Disks With Combined Root and Usr

Figure 1-7 shows the standard layout of an option disk that does not have an XFS log
partition. It has a single partition for data.

Figure 1-7 Partition Layout of Option Disks

Figure 1-8 shows the layout of an option disk with two partitions, one for data and one
for an XFS log.

Partition 8 (volhdr)

Partition 0 (root)

Partition 1 (swap)

Partition 10
(volume)

Partition 8 (volhdr)

Partition 7

Partition 10
(volume)
007-2825-009 9

1: Disk Concepts
Figure 1-8 Partition Layouts of Options Disks With XLV Log Subvolumes

The default partition layouts are generic in nature and should be evaluated by the system
administrator. After your system has been in operation for a few months, you may decide
that a different arrangement would better serve your users’ needs. Consider the
following points in choosing partition layouts:

• A single file can not be larger than its filesystem.

• When disks are partitioned into several filesystems, a runaway process that writes a
file fills just a partition rather than the entire disk.

• A large root partition ensures that you can install future, and most likely larger,
IRIX system software releases without running out of disk space in the root
filesystem.

Use the fx command to change disk partitions (called repartitioning a disk). The
command can be used with standard partition layouts or to create custom partition
layouts. For additional information on using fx to repartition disks, see “Repartitioning
a Disk With fx” in Chapter 2.

Once you partition disks, you can use these partitions as filesystems, as parts of an XLV
logical volume, or as raw disk space. XLV logical volumes are described in Chapter 3,
“XLV Logical Volume Concepts.” Filesystems are described in Chapter 5, “Filesystem
Concepts.”

Partition 8 (volhdr)

Partition 7

Partition 15 (xfslog)

Partition 10
(volume)
10 007-2825-009

Partition Types
Partition Types

Each partition has a type that is displayed by fx and prtvtoc. Table 1-2 lists the
partition types, their uses, and the partition numbers that can be assigned to those types.
(Partition 9 isn’t listed in this table; remember that it is reserved.) Partition types, except
for xlv, are assigned by fx. The type xlv is automatically assigned by several XLV
logical volume commands.

The partitions listed as standard partitions in Table 1-2 are created when you use the fx
repartition functions rootdrive, usrrootdrive, and optiondrive. Prompts ask
you whether you want partition type efs or xfs. If you specify xfs for usrrootdrive
or optiondrive, prompts ask whether you want an xfslog partition. To use an
xfslog partition (an external XFS log), you must configure the xfslog partition as an
XLV log subvolume. (See Chapter 4, “Creating and Administering XLV Logical

Table 1-2 Partition Types and Uses

Partition Type Partition Use Partitions That Can Be This Type

efs EFS filesystem 0, 6, 7 (standard partitions);
2, 3, 4, 5, 11, 12, 13, 14, 15 (custom partitions)

xfs XFS filesystem 0, 6, 7 (standard partitions);
2, 3, 4, 5, 11, 12, 13, 14, 15 (custom partitions)

xfslog External log for an XFS
filesystem (part of an XLV log
subvolume)

15 (standard partition);
0, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14 (custom partitions)

raw Swap space 1

volhdr Volume header 8

volume Entire volume, including the
volume header

10

xlv Part of an XLV data or
real-time subvolume

0, 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15 (partitions are
changed to type xlv by XLV commands)

lvol Part of an lv logical volume This partition type is now obsolete. lv logical
volumes must be converted to XLV logical
volumes. See “Converting lv Logical Volumes
to XLV Logical Volumes” in Chapter 4.
007-2825-009 11

1: Disk Concepts
Volumes,” for more information about XLV.) If you do not use an xfslog partition, the
XFS log is stored in an xfs partition (and called an internal log).

To assign a partition type to a partition number listed as a custom partition in Table 1-2,
you must use the expert mode of fx (fx –x) to create the partition and assign the type.
(See the fx(1M) reference page for more information about the expert mode of fx.)

Volume Headers

A partition called the volume header is stored on the partition that begins at disk block 0.
(For proper system operation, the volume header must begin at disk block 0). It contains
a minimal filesystem with a few files that contain information about the device
parameters, the partition layout, the version number of the most recently used version of
fx, and logical volume information. It also may contain some standalone programs.

The files and standalone programs that may be in a volume header are:

sgilabel This file contains fx version number information. It is important not to
delete this file from the volume header.

symmon symmon is a standalone program used to debug the kernel. See the
symmon(1M) reference page for more information.

xlvlab* XLV logical volume information is stored in files called logical volume
labels in the volume header. XLV logical volume information is stored in
files whose names begin with xlvlab. This information is used by the
system to assemble XLV logical volumes when the system is booted.
XLV logical volume labels are created automatically when XLV logical
volumes are created.

lvlab* Logical volume labels for lv logical volumes were stored in files whose
names began with lvlab. lv logical volumes are no longer supported.

ide ide (integrated diagnostics environment) is a diagnostics program for
low-end systems only. ide is executed when you choose the third item,
“Run Diagnostics,” on the System Maintenance Menu. Newer systems
execute ide from the /stand directory if it is not in the volume header.

fx fx is the standalone version of the IRIX fx command. It is a disk utility
used primarily for repartitioning disks. Older systems sometimes
included a copy of the command fx in the volume header. There is no
longer any need for fx in the volume header.
12 007-2825-009

Volume Headers
sash On system disks, a copy of the standalone program sash (the
standalone shell) must be in the volume header; it is required to boot a
system. sash is a processor-specific program. Therefore, if you ever
need to copy it from the /stand directory of another system or from the
/stand directory of a software distribution CD, you must copy the
correct version. If you copy from another system, both systems must
have the same processor type. If you copy it from a software distribution
CD, use the hinv command to identify the processor type of your
system and Table 1-3 to identify the version of sash needed for that
system.

The fx command can be used to display and modify the device parameters and the
partition layout. See the fx(1M) reference page and the section “Repartitioning a Disk
With fx” in Chapter 2. Using fx has the side effect of creating the file sgilabel in the
volume header.

The command prtvtoc is also used to display partition layout information. See
“Displaying a Disk’s Partitions With prtvtoc” in Chapter 2 for instructions.

The dvhtool command can be used to add and delete standalone programs from the
volume header. dvhtool can also be used to delete XLV logical volume labels from the
volume header. See “Adding Files to the Volume Header With dvhtool,” and “Removing
Files in the Volume Header With dvhtool” in Chapter 2 for more information.

The volume header is consulted (and therefore any mistakes made creating or modifying
the volume header become apparent) only at these times:

• During the boot up process

• When creating or growing filesystems

• When creating or growing logical volumes

• When adding swap areas

Table 1-3 Processor Types and sash Versions

Processor Type sash Version

IP17 sashIP17

IP19, IP20, IP22 sashARCS

IP21, IP25, IP26, IP27 sash64
007-2825-009 13

1: Disk Concepts
Device Files

IRIX programs communicate with hardware devices through two types of files, called
special files. The two types are character device files (also called raw device files) and block
device files. Conceptually, a disk device is treated as if it were a file. In practice, there are
differences between regular files and device files, so the latter are referred to as special
files.

Drivers that have been written to be hardware graph aware produce real device nodes in
/hwwhich are not modifiable by any user-level command. These have links back into the
familiar /dev device nodes to provide the standard pathnames used by most programs
and administrators. Disk devices are among these hardware graph aware drivers.
Drivers that are not hardware graph aware still exclusively use /dev.

Note: The /dev directory is the root of the recommended path for all device file usage,
even though many of the files and directories under /dev are links to /hw. Do not use
device names under /hw when mounting filesystems or configuring the root filesystem.
For more information about the /hw filesystem, see “/hw Filesystem” in Chapter 5.

Device files are created automatically when system software is installed, when disk
drives are repartitioned, and, if necessary, at system boot up. In unusual cases where
device files are not automatically created, as in the case of pseudo-devices, the
MAKEDEV or mknod commands can be used. See the MAKEDEV(1M) and
mknod(1M)reference pages for more information.

The following examples of output are the results of the ls -l command invoked on a
user’s regular file and on a disk device in the /hw filesystem. They show the difference
in structure between regular and device files. This is a regular file:

-rw-r----- 1 ralph raccoons 1050 Apr 23 08:14 scheme.notes

Regular files are indicated by a dash (–) in the first column. The remainder of the output
is explained in the guide IRIX Admin: System Configuration and Operation.

These are device files for the block and character devices for a root disk partition:

brw------- 0 root sys 0, 79 Oct 14 11:15
/hw/node/io/gio/hpc/scsi_ctlr/0/target/1/lun/0/disk/partition/0/block
crw------- 0 root sys 0, 80 Oct 14 11:14
/hw/node/io/gio/hpc/scsi_ctlr/0/target/1/lun/0/disk/partition/0/char
14 007-2825-009

Device Files
The links in the /dev directory to these device files are:

lrw------- 0 root sys 70 Oct 14 11:12 /dev/dsk/dks0d1s0 ->
/hw/node/io/gio/hpc/scsi_ctlr/0/target/1/lun/0/disk/partition/0/block
lrw------- 0 root sys 69 Oct 14 11:13 /dev/rdsk/dks0d1s0 ->
/hw/node/io/gio/hpc/scsi_ctlr/0/target/1/lun/0/disk/partition/0/char

The device file listing is similar to the listing of the regular file, but contains additional
information. The device files shown have the following characteristics:

• The first column of the listing contains a b or a c to indicate the type of device: block
or character.

• In the field of a long listing where a regular file shows the byte count of the file, a
device file displays two numerals called the major and minor device numbers.

• The filenames are device names, which are constructed based on hardware type and
configuration.

The following sections explain these characteristics of device files.

Block and Character Devices

Block device files (also called block devices) and character device files (also called
character devices or raw devices) differ in the way in which they are accessed.

Block devices access data in blocks that come from a system buffer cache. Only blocks of
data of a certain size are read from a block device.

Character devices access data on a character-by-character basis. Programs such as
terminal and pseudo-terminal device drivers that do their own input and output
buffering use character devices. Some types of hardware, such as disks and tapes, can
have both character and block device files. The difference is that the character interface
for disks bypasses the buffer cache.

The section “Device Names” on page 16 explains the naming conventions for block and
character device files.
007-2825-009 15

1: Disk Concepts
Device Permissions and Owner

The files are owned by rootwith group sys, and no other user or group has permission
to use them. This means that only processes with the root ID can read from and write
to the device files. Tape devices, floppy drives, and tty terminals are some common
exceptions to this rule.

Major and Minor Devices

Major and minor device numbers appear where the character count appears in the listing
of a normal file.

The major device number refers to a specific device driver. The minor device number
specifies a particular physical unit and possibly characteristics of the unit. For disks, the
minor number identifies the drive address and the partition. The major and minor device
numbers are displayed by the ls -l command.

Some devices have identical major and minor number pairs, but they are designated in
one entry as a block device (a b in the first column) and in another entry as a character
device (a c in the first column). Notice that such pairs of files have different filenames or
are in different directories (for example, /dev/dsk/dks0d1s0 and
/dev/rdsk/dks0d1s0).

Device Names

Device names for disks are filenames that indicate the type of hardware (disk), type of
device access (block or character), type of device, controller number, drive address, and
partition number. For example, the block device name for the root partition of an SCSI
16 007-2825-009

Device Files
system disk is /dev/dsk/dks0d1s0. Table 1-4 lists each component of this filename,
describes its meaning, and lists other possible values.

Table 1-4 Device Name Construction

Device Name
Component Purpose Possible Values

dev Device files directory dev

dsk Subdirectory for hard
disk files (think “disk”
to remember it)

dsk (block device files)
rdsk (character device files; the r stands for “raw,”
another name for the character device)

dks Disk device type dks (SCSI device)
fd (floppy disk)
raid (SCSI RAID device)

0 Controller number 0–n, where n is system dependent (SCSI)
(SCSI RAID)

d1 Drive address d1–d7 or d1–d15 (SCSI, depends on controller type)
dn where n is in the range 0–147 and doesn’t end in 8 or
9 (SCSI RAID)

s0 Partition number (slice
number)

s0 (root, for the root filesystem)
s1 (swap)
s2
s3
s4
s5
s6 (usr, for the usr filesystem)
s7 (entire usable portion of disk, excludes the volume
header)
s8, vh (volume header)
s9 (non-SCSI bad block list)
s10, vol (entire disk)
s11
s12
s13
s14
s15 (XFS log)
007-2825-009 17

1: Disk Concepts
Some examples of device names and their meanings are:

/dev/dsk/dks0d1s0
The block device file for partition (slice) 0 of the SCSI disk on controller
0 at drive address 1.

/dev/dsk/jag5d13s7
The block device file for partition 7 (the entire disk except volume
header) of the Jaguar disk on controller 5 at drive address 13.

/dev/rdsk/dks0d2vh
The character (raw) device for the volume header (partition 8) of the
SCSI disk on controller 0 at drive address 2.

Device file names for disks are symbolic links into the system hardware graph. For more
information about this IRIX feature that describes the hardware entities on a system and
their relationships, see “/hw Filesystem” in Chapter 5.
18 007-2825-009

Chapter 2

2. Performing Disk Administration Procedures

This chapter describes administration procedures for disks and their device files.

The major sections in this chapter are:

• “Listing the Disks on a System With hinv” on page 20

• “Formatting and Initializing a Disk With fx” on page 21

• “Adding Files to the Volume Header With dvhtool” on page 22

• “Removing Files in the Volume Header With dvhtool” on page 24

• “Displaying a Disk’s Partitions With prtvtoc” on page 26

• “Repartitioning a Disk With xdkm” on page 26

• “Repartitioning a Disk With fx” on page 27

• “Creating Mnemonic Names for Device Files With ln” on page 36

• “Creating a System Disk From the PROM Monitor” on page 37

• “Creating a New System Disk From IRIX” on page 42

• “Creating a New System Disk by Cloning” on page 46

• “Adding a New Option Disk” on page 49

Administration procedures for filesystems and XLV logical volumes are described in
later chapters of this guide.
007-2825-009 19

2: Performing Disk Administration Procedures
Listing the Disks on a System With hinv

You can list the disks connected to a system by issuing this hinv command from IRIX:

hinv -c disk

The output lists the disk controllers and disks present on a system, for example:

Integral SCSI controller 0: Version WD33C93B, revision D
 Disk drive: unit 2 on SCSI controller 0
 Disk drive: unit 1 on SCSI controller 0

This output shows a single integral SCSI controller whose number is 0 and two disk
drives. These disks are at drive addresses 1 and 2. In hinv output, drive addresses are
called units. They are also sometimes called unit numbers. Each disk is uniquely
identified by the combination of its controller number and drive address.

If you are in the PROM Monitor, you can also give the hinv command from the
Command Monitor:

>> hinv

Output for SCSI disks looks like this:

SCSI Disk: scsi(0)disk(1)
SCSI Disk: scsi(0)disk(2)

In this output, the controller number is the “scsi” number and the drive address is the
“disk” number. The type of controller is not listed. As a rule, workstations have integral
controllers and servers may have integral SCSI controllers or non-integral controllers
that are SCSI or VME. On some Challenge systems, the output of hinv in the PROM
monitor shows only disks on the boot IOP (I/O processor).
20 007-2825-009

Formatting and Initializing a Disk With fx
The controller number and drive addresses of disks are specified, using a variety of
syntax, as arguments to the IRIX disk and filesystem commands, such as fx, prtvtoc,
dvhtool, and mkfs. For example, for a disk on controller 0 at drive address 1:

• To specify the disk on an fx command line, the command line is:

fx "dksc(0,1)"

• To specify the disk (actually, its volume header) on a prtvtoc command line, either
of these two commands can be used:

prtvtoc /dev/rdsk/dks0d1vh
prtvtoc dks0d1vh

• To specify the disk 1 (actually, its volume header) on a dvhtool command line, the
command is:

dvhtool /dev/rdsk/dks0d1vh

• To specify partition 7 of the second disk above on a mkfs command line for an XFS
filesystem, the command is:

mkfs /dev/rdsk/dks0d1s7

Tip: You can use the Disk Manager in the System Toolchest to get information about the
disks on a system. For instructions, see the section “Disk Manager” in Chapter 3 of the
Personal System Administration Guide.

Formatting and Initializing a Disk With fx

When you format a disk, you write timing marks and divide the disk into tracks and
sectors that can be addressed by the disk controller. SCSI disks are shipped preformatted;
formatting a SCSI disk is rarely required. Formatting is done by fx; see the fx(1M)
reference page for details.

Caution: Formatting a disk results in the loss of all data on the disk. It is recommended
only for experienced IRIX system administrators.

Formatting a disk destroys information about bad areas on the disk (called bad blocks).
Identifying and handling bad blocks is also done by fx; see the fx(1M) reference page
for details.
007-2825-009 21

2: Performing Disk Administration Procedures
Caution: Using fx for bad block handling usually results in the loss of all data on the
block. It is recommended only for experienced IRIX system administrators.

Initializing a disk consists of creating a volume header for a disk. Disks supplied by
Silicon Graphics are shipped with a volume header, so initialization is not necessary.
Disks from third-party vendors or disks whose volume headers have been destroyed
must be initialized to create a volume header. Initializing disks is done by fx. No explicit
commands are necessary; fx automatically detects if no volume header is present and
creates one. (See “Repartitioning a Disk With fx” on page 27 for information on invoking
fx.) When fx creates a volume header, a prompt asks if you want to write the volume
header; reply yes.

Tip: You can use the Disk Information window of the Disk Manager in the System
Toolchest to perform disk initialization and other tasks. For more information, see the
section “Managing Disk Drives” in Chapter 3 of the Personal System Administration Guide.

Adding Files to the Volume Header With dvhtool

As explained in “Volume Headers” in Chapter 1, the volume header of system disks
must contain a copy of the program sash. The procedure in this section explains how to
put sash or other programs into a volume header. Before performing this procedure,
review the discussion of dvhtool in “Volume Headers” in Chapter 1.

When you add programs to the volume header of a disk, there are two sources for those
programs. One is the /stand directory of the system and the other is the /stand
directory on an IRIX software release CD. The /stand directory on a CD (usually
/CDROM/stand after the CD is mounted) contains copies of sash, fx, and ide that are
processor-specific.
22 007-2825-009

Adding Files to the Volume Header With dvhtool
As superuser, perform this procedure to add programs to a volume header:

1. Invoke dvhtool with the raw device name of the volume header of the disk as an
argument; for example:

dvhtool /dev/rdsk/dks0d2vh

(See the “Device Names” in Chapter 1 for information on constructing the device
name.)

2. Display the volume directory portion of the volume header by using the vd
(volume directory) and l (list) commands:

Command? (read, vd, pt, dp, write, bootfile, or quit): vd
(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?

l

Current contents:
 File name Length Block #
 sgilabel 512 2
 sash 159232 3

3. For each program that you want to copy to the volume header, use the a (add)
command. For example, to copy sash from the /stand directory to sash in the
volume header, use this command:

(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?
a /stand/sash sash

As another example, to copy sash from a CD to an IP20 or IP22 system (an Indy™),
use this command:

(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?
a /CDROM/stand/sashARCS sash

CDs contain multiple processor-specific versions of sash; Table 1-3 lists the version
of sash for each processor type.

4. Confirm your changes by listing the contents of the volume with the l (list)
command:

(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?
l

Current contents:
 File name Length Block #
 sgilabel 512 2
 sash 159232 3
007-2825-009 23

2: Performing Disk Administration Procedures
5. Make the changes permanent by writing the changes to the volume header using
the quit command to exit this “submenu” and the write command:

(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?
quit

Command? (read, vd, pt, dp, write, bootfile, or quit): write
Quit dvhtool by giving the quit command:
Command? (read, vd, pt, dp, write, bootfile, or quit): quit

Removing Files in the Volume Header With dvhtool

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

You can use the following procedure to remove XLV logical volume labels (for example
xlvlab) and files (for example, sash) from the volume header of a disk. Before
performing this procedure, review the discussion of dvhtool in “Volume Headers” in
Chapter 1.

1. Using hinv, determine the controller and drive addresses of the disk that has the
volume header you want to change. In this procedure, the example commands and
output assume that the disk is on controller 0, drive address 2. Substitute the
controller and drive addresses of your disk.

2. As superuser, invoke dvhtool with the raw device name of the volume header of
the disk, for example:

dvhtool /dev/rdsk/dks0d2vh

(See the section “Device Names” in Chapter 1 for information on constructing the
device name.)
24 007-2825-009

Removing Files in the Volume Header With dvhtool
3. Display the volume directory portion of the volume header by answering two
prompts:

Command? (read, vd, pt, dp, write, bootfile, or quit): vd
(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?

l

Current contents:
 File name Length Block #
 sgilabel 512 2
 xlvlab 10752 3
 lvlab2 512 26

4. Use the d command to delete the file; for example, xlvlab:

(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?
d xlvlab

5. To delete additional files, continue to use the d command, for example:

(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?
d lvlab2

6. List the volume directory again to confirm that the files are gone:

(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?
l

Current contents:
 File name Length Block #
 sgilabel 512 2

7. Exit this “menu” and write the changes to the volume header:

(d FILE, a UNIX_FILE FILE, c UNIX_FILE FILE, g FILE UNIX_FILE or l)?
q

Command? (read, vd, pt, dp, write, bootfile, or quit): write

8. Quit dvhtool:

Command? (read, vd, pt, dp, write, bootfile, or quit): quit
007-2825-009 25

2: Performing Disk Administration Procedures
Displaying a Disk’s Partitions With prtvtoc

Use the prtvtoc command to get information about the size and partitions of a disk.
Only the superuser can use this command. The command is

prtvtoc device

where device is optional. When it is omitted, prtvtoc displays information for the
system disk. device is the raw device name of the disk volume header. The /dev/rdsk
portion of the device name can be omitted if desired. For example, for a SCSI disk that is
drive address 1 on controller 0, device is dks0d1vh. (See “Device Names” in Chapter 1
for more information on device names.)

An example of the output of prtvtoc is:

Printing label for root disk

* /dev/root (bootfile “/unix”)
* 512 bytes/sector
Partition Type Fs Start: sec Size: sec Mount Directory
 0 xfs yes 4096 4138249
 1 raw 4142345 262144
 8 volhdr 0 4096
10 volume 0 4404489

The output lists the partitions, their type (name or filesystem type), whether they contain
a filesystem, their location on the disk (start and size in blocks and cylinders), and mount
directory for filesystems. The partitions in this output are shown graphically in
Figure 1-6.

Repartitioning a Disk With xdkm

Disks can be repartitioned using the graphical user interface of the xdkm command.
Information about xdkm is available from its online help.
26 007-2825-009

Repartitioning a Disk With fx
Repartitioning a Disk With fx

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

Repartitioning disks is done from the command line with the fx command. There are
two versions of this program, a standalone version and an IRIX version. The standalone
version is invoked from the Command Monitor, which enables you to repartition the
system disk. Option disks can be repartitioned using the IRIX version.

The subsections that follow describe the procedures for repartitioning a disk. Start with
the first subsection, “Before Repartitioning.” Then proceed to the appropriate subsection
on invoking fx:

• “Invoking fx From the Command Monitor” on page 28

• “Invoking fx From IRIX” on page 30

The standard partition layouts described in “System Disks, Option Disks, and Partition
Layouts” in Chapter 1 are “built in to” fx. You can partition a disk using one of the
standard layouts or you can create custom partition layouts. Two subsections describe
how to create standard and custom partition layouts:

• “Creating Standard Partition Layouts” on page 31

• “Creating Custom Partition Layouts” on page 32

The final subsection, “After Repartitioning” on page 36, describes how to proceed after
the repartitioning is complete.
007-2825-009 27

2: Performing Disk Administration Procedures
Before Repartitioning

Caution: Repartitioning a disk makes the data on the disk inaccessible (you must
repartition back to the original partitions to get to it).

Before repartitioning a disk, back up any files that contain valuable data. If the disk is a
system disk and you plan to copy the files from the backup to the disk after
repartitioning, you must use either the System Manager or the backup command. Only
backups made with backup or the System Manager will be available to the system from
the System Recovery menu of the System Maintenance menu. The System Manager is
the preferred method of the two and is described completely in the Personal System
Administration Guide. Other commands require a full system installation to operate
correctly.

Invoking fx From the Command Monitor

The procedure in this section describes how to invoke the standalone version of fx from
the Command Monitor. It is only necessary for the system disk. You can use the IRIX
version of fx for other disks (see, “Invoking fx From IRIX” on page 30).

1. Shut the system down into the System Maintenance menu.

2. Bring up the Command Monitor by choosing the fifth item on the System
Maintenance menu.

3. Identify the copy of fx that you will boot. Some possible locations are: fx in the
/stand directory of the system disk or fx on an IRIX software distribution CD in a
CD-ROM drive on the local system or on a remote system.

A single copy of fx is in the /stand directory, but IRIX software distribution CDs
contain several processor-specific versions of fx. Booting fx from a CD on a local
CD-ROM drive requires a processor-specific copy of sash on the CD, too.
28 007-2825-009

Repartitioning a Disk With fx
Table 2-1 shows which versions of sash and fx to use according to your processor
type.

4. Boot fx from the Command Monitor. The command to boot fx depends upon the
location of the copy of you are booting.

• This command boots fx from the /stand directory on the system disk:

>> boot stand/fx --x

• This command boots fx from an IRIX software release CD in a local CD-ROM
drive, where the CPU type of the system is IP19, IP20, or IP22 and the CD-ROM
drive is at drive address 4 on controller 0:

>> boot -f dksc(0,4,8)sashARCS dksc(0,4,7)stand/fx.ARCS --x

• This command boots fx from an IRIX software release CD in a CD-ROM drive
mounted at /CDROM on a remote system named dist, where the CPU type of the
local system is IP21, IP25, IP26, or IP27:

>> boot -f bootp()dist:/CDROM/stand/fx.64 --x

5. fx prompts you for each part of the disk name. The default answer is in
parentheses and matches the system disk. The prompts are:

fx: "device-name" = (dksc)
fx: ctlr# = (0)
fx: drive# = (1)
fx: lun# = (0)

The default device name is dksc, which indicates a SCSI disk on a SCSI controller.
(See the fx(1M) reference page for other device names.) The next two prompts ask
you to specify the disk controller number and the drive address (unit) of the disk.
The final prompt asks for the lun (logical unit) number. The logical unit number is
typically used by only a few SCSI devices such as RAIDs (an array of disks with
built-in redundancy) to address disks within the device. For regular disks, use
logical unit number 0.

Table 2-1 sash and fx Versions

Processor Type sash Version fx Version

IP17 sashIP17 fx.IP17

IP19, IP20, IP22 sashARCS fx.ARCS

IP21, IP25, IP26, IP27 sash64 fx.64
007-2825-009 29

2: Performing Disk Administration Procedures
For each prompt, press the Enter key for the default value or enter another value,
followed by Enter.

Once you answer the prompts, fx performs a disk drive test and you see the fx
main menu:

---- please choose one (? for help. .. to quit this menu)----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/
fx>

The exit option quits fx, while the other commands take you to submenus. (The
slash [/] character after a menu option indicates that choosing that option leads to a
submenu.) For complete information on all fx options, see the fx(1M) reference
page.

Invoking fx From IRIX

The procedure in this section describes how to invoke fx from IRIX.

1. Make sure that the disk drive to be partitioned is not in use. That is, make sure that
no filesystems are mounted and no programs are accessing the drive.

2. As superuser, give the fx command:

fx "controller_type(controller,address,logical_unit)"

The variables are:

controller_type The controller type. It is dksc for SCSI controllers. For other
controller types, see the fx(1M) reference page.

controller The controller number for the disk.

address The drive address of the disk.

logical_unit The logical unit number for the device. It is used by only a few SCSI
devices such as RAIDs (an array of disks with built-in redundancy)
to address disks within the device. The logical_unit is normally 0.

If you give the q command without arguments, you are prompted for these values.

fx first performs a drive test, then displays this menu:

---- please choose one (? for help. .. to quit this menu)----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/
fx>
30 007-2825-009

Repartitioning a Disk With fx
The exit option quits fx, while the other commands take you to submenus. (The
slash [/] character after a menu option indicates that choosing that option leads to a
submenu.) For complete information on all fx options, see the fx(1M) reference
page.

Creating Standard Partition Layouts

This section shows the procedure for repartitioning a disk so that it has one of the
standard partition layouts. The example in this section changes a disk from separate root
and usr partitions to a combined root and usr partition.

1. From the fx main menu, choose the repartition option:

---- please choose one (? for help. .. to quit this menu)----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/
fx> repartition

----- partitions-----
part type blocks Megabytes (base+size)
 0: efs 3024 + 50652 1 + 25
 1: raw 53676 + 81648 26 + 40
 6: efs 135324 + 1925532 66 + 940
 8: volhdr 0 + 3024 0 + 1
 10: volume 0 + 2060856 0 + 1006

capacity is 2061108 blocks

----- please choose one (? for help, .. to quit this menu)-----
[ro]otdrive [o]ptiondrive [e]xpert
[u]srrootdrive [re]size

You see the partition layout for the disk that you specified when fx was started,
followed by the repartition menu. The rootdrive, usrrootdrive, and
optiondrive options are used for standard partition layouts, and the resize
option is used for custom partition layouts. The expert option, which appears
only if fx is invoked with the -x option, enables custom partitioning functions.
These functions can severely damage the disk when performed incorrectly, so they
are unavailable unless explicitly requested with -x.
007-2825-009 31

2: Performing Disk Administration Procedures
2. To create a combined root and usr partition, choose the rootdrive option.

fx/repartition> rootdrive

3. A prompt appears that asks about the partition type. The possible types are shown
in Table 1-2. For this example, choose efs:

fx/repartition/rootdrive: type of data partition = (xfs) efs

4. A warning appears; answer yes to the prompt after the warning:

Warning: you will need to re-install all software and restore user data
from backups after changing the partition layout. Changing partitions
will cause all data on the drive to be lost. Be sure you have the drive
backed up if it contains any user data. Continue? yes

----- partitions-----
part type blocks Megabytes (base+size)
 0: efs 3024 + 1976184 1 + 965
 1: raw 1979208 + 81648 966 + 40
 8: volhdr 0 + 3024 0 + 1
 10: volume 0 + 2060856 0 + 1006

capacity is 2061108 blocks

----- please choose one (? for help, .. to quit this menu)-----
[ro]otdrive [u]srrootdrive [o]ptiondrive [re]size

The partition layout after repartitioning is displayed and the repartition submenu
appears again.

5. To return to the fx main menu, enter .. at the prompt:

fx/repartition> ..

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/
fx>

Creating Custom Partition Layouts

The following procedure describes how to repartition a disk so that it has a custom
partition layout. As an example, this procedure repartitions a 380 MB SCSI drive to
increase the size of the root partition.
32 007-2825-009

Repartitioning a Disk With fx
1. At the fx main menu, choose the repartition command:

---- please choose one (? for help. .. to quit this menu)----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/
fx> repartition
----- partitions-----
part type blocks Megabytes (base+size)
 0: efs 2835 + 32400 1 + 16
 1: rawdata 35235 + 81810 17 + 40
 6: efs 117045 + 513945 57 + 251
 7: efs 2835 + 628155 1 + 307
 8: volhdr 0 + 2835 0 + 1
 10: entire 0 + 630990 0 + 308

capacity is 631017 blocks

----- please choose one (? for help, .. to quit this menu)-----
[ro]otdrive [u]srrootdrive [o]ptiondrive [re]size

You see the partition layout for the disk that you specified when fx was started,
followed by the repartition menu. Look at the size column for partitions 0, 1, and 6.
In this example, you have 32400 + 81810 + 513945 = 628155 blocks to use. Look at
the start block numbers, and notice that partition 7 overlaps 0, 1, and 6. Partition 0 is
the root filesystem, and is mounted on the system’s root directory (/). Partition 1 is
your system’s swap space. Partition 6 is the usr filesystem, and it is mounted on the
/usr directory. In this example, you will take space from the usr filesystem and
expand the root filesystem.

2. Choose the resize option to change the size of partitions on the disk and answer y
to the warning message:

fx/repartition> resize

Warning: you will need to re-install all software and restore user data
from backups after changing the partition layout. Changing partitions
will cause all data on the drive to be lost. Be sure you have the drive
backed up if it contains any user data. Continue? y

After changing the partition, the other partitions will
be adjusted around it to fit the change. The result will be
displayed and you will be asked whether it is OK, before the
change is committed to disk. Only the standard partitions may
be changed with this function. Type ? at prompts for a list
of possible choices
007-2825-009 33

2: Performing Disk Administration Procedures
3. The prompt after the warning message offers the swap space partition as the default
partition to change, but in this example you will designate the root partition to be
resized. Enter root at the prompt:

fx/repartition/resize: partition to change = (swap) root
current: type efs base: 2835 blks, 1 Mb
 len: 32400 blks, 16 Mb

4. The next prompt asks for the partitioning method (partition size units) with
megabytes as the default. Other options are to use percentages of total disk space or
numbers of disk blocks. Megabytes and percentages are the easiest methods to use
to partition your disk. Press Enter to use megabytes as the method of
repartitioning:

fx/repartition/resize: partitioning method = (megabytes (2^20 bytes)) Enter

5. The next prompt asks for the size of the root partition in megabytes. The default is
the current size of the partition. For this example, increase the size to 20 MB:

fx/repartition/resize: size in megabytes (max 307) = (16) 20
----- partitions-----
part type blocks Megabytes (base+size)
 0: efs 2835 + 40960 1 + 20
 1: rawdata 43795 + 73250 21 + 36
 6: efs 117045 + 513945 57 + 251
 8: volhdr 0 + 2835 0 + 1
 10: entire 0 + 630990 0 + 308

The new partition map is displayed. Note that the 4 megabytes that you added to
your root partition were taken from the swap partition. Ultimately, you want those
megabytes to come from the usr partition, but for the moment, accept the new
partition layout.

6. To accept the new partition layout, enter yes at the prompt:

Use the new partition layout? (no) yes

The new partition table is printed again, along with the total disk capacity. Then
you are returned to the repartition menu.
34 007-2825-009

Repartitioning a Disk With fx
7. Select resize again to transfer space from the usr partition to the swap area:

fx/repartition> resize

You see the same warning message again.

8. At the partition to change prompt, press Enter to change the size of the swap
partition:

fx/repartition/resize: partition to change = (swap) Enter
current: type raw base: 43795 blks, 21 Mb
 len: 73250 blks, 36 Mb

9. Press Enter again to use megabytes as the method of repartition:

fx/repartition/resize: partitioning method = (megabytes (2^20 bytes)) Enter

10. The next prompt requests the new size of the swap partition. Since you added
4 megabytes to expand the root filesystem from 16 to 20 megabytes, enter 40 and
press Enter at this prompt to expand the swap space to its original size. (If your
system is chronically short of swap space, you can take this opportunity to add
some space by entering a higher number.)

fx/repartition/resize: size in megabytes (max 307) = (36) 40
----- partitions-----
part type blocks Megabytes (base+size)
 0: efs 2835 + 40960 1 + 20
 1: rawdata 43795 + 81920 21 + 40
 6: efs 125715 + 505275 61 + 247
 8: volhdr 0 + 2835 0 + 1
 10: entire 0 + 630990 0 + 308

You see the new partition table. Note that the partition table now reflects that
4 megabytes have been taken from partition 6 (usr) and placed in the swap
partition.

11. At the prompt, enter yes to accept the new partition layout:

Use the new partition layout? (no) yes

The new partition table and the repartition submenu are displayed again.

12. Enter .. at the prompt to return to the fx main menu:

fx/repartition> ..

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/
fx>
007-2825-009 35

2: Performing Disk Administration Procedures
After Repartitioning

1. From the fx main menu, enter exit to quit fx.

fx> exit

2. If you repartitioned the system disk, you must now install software on it in one of
two ways:

• Bring up the miniroot (choose Install System Software from the System
Maintenance menu); use the mkfs command on the Administrative
Commands menu to make filesystems on the disk partition; and install an IRIX
release and optional software.

• Choose System Recovery from the System Maintenance menu and use the
backup or system manager backup tape you created earlier to return the
original files to the disk.

If you repartitioned an option disk, use the mkfs command to create new
filesystems on the disk partitions.

3. Restore user files from backup tapes as necessary.

Creating Mnemonic Names for Device Files With ln

Device file names, for example /dev/dsk/dks0d1s0 and /dev/rdsk/dks0d2s7, can
be difficult to remember and type. Mnemonic device names can solve this problem. They
are filenames in the /dev directory that are symbolic links to the real device files. By
default, IRIX has several of these mnemonic device file names. For example, /dev/root
is a mnemonic device file name for /dev/dsk/dks0d1s0 (or whatever partition
contains the root filesystem) and /dev/rswap is a mnemonic device file name for
/dev/rdsk/dks0d1s1 (or whatever partition is the swap partition). You can create
additional mnemonic device file names using the ln command:

ln device_file mnemonic_name

For more information on the ln command, see the ln(1) reference page.
36 007-2825-009

Creating a System Disk From the PROM Monitor
Creating a System Disk From the PROM Monitor

This section describes how to install a system disk on a system that does not currently
have a working system disk. It is used in these situations:

• The new disk has no formatting or partitioning information on it at all, or the
partitioning is incorrect.

• It is an option disk that you must turn into a system disk.

If the system already has a working disk, you can use the procedure in“Creating a New
System Disk From IRIX” on page 42

To turn a disk into a system disk, you must have an IRIX system software release CD
available and a CD-ROM drive attached to the system or available on the network. If you
are using a CD-ROM drive attached to a system on the network, that system must be set
up as an installation server. See the IRIX Admin: Software Installation and Licensing guide
for instructions.

These instructions assume that the system disk is installed on controller 0 at drive
address 1. This is the standard location for workstations; the controller number is
system-specific on servers. Follow these steps:

1. Bring the system up into the System Maintenance menu.

2. Invoke the Command Monitor by choosing the fifth item on the System
Maintenance menu.

3. Issue the hinv command, and use the CPU type and Table 2-1 to determine the
version of standalone fx that you need to invoke. For example, a system with an
IP19 processor is an ARCS processor, so the version of standalone fx needed is
stand/fx.ARCS.

4. Determine the controller and drive address of the device that contains the copy of
fx that you plan to use (a CD-ROM drive attached to the system or a CD-ROM
drive on a workstation on the network). For example, for a local CD-ROM drive, if
hinv reports that the CD-ROM drive on the system is scsi(0), cdrom(4), the
controller is 0 and the drive address is 4. The remainder of this example uses that
device, although your device may be different or may be located on a different
workstation.

5. If you are installing over a network connection, get the IP address of the
workstation with the CD-ROM drive.

6. Insert the CD containing the IRIX system software release into the CD-ROM drive.
007-2825-009 37

2: Performing Disk Administration Procedures
7. Give a Command Monitor command to boot fx. For this example the command is:

>> boot -f dksc(0,4,8)sashARCS dksc(0,4,7)stand/fx.ARCS --x
72912+9440+3024+331696+23768d+3644+5808 entry: 0x89f9a950
112784+28720+19296+2817088+59600d+7076+10944 entry: 0x89cd74d0
SGI Version 5.3 ARCS Oct 18, 1994

See Appendix A of the guide IRIX Admin, Software Installation and Licensing for a
complete listing of appropriate commands to boot fx from CD-ROM on this or
another workstation.

8. Respond to the prompts by pressing the Enter key. These responses select the
system disk:

fx: “device-name” = (dksc)
fx: ctlr# = (0) Enter
fx: drive# = (1) Enter
fx: lun# = (0)
...opening dksc(0,1,)
...drive selftest...OK
Scsi drive type == SGI SEAGATE ST31200N8640

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/ [a]uto
[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat

9. Display the partitioning of the disk with the repartition command:

fx> repartition

----- partitions-----
part type blocks Megabytes (base+size)
 7: efs 3048 + 2074164 1 + 1013
 8: volhdr 0 + 3048 0 + 1
 10: volume 0 + 2077212 0 + 1014

capacity is 2077833 blocks

Check the partition layout to see whether the disk needs repartitioning. See “System
Disks, Option Disks, and Partition Layouts” in Chapter 1 for information about
standard partition layouts.

10. If the disk doesn’t need repartitioning, skip to step 13.

11. Choose a disk partition layout. You can choose a standard system disk partition
layout (described in “System Disks, Option Disks, and Partition Layouts” in
Chapter 1) or a custom partition layout.
38 007-2825-009

Creating a System Disk From the PROM Monitor
12. If you choose a standard system disk partition layout, follow the directions in
“Creating Standard Partition Layouts” on page 31. If you choose a custom partition
layout, follow the instructions in “Creating Custom Partition Layouts” on page 32.

13. In preparation for a future step, check the contents of the volume header by giving
this command:

----- please choose one (? for help, .. to quit this menu)-----
[ro]otdrive [o]ptiondrive [e]xpert
[u]srrootdrive [re]size
fx/repartition> label/show/directory

 0: sgilabel block 3 size 512 2: sash block 1914 size 159232
 1: ide block 4 size 977920

Verify that the volume header contains sash, a required file (it is listed as item 2 in
this example).

14. Quit fx and the Command Monitor so that you return to the System Maintenance
menu:

----- please choose one (? for help, .. to quit this menu)-----
[para]meters [part]itions [b]ootinfo [a]ll
[g]eometry [s]giinfo [d]irectory
fx/label/show> ../../exit
>> exit

15. Choose the second option, Install System Software, from the System Maintenance
menu.

Because there is no filesystem on the root partition, error messages may appear. One
example is the following message:

Mounting file systems:

/dev/dsk/dks0d1s0: Invalid argument
No valid file system found on: /dev/dsk/dks0d1s0
This is your system disk: without it we have nothing
on which to install software.

Another possible message indicates a problem, but does mount the root partition
and bring up inst:

Mounting file systems:

mount: /root/dev/usr on /root/usr: No such file or directory
mount: giving up on:
 /root/usr
007-2825-009 39

2: Performing Disk Administration Procedures
Unable to mount all local efs, xfs file systems under /root
Copy of above errors left in /root/etc/fscklogs/miniroot

 /dev/miniroot on /
 /dev/dsk/dks0d1s0 on /root

Invoking software installation.

16. If the system offers to make a filesystem, answer yes to the prompts:

Make new file system on /dev/dsk/dks0d1s0 [yes/no/sh/help]: yes

About to remake (mkfs) file system on: /dev/dsk/dks0d1s0
This will destroy all data on disk partition: /dev/dsk/dks0d1s0.

 Are you sure? [y/n] (n): yes

 Block size of filesystem 512 or 4096 bytes? 4096

Doing: mkfs -b size=512 /dev/dsk/dks0d1s0
meta-data=/dev/rdsk/dks0d1s0 isize=256 agcount=8, agsize=248166 blks
data = bsize=4096 blocks=248165
log =internal log bsize=512 blocks=1000
realtime =none bsize=4096 blocks=0, rtextents=0
Mounting file systems:

NOTICE: Start mounting filesystem: /root
NOTICE: Ending clean XFS mount for filesystem: /root
 /dev/miniroot on /
 /dev/dsk/dks0d1s0 on /root

17. If the system offers to put you into a shell, go into the shell and manually make the
root and, if appropriate, the usr filesystem. For example:

Please manually correct your configuration and try again.

 Press Enter to invoke C Shell csh: Enter

mkfs /dev/dsk/dks0d1s0
meta-data=/dev/dsk/dks0d1s0 isize=256 agcount=8, agsize=31021 blks
data = bsize=4096 blocks=248165
log =internal log bsize=4096 blocks=1000
realtime =none bsize=4096 blocks=0, rtextents=0
exit
40 007-2825-009

Creating a System Disk From the PROM Monitor
18. If the inst main menu comes up and you did not make a root filesystem in step 16
or step 17, make the root and, if used, the usr filesystems, and mount them. For
example:

Inst> admin
...
Admin> mkfs /dev/dsk/dks0d1s0

Make new file system on /dev/dsk/dks0d1s0 [yes/no/sh/help]: yes

About to remake (mkfs) file system on: /dev/dsk/dks0d1s0
This will destroy all data on disk partition: /dev/dsk/dks0d1s0.

 Are you sure? [y/n] (n): yes

 Block size of filesystem 512 or 4096 bytes? 4096

Doing: mkfs -b size=512 /dev/dsk/dks0d1s0
meta-data=/dev/rdsk/dks0d1s0 isize=256 agcount=8, agsize=248166 blks
data = bsize=4096 blocks=248165
log =internal log bsize=512 blocks=1000
realtime =none bsize=4096 blocks=0, rtextents=0
Mounting file systems:

NOTICE: Start mounting filesystem: /root
NOTICE: Ending clean XFS mount for filesystem: /root
 /dev/miniroot on /
 /dev/dsk/dks0d1s0 on /root

Re-initializing installation history database
Reading installation history .. 100% Done.
Checking dependencies .. 100% Done.

Admin> Enter

19. Install IRIX software from the CD as usual.

20. Install option software and patches from other CDs, if desired.

21. If you don’t need to modify the volume header to add sash (see step 13),you have
finished creating the new system disk. You don’t need to do the remaining steps in
this procedure.
007-2825-009 41

2: Performing Disk Administration Procedures
22. In preparation for adding programs to the volume header of the disk, start a shell:

Inst> sh

23. Follow the instructions in the procedure in “Adding Files to the Volume Header
With dvhtool” on page 22 to add sash, if necessary, to the volume header of the
system disk. Remember that the /stand directory is mounted at /root/stand.

24. Exit from the shell:

exit

25. Quit inst and bring up the system as usual.

Inst> quit

Creating a New System Disk From IRIX

This procedure describes how to turn an option disk into a system disk. The option disk
does not need to have a filesystem or be mounted prior to starting the procedure.

Caution: The procedure in this section destroys all data on the option disk. If the option
disk contains files that you want to save, back up all files on the option disk to tape or
another disk before beginning this procedure.

You can use this procedure when you want to change to a larger system disk, for example
from a 1 GB disk to a 2 GB disk, or when you want to create a system disk that you can
move to another system. With this procedure, you create a “fresh” disk by installing
software from an IRIX system software CD. (To create an exact copy of a system disk, use
“Creating a New System Disk by Cloning” on page 46 instead.) Note that if you plan to
create a system disk for another system, the systems must be identical because of
hardware dependencies in IRIX.

You must perform this procedure as superuser. The procedure requires several system
reboots, so other users should not be using the system.
42 007-2825-009

Creating a New System Disk From IRIX
Follow these steps to convert an option disk to a system disk:

1. Using hinv, determine the controller and drive addresses of the disk to be turned
into a system disk. In this procedure, the example commands and output assume
that the disk is on controller 0 and drive address 2. Substitute your controller and
drive address throughout these instructions.

2. To repartition the disk so that it can be used as a system disk, begin by invoking fx:

fx
fx version 6.4, Sep 29, 1996

3. Answer the prompts with the correct controller number and drive address for the
disk you are converting and 0 for the lun number, for example:

fx: “device-name” = (dksc) Enter
fx: ctlr# = (0) Enter
fx: drive# = (1) 2
fx: lun# = (0) Enter
...opening dksc(0,2,0)
...drive selftest...OK
Scsi drive type == SGI SEAGATE ST31200N8640

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/

4. Enter the repartition command:

fx> repartition

----- partitions-----
part type blocks Megabytes (base+size)
 7: efs 3024 + 2057832 1 + 1005
 8: volhdr 0 + 3024 0 + 1
 10: volume 0 + 2060856 0 + 1006

capacity is 2061108 blocks

5. Choose rootdrive or usrrootdrive, depending on whether you want a
combined root and usr partition or separate root and usr partitions. (See the
section “System Disks, Option Disks, and Partition Layouts” in Chapter 1 for
advantages and disadvantages of each.) In this example, a combined root and usr
disk, configured for XFS, is chosen:

----- please choose one (? for help, .. to quit this menu)-----
[ro]otdrive [u]srrootdrive [o]ptiondrive [re]size
007-2825-009 43

2: Performing Disk Administration Procedures
fx/repartition> rootdrive

fx/repartition/rootdrive: type of data partition = (xfs) Enter
Warning: you will need to re-install all software and restore user data
from backups after changing the partition layout. Changing partitions
will cause all data on the drive to be lost. Be sure you have the drive
backed up if it contains any user data. Continue? y
----- partitions-----
part type blocks Megabytes (base+size)
 0: xfs 3024 + 1976184 1 + 965
 1: raw 1979208 + 81648 966 + 40
 8: volhdr 0 + 3024 0 + 1
 10: volume 0 + 2060856 0 + 1006

capacity is 2061108 blocks

6. Quit fx:

----- please choose one (? for help, .. to quit this menu)-----
[ro]otdrive [u]srrootdrive [o]ptiondrive [re]size
fx/repartition> ../exit

7. Use the procedure in “Adding Files to the Volume Header With dvhtool” on page 22
to examine the contents of the volume header of the disk to be converted and to add
sash to its volume header if it is not there already.

8. Make a root filesystem on the root partition of the disk you are converting. For
example, to make an XFS root filesystem with 4 KB block size and a 1000 block
internal log (the default values), give this command:

mkfs /dev/dsk/dks0d2s0

For additional instructions on making an XFS filesystem, see “Planning an XFS
Filesystem” and “Making an XFS Filesystem” in Chapter 6. There is no need to
mount the filesystem after making it.

9. If the disk has a separate usr partition, make a filesystem on that partition, too. For
example:

mkfs /dev/dsk/dks0d2s6

10. Insert a CD containing the IRIX release you plan to install into either your system’s
CD-ROM drive or a CD-ROM drive on a remote system.

11. Shut down the system and bring up the miniroot from the CD. For instructions, see
the guide IRIX Admin: Software Installation and Licensing.
44 007-2825-009

Creating a New System Disk From IRIX
12. Switch to the Administrative Commands menu, unmount the root and usr (if
used) partitions from the old system disk, and mount the root and usr (if used)
partitions of the new disk in their place. For example, if the old system disk has root
and usr partitions and the new system disk has only a root partition, the
commands are:

Inst> admin
Admin> umount /root
Admin> umount /root/usr
Admin> mount /dev/dsk/dks0d2s0 /root
Admin> Enter

13. Confirm that the root and usr (if used) partitions of the new system disk are
mounted as /root and /root/usr (if used). This example shows the output for
the example in step 12:

Inst> sh df

Filesystem Type blocks use avail %use Mounted
on
/dev/miniroot xfs 49000 32812 16188 67 /
/dev/dsk/dks0d1s0 xfs 1984325 251 1984074 0 /root

Caution: If the wrong partitions are mounted, inst installs system software onto
the wrong partitions, which destroys the data on those partitions.

14. Install system software from this CD and options and patches from other CDs as
usual. Instructions are in the guide IRIX Admin: Software Installation and
Licensing.

15. Quit inst and bring the system back to IRIX (the system boots the old system disk).

16. To test the new system disk before replacing the old system disk or moving the disk
to a different system, begin by shutting down the system to the PROM Monitor.

17. Bring up the Command Monitor by choosing the fifth item on the System
Maintenance menu.

18. Boot the system in single user mode from the new system disk by issuing the
following commands. This example uses controller 0 and drive address 2; substitute
the values for the new system disk in the first and second positions of each of the
three triples of numbers in this example.

>> setenv initstate s
>> boot -f dksc(0,2,8)sash dksc(0,2,0)unix root=dks0d2s0
007-2825-009 45

2: Performing Disk Administration Procedures
19. Run MAKEDEV and autoconfig:

cd /dev
./MAKEDEV
/etc/autoconfig -f

20. Restart the system in multiuser mode with the reboot command.

The new system disk is ready to replace the system disk on this system or another system
with the same hardware configuration.

Creating a New System Disk by Cloning

This procedure describes how to turn an option disk into an exact copy of a system disk.
Use this procedure when you want to set up two or more systems with identical system
disks. The systems must have identical processor and graphics types.

Caution: The procedure in this section destroys all data on the option disk. If the option
disk contains files that you want to save, back up all files on the option disk to tape or
another disk before beginning this procedure.

You must perform this procedure as superuser. To ensure that the system disk that you
create is identical to the original system disk, the system should be in single user mode.

1. List the disk partitioning of the system (root) disk by invoking prtvtoc without
parameters, for example:

prtvtoc

Printing label for root disk

* /dev/root (bootfile “/unix”)
* 512 bytes/sector
Partition Type Fs Start: sec Size: sec Mount Directory
 0 xfs yes 4096 4138249
 1 raw 4142345 262144
 8 volhdr 0 4096
10 volume 0 4404489
46 007-2825-009

Creating a New System Disk by Cloning
2. List the disk partitioning of the option disk that is to be the clone, for example:

prtvtoc /dev/rdsk/dks0d2vh
...
Partition Type Fs Start: sec Size: sec Mount Directory
 0 efs 3024 50652
 1 raw 53676 81648
 6 efs 135324 1925532
 8 volhdr 0 3024
10 volume 0 2060856

3. Compare the disk partitioning of the two disks. They must have the same layout for
the root and (if used) the usr partition. If they are not the same, repartition the
option disk to match the system disk using the procedure in “Repartitioning a Disk
With fx” on page 27.

4. Use the procedure in “Adding Files to the Volume Header With dvhtool” on page 22
to check the contents of the volume header of the option disk and add programs, if
necessary, by copying them from the system disk.

5. Make a new filesystem on the root partition of the option disk. For example, to make
an XFS root filesystem with a 4 KB block size and a 1000 block internal log (the
default values), give this command:

mkfs /dev/dsk/dks0d2s0

For additional instructions on making an XFS filesystem, see “Planning an XFS
Filesystem” and “Making an XFS Filesystem” in Chapter 6. There is no need to
mount the filesystem after making it.

6. If there is a separate usr partition, make a new filesystem on the usr partition of
the option disk, for example:

mkfs /dev/dsk/dks0d2s6

7. Create a temporary mount point for the option disk filesystems, for example:

mkdir /clone

8. Mount the root filesystem of the option disk and change directories to the mount
point, for example:

mount /dev/dsk/dks0d2s0 /clone
cd /clone
007-2825-009 47

2: Performing Disk Administration Procedures
9. Use dump (for EFS filesystems) or xfsdump (for XFS filesystems) to copy the root
filesystem on the system disk to the root filesystem of the option disk. The dump
command is:

dump 0f - / | restore xf -

The xfsdump command is:

xfsdump -l 0 - / | xfsrestore - .

10. If the disks do not have a usr partition, skip to step 13.

11. In preparation for copying the usr filesystem, mount the usr filesystem instead of
the root filesystem:

cd ..
umount /clone
mount /dev/dsk/dks0d2s6 /clone
cd /clone

12. Use dump (for EFS filesystems) or xfsdump (for XFS filesystems) to copy the usr
filesystem on the system disk to the usr filesystem of the option disk. The dump
command is:

dump 0f - /usr | restore xf -

The xfsdump command is:

xfsdump -l 0 - /usr | xfsrestore - .

13. Unmount the filesystem mounted at the temporary mount point and remove the
mount point, for example:

cd ..
umount /clone
rmdir /clone

The option disk is now an exact copy of the system disk. It can be moved to a
system with the same hardware configuration.
48 007-2825-009

Adding a New Option Disk
Adding a New Option Disk

Tip: You can use the Disk Manager in the System Toolchest to add a new option disk.
For instructions, see “Setting Up a New Hard Disk” in Chapter 3 of the Personal System
Administration Guide. The section “Taking Advantage of a Second Disk” in Chapter 6 of
the Personal System Administration Guide provides ideas for making effective use of an
option disk.

To add a new option disk to a system using shell commands, follow these steps:

1. Install the hardware. See the owner’s guide for the system.

2. Initialize the volume header, if necessary. See “Formatting and Initializing a Disk
With fx” on page 21.

3. Partition the new disk, if necessary. It should be partitioned as an option disk. See
“Repartitioning a Disk With fx” on page 27 for instructions.

4. In preparation for the next step, identify the type of controller that the new disk is
attached to (integral SCSI controller or non-integral controller). See the section
“Listing the Disks on a System With hinv” on page 20 for instructions.

5. To add an option disk on an integral SCSI controller to a system, use the Add_disk
command to perform the remaining steps to configure the disk:

Add_disk controller_number drive_address lun_number

If you are adding a second disk on controller 0 to your system, you do not have to
specify the disk, controller number, or logical unit number; adding disk 2 on
controller 0 is the default. If you are adding a third (or greater) disk, or if you are
adding a disk on a controller other than controller 0, you must specify the disk and
controller. If the disk device has a logical unit number different from zero, it must be
specified.

Add_disk checks for valid filesystems on the disk, and if any filesystems are
present, you are warned and asked for permission before the existing filesystems
are destroyed and a new filesystem is made.

The Add_disk command performs these tasks:

• Creates the character and raw device files for the new disk

• Creates an XFS filesystem on the disk

• Creates the mount directory
007-2825-009 49

2: Performing Disk Administration Procedures
• Mounts the filesystem

• Adds the mount order to the /etc/fstab file

6. For an option disk on a non-integral controller, complete the configuration of the
new option disk by making a filesystem. Use the instructions in one of these
sections in Chapter 6: “Making an XFS Filesystem” or “Making a Filesystem From
inst.”
50 007-2825-009

Chapter 3

3. XLV Logical Volume Concepts

This chapter explains the concepts of XLV logical volumes. The use of logical volumes
allows one filesystem to spread across multiple disk partitions. IRIX supports XLV
logical volumes, a logical volume design developed at Silicon Graphics. Older releases
of IRIX supported an older logical volume design, lv logical volumes. The procedure for
converting from lv logical volumes to XLV logical volumes is described in the section
“Converting lv Logical Volumes to XLV Logical Volumes” in Chapter 4.

The major sections in this chapter are:

• “Introduction to XLV Logical Volumes” on page 51

• “Composition of XLV Logical Volumes” on page 54

• “XLV Logical Volume Names” on page 65

• “XLV Daemons” on page 65

• “XLV Error Policy” on page 66

• “XLV Logical Volume Planning” on page 66

Administration procedures for XLV logical volumes are described in Chapter 4,
“Creating and Administering XLV Logical Volumes.”

Note: For information on XVM logical volume concepts, see the XVM Volume Manager
Administrator’s Guide.

Introduction to XLV Logical Volumes

The use of logical volumes enables the creation of filesystems, raw devices, or block
devices that span more than one disk partition. Logical volumes behave like regular disk
partitions; they appear as block and character devices in the /dev directory and can be
used as arguments anywhere a disk device can be specified.
007-2825-009 51

3: XLV Logical Volume Concepts
Filesystems can be created, mounted, and used in the normal way on logical volumes, or
logical volumes can be used as block or raw devices. XLV logical volumes provide
services such as disk plexing (also known as mirroring) and striping transparently to the
applications that access the volumes. Key reasons to create a logical volume are:

• To allow a filesystem or disk device to be larger than the size of a physical disk

• To increase disk I/O performance

The drawback to logical volumes is that all disks used in a logical volume must function
correctly at all times. If you have a logical volume set up over three disks and one disk
goes bad, the information on the other two disks is unavailable and must be restored
from backups. However, by using the Disk Plexing Option optional software, you can
create multiple copies, called plexes, of the contents of XLV logical volumes, which
ensures that all of the information in an XLV logical volume is available even when a disk
goes bad.

When XLV logical volumes are used as raw devices and when XFS filesystems are created
on them, they have these features:

• Support for very large logical volumes—up to one terabyte on 32-bit systems and
unlimited on 64-bit systems.

• Support for disk striping for higher I/O performance

• Plexing (mirroring) for higher system and data reliability

• Online volume reconfigurations, such as increasing the size of a volume, for less
system downtime

With XFS filesystems, XLV provides these additional advantages:

• Filesystem journal records on a separate partition, which can be on a separate disk,
for maximum performance

• Access to real-time data

An XLV logical volume can include partitions from several physical disk drives. By
default, data is written to the first disk partition, then to the second disk partition, and so
on. Figure 3-1 shows the order in which data is written to partitions in a non-striped
logical volume.
52 007-2825-009

Introduction to XLV Logical Volumes
Figure 3-1 Writing Data to a Non-Striped Logical Volume

On striped logical volumes, the volume must have equal-sized partitions on several
disks. When logical volumes are striped, an amount of data, called the stripe unit, is
written to the first disk, the next stripe unit amount of data is written to the second disk,
and so on. When each of the disks have been written to, the next stripe unit of data is
written to the first disk, the next stripe unit amount of data is written to the second disk,
and so on to complete the “stripe.” Figure 3-2 shows the order in which data is written
to a striped logical volume.

Figure 3-2 Writing Data to a Logical Volume

Because each stripe unit in a stripe can be read and written simultaneously, I/O
performance is improved. To obtain the best performance benefits of striping, try to
connect the disks you are striping across on different controllers. In this arrangement,
there are independent data paths between each disk and the system. However, a small
performance improvement can be obtained using SCSI disks striped on the same
controller.

When XFS filesystems are used on XLV volumes, each logical volume can contain up to
three subvolumes: data (which is required), log, and real-time. The data subvolume
normally contains user files and filesystem metadata (inodes, indirect blocks, directories,
and free space blocks). The log subvolume is used for filesystem journal records. It is
called an external log. If there is no log subvolume, journal records are placed in the data
subvolume (an internal log). Data with special I/O bandwidth requirements, such as
007-2825-009 53

3: XLV Logical Volume Concepts
video, can be placed on the optional real-time subvolume. The section “Using Real-Time
Subvolumes” in Chapter 8 explains this procedure.

XLV increases system reliability and availability by enabling you to add or remove a copy
of the data in the volume (a plex), increase the size of (grow) a volume, and replace failed
elements of a plexed volume without taking the volume out of service.

You use one of two procedures to create an XLV logical volume, depending on whether
you are starting with empty disks or with a filesystem on a disk partition. When starting
with empty disks, you perform the following steps:

1. Create disk partitions as necessary (see “Repartitioning a Disk With fx” in
Chapter 2).

2. Create the XLV logical volume (see “Creating Volume Objects With xlv_make” and
“Example 3: Creating A Plexed XLV Logical Volume for an XFS Filesystem With an
External Log” in Chapter 4).

3. Make a filesystem on the XLV logical volume (see “Making an XFS Filesystem” or
“Making a Filesystem From inst” in Chapter 6).

In the second procedure for creating XLV logical volumes, you start with a filesystem on
a disk partition. You increase the size of the filesystem (“grow” the filesystem) by
creating a logical volume that includes the existing disk partition and a new disk
partition. This procedure is explained in “Growing an XFS Filesystem Onto Another
Disk” in Chapter 6.

Converting from lv logical volumes to XLV logical volumes is easy. Using the
commands lv_to_xlv and xlv_make, you can convert lv logical volumes to XLV
without having to dump and restore your data.

Using XLV logical volumes is not recommended on systems with a single disk.

Composition of XLV Logical Volumes

XLV logical volumes are composed of a hierarchy of logical storage objects: volumes are
composed of subvolumes, subvolumes are composed of plexes, and plexes are composed
of volume elements. Volume elements are composed of disk partitions. This hierarchy of
storage units is shown in Figure 3-3, an example of a relatively complex logical volume.
54 007-2825-009

Composition of XLV Logical Volumes
Figure 3-3 XLV Logical Volume Example

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6

Physical

Logical

Logical
volume

Log
subvolume Data

subvolume
Real-time

subvolume

PlexPlexPlexPlex

Volume
element

Volume
element

Volume
element

Striped
volume
element

Volume
element
007-2825-009 55

3: XLV Logical Volume Concepts
Figure 3-3 illustrates the relationships between volumes, subvolumes, plexes, and
volume elements in an XLV logical volume. In this example, six physical disk drives
contain eight disk partitions. The logical volume has a log subvolume, a data subvolume,
and a real-time subvolume. The log subvolume has two plexes (copies of the data) for
higher reliability, and the data and real-time subvolumes are not plexed (meaning that
they each consist of a single plex). The log plexes each consist of a volume element, which
is a disk partition on disk 1. The plex of the data subvolume consists of two volume
elements, a partition that is the remainder of disk 1 and a partition that is all of disk 2.
The plex used for the real-time subvolume is striped for increased performance. The
striped volume element is constructed from four disk partitions, each of which is an
entire disk.

The following subsections describe these logical storage objects in more detail.

Volumes

Volumes are composed of subvolumes. All volumes must have a data subvolume. Two
other subvolumes, the log subvolume and the real-time subvolume, are optional. For XFS
filesystems, a volume consists of a data subvolume, an optional log subvolume, and an
optional real-time subvolume. For EFS filesystems, a volume consists of just one
subvolume, the data subvolume. (EFS filesystems are of a filesystem type supported in
previous IRIX releases; they are described in Appendix A, “EFS Filesystems”.) The
breakdown of a volume into subvolumes is shown in Figure 3-4.
56 007-2825-009

Composition of XLV Logical Volumes
Figure 3-4 Volume Composition

Each volume can be used as a single filesystem or as a raw partition. Volume information
used by the system during system startup is stored in logical volume labels in the volume
header of each disk used by the volume (see “Volume Headers” in Chapter 1). At system
startup, volumes will not come online if any of their subvolumes cannot be brought
online. You can create volumes, delete them, and move them to another system.

Subvolumes

As explained in “Volumes” on page 56, each logical volume is composed of one to three
subvolumes. A subvolume contains one to four plexes, as shown in Figure 3-5.

Real-time

Data

Log
Subvolumes

Volume

Optional
007-2825-009 57

3: XLV Logical Volume Concepts
Figure 3-5 Subvolume Composition

Note: The plexing feature of XLV, which enables the use of the optional plexes, is
available only when you purchase the Disk Plexing Option software option.

Each subvolume is a distinct address space and a distinct type. The types of subvolumes
are:

Data subvolume
The data subvolume is required in all XLV logical volumes. It is the only
subvolume present in EFS filesystems. (EFS filesystems are of a
filesystem type supported in previous IRIX releases; they are described
in Appendix A, “EFS Filesystems”.)

Log subvolume
The log subvolume contains XFS journaling information. It is a log of
filesystem transactions and is used to expedite system recovery after a
crash. Log information is sometimes put in the data subvolume rather
than in a log subvolume (see “Choosing the Log Type and Size” in
Chapter 6 and the mkfs_xfs(1M) reference page and its discussion of
the -l option for more information).

Plex

Plex

Plex

Plex

Subvolume

Optional
58 007-2825-009

Composition of XLV Logical Volumes
Real-time subvolume
Real-time subvolumes are generally used for data applications such as
video, where guaranteed response time is more important than data
integrity. Chapter 8, “System Administration for Guaranteed-Rate I/O,”
explains how applications access data on real-time subvolumes.

Subvolumes enforce separation among data types. For example, user data cannot
overwrite filesystem log data. Subvolumes also enable filesystem data and user data to
be configured to meet goals for performance and reliability. For example, performance
can be improved by putting subvolumes on different disk drives.

Each subvolume can be organized independently. For example, the log subvolume can
be plexed for fault tolerance and the real-time subvolume can be striped across a large
number of disks to give maximum throughput for video playback.

Volume elements that are part of a real-time subvolume should not be on the same disk
as volume elements used for data or log subvolumes. This is a recommendation for all
files on real-time subvolumes and required for files used for guaranteed-rate I/O with
hard guarantees. (See “Hardware Configuration Requirements for GRIO” in Chapter 8
for more information.)

Once a subvolume is created, it cannot be detached from its volume or deleted without
deleting its volume. Subvolumes are automatically deleted when their volumes are
deleted.

Plexes

A subvolume can contain from one to four plexes (also known as mirrors). Each plex is an
exact replica of all or a portion of the subvolume’s data. By creating a subvolume with
multiple plexes, system reliability is increased because there are redundant copies of the
data.

If there is just one plex in a subvolume, that plex spans the entire address space of the
subvolume. However, in the case of multiple plexes, individual plexes can have holes in
their address spaces as long as the union of all plexes spans the entire address space.
Figure 3-6 shows an example of this configuration. The subvolume contains three plexes.
If complete, each plex would contain three volume elements. However, two of the plexes
are missing a volume element. This is allowed because there is at least one volume
element with each address range. In fact, if Plex 1 in the figure were detached (removed
007-2825-009 59

3: XLV Logical Volume Concepts
from the subvolume), the subvolume would still be functional because there is still at
least one volume element with each address range.

Figure 3-6 Plexed Subvolume Example

Data is written to all plexes. When an additional plex is added to a subvolume, the entire
plex is copied (this is called a plex revive) automatically by the system. See the
xlv_assemble(1M) and xlv_plexd(1M) reference pages for more information.

A plex is composed of one or more volume elements, as shown in Figure 3-7, up to a
maximum of 128 volume elements. Each volume element represents a range of addresses
within the subvolume.

Subvolume

Volume
element

Volume
element

Volume
element

Volume
element

Volume
element

Volume
element

Volume
element

Plex 1

Plex 2

Plex 3

Increasing
addresses
60 007-2825-009

Composition of XLV Logical Volumes
Figure 3-7 Plex Composition

When a plex is composed of two or more volume elements, it is said to have concatenated
volume elements. With concatenation, data written sequentially to the plex is also
written sequentially to the volume elements; the first volume element is filled, then the
second, and so on. Concatenation is useful for creating a filesystem that is larger than the
size of a single disk.

You can add plexes to subvolumes, detach them from subvolumes that have multiple
plexes (and possibly attach them elsewhere), and delete them from subvolumes that
have multiple plexes.

Note: To have multiple plexes, you must purchase the Disk Plexing Option software
option and obtain and install a FLEXlm license.

Plex

Volume
element

Volume
element

Volume
element

Volume
element

Up to 128
volume

elements
007-2825-009 61

3: XLV Logical Volume Concepts
Volume Elements

Volume elements are the lowest level in the hierarchy of logical storage objects: volumes
are composed of subvolumes; subvolumes are composed of plexes; and plexes are
composed of volume elements. Volume elements are composed of physical storage
elements: disk partitions. They are composed of one or more disk partitions with or
without striping (at least two disk partitions are required for striping). Any mixture of
the three types of volume elements (single partition, striped, and multipartition) can be
included in a plex.

Single-Partition Volume Elements

The simplest type of volume element is a single disk partition. The two other types of
volume elements, striped volume elements and multipartition volume elements, are
composed of several disk partitions. Figure 3-8 shows a single partition volume element.

Figure 3-8 Single-Partition Volume Element Composition

Disk
partition

Volume element
62 007-2825-009

Composition of XLV Logical Volumes
Striped Volume Elements

Figure 3-9 shows a striped volume element. Striped volume elements consist of two or
more disk partitions, organized so that an amount of data called the stripe unit is written
to each disk partition before writing the next stripe unit-worth of data to the next
partition.

Figure 3-9 Striped Volume Element Composition

Striping can be used to alternate sections of data among multiple disks. This provides a
performance advantage by allowing parallel I/O activity. You can use these rules of
thumb as a starting point for choosing a stripe unit size:

• The stripe unit size should be a function of the I/O size of the application that uses
the striped volume and the number of partitions in the stripe: the stripe unit size
should be the application I/O size divided by the number of partitions. This keeps
all disks busy all of the time, which is ideal.

• The default stripe unit is the device track size, which is a good value to use,
particularly when there are more reads than writes to the disk.

Disk partition

Disk partition

Disk partition

Stripe unit

Volume element
007-2825-009 63

3: XLV Logical Volume Concepts
• Stripe unit sizes of less than 64 KB are not recommended.

• For best write performance, the stripe unit size should be several tracks. However,
large stripe unit sizes require larger I/O buffer sizes, which can be a problem.

• In choosing the optimal stripe unit size, balance the benefits of parallel I/O activity,
the efficiency of I/O to a single disk drive (larger reads and writes have less
overhead), and the limits on I/O buffer size.

Multipartition Volume Elements

Figure 3-10 shows a multipartition volume element in which the volume element is
composed of more than one disk partition. In this configuration, the disk partitions are
addressed sequentially.

Figure 3-10 Multipartition Volume Element Composition

Disk partition

Disk partition

Disk partition

Volume element
64 007-2825-009

XLV Logical Volume Names
XLV Logical Volume Names

Volumes appear as block and character devices in the /dev directory. The device names
for XLV logical volumes are /dev/xlv/volume_name and /dev/rxlv/volume_name,
where volume_name is a volume name specified when the volume is created using the
xlv_make command. The volume name and plex, subvolume, and volume element
names specified while using the xlv_make command cannot contain periods (.).

Note: In IRIX 6.2 and IRIX 5.3 with XFS, XLV logical volume device files had the names
/dev/dsk/xlv/volname and /dev/rdsk/xlv/volname.

When a volume is created on one system and moved (by moving the disks) to another
system, the new volume name is the same as the original volume name with the
hostname of the original system prepended. For example, if a volume called xlv0 is
moved from a system called engrlab1 to a system called engrlab2, the device name of the
volume on the new system is /dev/xlv/engrlab1.xlv0 (the old system name
engrlab1 has been prepended to the volume name xlv0).

XLV Daemons

The XLV daemons are:

xlv_labd xlv_labd updates XLV logical volume labels. It is started
automatically at system startup if it is installed and there are active XLV
logical volumes.

xlvd xlvd performs I/O operations to plexes during plex error recovery. It is
created automatically during system startup if plexing software is
installed and there are active XLV logical volumes.

xlv_plexd xlv_plexd is responsible for making all plexes within a subvolume
have the same data. It is started automatically at system startup if there
are active XLV logical volumes.

XLV does not require an explicit configuration file, nor is it turned on and off with the
chkconfig command. XLV is able to assemble logical volumes based solely upon
information written in the logical volume labels. During initialization, the system
performs a hardware inventory, reads all the logical volume labels, and automatically
assembles the available disks into previously defined volumes.
007-2825-009 65

3: XLV Logical Volume Concepts
If some disks are missing, XLV checks whether there are enough volume elements among
the available plexes to map the entire address space. If the whole address space is
available, XLV brings the volume online even if some of the plexes are incomplete.

XLV Error Policy

For read failures on log and data subvolumes, XLV rereads from a different plex (when
available) and attempts to fix the failed plex by rewriting the results. XLV does not retry
on failures for real-time data.

For write errors on log and data subvolumes, XLV assumes that these write errors are
hard errors (the disk driver and controllers handle soft errors). If the volume element
with a hard error is plexed, XLV marks the volume element offline and ignores the
volume element from then on. If the volume element is not plexed, the volume element
remains associated with the volume and an error is returned.

XLV does not handle write errors on real-time subvolumes. Incorrect data is returned
without error messages on subsequent reads.

XLV Logical Volume Planning

The following subsections discuss topics to consider when planning an XLV logical
volume.

When to Avoid Using XLV

In some situations where XLV logical volumes cannot be used or are not recommended:

• Raw swap devices cannot be XLV logical volumes. (However, swap space can be
added as a regular file in a filesystem and that filesystem could be on an XLV logical
volume. See the chapter “Configuring Disk and Swap Space” in the IRIX Admin:
System Configuration and Operation guide for more information.)

• XLV logical volumes are not recommended on systems with a single disk.

• Striped or concatenated XLV volumes cannot be used for the root filesystem.
66 007-2825-009

XLV Logical Volume Planning
Selecting Subvolumes

Follow these basic guidelines for choosing which subvolumes to use with XFS
filesystems:

• Data subvolumes are required.

• Log subvolumes are optional. If they are not used, log information is put into an
internal log in the data subvolume. In most cases, there is no advantage to using an
external log.

• Real-time subvolumes are optional.

When you want a large raw partition with no filesystem on it, only the data subvolume
is used.

When you create a logical volume with a real-time subvolume, it must also include a data
subvolume.

Follow these basic guidelines for choosing which subvolumes to use with EFS
filesystems. (EFS filesystems are of a filesystem type supported in previous IRIX releases;
they are described in Appendix A, “EFS Filesystems”.)

• Only data subvolumes can be used.

• The maximum size of an EFS filesystem is 8 GB; do not make the data subvolume
bigger than that or the space is wasted.

Choosing Subvolume Sizes

Use these basic guidelines for choosing subvolume sizes:

• The maximum size of a subvolume is one terabyte on 32-bit systems (IP17, IP20,
IP22, and IP32). It is unlimited on 64-bit systems (IP19, IP21, IP25, IP26, and IP27).

• Choosing the size of the log (and therefore the size of the log subvolume) is
discussed in “Choosing the Log Type and Size” in Chapter 6. Note that if you do not
intend to repartition a disk to create an optimal-size log partition, your choice of an
available disk partition may determine the size of the log.
007-2825-009 67

3: XLV Logical Volume Concepts
Choosing Whether To Plex

The basic guidelines for plexing are:

• Use plexing when high reliability and high availability of data are required.

• The root filesystem can be plexed; each plex must be a single partition volume
element.

• Dual-hosted XLV logical volumes (logical volume on disks that are connected to
two systems) cannot be plexed.

• RAID disks should not be plexed.

• Plexes can have “holes” in them, portions of the address range not contained by a
volume element, as long as at least one of the plexes in the subvolume has a volume
element with the address range of the hole.

• The volume elements in each plex of a subvolume must be identical in size with
their counterparts in other plexes (volume elements with the same address range).
The structure within a volume element (single partition, striped, or multipartition)
does not have to match the structure within its counterparts.

• To make volume elements identical in size, use the fx command in expert mode
(fx -x). At the first fx menu, give the command repartition/expert -b. This
enables you to repartition in units of blocks, which ensures that the volume element
is the exact size you want it.

Choosing Whether To Stripe

The basic guidelines for striping are:

• The root filesystem cannot be striped.

• Striped I/O can be used with both direct and buffered I/O. Whether to stripe or not
to stripe depends on the access patterns of the data. In general, striped performance
is better than non-striped performance.

• Striped disks lead to performance improvement only when the applications that use
them make large data transfers that access all disks in the stripe in the filesystem.

• Striped volume elements should be made of disk partitions that are exactly the
same size. When the disk partitions are different sizes, the smallest size is used.
Additional space in the larger partitions is wasted.
68 007-2825-009

XLV Logical Volume Planning
• For best performance, each disk involved in a striped volume element should be on
a separate controller. For some disk types, performance improvement is seen with
up to four disks per controller. For other disk types, no additional performance
improvement is seen with three or more disks.

• A log subvolume can be striped only if it is an external log. Striping a log does not
result in a performance improvement.

Choosing Whether to Concatenate Disk Partitions

The basic guidelines for the concatenation of disk partitions are:

• The root filesystem cannot have concatenated disk partitions.

• It is better to concatenate single-partition volume elements into a plex rather than to
create a single multipartition volume element. This is not for performance reasons,
but for reliability. When one disk partition goes bad in a multipartition volume
element, the whole volume element is taken offline.
007-2825-009 69

Chapter 4

4. Creating and Administering XLV Logical Volumes

This chapter describes the procedures for creating and administering XLV logical
volumes using command-line utilities. A graphical user interface for performing many
of these procedures is available from the xlvm command. See its online help for more
information about xlvm.

Note: For information on XVM logical volume management, see the XVM Volume
Manager Administrator’s Guide.

The major sections in this chapter are:

• “Verifying That Plexing Is Supported” on page 72

• “Creating Volume Objects With xlv_make” on page 72

• “Displaying XLV Logical Volume Objects” on page 79

• “Adding a Volume Element to a Plex (Growing an XLV Logical Volume)” on
page 80

• “Adding a Plex to an XLV Logical Volume” on page 82

• “Detaching a Plex From an XLV Logical Volume” on page 84

• “Deleting an XLV Object” on page 85

• “Removing and Mounting a Plex” on page 86

• “Replacing a Disk For a Plexed Volume” on page 89

• “Creating a Plexed XLV Logical Volume for Root” on page 92

• “Booting the System Off an Alternate Plex” on page 95

• “Configuring the System for More Than Ten XLV Logical Volumes” on page 97

• “Converting lv Logical Volumes to XLV Logical Volumes” on page 97

• “Creating a Record of XLV Logical Volume Configurations” on page 99
007-2825-009 71

4: Creating and Administering XLV Logical Volumes
Verifying That Plexing Is Supported

As discussed in Chapter 3, “XLV Logical Volume Concepts,” the plexing feature of XLV,
which enables the use of multiple plexes, is available only when you purchase the Disk
Plexing Option software option and install a FLEXlm license.

You can use the xlv_mgr command to verify that the plexing software and a valid
license are installed. Follow these steps:

1. Invoke xlv_mgr:

xlv_mgr

2. Use the show config command:

xlv_mgr> show config
Allocated subvol locks: 30 locks in use: 6
Plexing license: present
Plexing support: present
Maximum subvol block number: 0x7fffffffffffffff

The second and third lines of output, “Plexing license: present” and “Plexing
support: present,” indicate that plexing software is installed with a valid license.

3. Quit out of xlv_mgr:

xlv_mgr> quit

Creating Volume Objects With xlv_make

The xlv_make command creates volumes, subvolumes, plexes, and volume elements
from unused disk partitions. It writes the XLV logical volume labels in the disk volume
headers only; data on the disk partitions is untouched.

After you create a volume, make a filesystem on it if necessary, and mount the filesystem
so that you can use the XLV logical volume.

Caution: When you make the filesystem using mkfs, all data already on the disk
partitions is destroyed.
72 007-2825-009

Creating Volume Objects With xlv_make
xlv_make can be run interactively or it can take commands from an input file. The
remainder of this section gives two examples of using xlv_make; the first one is
interactive and the second is noninteractive.

Example 1: Creating A Simple XLV Logical Volume

This example creates a simple XLV logical volume composed of a data subvolume
created from two entire option disks. The disks are on controller 0, drive addresses 2 and
3. An XFS filesystem is created and mounted at /vol1.

1. Unmount the disks that will be used in the volume if they are mounted. For
example:

df
Filesystem Type blocks use avail %use Mounted on
/dev/root efs 1939714 430115 1509599 22% /
/dev/dsk/dks0d2s7 efs 2004550 22 2004528 0% /d2
/dev/dsk/dks0d3s7 efs 3826812 22 3826790 0% /d3
umount /d2
umount /d3

2. Start xlv_make:

xlv_make
xlv_make>

3. Start creating the volume by specifying its name, for example xlv0:

xlv_make> vol xlv0
xlv0

4. Begin creating the data subvolume:

xlv_make> data
xlv0.data

xlv_make echoes the name of each object (volume, subvolume, plex, or volume
element) you create.

5. Continue to move down through the hierarchy of the volume by specifying the plex:

xlv_make> plex
xlv0.data.0
007-2825-009 73

4: Creating and Administering XLV Logical Volumes
6. Specify the volume elements (disk partitions) to be included in the volume, for
example /dev/dsk/dks0d2s7 and /dev/dsk/dks0d3s7:

xlv_make> ve dks0d2s7
xlv0.data.0.0
xlv_make> ve dks0d3s7
xlv0.data.0.1

You can specify the last portion of the disk partition pathname (as shown) or the full
pathname. xlv_make accepts disk partitions that are of types xlv, sfx, and efs.
You can use other partition types, such as lvol, by specifying the -force option;
for example, ve –force dks0d2s7. xlv_make automatically changes the
partition type to xlv.

7. Indicate that you are finished specifying the objects:

xlv_make> end
Object specification completed

8. Review the objects that you specified:

xlv_make> show

 Completed Objects
(1) VOL xlv0
VE xlv0.data.0.0 [empty]
 start=0, end=2004549, (cat)grp_size=1
 /dev/dsk/dks0d2s7 (2004550 blks)
VE xlv0.data.0.1 [empty]
 start=2004550, end=5831361, (cat)grp_size=1
 /dev/dsk/dks0d3s7 (3826812 blks)

This output shows one volume with two volume elements. The size of each
partition used is shown, for example, 2004550 blocks. These blocks are disk blocks
and are 512 bytes.

9. Write the volume information to the logical volume labels by exiting xlv_make:

xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble
74 007-2825-009

Creating Volume Objects With xlv_make
10. Make an XFS filesystem using mkfs. For example:

mkfs /dev/xlv/xlv0
meta-data=/dev/xlv/xlv0 isize=256 agcount=8, agsize=16094 blks
data = bsize=4096 blocks=2482901
log =internal log bsize=4096 blocks=1000
realtime =none bsize=4096 blocks=0, rtextents=0

11. Mount the filesystem, for example:

mkdir /vol1
mount /dev/xlv/xlv0 /vol1

12. To have the logical volume mounted automatically at system startup, add an entry
for the volume to /etc/fstab. For example:

/dev/xlv/xlv0 /vol1 xfs rw,raw=/dev/rxlv/xlv0 0 0

Example 2: Creating A Striped, Plexed XLV Logical Volume

This example shows the noninteractive creation of an XLV logical volume from four
equal-sized option disks (controller 0, units 2 through 5). Two plexes will be created with
the data striped across the two disks in each plex. The stripe unit will be 128 KB. An XFS
filesystem is created and mounted at /vol1.

1. As in the previous example, unmount filesystems on the disks to be used, if
necessary.

2. Create a file called xlv0.specs that contains input for xlv_make. For this
example and a volume named xlv0, the file contains:

vol xlv0
data
plex
ve -stripe -stripe_unit 256 dks0d2s7 dks0d3s7
plex
ve -stripe -stripe_unit 256 dks0d4s7 dks0d5s7
end
show
exit

This script specifies the volume hierarchically: volume, subvolume (data), first plex
with a striped volume element, then second plex with a striped volume element.
The ve commands have a stripe unit argument of 256. This argument is the number
of 512-byte disk blocks (sectors), so 128 KB/512 = 256. The end command signifies
007-2825-009 75

4: Creating and Administering XLV Logical Volumes
that the specification is complete and the (optional) show command causes the
specification to be displayed. The logical volume label is created by the exit
command.

3. Run xlv_make to create the volume. For example:

xlv_make xlv0.specs

4. Make an XFS filesystem with an internal 10 MB log and 1 KB block size:

mkfs -b size=1k -l size=10m /dev/xlv/xlv0

5. Mount the filesystem, for example:

mkdir /vol1
mount /dev/xlv/xlv0 /vol1

6. To have the logical volume mounted automatically at system startup, add an entry
for the volume to /etc/fstab, for example:

/dev/xlv/xlv0 /vol1 xfs rw,raw=/dev/rxlv/xlv0 0 0

Example 3: Creating A Plexed XLV Logical Volume for an XFS Filesystem With an
External Log

The following example shows how to create an XLV logical volume with a log
subvolume that is plexed and a data subvolume that is concatenated and plexed. The
volume will be used to hold an XFS filesystem with an external log.

This example uses four disks on controller 1 at drive addresses 2 through 5. The disks at
drive addresses 2 and 3 are partitioned as option drives with xfslog partitions. The disks
at drive addresses 4 and 5 are partitioned as option drives without xfslog partitions.
76 007-2825-009

Creating Volume Objects With xlv_make
1. Invoke xlv_make and begin to create the volume, called xfs-mp5, by creating the
log subvolume with two plexes:

xlv_make
xlv_make> vol xfs-mp5
xfs-mp5
xlv_make> log
xfs-mp5.log
xlv_make> plex
xfs-mp5.log.0
xlv_make> ve dks1d2s15
xfs-mp5.log.0.0
xlv_make> plex
xfs-mp5.log.1
xlv_make> ve dks1d3s15
xfs-mp5.log.1.0

2. Create the data subvolume with two plexes, each of which has two volume
elements:

xlv_make> data
xfs-mp5.data
xlv_make> plex
xfs-mp5.data.0
xlv_make> ve dks1d2s7
xfs-mp5.data.0.0
xlv_make> ve dks1d4s7
xfs-mp5.data.0.1
xlv_make> plex
xfs-mp5.data.1
xlv_make> ve dks1d3s7
xfs-mp5.data.1.0
xlv_make> ve dks1d5s7
xfs-mp5.data.1.1
007-2825-009 77

4: Creating and Administering XLV Logical Volumes
3. Indicate that you have completed the volume, display it, and exit xlv_make:

xlv_make> end
Object specification completed
xlv_make> show

 Completed Objects
(1) VOL xfs-mp5
VE xfs-mp5.log.0.0 [empty]
 start=0, end=8255, (cat)grp_size=1
 /dev/dsk/dks1d2s15 (8256 blks)
VE xfs-mp5.log.1.0 [empty]
 start=0, end=8255, (cat)grp_size=1
 /dev/dsk/dks1d3s15 (8256 blks)
VE xfs-mp5.data.0.0 [empty]
 start=0, end=3920223, (cat)grp_size=1
 /dev/dsk/dks1d2s7 (3920224 blks)
VE xfs-mp5.data.0.1 [empty]
 start=3920224, end=7848703, (cat)grp_size=1
 /dev/dsk/dks1d4s7 (3928480 blks)
VE xfs-mp5.data.1.0 [empty]
 start=0, end=3920223, (cat)grp_size=1
 /dev/dsk/dks1d3s7 (3920224 blks)
VE xfs-mp5.data.1.1 [empty]
 start=3920224, end=7848703, (cat)grp_size=1
 /dev/dsk/dks1d5s7 (3928480 blks)

xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) y
Invoking xlv_assemble

4. Make an XFS filesystem by running mkfs. Note how mkfs automatically uses an
external log when one is present.

mkfs /dev/xlv/xfs-mp5
meta-data=/dev/xlv/xfs-mp5 isize=256 agcount=8, agsize=122636 blks
data = bsize=4096 blocks=981088
log =volume log bsize=4096 blocks=1032
realtime =none bsize=65536 blocks=0, rtextents=0

5. Mount the filesystem, for example:

mkdir /v1
mount /dev/xlv/xfs-mp5 /v1
78 007-2825-009

Displaying XLV Logical Volume Objects
6. To have the logical volume mounted automatically at system startup, add an entry
for the volume to /etc/fstab, for example:

/dev/xlv/xfs-mp5 /v1 xfs rw,raw=/dev/rxlv/xfs-mp5 0 0

Displaying XLV Logical Volume Objects

To get a list of the top level XLV objects on a system (volumes, unattached plexes, and
unattached volume elements), invokexlv_mgr and invoke the commandshow all, for
example:

xlv_mgr
xlv_mgr> show all
Volume Element: SPARE_VE
Volume: BIG_VOLUME (complete)

In this example, there are two top level objects, a volume element named SPARE_VE and
an XLV logical volume named BIG_VOLUME. The volume element is a top level object
because it is not part of (attached to) any plex. Volume elements can be attached to a plex
at a later time.
007-2825-009 79

4: Creating and Administering XLV Logical Volumes
To display the complete hierarchy of a top level object, invoke the xlv_mgr command
show object with the name of the object, for example:

xlv_mgr> show object BIG_VOLUME
VOL BIG_VOLUME (complete)
VE BIG_VOLUME.log.0.0 [active]
 start=0, end=8255, (cat)grp_size=1
 /dev/dsk/dks1d2s15 (8256 blks)
VE BIG_VOLUME.log.1.0 [active]
 start=0, end=8255, (cat)grp_size=1
 /dev/dsk/dks1d3s15 (8256 blks)
VE BIG_VOLUME.log.2.0 [active]
 start=0, end=8255, (cat)grp_size=1
 /dev/dsk/dks1d4s15 (8256 blks)
VE BIG_VOLUME.data.0.0 [active]
 start=0, end=3920223, (cat)grp_size=1
 /dev/dsk/dks1d2s7 (3920224 blks)
VE BIG_VOLUME.data.1.0 [active]
 start=0, end=3920223, (cat)grp_size=1
 /dev/dsk/dks1d3s7 (3920224 blks)
VE BIG_VOLUME.data.2.0 [active]
 start=0, end=3920223, (cat)grp_size=1
 /dev/dsk/dks1d4s7 (3920224 blks)

This output shows that BIG_VOLUME contains log and data subvolumes. Each
subvolume has three plexes that have one volume element each.

Adding a Volume Element to a Plex (Growing an XLV Logical Volume)

Growing an XLV logical volume (increasing its size) can be done by adding one or more
volume elements to the end of one or more of its plexes. (If you do not add volume
elements to all plexes, data stored in the added volume elements won’t be replicated in
all plexes.)

The following procedure assumes that you are starting with an XLV logical volume. If
you are starting with a filesystem on a single disk partition that you want to turn into a
logical volume and grow onto an additional disk partition, use the procedure in
“Growing an XFS Filesystem Onto Another Disk” in Chapter 6 instead.
80 007-2825-009

Adding a Volume Element to a Plex (Growing an XLV Logical Volume)
1. If any of the volume elements you plan to add to the volume don’t exist yet, create
them with xlv_make. For example, follow this procedure to create a volume
element out of a new disk, /dev/dsk/dks0d4s7:

xlv_make
xlv_make> ve spare_ve dks0d4s7
new_ve
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

The ve command creates a volume element name, spare_ve. The name is required
because the volume element is not part of a larger hierarchy; it is the top level object
in this case.

2. Use the attach command of the xlv_mgr command to add each volume element.
For example, to add the volume element from step 1 to plex 0 of the data subvolume
of the volume xlv0, use this procedure:

xlv_mgr
xlv_mgr> attach ve spare_ve xlv0.data.0

3. Quit out of xlv_mgr:

xlv_mgr> quit

4. If you are growing an XFS filesystem, mount the filesystem if it is not already
mounted:

mount volume mountpoint

volume is the device name of the logical volume, for example /dev/xlv/xlv0, and
mountpoint is the mount point directory for the logical volume.

5. If you are growing an XFS filesystem, use xfs_growfs to grow the filesystem:

xfs_growfs -d mountpoint

mountpoint is the mount point directory for the logical volume.
007-2825-009 81

4: Creating and Administering XLV Logical Volumes
6. If you are growing an EFS filesystem, unmount the filesystem if it is mounted, and
use growfs to grow the filesystem:

umount mountpoint
growfs volume

mountpoint is the mount point directory for the filesystem. volume is the device name
of the logical volume, for example, /dev/xlv/xlv0.

Adding a Plex to an XLV Logical Volume

If you have purchased the Disk Plexing Option software option and have installed a
FLEXlm license for it, you can add a plex to an existing subvolume for improved
reliability in case of disk failures. The procedure to add a plex to a subvolume is
described below. To add more than one plex to a subvolume or to add a plex to each of
the subvolumes in a volume, repeat the procedure as necessary.

1. If the plex that you want to add to the subvolume does not exist yet, create it with
xlv_make. For example, to create a plex called plex1 to add to the data
subvolume of a volume called root_vol, enter these commands:

xlv_make
xlv_make> plex plex1
plex1
xlv_make> ve /dev/dsk/dks0d3s7
plex1.0
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

2. Use the xlv_mgr command to add the plex to the volume. For example, to add the
standalone plex plex1 to root_vol, use this procedure:

xlv_mgr
xlv_mgr> attach plex plex1 root_vol.data

xlv_mgr automatically initiates a plex revive operation to copy the contents of the
original plex, root_vol.data.0, to the newly added plex.
82 007-2825-009

Adding a Plex to an XLV Logical Volume
3. You can confirm that root_vol now has two plexes by displaying the object
hierarchy:

xlv_mgr> show object root_vol
VOL root_vol (complete)
VE root_vol.data.0.0 [active]
 start=0, end=988091, (cat)grp_size=1
 /dev/dsk/dks0d2s7 (988092 blks)
VE root_vol.data.1.0 [empty]
 start=0, end=988091, (cat)grp_size=1
 /dev/dsk/dks0d3s7 (988092 blks)

The newly added plex, root_vol.data.1, is initially in the “empty” state. This is
because it is newly created.

4. Exit xlv_mgr:

xlv_mgr> quit

The plex revive completes and the new plex switches to “active” state automatically, but
if you want to check its progress and verify that the plex has become active, follow this
procedure:

1. List the XLV daemons running, for example:

ps -ef | grep xlv
 root 27 1 0 10:49:27 ? 0:00 /sbin/xlv_plexd -m 4
 root 35 1 0 10:49:28 ? 0:00 /sbin/xlv_labd
 root 31 1 0 10:49:27 ? 0:00 xlvd
 root 407 27 1 11:01:01 ? 0:00 xlv_plexd -v 2 -n root_vol.data
-d 50331648 -b 128 -w 0 0 1992629
 root 410 397 2 11:01:11 pts/0 0:00 grep xlv

One instance of the xlv_plexd daemon is currently reviving root_vol.data.
This daemon exits when the plex has been fully revived.

2. Later, check the XLV daemons again, for example:

ps -ef | grep xlv
 root 27 1 0 10:49:27 ? 0:00 /sbin/xlv_plexd -m 4
 root 35 1 0 10:49:28 ? 0:00 /sbin/xlv_labd
 root 31 1 0 10:49:27 ? 0:03 xlvd
 root 459 397 2 11:21:10 pts/0 0:00 grep xlv

The instance of xlv_plexd that was reviving root_vol.data is no longer
running; it has completed the plex revive.
007-2825-009 83

4: Creating and Administering XLV Logical Volumes
3. Check the state of the plex using xlv_mgr:

xlv_mgr
xlv_mgr> show object root_vol
VOL root_vol (complete)
VE root_vol.data.0.0 [active]
 start=0, end=988091, (cat)grp_size=1
 /dev/dsk/dks0d2s7 (988092 blks)
VE root_vol.data.1.0 [active]
 start=0, end=988091, (cat)grp_size=1
 /dev/dsk/dks0d2s0 (988092 blks)
xlv_mgr> quit

Both plexes are now in the “active” state.

Detaching a Plex From an XLV Logical Volume

Detaching a plex from a volume, perhaps because you want to swap disk drives, can be
done while the volume is active. However, the entire address range of the subvolume
must still be covered by active volume elements in the remaining plex or plexes.
xlv_mgrdoes not allow you to detach the only active plex in a volume if the other plexes
are not yet active. To detach a plex, follow these steps:

1. Start xlv_mgr and display the volume that has the plex that you plan to detach, for
example, root_vol:

xlv_mgr
xlv_mgr> show object root
VOL root (complete)
VE root.data.0.0 [active]
 start=0, end=1843199, (cat)grp_size=1
 /dev/dsk/dks1d3s0 (1843200 blks)
VE root.data.1.0 [active]
 start=0, end=1843199, (cat)grp_size=1
 /dev/dsk/dks1d4s0 (1843200 blks)

2. Detach plex 1 and give it the name rplex1 by issuing these commands:

xlv_mgr> detach plex root.data.1 rplex1
84 007-2825-009

Deleting an XLV Object
3. To examine the volume and the detached plex, issue these commands:

xlv_mgr> show -long all
PLEX rplex1
VE rplex1.0 [stale]
 start=0, end=1843199, (cat)grp_size=1
 /dev/dsk/dks1d4s0 (1843200 blks)

VOL root (complete)
VE root.data.0.0 [active]
 start=0, end=1843199, (cat)grp_size=1
 /dev/dsk/dks1d3s0 (1843200 blks)

4. Exit xlv_mgr:

xlv_mgr> quit

Deleting an XLV Object

Caution: The procedures in this section can result in the loss of data if they are not
performed properly. It is recommended for experienced IRIX system administrators only.

To delete a volume or any other XLV object, follow these steps:

1. If you are deleting a volume, you must unmount it first. For example:

umount /vol1

2. Start xlv_mgr and list each object on the system:

xlv_mgr
xlv_mgr> show -long all
VOL root_vol (complete)
VE root_vol.data.0.0 [active]
 start=0, end=988091, (cat)grp_size=1
 /dev/dsk/dks0d2s0 (988092 blks)
VE root_vol.data.1.0 [active]
 start=0, end=988091, (cat)grp_size=1
 /dev/dsk/dks0d2s7 (988092 blks)

This example shows one high-level object, a volume with two plexes in a data
subvolume (root_vol.data.0 and root_vol.data.1). Each plex has one
volume element.
007-2825-009 85

4: Creating and Administering XLV Logical Volumes
3. If the element you want to delete is not a high-level object, you must first detach it
from its high-level object. For example, to delete one of the plexes in the example, it
must first be detached:

xlv_mgr> detach plex root_vol.data.1 plex_to_be_deleted

Detached objects must be given a name, in this case plex_to_be_deleted.

4. Delete the object, in this example the plex plex_to_be_deleted:

xlv_mgr> delete object plex_to_be_deleted

5. Confirm that the object is gone:

xlv_mgr> show -long all
VOL root_vol (complete)
VE root_vol.data.0.0 [active]
 start=0, end=988091, (cat)grp_size=1
 /dev/dsk/dks0d2s0 (988092 blks)

6. Exit xlv_mgr:

xlv_mgr> quit

Removing and Mounting a Plex

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

You can get a snapshot of a filesystem by removing a plex from a plexed volume and
mounting that plex separately. Because you can only mount volumes, you must convert
the plex into a volume. The following procedure shows you how to remove the plex from
its original volume and make it into a separate volume:

1. Verify that the volume is currently not being revived. If there is a revive in progress,
wait until the revive is done because the data among the plexes is not identical until
after the plex revive is done.

ps -ef | grep xlv_plexd
 root 35 1 0 Dec 13 ? 0:00 /sbin/xlv_plexd -m 4

The output shows that just one copy of xlv_plexd, the master process, is running.
If more than one copy is running, a plex revive is in progress.
86 007-2825-009

Removing and Mounting a Plex
2. Unmount the filesystem mounted on the logical volume, /projvol5 in this
example:

umount /projvol5

Unmounting the filesystem puts it into a clean state.

3. Start xlv_mgr and display the logical volume, xfs-mp5 in this example:

xlv_mgr
xlv_mgr> show object xfs-mp5
VOL xfs-mp5 (complete)
VE xfs-mp5.log.0.0 [active]
 start=0, end=8255, (cat)grp_size=1
 /dev/dsk/dks1d2s15 (8256 blks)
VE xfs-mp5.log.1.0 [active]
 start=0, end=8255, (cat)grp_size=1
 /dev/dsk/dks1d3s15 (8256 blks)
VE xfs-mp5.data.0.0 [active]
 start=0, end=3920223, (cat)grp_size=1
 /dev/dsk/dks1d2s7 (3920224 blks)
VE xfs-mp5.data.0.1 [active]
 start=3920224, end=7848703, (cat)grp_size=1
 /dev/dsk/dks1d4s7 (3928480 blks)
VE xfs-mp5.data.1.0 [active]
 start=0, end=3920223, (cat)grp_size=1
 /dev/dsk/dks1d3s7 (3920224 blks)
VE xfs-mp5.data.1.1 [active]
 start=3920224, end=7848703, (cat)grp_size=1
 /dev/dsk/dks1d5s7 (3928480 blks)

4. Detach the second plex from the log subvolume and call it log_copy:

xlv_mgr> detach plex xfs-mp5.log.1 log_copy

One of the plexes from the log subvolume must be detached because the volume
that will be created with one of the data plexes must have a log subvolume to go
with it.

5. Detach the second plex from the data subvolume and call it data_copy:

xlv_mgr> detach plex xfs-mp5.data.1 data_copy
007-2825-009 87

4: Creating and Administering XLV Logical Volumes
6. Display all of the high-level objects to verify that there are now one volume and two
plexes:

xlv_mgr> show all
Volume: xfs-mp5 (complete)
Plex: log_copy
Plex: data_copy

7. Invoke the delete command for each detached plex:

xlv_mgr> delete object log_copy
Object log_copy deleted.

xlv_mgr> delete object data_copy
Object data_copy deleted.

The delete command changes the XLV logical volume information in the volume
headers, but does not touch the data in the partitions.

8. Exit xlv_mgr:

xlv_mgr> quit

9. Make the partitions from the detached plexes into a volume:

xlv_make
xlv_make> vol copy
copy
xlv_make> log
copy.log
xlv_make> ve dks1d3s15
copy.log.0.0
xlv_make> data
copy.data
xlv_make> ve dks1d3s7
copy.data.0.0
xlv_make> ve dks1d5s7
copy.data.0.1
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble
88 007-2825-009

Replacing a Disk For a Plexed Volume
10. Mount the new volume. The filesystem is still intact, so mkfs is not used (using
mkfs would erase the data).

mkdir /copy
mount /dev/xlv/copy /copy

11. Remount the original filesystem:

mount /dev/xlv/xfs-mp5 /projvol5

12. Use the ls command to confirm that the files on the original volume also appear on
the new volume that you created from the removed plex.

ls /copy
autoconfig chroot config cron.d
chkconfig clri cron fstab
ls /projvol5
autoconfig chroot config cron.d
chkconfig clri cron fstab

Replacing a Disk For a Plexed Volume

The procedure described in this section outlines the steps you must take when you find
you need to replace a disk that contains a part of a plexed volume element.

Note: The example used is for a disk in an Origin Vault enclosure that is used for a plexed
volume element. If you have a different disk setup, the XLV commands will be the same,
although the specific procedures for physically replacing a disk will differ.

In summary, to replace a disk for a plexed volume, perform the following steps:

1. Remove the volume element with the broken disk from XLV

2. Physically replace the disk drive

3. Remake the XLV volume element using the new drive

These steps are detailed in the following sections.
007-2825-009 89

4: Creating and Administering XLV Logical Volumes
Remove the Volume Element From XLV

This example assumes an Origin Vault enclosure. In this example, the failed disk is drive
ID 6 in Origin Vault 1 (dks2d6s7), which is in vol2 (plex 0). This example also assumes
that there are two plexes, and that each plex has only a single volume element. The
sample commands provided are for this specific disk failure example.

1. Delete the plex (or volume element) containing the broken disk from the volume (in
this case vol2). This command sequence detaches the plex and renames it
badplex.

xlv_mgr
xlv_mgr> detach plex vol2.data.0 badplex

If the deletion is successful, go to “Physically Replace the Disk Drive” on page 91
and continue with the procedure described there. If the failed disk is unresponsive
and the detachment fails, continue with step 2.

2. Execute the following commands. The -force option performs a detach operation
when the parent object is missing any pieces.

xlv_mgr> detach -force plex vol2.data.0 badplex
xlv_mgr> delete object badplex

If the deletion is successful at this point, go to “Physically Replace the Disk Drive”
on page 91 and continue with the procedure described there. If the failed disk is
unresponsive and the detachment fails, continue with step 3.

3. Unmount the filesystem, killing processes that have open files.

unmount -k /fs2

4. Save the volume configuration, using the -write option of the xlv_mgr script
command. You will need this information when you remake your volume, as
described in step 6.

The xlv_mgr script command displays the xlv_make(1M) commands you
need to create the volume. See the xlv_mgr(1M) man page for further information.
The -write option saves the commands into the specified file location; you do not
need to use this option if you record the command output yourself.

If xlv_mgr cannot read the XLV label off of the disk, the script command may
not work. In this case, you will need to use the volume configuration information
you saved as part of regular system backup and maintenance.

5. Delete the volume object:

xlv_mgr> delete object vol2
90 007-2825-009

Replacing a Disk For a Plexed Volume
6. Remake the volume without the broken disk.

In this example, the volume v2 was created with the following command sequence:

xlv_make
xlv_make> vol2
xlv_make> data
xlv_make> plex
xlv_make> ve dks2d6s7
xlv_make> plex
xlv_make> ve dks3d6s7
xlv_make> end
xlv_make> exit

To remake the volume without the broken disk, execute the following
command sequence:

xlv_make
xlv_make> vol2
xlv_make> data
xlv_make> plex
xlv_make> ve dks3d6s7
xlv_make> end
xlv_make> exit

Physically Replace the Disk Drive

Use the following procedure to replace the disk drive in an Origin Vault enclosure. You
must turn the power off to be sure that the bus is quiet while you are replacing the disk.
Inserting a disk while there is bus traffic can cause data corruption.

1. Identify the enclosure with the failed drive (Origin Vault 1 in this example).

2. Turn off power to Origin Vault 1.

3. Wait 10 seconds. This wait time is important, as it ensures the failed drive does not
receive additional damage.

4. Physically remove the failed disk drive and install the replacement disk.

5. Power the Origin Vault 1 back on.

If I/O writes occur to vol1 in Origin Vault 2 during the time that Origin Vault 1 is
powered off, then vol1 will need to be updated. Use xlv_mgr to determine if part of
vol1 is outdated or [offline] by entering the following command:

xlv_mgr> show kernel
007-2825-009 91

4: Creating and Administering XLV Logical Volumes
If the output shows [offline], the disk ID5 in Origin Vault 1 contains outdated data. If
part of vol1 is [offline], use xlv_mgr to put the affected volume element back on line.

In this example, drive dks2d5s7 would have been [offline] due to the power outage.
This drive is plex 0 of volume 1. Enter the command:

xlv_mgr> change online vol1.data.0.0

You may also be able to use the warm-plug feature to replace the disk drive. This is true
even if your disks are installed in the system cabinet rather than the Origin Vault
enclosure described in this example. For information on this feature, see the
scsiadminswap(1M), scsihotswap(1M), and the scsiquiesce(1M) man pages.

Remake the XLV Volume Element Using the New Drive

Perform the following steps to provide the replacement drive with the XLV volume
elements you are restoring.

1. Use the fx(1M) command to partition the new drive. It is essential that the new
drive be repartitioned exactly as the failed drive.

2. Create a plex (volume element) on the new disk drive.

xlv_make
xlv_make> plex newplexname
xlv_make> ve dks2d6s7

3. Attach the plex (or attach/insert the ve) back to the volume.

xlv_mgr
xlv_mgr> attach plex newplexname vol2.data

Creating a Plexed XLV Logical Volume for Root

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

You can put your root filesystem on a plexed volume for greater reliability. A plexed root
volume allows your system to continue running even if one of the root disks fails. If there
is a separate usr filesystem on the system disk, it should be plexed, too. Because the
92 007-2825-009

Creating a Plexed XLV Logical Volume for Root
swap partition may be unavailable if the root disk fails, a spare swap partition should be
available on a different disk. Administering the plexes of the root and, if present, usr
volumes and the swap partitions, is easiest if each disk used in the volumes is identical
and is partitioned identically.

The root volume can contain only a data subvolume. Each plex of the data subvolume
can contain only a single volume element. The volume element must contain a single
disk partition.

The root filesystem can be either an EFS filesystem or an XFS filesystem with an internal
log.

Use the following procedure to create a plexed root volume. It assumes that you are
starting with a working system (not a system with an empty system disk).

1. Make the root partition into an XLV volume. In this example, the XLV volume is
called xlv_root:

xlv_make
xlv_make> vol xlv_root
xlv_root
xlv_make> data
xlv_root.data
xlv_make> ve -force /dev/dsk/dks0d1s0
xlv_root.data.0.0
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

The result is an XLV volume named xlv_root that contains the root partition.
Because XLV preserves the data in partitions, the contents of the root partition are
preserved. The -force option to the ve command was used because a mounted
partition was included in the volume.

2. Reboot the system so that the system switches from running off the root partition at
/dev/dsk/dks0d1s0 to running off the logical volume /dev/xlv/xlv_root:

reboot
007-2825-009 93

4: Creating and Administering XLV Logical Volumes
3. You can confirm that the root volume is being used by comparing the major and
minor device numbers of /dev/root and /dev/xlv/xlv_root:

ls -l /dev/root /dev/xlv/xlv_root
brw------- 2 root sys 192, 0 Oct 31 17:58 /dev/root
brw------- 2 root sys 192, 0 Dec 12 17:58 /dev/xlv/xlv_root

4. Create the second plex, for example, out of /dev/dsk/dks0d2s0, and call the plex
root_plex1:

xlv_make
xlv_make> plex root_plex1
root_plex1
xlv_make> ve /dev/dsk/dks0d2s0
root_plex1.0
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

5. Add sash to the volume header of the disk used for the second plex. It enables
booting off of the alternate plex if the primary plex fails.

dvhtool -v get sash /tmp/sash /dev/rdsk/dks0d1vh
dvhtool -v add /tmp/sash sash /dev/rdsk/dks0d2vh

6. Attach the second plex to the volume using xlv_mgr and quit out of xlv_mgr:

xlv_mgr
xlv_mgr> attach plex root_plex1 xlv_root.data
xlv_mgr> quit

When the shell prompt returns, the system automatically begins a plex revive so
that the two plexes contain the same data.
94 007-2825-009

Booting the System Off an Alternate Plex
Booting the System Off an Alternate Plex

Once you plex the root volumes, you can boot off a secondary plex if the primary plex
becomes unavailable. Because the boot PROM does not understand XLV logical volumes,
you must manually reconfigure the system to boot the system from the disk that contains
the alternate plex. The procedure for booting the system off a secondary plex depends on
the model of workstation or server. The following subsection, “CHALLENGE L,
CHALLENGE XL, and CHALLENGE DM” applies to those systems. For all other
workstations and servers, including the Origin2000 server, follow the procedure in the
subsection, “All Other Models” on page 96.

CHALLENGE L, CHALLENGE XL, and CHALLENGE DM

With CHALLENGE L, XL, and DM systems, it is possible to change the drive addresses
of disks using a dial or switch. If the system disk and the alternate disk are both internal
disks on the same channel and are partitioned identically, you can swap the drive
addresses of the two disks. (If the system does not meet these requirements, use the
procedure in “All Other Models” on page 96 instead.) By exchanging the drive addresses
for the system disk and the alternate disk, the system automatically boots off the
alternate disk, which has become the new system disk. Follow this procedure:

1. Shut down the system. For example, use this command:

shutdown

2. Power off the system.

3. By manipulating the switches or dials on the system disk and the alternate disk,
change each disk’s drive address to the other’s drive address.

4. Power up the system.
007-2825-009 95

4: Creating and Administering XLV Logical Volumes
All Other Models

The following procedure describes how to boot the system off the alternate root plex and
can be used on all system. In the example used in this procedure, the system is
reconfigured to boot off the partition /dev/dsk/dks0d2s0 and use partition
/dev/dsk/dks0d2s1 as swap. Substitute the correct partitions for your system.

1. On the System Maintenance menu, choose Enter Command Monitor:

...
5) Enter Command Monitor

Option? 5
Command Monitor. Type “exit” to return to the menu.

2. Display the PROM environment variables:

>> printenv
SystemPartition=dksc(0,1,8)
OSLoadPartition=dksc(0,1,0)
root=dks0d1s0
...

The swap PROM environment variable (which is set below) is not displayed
because it is not saved in NVRAM.

3. Reset the SystemPartition, OSLoadPartition, and root environment
variables to have the values of the disk partition that contains the alternate plex and
the swap environment variable to have the value of the alternate swap partition:

>> setenv SystemPartition dksc(0,2,8)
>> setenv OSLoadPartition dksc(0,2,0)
>> setenv root dks0d2s0
>> setenv swap /dev/dsk/dks0d2s1

4. Exit the Command Monitor and restart the system:

>> exit
...
Option? 1
 Starting up the system...
...
96 007-2825-009

Configuring the System for More Than Ten XLV Logical Volumes
Configuring the System for More Than Ten XLV Logical Volumes

By default, a system can have up to ten XLV logical volumes. To increase the number of
XLV logical volumes supported, you modify the file /var/sysgen/master.d/xlv.
The procedure is:

1. Using any editor, open the file /var/sysgen/master.d/xlv, for example:

vi /var/sysgen/master.d/xlv

2. Find this line in the file:

#define XLV_MAXVOLS 10

3. Change the 10 in this line to a higher number of your choice, for example:

#define XLV_MAXVOLS 20

4. Write the file and quit the editor.

5. Generate a new kernel:

/etc/autoconfig

6. Reboot the system to make the change take effect:

reboot

Converting lv Logical Volumes to XLV Logical Volumes

This section explains the procedure for converting lv logical volumes to XLV logical
volumes. The files on the logical volumes are not modified or dumped during the
conversion. You must be superuser to perform this procedure.

1. Choose new names for the logical volumes, if desired. XLV, unlike lv, only requires
names to be valid filenames (except periods are not allowed in XLV names), so you
can choose more meaningful names. For example, you can make the volume names
the same as the mount points you use. If you mount logical volumes at /a, /b, and
/c, you can name the XLV volumes a, b, and c.

2. Unmount all lv logical volumes that you plan to convert to XLV logical volumes.
For example:

umount /a
007-2825-009 97

4: Creating and Administering XLV Logical Volumes
3. Create an input script for xlv_make by using lv_to_xlv:

lv_to_xlv -o scriptfile

scriptfile is the name of a temporary file that lv_to_xlv creates, for example
/usr/tmp/xlv.script. It contains a series of xlv_make commands that can be
used to create XLV volumes that are equivalent to the lv logical volumes listed in
/etc/lvtab.

4. If you want to change the volume names, edit scriptfile and replace the names on the
lines that begin with vol with the new names. For example, change:

vol lv0

to:

vol a

The volume name can be any name that is a valid filename.

5. By default, all lv logical volumes on the system are converted to XLV. If you do not
want all lv logical volumes converted to XLV, edit scriptfile and remove the
xlv_make commands for the volumes that you do not want to change. See
“Creating Volume Objects With xlv_make” on page 72 and the xlv_make(1M)
reference page for more information.

6. Create the XLV volumes by running xlv_make with scriptfile as input:

xlv_make scriptfile

7. If you converted all lv logical volumes to XLV, remove /etc/lvtab:

rm /etc/lvtab

If you converted only some of the lv logical volumes to XLV, open /etc/lvtab for
editing to begin removing the entries for the logical volumes you converted.

vi /etc/lvtab
98 007-2825-009

Creating a Record of XLV Logical Volume Configurations
8. Edit /etc/fstab so that it automatically mounts the XLV logical volumes at
startup. These changes to /etc/fstab are required for each XLV logical volume:

• In the first field, insert the subdirectory xlv after /dev/dsk.

• If you changed the name of the volume, for example from lv0 to a, make the
change in the first field.

• Insert the subdirectory xlv into the raw device name.

• If you changed the name of the volume, for example from lv0 to a, make the
change in the raw device.

For example, if an original line is:

/dev/dsk/lv0 /a efs rw,raw=/dev/rdsk/lv0 0 0

the changed line, including the name change, is:

/dev/xlv/a /a efs rw,raw=/dev/rxlv/a 0 0

9. Mount the XLV logical volume, for example:

mount /a

Creating a Record of XLV Logical Volume Configurations

Information about XLV objects, volumes, subvolumes, plexes, and volume elements, is
stored in logical volume labels in the volume header of each disk that contains an XLV
object (see “Volume Headers” in Chapter 1 for more information). If an XLV logical
volume label is removed, the system is unable to assemble the logical volume that
includes that logical volume label, although the data in the object described in the logical
volume label is still present. You can recreate the logical volume label with xlv_make,
but only if you remember the exact configuration of the affected logical volume. The
xlv_mgr command can be used to create a script that records the exact configuration of
each logical volume on the system. This script can be given to xlv_make as input at a
later time if it is ever necessary to recreate any XLV logical volumes on the system.
007-2825-009 99

4: Creating and Administering XLV Logical Volumes
To create a record of the exact configuration of each XLV logical volume on the system,
follow this procedure:

1. Start the script command, which begins capturing text on the screen, and put the
captured text in the file /var/config/XLV.configuration:

script /var/config/XLV.configuration
Script started, file is XLV.configuration

2. Start xlv_mgr:

xlv_mgr

3. Give the script -write command to xlv_mgr with the name of a file that will
contain the configuration information, for example
/var/config/XLV.configuration:

xlv_mgr> script -write /var/config/XLV.configuration

4. Exit xlv_mgr:

xlv_mgr> quit

5. Check the contents of the file that contains the configuration:

cat /var/config/XLV.confguration
#
Create Volume proj_vol
#
vol proj_vol
data
plex
ve -force -start 0 /dev/dsk/dks1d3s11 /dev/dsk/dks1d3s12
plex
ve -force -start 0 /dev/dsk/dks1d6s2 /dev/dsk/dks1d6s3
end
exit
100 007-2825-009

Chapter 5

5. Filesystem Concepts

This chapter explains some important concepts about hard disk filesystems, the structure
by which files and directories are organized in the IRIX system. The chapter describes the
primary type of IRIX filesystem, the XFS filesystem, and other disk filesystems. It
explains concepts that are important to filesystem administration such as IRIX directory
organization, filesystem features, filesystem types, creating filesystems, mounting and
unmounting filesystems, and checking filesystems for consistency.

Note: For information on CXFS filesystems and the cluster environment they support,
see the CXFS Software Installation and Administration Guide.

The major sections in this chapter are:

• “IRIX Directory Organization” on page 102

• “General Filesystem Concepts” on page 105

• “XFS Filesystems” on page 110

• “CXFS Filesystems” on page 112

• “EFS Filesystems” on page 113

• “Network File Systems (NFS)” on page 113

• “Cache File Systems (CacheFS)” on page 114

• “/proc Filesystem” on page 114

• “/hw Filesystem” on page 115

• “Foreign Filesystems” on page 118

• “XFS Filesystem Creation” on page 118

• “Filesystem Mounting and Unmounting” on page 119

• “XFS Filesystem Checking” on page 120

• “Filesystem Reorganization” on page 121
007-2825-009 101

5: Filesystem Concepts
• “Filesystem Administration From the Miniroot” on page 121

• “How to Add Filesystem Space” on page 121

• “Disk Quotas” on page 123

• “Filesystem Corruption” on page 124

Even if you are familiar with the basic concepts of UNIX filesystems, you should read
through the following sections. The IRIX XFS filesystem is slightly different internally
from other UNIX filesystems and has slightly different administration commands and
procedures.

Filesystem administration procedures are described in Chapter 6, “Creating and
Growing Filesystems,” and Chapter 7, “Maintaining Filesystems.”

For information about floppy and CD-ROM filesystems, see the guide IRIX Admin:
Peripheral Devices.

IRIX Directory Organization

Every IRIX system disk contains some standard directories. These directories contain
operating system files organized by function. This organization is not entirely logical; it
has evolved over time and has its roots in several versions of UNIX. Table 5-1 lists the
standard directories that most systems have. It also lists alternate names for those
directories in some cases. The alternate names are usually an older pathname for the
directory and are provided (as symbolic links) to ease the transition from old pathnames
to new pathnames as the IRIX directory organization evolves.

Table 5-1 Standard Directories and Their Contents

Directory Alternate Name Contents

/ The root directory, contains the IRIX kernel
(/unix), login files for the root login, and all
other subdirectories

/CDROM Mount point for CDROMs, used by the
mediad daemon

/dev Device files for terminals, disks, tape drives,
CD-ROM drives, and so on
102 007-2825-009

IRIX Directory Organization
/dev/fd File descriptor filesystem

/etc Critical system configuration files and
maintenance commands

/etc/config /var/config,
/usr/var/config

Configuration files for the scripts in
/etc/init.d

/etc/init.d Scripts that execute during system
initialization (the /etc/rc0.d and
/etc/rc2.d directories serve a similar
purpose)

/hosts Default mount point for NFS filesystems
mounted by autofs

/hw Hardware graph filesystem

/lib Critical compiler binaries and libraries

/lib32 Critical compiler binaries and libraries

/lib64 Critical compiler binaries and libraries for
64-bit systems (IP19, IP21, IP25, IP26, IP27,
IP28 and IP30)

/lost+found Holding area for files recovered by the
xfs_repair and fsck commands (there is
also a /lost+found directory in the root of
all mounted XFS and EFS filesystems)

/ns Default mount point for pseudo-filesystem
interface to the Unified Name Service (UNS)
supported by the nsd daemon.

/opt Installation location for some third-party
software

/proc /debug Process (debug) filesystem

/sbin Commands needed for minimal system
operability

/stand Standalone utilities (fx)

Table 5-1 (continued) Standard Directories and Their Contents

Directory Alternate Name Contents
007-2825-009 103

5: Filesystem Concepts
/tmp Temporary files

/tmp_mnt Mount point for automounted filesystems

/usr On some systems, a filesystem mount point

/usr/bin /bin Commands

/usr/bin/X11 Most standard X window system executables

/usr/bsd Commands

/usr/demos Demo programs

/usr/etc Critical system configuration files and
maintenance commands

/usr/freeware Location of unsupported free software

/usr/gnu GNU utilities

/usr/include C header files

/usr/lib Libraries and support files

/usr/lib32 Libraries and support files

/usr/lib32/internal Dynamic shared objects (DSOs) used by
programs shipped by Silicon Graphics, Inc.
(not used for compilation)

/usr/lib64 Libraries and support files for 64-bit systems
(IP19, IP21, IP25, IP26, IP27, IP28 and IP30)

/usr/lib64/internal Dynamic shared objects (DSOs) used by
programs shipped by Silicon Graphics, Inc.
(not used for compilation)

/usr/Motif-1.2 Motif 1.2-specific binaries, headers, and libs

/usr/people Home directories

/usr/relnotes Release notes

/usr/sbin Commands

Table 5-1 (continued) Standard Directories and Their Contents

Directory Alternate Name Contents
104 007-2825-009

General Filesystem Concepts
General Filesystem Concepts

A filesystem is a data structure that organizes files and directories on a disk partition so
that they can be easily retrieved. Only one filesystem can reside on a disk partition.

A file is a one-dimensional array of bytes with no other structure implied. Information
about each file is stored in structures called inodes (inodes are described in “Inodes” on
page 107). Files cannot span filesystems.

/usr/share Shared data files for various applications (can
be mounted via NFS as read-only)

/usr/share/Insight InSight books

/usr/share/catman Reference pages (man pages)

/usr/var Present if / and /usr are separate filesystems

/var System files likely to be customized or
machine-specific

/var/X11 X11 configuration files

/var/adm /usr/adm System log files

/var/inst Software installation history

/var/inst/patchbase Original installed files replaced in patches

/var/mail /usr/mail Incoming mail

/var/ns Protocol-specific dynamic shared objects
(DSOs) and cache files for the nsd daemon

/var/preserve /usr/preserve Temporary editor files

/var/spool /usr/spool Printer support files

/var/tmp /usr/tmp Temporary files

/var/yp NIS commands

Table 5-1 (continued) Standard Directories and Their Contents

Directory Alternate Name Contents
007-2825-009 105

5: Filesystem Concepts
A directory is a container that stores files and other directories. It is merely another type
of file that the user is permitted to use, but not allowed to write; the operating system
itself retains the responsibility for writing directories. Directories cannot span
filesystems. The combination of directories and files make up a filesystem.

The starting point of any filesystem is an unnamed directory that serves as the root for
that particular filesystem. In the IRIX operating system there is always one filesystem
that is itself referred to by that name, the root filesystem. Traditionally, the root directory
of the root filesystem is represented by a single slash (/). Filesystems are attached to the
directory hierarchy by the mount command. The result is the IRIX directory structure
shown in Figure 5-1.

Figure 5-1 The IRIX Filesystem

You can join two or more disk partitions to create a logical volume. The logical volume can
be treated as if it were a single disk partition, so a filesystem can reside on a logical
volume and hence is the only way for a single filesystem to span more than one disk. For
more information on XLV logical volumes, see Chapter 3, “XLV Logical Volume
Concepts.”

The following subsections describe key components of filesystems.

/

/bin /etc /usr /var /d2

/proj1 /proj2

Partition
0

Partition
7

Partition
7

/d3

/proj3 /proj4

Disk 1 Disk 2 Disk 3
106 007-2825-009

General Filesystem Concepts
Inodes

Information about each file is stored in a structure called an inode. The word inode is an
abbreviation of the term index node. An inode is a data structure that stores all
information about a file except its name, which is stored in the directory. Each inode has
an identifying inode number, which is unique across the filesystem that includes the file.

An inode contains the following information:

• The type of the file (see “Types of Files” on page 108 for more information)

• The access mode of the file; the mode defines the access permissions read, write, and
execute and may also contain security labels and access control lists

• The number of hard links to the file (see “Hard Links and Symbolic Links” on
page 108 for more information)

• Who owns the file (the owner’s user-ID number) and the group to which the file
belongs (the group-ID number)

• The size of the file in bytes

• The date and time the file was last accessed, and last modified

• Information for finding the file’s data within the disk partition or logical volume

• The pathname of symbolic links (when they fit and on XFS filesystems only)

You can use the ls command with various options to display the information stored in
inodes. For example, the command ls -l displays all but the last two items in the list
above in the order listed (the date shown is the last modified time).

Inodes do not contain the name of the file or its directory.
007-2825-009 107

5: Filesystem Concepts
Types of Files

Filesystems can contain the types of files listed Table 5-2. The type of a file is indicated by
the first character in the line of ls -l output for the file.

Hard Links and Symbolic Links

As discussed in “Inodes” on page 107, information about each file, except for the name
and directory of the file, is stored in an inode for the file. The name of the file is stored in
the file’s directory and a link to the file is created by associating the filename with an
inode number. This type of link is called a hard link. Although every file is a hard link, the
term is usually used only when two or more filenames are associated with the same
inode number. Because inode numbers are unique only within a filesystem, hard links
cannot be created across filesystem boundaries.

Table 5-2 Types of Files

Type of File Character Description

Regular files – Regular files are one-dimensional arrays of bytes.

Directories d Directories are containers for files and other directories.

Symbolic links l Symbolic links are files that contain the name of another
file or a directory.

Character devices c Character devices enable communication between
hardware and IRIX; data is accessed on a character by
character basis.

Block devices b Block devices enable communication between hardware
and IRIX; data is accessed in blocks from a system buffer
cache.

Named pipes (also
known as FIFOs)

p Named pipes allow communication between two
unrelated processes running on the same host. They are
created with the mknod command (see the mknod(1M)
reference page for more information on mknod).

UNIX domain sockets s UNIX domain sockets are connections between
processes that allow them to communicate, possibly
over a network.
108 007-2825-009

General Filesystem Concepts
The second and later hard links to a file are created with the ln command, without the
-s option. For example, suppose the current directory contains a file called origfile. To
create a hard link called linkfile to the file origfile, enter this command:

% ln origfile linkfile

The output of ls -l for origfile and linkfile shows identical sizes and last
modification times:

% ls -l origfile linkfile
-rw-rw-r-- 2 joyce user 4 Apr 5 11:15 origfile
-rw-rw-r-- 2 joyce user 4 Apr 5 11:15 linkfile

Because origfile and linkfile are simply two names for the same file, changes in
the contents of the file are visible when using either filename. Removing one of the links
has no effect on the other. The file is not removed until there are no links to it (the number
of links to the file, the link count, is stored in the file’s inode).

Another type of link is the symbolic link. This type of link is actually a file (see Table 5-2).
The file contains a text string, which is the pathname of another file or directory. Because
a symbolic link is a file, it has its own owners and permissions. The file or directory it
points to can be in another filesystem. If the file or directory that a symbolic link points
to is removed, it is no longer available and the symbolic link becomes useless until the
target is recreated (it is called a dangling symbolic link).

Symbolic links are created with the ln command with the -s option. For example, to
create a symbolic link called linkdir to the directory origdir:

% ln -s origdir linkdir

The output of ls -ld for the symbolic link is shown below. Notice that the permissions
and other information do not match. The listing for linkdir shows that it is a symbolic
link to origdir.

% ls -ld linkdir origdir
drwxrwxrwt 13 sys sys 2048 Apr 5 11:37 origdir
lrwxrwxr-x 1 joyce user 8 Apr 5 11:52 linkdir -> origdir

When you use “..” in pathnames that involve symbolic links, be aware that “..” refers to
the parent directory of the true file or directory, not the parent of the directory that
contains the symbolic link.

For more information about hard and symbolic links, see the ln(1) reference page and
experiment with creating and removing hard and symbolic links.
007-2825-009 109

5: Filesystem Concepts
Filesystem Names

Filesystems do not have names per se; they are identified by their location on a disk or
their position in the directory structure as follows:

• By the block and character device file names of the disk partition or logical volume
that contains the filesystem (see “Block and Character Devices” in Chapter 1)

• By a mnemonic name for the disk partition or logical volume that contains the
filesystem (see “Creating Mnemonic Names for Device Files With ln” in Chapter 2)

• By the mount point for the filesystem (see “Filesystem Mounting and Unmounting”
on page 119)

The filesystem identifier from the list above that you use with commands that administer
filesystems (such as mkfs, mount, umount, and fsck) depends upon the command. See
the reference page for the command you want to use or examples in this guide to
determine which filesystem name to use.

XFS Filesystems

XFS is an IRIX filesystem designed for use on most Silicon Graphics systems—from
desktop systems to supercomputer systems. Its major features include:

• Full 64-bit file capabilities (files larger than 2 GB)

• Rapid and reliable recovery after system crashes because of journaling technology

• Efficient support of large, sparse files (files with “holes”)

• Integrated, full-function volume manager, the XLV Volume Manager

• Extremely high I/O performance that scales well on multiprocessing systems

• Guaranteed-rate I/O for multimedia and data acquisition uses

• Compatibility with existing applications and with NFS

• User-specified filesystem block sizes ranging from 512 bytes up to 64 KB

• Small directories and symbolic links of 156 characters or less take no space

At least 32 MB of memory is recommended for systems with XFS filesystems.
110 007-2825-009

XFS Filesystems
XFS supports files and filesystems of 240-1 or 1,099,511,627,775 bytes (one terabyte) on
32-bit systems (IP17, IP20, IP22, and IP32). Files up to 263-1 bytes and filesystems of
unlimited size are supported on 64-bit systems (IP19, IP21, IP25, IP26, and IP27). You can
use the filesystem interfaces supplied with the IRIS Development Option (IDO) software
option to write 32-bit programs that can track 64-bit position and file size. Many
programs work without modification because sequential reads succeed even on files
larger than 2 GB. NFS allows you to export 64-bit XFS filesystems to other systems.

XFS uses database journaling technology to provide high reliability and rapid recovery.
Recovery after a system crash is completed within a few seconds, without the use of a
filesystem checker such as the fsck command. Recovery time is independent of
filesystem size.

XFS is designed to be a very high performance filesystem. Under certain conditions,
throughput exceeds 100 MB per second. Its performance scales to complement the
CHALLENGE MP architecture and the ORIGIN 2000 architecture. While traditional
filesystems suffer from reduced performance as they grow in size, with XFS there is no
performance penalty.

You can create filesystems with block sizes ranging from 512 bytes to 64 KB. For real-time
data, the maximum extent size is 1 GB. Filesystem extents, which provide for contiguous
data within a file, are created automatically for normal files and may be configured at file
creation time for real-time files using the fcntl() system call. Extents are multiples of
a filesystem block. Inodes are created as needed by XFS filesystems. You can specify the
size of inodes with the -i option to the filesystem creation command, mkfs. You can also
specify the maximum percentage of the space in a filesystem that can be occupied by
inodes with the -i maxpct= option of the mkfs command.

A feature of XFS filesystems called extended attributes enables users and applications to
associate name and value pairs to files, directories, symbolic links, and inodes. These
name and value pairs are called attributes and can be set and displayed with the attr
command. For more information see the, attr(1) reference page.
007-2825-009 111

5: Filesystem Concepts
Two features of XFS filesystems enable applications to control their I/O bandwidth
allocation. Guaranteed-rate I/O, described in Chapter 8, “System Administration for
Guaranteed-Rate I/O,” enables a process to receive data from a system resource at a
predefined rate, regardless of other activity on the system. Priority I/O, described in the
prio(5) reference page, enables a process to reserve a portion of the system’s resources
for its exclusive use for a period of time.

Most filesystem commands, such as du, dvhtool, ls, mount, prtvtoc, and umount,
work with XFS filesystems with no user-visible changes. A few commands, such as df,
fx, and mkfs have additional features for XFS. The filesystem commands clri, fsck,
findblk, and ncheck are not used with XFS filesystems.

For backup and restore, use the standard IRIX commands backup, bru, cpio,
restore, and tar and the optional software product NetWorker for IRIX for files
smaller than 2 GB. To dump XFS filesystems, the command xfsdump must be used
instead of dump. Restoring from these dumps is done using xfsrestore. For more
information about the relationships between xfsdump, xfsrestore, dump, and
restore on XFS filesystems, see the “About xfsdump and xfsrestore” section of the
“Backup and Recovery Procedures” chapter of IRIX Admin: Backup, Security, and
Accounting.

CXFS Filesystems

CXFS is a clustered XFS filesystem that allows for logical file sharing, as with networked
filesystems, but with significant performance and functionality advantages.CXFS runs
on top of a storage area network (SAN), where each computer system in the cluster has
direct high-speed data channels to a shared set of disks. Running CXFS requires a
FLEXlm license key.

For information about the features of CXFS filesystems as well as information about
installing and administering CXFS filesystems, see the CXFS Software Installation and
Administration Guide.
112 007-2825-009

EFS Filesystems
EFS Filesystems

Note: Support for EFS filesystems will be discontinued in a future IRIX release. For
information on converting EFS filesystems to XFS filesystems, see Chapter 6, “Creating
and Growing Filesystems.”

The EFS filesystem is the original IRIX filesystem. It contains an enhancement to the
standard UNIX filesystem called extents, and thus is called the Extent File System (EFS).
The maximum size of an EFS filesystem is about 8 GB. It uses a filesystem block size of
512 bytes and allows a maximum file size of 2 GB minus 1 byte.

Information on EFS filesystems and their administration is provided in Appendix A,
“EFS Filesystems”.

Network File Systems (NFS)

NFS filesystems are available if you are using the optional NFS software. NFS filesystems
are filesystems that are exported from one host and mounted on other hosts across a
network.

On the hosts where the filesystems reside, they are treated just like any other XFS
filesystem. The only special feature of these filesystems is that they are exported for
mounting from other workstations. Exporting NFS filesystems is done with the
exportfs command. On other hosts, these filesystems are mounted with the mount
command or by using the automount facility of NFS.

Tip: The section “Making Your Disk Space Available to Other Users” in Chapter 4 of the
Personal System Administration Guide and the section “Using Disk Space on Other
Systems” in Chapter 5 of the Personal System Administration Guide provide instructions
for mounting and exporting NFS filesystems.

NFS filesystems are described in detail in the ONC3/NFS Administrator’s Guide, which is
included with the NFS software option.
007-2825-009 113

5: Filesystem Concepts
Cache File Systems (CacheFS)

The Cache File System (CacheFS) is a new filesystem type that provides client-side
caching for NFS and other filesystem types. Using CacheFS on NFS clients with local disk
space can significantly increase the number of clients a server can support and reduce the
data access time for clients using read-only file systems.

The cfsadmin command is used for managing CacheFS filesystems. A special version
of the fsck command, fsck_cachefs is used to check the integrity of a cache directory.
It is automatically invoked when a CacheFS filesystem is mounted. When mounting and
unmounting CacheFS filesystems, the -t cachefs option must be used. For more
information on these commands, see the cfsadmin(1M), fsck_cachefs(1M), and
mount(1M) reference pages.

CacheFS filesystems are available if you are using the optional NFS software. They are
described in detail in the ONC3/NFS Administrator’s Guide, which is included with the
NFS software option.

 /proc Filesystem

The /proc filesystem, also known as the debug filesystem, provides an interface to
running IRIX processes for use by monitoring programs, such as ps and top, and
debuggers, such as dbx. The debug filesystem is usually mounted on /proc with a link
to /debug. To reduce confusion, /proc is not displayed when you list free space with
the df command.

The “files” of the debug filesystem are of the form /proc/nnnnn and /proc/pinfo/nnnnn,
where nnnnn is a decimal number corresponding to a process ID. These files do not
consume disk space; they are merely handles for debugging processes. /proc files
cannot be removed.

See the proc(4) reference page for more information on the debug filesystem.
114 007-2825-009

/hw Filesystem
/hw Filesystem

The hardware graph, also known as the hwgraph, is a feature of IRIX that facilitates the
management of large and topologically complex I/O subsystems. The /hw filesystem is
a visible reflection of the hwgraph. The /hw filesystem is a filesystem type, similar to
/proc. Like /proc, /hw is not displayed when you list free space with the df command.

Note: The contents of the hardware graph and the links in it may change across
hardware and software releases. For this reason, an administrator should use the /dev
directory as the root of the path for all device file usage, even though the directories
under /dev are links into /hw. For example, you should not use device names under
/hw when mounting filesystems or configuring the root filesystem.

The hwgraph is a directed graph, consisting of a set of “vertexes” (points) that represent
hardware entities and “edges” (lines) that connect the vertexes. Each edge is a one-way
linkage from a source vertex to a target vertex (this is the definition of a directed graph).
Each edge has a label, a character string that names the edge. A small part of a typical
hwgraph is depicted in Figure 5-2.
007-2825-009 115

5: Filesystem Concepts
Figure 5-2 Part of a Typical Hwgraph

block

char

volume

disk

dksOdOvol

lun

O

1

scsi_ctlr

O

target

pci

slot

module

hw

1

io

O

116 007-2825-009

/hw Filesystem
Figure 5-2 shows the part of the graph that represents block and character access to the
whole-volume partition of a disk. Pathname notation is used to identify each hardware
entity (vertex). The pathname consists of each of the edges in the path from the root to
the hardware entity. For example, the two paths to each of the block and character
devices might be:

/hw/module/1/io/pci/slot/0/scsi_ctlr/0/target/1/lun/0/disk/volume/block
/hw/module/1/io/pci/slot/0/scsi_ctlr/0/target/1/lun/0/disk/volume/char
/hw/module/1/io/dks0d0vol/block
/hw/module/1/io/dks0d0vol/char

The hwgraph is built dynamically (it has no on-disk contents) and changes to reflect
changes in the hardware inventory. Figure 5-2 is color-coded to show the parts of graph
are built by the kernel (black), the PCI bus adapter (red), the SCSI controller driver
(magenta), and the disk device driver (green). In the hwgraph, logical controller numbers
are used for each controller in the I/O subsystem, rather than physical controller
numbers. These logical controller numbers are specified in the file
/etc/ioconfig.conf. For more information, see the ioconfig(1M) reference page.
The ioconfig(1M) reference page also describes the configuration file /etc/ioperms,
which contains information about the owner, group, and permissions of devices in the
hwgraph.

You can navigate the /hw filesystem using commands such as cd, ls, and find and
browse it to discover the hardware configuration. Symbolic links to /hw paths exist to all
the device special filenames that are conventionally expected to exist in /dev, with the
exception of XLV logical volumes. The symbolic links are implemented by creating them
from /dev to /hw. Here is a typical link:

lrwxr-xr-x 1 root sys 13 Aug 6 11:23 /dev/root -> /hw/disk/root

Do not remove /hw; very little on the system works without it.
007-2825-009 117

5: Filesystem Concepts
Foreign Filesystems

The IRIX operating system supports four filesystem formats native to other operating
systems. These filesystem formats are as follows:

hfs (mac) The filesystem used by Macintosh computers

dos (fat) The filesystem used by IBM-compatible personal computers

iso9660 (CD-ROM)
A CD-ROM filesystem type conforming to ISO standard 9660

cdda Compact disk digital audio

For further information on the filesystem types that IRIX supports, see the
filesystems(4) reference page. For information on administering hfs and dos
filesystems, see the mkfp(1M) and fpck(1M) reference pages.

XFS Filesystem Creation

To turn a disk partition or logical volume into an XFS filesystem, the mkfs command
must be used. It takes a disk partition or logical volume and divides it up into areas for
data blocks, inodes, and free lists, and writes out the appropriate inode tables,
superblocks, and block maps. It creates the filesystem’s root directory.

The following mkfs example makes an XFS filesystem with a 1 MB internal log section is:

mkfs -l size=1m /dev/rdsk/dks0d2s7

The following mkfs example makes an XFS filesystem on a logical volume with log and
data subvolumes is:

mkfs /dev/rxlv/a

For more instructions on making XFS filesystems see Chapter 6, “Creating and Growing
Filesystems,” and the mkfs(1M) and mkfs_xfs(1M) reference pages.
118 007-2825-009

Filesystem Mounting and Unmounting
Filesystem Mounting and Unmounting

Filesystems must be mounted to be used. Figure 5-3 illustrates this process. When a
filesystem is mounted, the name of the device file for the filesystem
(/dev/rdsk/dks0d2s7 in Figure 5-3) and the name of a directory (/proj in
Figure 5-3) are given. This directory, /proj,is called a mount point and forms the
connection between the filesystem containing the mount point and the filesystem to be
mounted. Mounting a filesystem tells the kernel that the mount point is to be considered
equivalent to the top level directory of the filesystem when pathnames are resolved. In
Figure 5-3, the files a, b, and c in the /dev/rdsk/dks0d2s7 filesystem become
/proj/a, /proj/b, and /proj/c as shown in the bottom of the figure.

Figure 5-3 Mounting a Filesystem

When you mount a filesystem, the original contents of the mount point directory are
hidden and unavailable until the filesystem is unmounted. However, the mount point
directory owner and permissions are not hidden. Restricted permissions can restrict
access to the mounted filesystem.

/(root)

/disk2/usr /proj /dev/rdsk/dks0d2s7

/b/a /c

/(root)

/disk2/usr /proj

/b/a /c
007-2825-009 119

5: Filesystem Concepts
Unlike other filesystems, the root filesystem (/) is mounted as soon as the kernel is
running and cannot be unmounted because it is required for system operation. The usr
filesystem, if it is a separate filesystem from the root filesystem, must also be mounted
for the system to operate properly. System administration that requires unmounting the
root and usr filesystem can be done in the miniroot. See “XFS Filesystem Checking” on
page 120 for more information.

You can mount filesystems in several ways:

• Manually with the mount command (see “Manually Mounting Filesystems” on
page 154)

• Automatically when the system is booted, using information in the file
/etc/fstab (see “Mounting Filesystems Automatically With the /etc/fstab File”
on page 156)

• Automatically when the filesystem is accessed (called automounting, which applies
to NFS (remote) filesystems only; see “Mounting a Remote Filesystem
Automatically” on page 157)

• Automatically when a removable disk is inserted (see the mediad(1M) reference
page for information on the daemon that monitors removable media devices)

You can unmount filesystems in two ways:

• Shut down the system (filesystems are unmounted automatically)

• Manually unmount filesystems with the umount command (see the section
“Unmounting Filesystems” on page 157)

The mount and umount commands are described in detail in “Mounting and
Unmounting Filesystems” on page 154.

XFS Filesystem Checking

The xfs_check command checks XFS filesystem consistency. It is normally used only
when a filesystem consistency problem is suspected. See the xfs_check(1M) reference
page for more information.
120 007-2825-009

Filesystem Reorganization
Filesystem Reorganization

Filesystems can become fragmented over time. When a filesystem is fragmented, blocks
of free space are small and files have many extents. The fsr command reorganizes
filesystems so that the layout of the extents is improved. This improves overall
performance.

By default, fsr is run automatically once a week from crontab. If the fsr command
determines that a mounted filesystem is an XFS filesystem, the command calls the
fsr_xfs command. See the fsr(1M) reference page for information on the fsr
command, and the fsr_xfs(1M) man page for information on the fsr_xfs options for
the command.

Filesystem Administration From the Miniroot

When filesystem modifications or other administrative tasks require that the root
filesystem not be mounted or not be in use, the miniroot environment provided by the
software installation tools included on IRIX system software release CDs can be used.
When using the miniroot, a limited version of IRIX is installed in the swap partition in a
filesystem mounted at /. The system runs this version of IRIX rather than the standard
IRIX in the root and usr filesystems. The root and usr filesystems are available and
mounted at /root and /root/usr. Thus the pathnames of all files in the root and usr
filesystems have the prefix /root.

How to Add Filesystem Space

You can add filesystem space in three ways:

• Add a new disk, create a filesystem on it, and mount it as a subdirectory on an
existing filesystem.

• Change the size of the existing filesystems by removing space from one partition
and adding it to another partition on the same disk.

• Add another disk and grow an existing XFS filesystem onto that disk with the
xfs_growfs command.

These three methods of adding filesystem space are discussed in the following
subsections.
007-2825-009 121

5: Filesystem Concepts
Mount a Filesystem as a Subdirectory

To mount a filesystem as a subdirectory, you simply add a new disk with a separate
filesystem and create a new mount point for it within your filesystem. This is generally
considered the safest way to add space. For example, if your usr filesystem is short of
space, add a new disk and mount the new filesystem on a directory called /usr/work.
A drawback of this approach is that it does not allow hard links to be created between
the original filesystem and the new filesystem.

See Chapter 2, “Performing Disk Administration Procedures,” for full information on
partitioning a disk and making filesystems on it.

“Steal” Space From Another Filesystem

To move disk space from one filesystem on a disk to another filesystem on the same disk,
you must back up your existing data on both filesystems; run the fx command to
repartition the disk; then remake both filesystems with the mkfs command. This method
has serious drawbacks. It is a great deal of work and has certain risks. For example, to
increase the size of a filesystem, you must remove space from other filesystems. You must
be sure that when you finish changing the size of your filesystems, your old data still fits
on all the new, smaller filesystems. Also, resizing your filesystems may at best be a
stop-gap measure until you can acquire additional disk space.

Repartitioning is documented in “Repartitioning a Disk With fx” on page 27. For
additional solutions when the filesystem is the root filesystem, see “Running Out of
Space in the Root Filesystem” on page 168.

Grow an XFS Filesystem Onto Another Disk

Growing an existing filesystem onto an additional disk or disk partition is another way
to increase the available space in that filesystem. The original disk partition and the new
disk partition become a logical volume. The xfs_growfs command preserves the
existing data on the hard disk and adds space from the new disk partition to the
filesystem. This process is simpler than completely remaking your filesystems. The one
drawback to growing a filesystem across disks is that if one disk fails, you may not
recover data from the other disk, even if the other disk still works. If your usr filesystem
is a logical volume, you will be unable to boot the system into multiuser mode. For this
reason, it is preferable, if possible, to mount an additional disk and filesystem as a
directory on the root or usr filesystems (on / or /usr).
122 007-2825-009

Disk Quotas
For instructions on growing a filesystem onto an additional disk, see “Growing an XFS
Filesystem Onto Another Disk” on page 138.

Disk Quotas

If your system is constantly short of disk space and you cannot increase the amount of
available space, you may be forced to implement disk quotas. Quotas allow you to limit
the amount of space a user can occupy and the number of files (inodes) each user can
own. IRIX provides disk quotas to automate this process. You can use this system to
implement specific disk usage quotas for each user on your system. You can implement
hard or soft limits; hard limits are enforced by the system, soft limits merely remind the
user to trim disk usage. Disk usage limits are not enforced for root.

With soft limits, whenever a user logs in with a usage greater than the assigned soft limit,
that user is warned (by the login command). When the user exceeds the soft limit, the
timer is enabled. Any time the quota drops below the soft limits, the timer is disabled. If
the timer is enabled longer than a time period set by the system administrator, the
particular limit that has been exceeded is treated as if the hard limit has been reached,
and no more disk space is allocated to the user. The only way to reset this condition is to
reduce usage below the quota. Only root may set the time limits, and this is done on a
per-filesystem basis.

Several options are available on XFS filesystems. You can impose limits on some users
and not others, some filesystems and not others, and on total disk usage per user, or total
number of files. In addition, on XFS filesystems there is no limit to the number of
accounts and there is little performance penalty for large numbers of users.

On XFS filesystems, you can also impose limits according to project IDs as well as user
IDs. For information on project IDs and how they are established, see IRIX Admin:
Backup, Security, and Accounting. For information on using disk quotas for project IDS, see
“Using Disk Quotas on XFS Filesystems” on page 169.

Disk quotas on XFS filesystems can be used to do disk usage accounting. Disk usage
accounting monitors disk usage, but does not enforce disk usage limits. See “Identifying
Accounts That Use Large Amounts of Disk Space” on page 164 for more information.

Disk quotas are described in more detail in the quotas(4) reference page. Procedures
for imposing and monitoring disk quotas are described in “Using Disk Quotas on XFS
Filesystems” on page 169.
007-2825-009 123

5: Filesystem Concepts
Filesystem Corruption

Most often, a filesystem is corrupted because the system experienced a panic or did not
shut down cleanly. This can be caused by system software failure, hardware failure, or
human error (for example, pulling the plug). Another possible source of filesystem
corruption is overlapping partitions.

There is no foolproof way to predict hardware failure. The best way to avoid hardware
failures is to conscientiously follow recommended diagnostic and maintenance
procedures.

Human error is probably the greatest single cause of filesystem corruption. To avoid
problems, follow these rules closely:

• Always shut down the system properly. Do not simply turn off power to the system.
Use a standard system shutdown tool, such as the shutdown command.

• Never remove a filesystem physically (pull out a hard disk) without first turning off
power.

• Never physically write-protect a mounted filesystem, unless it is mounted
read-only.

• Do not mount filesystems on dual-hosted disks on two systems simultaneously.

The best way to insure against data loss is to make regular, careful backups. See IRIX
Admin: Backup, Security, and Accounting for complete information on system backups.

In some cases, XFS filesystem corruption, even on the root file system, can be repaired
with the command xfs_repair. For more information about xfs_repair see
“Checking XFS Filesystem Consistency With xfs_check and xfs_repair” on page 174.
124 007-2825-009

Chapter 6

6. Creating and Growing Filesystems

This chapter describes the procedures you must perform to create or grow (increase the
size of) an XFS filesystem or to convert from an EFS filesystem to an XFS filesystem.

The major sections in this chapter are:

• “Planning an XFS Filesystem” on page 125

• “Making an XFS Filesystem” on page 132

• “Making a Filesystem From inst” on page 137

• “Making a Foreign Filesystem” on page 138

• “Growing an XFS Filesystem Onto Another Disk” on page 138

• “Converting Filesystems on the System Disk From EFS to XFS” on page 140

• “Converting a Filesystem on an Option Disk From EFS to XFS” on page 148

• “Checking for Adequate Free Disk Space When Converting to XFS Filesystems” on
page 149

• “Dump and Restore Requirements When Converting to XFS Filesystems” on
page 151

Planning an XFS Filesystem

The following subsections discuss preparation for and choices you must make when
creating an XFS filesystem. Each time you plan to make an XFS filesystem or convert a
filesystem from EFS to XFS, review each section and make any necessary preparations.

Prerequisite Software

If you are converting the root and usr filesystems to XFS, you must have software
distribution CDs or access to a remote distribution directory for IRIX system software.
007-2825-009 125

6: Creating and Growing Filesystems
Choosing the Filesystem Block Size and Extent Size

XFS allows you to choose the logical block size for each filesystem. (Physical disk blocks
remain 512 bytes.) If you use a real-time subvolume on an XLV logical volume, you must
also choose the extent size. The extent size is the amount of space that is allocated to a file
each time it needs more space.

For XFS filesystems on disk partitions and logical volumes and for the data subvolume
of filesystems on XLV volumes, the block size guidelines are as follows:

• The minimum block size is 512 bytes. Small block sizes increase allocation overhead
which decreases filesystem performance, but in general, the recommended block
size for filesystems under 100 MB and for filesystems with many small files is 512
bytes. The filesystem block size must be a power of two.

• The default block size is 4096 bytes (4K). This is the recommended block size for
filesystems over 100 MB.

• The maximum block size is 65536 bytes (64K). Because large block sizes can waste
space and lead to fragmentation, in general block sizes should not be larger than
4096 bytes (4K).

• For the root filesystem on systems with separate root and usr filesystems, the
recommended block size is 512 bytes. For systems where root and usr are not
separate filesystems, the recommended block size is 4096 bytes, the default block
size.

• For news servers, it is recommended that you use a version 2 directory format with
a filesystem block size of 512 bytes and a directory block size of 4096 bytes. For
information on using version 2 directories see “Choosing the Filesystem Directory
Format and Directory Block Size” on page 127.

Block sizes are specified in bytes in decimal (default), octal (prefixed by 0), or
hexadecimal (prefixed by 0x or 0X). If the number has the suffix “k,” it is multiplied by
1024. If the number has the suffix “m,” it is multiplied by 1048576 (1024 * 1024).

The guidelines for the extent size are as follows:

• The extent size must be a multiple of the block size of the data subvolume.

• The minimum extent size is 4 KB.

• The maximum extent size is 1 GB.

• The default extent size is 64 KB.
126 007-2825-009

Planning an XFS Filesystem
• The extent size should be matched to the application and the stripe unit of the
volume elements used in the real-time subvolume.

A filesystem extent is considered unwritten if it is allocated to a file and has never been
written by anyone after the allocation. This can occur when you use F_RESVSP
parameter of the fcntl(2) system call to preallocate space. If you preallocate space and
then read the data when the extent is unwritten, you could see the old contents of the
data. This could have been written by another user, and may break security.

When you define an XFS filesystem, you can specify whether unwritten extent tracking
is on. This causes XFS to keep track of unwritten extents and does not allow a read to
return old data. When unwritten extent tracking is on, a read on an unwritten extent
returns a value of 0. Unwritten extent tracking is on by default in IRIX 6.5 systems and
later.

Choosing the Filesystem Directory Format and Directory Block Size

XFS supports two on-disk directory formats, referred to as version 1 and version 2 in mkfs
output. The version you choose when you create a filesystem applies to all the directories
in a filesystem. Version 1 is the original IRIX filesystem directory format; version 2 was
added with the 6.5.5 release of IRIX and is the default.You choose the directory format
with the -n parameter of the mkfs command.

An XFS file system with version 2 directory format allows you to select a logical block
size for the filesystem directory that is greater than the logical block size of the filesystem.
This allows you to choose a filesystem block size to match the distribution of data file
sizes without adversely affecting directory operation performance. Using this option
could improve performance for a filesystem with many small files, such as a news or mail
filesystem. In this case, the filesystem logical block size could be small (512, 1K, or 2K
bytes) and the logical block size for the filesystem directory could be large (4K or 8K
bytes); this can improve the performance of directory lookups because the tree storing
the index information has larger blocks and less depth.

You should consider setting a logical block size for a filesystem directory that is greater
than the logical block size for the filesystem if you are supporting an application that
reads directories (with the readdir(3C) or getdents(2) system calls) many times in
relation to how much it creates and removes files. Using a small filesystem block size
saves on disk space and on I/O throughput for the small files.
007-2825-009 127

6: Creating and Growing Filesystems
In an XFS file system with version 2 directory format, the data needed to perform a
readdir operation is segregated from the index information. Directory data blocks can
be “read-ahead” in a readdir on a version 2 directory block; this is not possible with a
version 1 directory block. Performing read-ahead improves the readdir performance
dramatically.

Because the data needed for a readdir operation and index information are separate in
a version 2 directory block, the offset in a directory is limited to 32 bits. In a version 1
directory block, a 64-bit offset is used. A 64-bit offset can cause some interoperability
problems for 32-bit clients such as NFS V2, DFS and 32-bit (O32) applications.

SGI recommends that all new XFS filesystems be created with version 2 directories. IRIX
releases older than IRIX 6.5.5, however, are not be able to mount a filesystem created with
a version 2 directory and will issue the following message when a mount is attempted:

Wrong filesystem type: xfs

There is no means for converting a filesystem, in place, between version 1 and version
directories. A filesystem can be converted between version 1 and version 2 directories
by means of an xfsdump/mkfs/xfsrestore sequence.

For information on using the -n option of mkfs to select a version 1 directory format, see
the mkfs_xfs(1M) man page.

Choosing the Log Type and Size

Each XFS filesystem has a log that contains filesystem journaling records. This log
requires dedicated disk space. This disk space doesn’t show up in listings from the df
command, nor can you access it with a filename.

The location of the disk space depends on the type of log you choose. The two types of
logs are:

External When an XFS filesystem is created on an XLV logical volume and log
records are put into a log subvolume, the log is called an external log. The
log subvolume is one or more disk partitions dedicated to the log
exclusively.
128 007-2825-009

Planning an XFS Filesystem
Internal When an XFS filesystem is created on a disk partition or XLV logical
volume, or when it is created on an XLV logical volume that does not
have a log subvolume, log records are put into a dedicated portion of the
disk partition (or data subvolume) that contains user files. This type of
log is called an internal log.

The guidelines for choosing the log type are as follows:

• If you want the log and the data subvolume to be on different partitions or to use
different subvolume configurations for them, use an external log.

• If you want the log subvolume to be striped independently from the data
subvolume (see “Volume Elements” in Chapter 3 for an explanation of striping),
you must use an external log.

• If you are making the XFS filesystem on a disk partition (rather than on an XLV
logical volume), you must use an internal log.

• If you are making the XFS filesystem on an XLV logical volume that has no log
subvolume, you must use an internal log.

• If you are making the XFS filesystem on an XLV logical volume that has a log
subvolume, you must use an external log.

For more information about XLV and log subvolumes, see Chapter 3, “XLV Logical
Volume Concepts.”

The amount of disk space needed for the log is a function of how the filesystem is used.
The amount of disk space required for log records is proportional to the transaction rate
and the size of transactions on the filesystem, not the size of the filesystem.
Larger block sizes result in larger transactions. Transactions from directory updates (for
example, the mkdir and rmdir commands and the create() and unlink() system
calls) cause more log data to be generated.

You can choose the amount of disk space to dedicate to the log (called the log size). The
minimum log size for a filesystem is enforced by the size of the largest transaction, which
depends on the filesystem and directory block sizes. The maximum log size is 64k blocks
or 128 MB, whichever is smaller (this will depend on the block size).

For filesystems with a very high transaction activity, a large log size is recommended.
You should avoid making your log too large, however, since a large log can increase
filesystem mount time after a crash.
007-2825-009 129

6: Creating and Growing Filesystems
The default log size grows with the size of the filesystem up to the maximum log size,
128 megabytes, on a 1 terabyte filesystem.

For a filesystem which is contained in a XLV striped logical volume, the default internal
log size is rounded up to a multiple of the stripe unit size. In this case, the user-specified
size value must be a multiple of the stripe unit size.

For external logs, the size of the log is the same as the size of the log subvolume. The log
subvolume is one or more disk partitions. You may find that you need to repartition a
disk to create a properly sized log subvolume (see the section “Disk Repartitioning” on
page 131).

For external logs, the size of the log is set when you create the log subvolume with the
xlv_make command. For internal logs, the size of the log is specified with the
-l size= option when you create the filesystem with the mkfs command.

The log size is specified in bytes as described in “Choosing the Filesystem Block Size and
Extent Size” on page 126, or as a multiple of the filesystem block size by using the
suffix “b.”

Choosing Allocation Groups and Stripe Units

The data section of an XFS filesystem is divided into allocation groups. You can select the
number of allocation groups when you create an XFS filesystem or, alternatively, you can
select the size of an allocation group. The larger the number of allocation groups, the
more parallelism can be achieved when allocating blocks and inodes. You should avoid
selecting a very large number of allocation groups or an allocation group size that will
yield a very large number of allocation groups; a large number of allocation groups
causes an unreasonable amount of CPU time to be used when the filesystem is close to
full.

The minimum allocation group size is 16MB; the maximum size is just under 4 GB.

The default number of allocation groups is 8, unless the filesystem is smaller than 128 MB
or larger than 8 GB. When the filesystem is smaller than 128 MB, the default number of
allocation groups is less than 8, since the minimum allocation group size is 16MB. In this
case, the data section, by default, will be divided into as many allocation groups as
possible that are at least 16MB. When the filesystem is larger than 8GB, but smaller than
64GB, the default number of allocation groups is greater than 8, with each allocation
130 007-2825-009

Planning an XFS Filesystem
group approximately 1 GB in size. When the filesystem is larger than 64GB, the default
number of allocation groups is still greater than 8, but the allocation group size is 4GB.

XFS allows you to select the stripe unit for a RAID device or XLV stripe volume. This
ensures that data allocations, inode allocations, and the internal log will be aligned along
stripe units when the end of file is extended and the file size is larger than 512KB. You
specify stripe units in 512-byte block units or in bytes; when you specify stripe units in
bytes, the value must be a multiple of the filesystem block size. See the mkfs_xfs(1M)
man page for information on specifying stripe units.

When you specify a stripe unit, you also specify a stripe width. You specify a stripe width
in 512-byte block units or in bytes. The stripe width must be a multiple of the stripe unit.
The stripe width will be the preferred I/O size returned in the stat() system call. See
the mkfs_xfs(1M) man page for information on specifying stripe width.

When used in conjunction with the -b option of the mkfs command, you can use the
-d su= and -d sw= options to specify the stripe unit and stripe width in filesystem
blocks.

For a RAID device, the default stripe unit is 0, indicating that the feature is disabled. It is
prudent of the sysadmin to configure the stripe unit and width sizes of RAID devices.
This should be done to avoid unexpected performance anomolies caused by the
filesystem doing non-optimal I/O operations to the RAID unit. For example, if a block
write is not aligned on a RAID stripe unit boundary and is not a full stripe unit, the RAID
will be forced to do a read/modify/write cycle to write the data. This can have a
significant performance impact. By setting the stripe unit size properly, XFS will avoid
unaligned accesses.

For a striped XLV volume, the stripe unit that was specified when the XLV volume was
created is provided by default. For information on what to consider when choosing a
stripe unit size, see “Striped Volume Elements” in Chapter 3, “XLV Logical Volume
Concepts.”

Disk Repartitioning

Many system administrators may find that they want or need to repartition disks when
they switch to XFS filesystems and/or XLV logical volumes. Some of the reasons to
consider repartitioning are:
007-2825-009 131

6: Creating and Growing Filesystems
• If the system disk has separate partitions for root and usr filesystems, the root
filesystem may be running out of space. Repartitioning is a way to increase the
space in root (at the expense of the size of usr) or to solve the problem by
combining root and usr into a single partition.

• System administration is a little easier on systems with combined root and usr
filesystems.

• If you plan to use XLV logical volumes, you may want to put the XFS log into a
small subvolume. This requires disk repartitioning to create a small partition for the
log subvolume.

• If you plan to use XLV logical volumes, you may want to repartition to create disk
partitions of equal size that can be striped or plexed.

Disk partitions are discussed in Chapter 1, “Disk Concepts.” Using fx to repartition
disks is explained in “Repartitioning a Disk With fx” on page 27.

Making an XFS Filesystem

This section explains how to create an XFS filesystem on an empty disk partition or XLV
logical volume. (For information about creating XLV logical volumes, see Chapter 4,
“Creating and Administering XLV Logical Volumes.”)

Tip: You can make an XFS filesystem on a disk partition or a logical volume using the
graphical user interface of the xfsm command. For information, see its online help.

Caution: When you create a filesystem, all files already on the disk partition or logical
volume are destroyed.

1. Review “Planning an XFS Filesystem” on page 125 to verify that you are ready to
begin this procedure.

2. Identify the device name of the partition or logical volume where you plan to create
the filesystem. This is the value of partition in the examples below. For example, if
you plan to use partition 7 (the entire disk) of a SCSI option disk on controller 0 and
132 007-2825-009

Making an XFS Filesystem
drive address 2, partition is /dev/dsk/dks0d2s7. For more information on
determining partition, see Table 1-4 on page 17, “Introduction to XLV Logical
Volumes” on page 51, and the dks(7M) reference page.

3. If the disk partition is already mounted, unmount it:

umount partition

Any data that is on the disk partition is destroyed. To convert the data rather than
destroy it, use the procedure in “Converting a Filesystem on an Option Disk From
EFS to XFS” on page 148 instead.

4. If you are making a filesystem on a disk partition or on an XLV logical volume that
does not have a log subvolume and want to use the default values for block size and
log size, use this mkfs command to create the new XFS filesystem:

mkfs partition

Example 6-1 shows the command line to create an XFS filesystem using the defaults
and system output.

Example 6-1 mkfs Command for an XFS Filesystem Using Defaults

mkfs /dev/dsk/dks0d4s7
meta-data=/dev/dsk/dks0d4s7 isize=256 agcount=9, agsize=262144 blks
data = bsize=4096 blocks=2222178, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=4096
log =internal log bsize=4096 blocks=1200
realtime =none extsz=65536 blocks=0, rtextents=0
007-2825-009 133

6: Creating and Growing Filesystems
5. If you are making a filesystem on a disk partition or on an XLV logical volume that
does not have a log subvolume and want to specify the block size and log size, use
this mkfs command to create the new XFS filesystem:

mkfs -b size=blocksize -l size=logsize partition

blocksize is the filesystem block size (see “Choosing the Filesystem Block Size and
Extent Size” on page 126) and logsize is the size of the area dedicated to log records
(see “Choosing the Log Type and Size” on page 128). The default values are 4 KB
blocks and a 1000-block log.

Example 6-2 shows the command line used to create an XFS filesystem and the
system output. The filesystem has a 10 MB internal log and a block size of 1 KB and
is on the partition /dev/dsk/dks0d4s7.

Example 6-2 mkfs Command for an XFS Filesystem With an Internal Log

mkfs -b size=1k -l size=10m /dev/dsk/dks0d4s7
meta-data=/dev/dsk/dks0d4s7 isize=256 agcount=9, agsize=1048576 blks
data = bsize=1024 blocks=8888712, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=4096
log =internal log bsize=1024 blocks=10240
realtime =none extsz=65536 blocks=0, rtextents=0
134 007-2825-009

Making an XFS Filesystem
6. If you are making a filesystem on an XLV logical volume that has a log subvolume
(for an external log), use this mkfs command to make the new XFS filesystem:

mkfs -b size=blocksize volume

blocksize is the block size for filesystem (see “Choosing the Filesystem Block Size and
Extent Size” on page 126), and volume is the device name for the volume.

Example 6-3 shows the command line used to create an XFS filesystem on a logical
volume /dev/xlv/a with a block size of 1K bytes and the system output.

Example 6-3 mkfs Command for an XFS Filesystem With an External Log

mkfs -b size=1k /dev/xlv/a
meta-data=/dev/xlv/a isize=256 agcount=9, agsize=1048576 blks
data = bsize=1024 blocks=8888712, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=4096
log =volume log bsize=1024 blocks=32768
realtime =none extsz=65536 blocks=0, rtextents=0

Example 6-4 shows the command line used to create an XFS filesystem on a logical
volume /dev/xlv/xlv_data1 that includes a log, data, and real-time
subvolumes and the system output. The default block size of 4096 bytes is used and
the real-time extent size is set to 128 KB.

Example 6-4 mkfs Command for an XFS Filesystem With a Real-Time Subvolume

mkfs -r extsize=128k /dev/xlv/xlv_data1
meta-data=/dev/xlv/xlv_data1 isize=256 agcount=9, agsize=262144 blks
data = bsize=4096 blocks=2222178, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=4096
log =volume log bsize=4096 blocks=8192
realtime =volume rt extsz=131072 blocks=1077787, rtextents=33680
007-2825-009 135

6: Creating and Growing Filesystems
7. If you are making a filesystem with a version 2 directory format with a directory
block size that is larger than the filesystem block size, use this mkfs command to
create the new XFS filesystem:

mkfs -b size=blocksize -n size=dirblocksize partition

blocksize is the filesystem block size (see “Choosing the Filesystem Block Size and
Extent Size” on page 126) and dirblocksize is the directory block size (see “Choosing
the Filesystem Directory Format and Directory Block Size” on page 127).

Example 6-5 shows the command line used to create an XFS filesystem and the
system output. The filesystem has a 512-byte filesystem block and a 4K directory
block and is on the partition /dev/dsk/dks0d4s7. You might use this filesystem
to store mail or news files.

Example 6-5 mkfs Command for an XFS Filesystem Specifying Directory Block Size

mkfs -b size=512 -n size=4k /dev/dsk/dks0d4s7
meta-data=/dev/dsk/dks0d4s7 isize=256 agcount=9, agsize=2097152 blks
data = bsize=512 blocks=17777424, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 2 bsize=4096
log =internal log bsize=512 blocks=4944
realtime =none extsz=65536 blocks=0, rtextents=0

8. If you are making a filesystem that you will mount on a system running an IRIX
release older than IRIX 6.5.5 and you need to create a filesystem with the older,
version 1 directory format, use this mkfs command to create the new XFS
filesystem:

mkfs -b -n version=1 partition

Example 6-6 shows the command line used to create an XFS filesystem and the
system output. The filesystem has a 512-byte filesystem block and a version 1
directory structure and is on the partition /dev/dsk/dks0d4s7.

Example 6-6 mkfs Command for an XFS Filesystem with Version 1 Directory Format

mkfs -b size=512 -n version=1 /dev/dsk/dks0d4s7
meta-data=/dev/dsk/dks0d4s7 isize=256 agcount=9, agsize=2097152 blks
data = bsize=512 blocks=17777424, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 1 bsize=512
log =internal log bsize=512 blocks=4944
realtime =none extsz=65536 blocks=0, rtextents=0
136 007-2825-009

Making a Filesystem From inst
9. To use the filesystem, you must mount it. For example:

mkdir mountdir
mount partition mountdir

For more information about mounting filesystems, see “Manually Mounting
Filesystems” in Chapter 7.

10. To configure the system so that the new filesystem is automatically mounted when
the system is booted, add this line to the file /etc/fstab:

partition mountdir xfs rw,raw=rawpartition 0 0

where rawpartition is the raw version of partition. For example, if partition is
/dev/dsk/dks0d2s7, rawpartition is /dev/rdsk/dks0d2s7.

For more information about automatically mounting filesystems, see the section
“Mounting Filesystems Automatically With the /etc/fstab File” in Chapter 7.

Making a Filesystem From inst

Caution: When you create a filesystem, all files already on the disk partition or logical
volume are destroyed.

mkfs can be used from within the inst command to make filesystems. To make the root
or usr filesystem on a system disk, you must use inst from the miniroot. There are two
ways to use mkfs:

• The mkfs command on the Administrative Command Menu. The mkfs command
makes an XFS filesystem and uses default values for the mkfs command options.
With no argument, the mkfs command makes the root filesystem, and if a usr
partition is present, a usr filesystem. Other filesystems can be made by giving a
device file argument to mkfs.

• From a shell. Giving the mkfs command from a shell (give the command sh, not
shroot) enables you to specify the mkfs command line, including options.

For more information about making filesystems from inst, see IRIX Admin: Software
Installation and Licensing.
007-2825-009 137

6: Creating and Growing Filesystems
Making a Foreign Filesystem

Under the IRIX operating system, you can use the mkfp command to create hfs (mac)
and dos (fat) filesystems on devices such as floppies, floptical disks, SyQuest, Jaz, PC
Cards, Zip, magneto-optical and hard drives.

The mkfp utility can create single dos partitions on floppies and floptical disks as well
as multiple dos partitions on other forms of media. However, the mkfp utility can create
only single hfs partitions spanning entire disks. You cannot use the mkfp utility to
manipulate existing partitions on disk.

For information on using the mkfp utility, see the mkfp(1M) reference page. For further
information on foreign filesystem types, see the filesystems(4) reference page. For
information on checking and repairing foreign filesystems, see the fpck(1M) reference
page.

Note: If you have trouble creating a filesystem with mkfp on your system, you may need
to use the filesystem creation utilities of the filesystem’s native platform.

Growing an XFS Filesystem Onto Another Disk

The procedure in this section explains how to grow an XFS filesystem onto another disk.
When growing an XFS filesystem onto another disk, there are two possibilities:

• The XFS filesystem is on a disk partition.

• The XFS filesystem is on an XLV logical volume.

If the XFS filesystem is on an XLV logical volume, the additional disk can be added to the
logical volume as an additional volume element. Instructions for doing this are in the
section “Adding a Volume Element to a Plex (Growing an XLV Logical Volume)” in
Chapter 4.

The following steps show how to grow a filesystem mounted at/mnt onto an XLV logical
volume created out of the /mnt disk partition and a new disk. The procedure assumes
that the new disk is installed on the system and partitioned.
138 007-2825-009

Growing an XFS Filesystem Onto Another Disk
Caution: All files on the additional disk are destroyed by this procedure.

1. Make a backup of the filesystem you are going to extend.

2. Unmount the /mnt filesystem:

umount /mnt

3. Use xlv_make to create an XLV logical volume out of the /mnt partition and the
new disk. The /mnt partition must be the first volume element in the data
subvolume. For example:

xlv_make
xlv_make> vol xlv0
xlv0
xlv_make> data
xlv0.data
xlv_make> plex
xlv0.data.0
xlv_make> ve dks0d4s7
xlv0.data.0.0
xlv_make> ve dks0d3s0
xlv0.data.0.1
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

4. Mount the /mnt filesystem:

mount /dev/xlv/xlv0 /mnt

5. Grow the XFS filesystem into the logical volume with the xfs_growfs command:

xfs_growfs /mnt
meta-data=/mnt isize=256 agcount=9,
agsize=2097152 blks
data = bsize=512 blocks=17777424,
imaxpct=25
 = sunit=0 swidth=0 blks,
unwritten=1
naming =version 2 bsize=4096
log =internal bsize=512 blocks=4944
realtime =none extsz=65536 blocks=0, rtextents=0
data blocks changed from 17777424 to 26399727
007-2825-009 139

6: Creating and Growing Filesystems
6. Change the entry for /mnt in the file /etc/fstab to mount the logical volume
rather than the disk partition:

/dev/xlv/xlv0 /mnt xfs rw,raw=/dev/rxlv/xlv0 0 0

Growing the filesystem is complete.

Converting Filesystems on the System Disk From EFS to XFS

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

This section explains the procedure for converting filesystems on the system disk from
EFS to XFS. Some systems have two filesystems on the system disk, the root filesystem
(mounted at /) and the usr filesystem (mounted at /usr). Other systems have a single,
combined root and usr filesystem mounted at /. This procedure covers both cases but
assumes that XLV logical volumes are not used on the system disk. The basic procedure
for converting a system disk is as follows:

1. Load the miniroot.

2. Do a complete dump of filesystems on the system disk.

3. Repartition the system disk if necessary.

4. Create one or two new, empty XFS filesystems.

5. Restore the files from the filesystem dumps.

6. Reboot the system.

During this procedure, you can repartition the system disk if necessary. For example, you
can convert from separate root and usr filesystems to a single, combined filesystem, or
you can resize partitions to make the root partition larger and the usr partition smaller.
See “Disk Repartitioning” on page 131 for more information.

The early steps of this procedure ask you to identify the values of various variables,
which are used later in the procedure. You may find it helpful to make a list of the
variables and values for later reference. Be sure to perform only the steps that apply to
your situation. Perform all steps as superuser.
140 007-2825-009

Converting Filesystems on the System Disk From EFS to XFS
Caution: It is very important to follow this procedure as documented without giving
additionalinst or shell commands. Unfortunately, deviations from this procedure, even
changing to a different directory or going from the inst shell to an inst menu when
not directed to do so, can have very severe consequences from which recovery is difficult.

1. Review “Planning an XFS Filesystem” on page 125 to verify that you are ready to
begin this procedure.

2. Verify that your backups are up to date. Because this procedure temporarily
removes all files from your system disk, it is important that you have a complete set
of backups that have been prepared using your normal backup procedures. You will
make a complete dump of the system disk starting at step 11, but you should have
your usual backups in addition to the backup made during this procedure.

3. Use devnm to get the device name of the root disk partition, rootpartition. For
example:

devnm /
/dev/dsk/dks0d1s0 /

4. If the system disk has separate root and usr filesystems, use devnm to figure out the
device name of the usr partition, usrpartition:

devnm /usr
/dev/dsk/dks0d1s6 /usr

5. If you are using a tape drive as the backup device, use hinv to get the controller and
unit numbers (tapecntlr and tapeunit) of the tape drive. For example:

hinv -c tape
Tape drive: unit 2 on SCSI controller 0: DAT

In this example, tapecntlr is 0 and tapeunit is 2.

6. If you are using a disk drive as your backup device, use df to get the device name
(backupdevice) and mount point (backupfs) of the partition that contains the
filesystem where you plan to put the backup. For example:

df
Filesystem Type blocks use avail %use Mounted on
/dev/root efs 1992630 538378 1454252 27% /
/dev/dsk/dks0d3s7 efs 3826812 1559740 2267072 41% /disk3
/dev/dsk/dks0d2s7 efs 2004550 23 2004527 0% /disk2
007-2825-009 141

6: Creating and Growing Filesystems
The filesystem mounted at /disk2 has plenty of disk space for a backup of the
system disk (/ uses 538,378 blocks, and /disk2 has 2,004,527 blocks available). The
backupdevice for /disk2 is /dev/dsk/dks0d2s7 and the backupfs is /disk2.

7. Create a temporary copy of /etc/fstab called /etc/fstab.xfs and edit it with
your favorite editor. For example:

cp /etc/fstab /etc/fstab.xfs
vi /etc/fstab.xfs

Make these changes in /etc/fstab.xfs:

• Replace efs with xfs in the line for the root filesystem, /, if there is a line for
the root filesystem.

• If there is no line for the root filesystem, add this line:

/dev/root / xfs rw,raw=/dev/rroot 0 0

• If root and usr are separate filesystems and will remain so, replace efs with
xfs in the line for the usr filesystem.

• If root and usr have been separate filesystems, but the disk will be
repartitioned during the conversion procedure so that they are combined,
remove the line for the usr filesystem.

8. Shut down your workstation using the shutdown command or the System
Shutdown item from the System Toolchest. Answer prompts as appropriate to get
to the five-item System Maintenance Menu.

9. Bring up the miniroot from system software CDs or a software distribution
directory.

10. Switch to the shell prompt in inst:

Inst> sh

11. Create a full backup of the root filesystem by giving this command:

/root/sbin/dump 0uCf tapesize dumpdevice rootpartition

tapesize is the tape capacity (also used for backup to disks) and dumpdevice is the
appropriate device name for the tape drive or the name of the file that will contain
the dump image. Table 6-1 gives the values of tapesize and dumpdevice for different
tape drives and disk. tapecntlr and tapeunit in Table 6-1 are tapecntlr and tapeunit
from step 5 in this section.
142 007-2825-009

Converting Filesystems on the System Disk From EFS to XFS
12. If usr is a separate filesystem, insert a new tape (if you are using tape), and create a
full backup of the usr filesystem by giving this command:

/root/sbin/dump 0uCf tapesize dumpdevice usrpartition

tapesize is the tape capacity (also used for backup to disks) and dumpdevice is the
appropriate device name for the tape drive or the name of the file that will contain
the dump image. Table 6-1 gives the values of tapesize and dumpdevice for different
tape drives and disk.

13. Exit out of the shell:

exit
...
Inst>

14. If you do not need to repartition the system disk, skip to step 18.

Table 6-1 dump Arguments for Filesystem Backup

Backup Device tapesize dumpdevice

Disk 2m Use /root/backupfs/root.dump for the root filesystem and
/root/backupfs/usr.dump for the usr filesystem

DAT tape 2m /dev/rmt/tpstapecntlrdtapeunitnsv

DLT tape 10m /dev/rmt/tpstapecntlrdtapeunitnsv

EXABYTE 8mm
model 8200 tape

2m /dev/rmt/tpstapecntlrdtapeunitnsv

EXABYTE 8mm
model 8500 tape

4m /dev/rmt/tpstapecntlrdtapeunitnsv

QIC cartridge tape 150k /dev/rmt/tpstapecntlrdtapeunitns
007-2825-009 143

6: Creating and Growing Filesystems
15. To repartition the system disk, use the standalone version of fx. This version of fx
is invoked from the Command Monitor, so you must bring up the Command
Monitor. To do this, quit out of inst, reboot the system, shut down the system, then
request the Command Monitor. An example of this procedure is:

Inst> quit
...
Ready to restart the system. Restart? { (y)es, (n)o, (sh)ell, (h)elp }: yes
...
login: root
halt
...
System Maintenance Menu
...
Option? 5
Command Monitor. Type "exit" to return to the menu.
>>

On systems with a graphical System Maintenance Menu, choose the last option,
Enter Command Monitor, instead of choosing option 5.
144 007-2825-009

Converting Filesystems on the System Disk From EFS to XFS
16. Boot fx and repartition the system disk so that it meets your needs. The following
example shows how to use fx to switch from separate root and usr partitions to a
single root partition.

>> boot stand/fx
84032+11488+3024+331696+26176d+4088+6240 entry: 0x89f97610
114208+29264+19536+2817088+60880d+7192+11056 entry: 0x89cd31c0
Currently in safe read-only mode.
Do you require extended mode with all options available? (no) Enter
SGI Version 6.4 ARCS Sep 29, 1996
fx: "device-name" = (dksc) Enter
fx: ctlr# = (0) Enter
fx: drive# = (1) Enter
fx: lun# = (0) Enter
...opening dksc(0,1,0)
...drive selftest...OK
Scsi drive type == SGI SEAGATE ST31200N8640

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/ [a]uto
[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat
fx> repartition/rootdrive

fx/repartition/rootdrive: type of data partition = (xfs) Enter
Warning: you will need to re-install all software and restore user data
from backups after changing the partition layout. Changing partitions
will cause all data on the drive to be lost. Be sure you have the drive
backed up if it contains any user data. Continue? yes

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/ [a]uto
[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat
fx> exit

17. Load the miniroot again, using the same procedure you used in step 9.

18. Make an XFS filesystem for root:

Inst> admin mkfs /dev/dsk/dks0d1s0
Unmounting device “/dev/dsk/dks0d1s0” from directory “/root”.

Make new file system on /dev/dsk/dks0d1s0 [yes/no/sh/help]: yes

About to remake (mkfs) file system on: /dev/dsk/dks0d1s0
This will destroy all data on disk partition: /dev/dsk/dks0d1s0.
007-2825-009 145

6: Creating and Growing Filesystems
 Are you sure? [y/n] (n): y

 Block size of filesystem 512 or 4096 bytes? 4096

Doing: mkfs -b size=4096 /dev/dsk/dks0d1s0
meta-data=/dev/rdsk/dks0d1s0 isize=256 agcount=8, agsize=31021 blks
data = bsize=4096 blocks=248165, imaxpact=25
 = sunit=0 swidth=0 blks, unwritten=1
naming =version 1 bsize=4096
log =internal log bsize=4096 blocks=1168
realtime =none extsz=65536 blocks=0, rtextents=0
Mounting file systems:

NOTICE: Start mounting filesystem: /root
NOTICE: Ending clean XFS mount for filesystem: /root
 /dev/miniroot on /
 /dev/dsk/dks0d1s0 on /root

Re-initializing installation history database
Reading installation history .. 100% Done.
Checking dependencies .. 100% Done.

19. Switch to the shell prompt in inst:

Inst> sh

20. If you made the backup on disk, create a mount point for the filesystem that
contains the backup and mount it:

mkdir /backupfs
mount backupdevice /backupfs

21. If you made the backup on tape, restore all files on the root filesystem from the
backup you made in step 11 by putting the correct tape in the tape drive and giving
these commands:

cd /root
mt -t /dev/rmt/tpstapecntlrdtapeunit rewind
restore rf dumpdevice

You may need to be patient while the restore is taking place; it normally does not
generate any output and it can take a while.
146 007-2825-009

Converting Filesystems on the System Disk From EFS to XFS
22. If you made the backup on disk, restore all files on the root filesystem from the
backup you made in step 11 by giving these commands:

cd /root
restore rf /backupfs/root.dump

23. If you made a backup of the usr filesystem in step 12 on tape, restore all files in the
backup by putting the correct tape in the tape drive and giving these commands:

cd /root/usr
mt -t /dev/rmt/tpstapecntlrdtapeunit rewind
restore rf dumpdevice

24. If you made a backup of the usr filesystem in step 12 on disk, restore all files in the
backup by giving these commands:

cd /root/usr
restore rf /backupfs/usr.dump

25. Move the new version of /etc/fstab that you created in step 7 into place (the first
command, which is optional, saves the old version of /etc/fstab):

mv /root/etc/fstab /root/etc/fstab.old
mv /root/etc/fstab.xfs /root/etc/fstab

26. Exit from the shell and inst and restart the system:

exit
#
Calculating sizes .. 100% Done.

Inst> quit
...
Ready to restart the system. Restart? { (y)es, (n)o, (sh)ell, (h)elp }: yes
Preparing to restart system ...

The system is being restarted.
007-2825-009 147

6: Creating and Growing Filesystems
Converting a Filesystem on an Option Disk From EFS to XFS

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

This section explains how to convert an EFS filesystem on an option disk (a disk other
than the system disk) to XFS. It assumes that XLV logical volumes are not used. You must
be superuser to perform this procedure.

1. Review “Planning an XFS Filesystem” on page 125 to verify that you are ready to
begin this procedure.

2. Verify that your backups are up to date. Because this procedure temporarily
removes all files from the filesystem you convert, it is important that you have a
complete set of backups that have been prepared using your normal backup
procedures. You will make a complete backup of the system disk in step 4, but you
should have your usual backups in addition to the backup made during this
procedure.

3. Identify the device name of the partition, which is the variable partition, where you
plan to create the filesystem. For example, if you plan to use partition 7 (the entire
disk) of an option disk on controller 0 and drive address 2, partition is
/dev/dsk/dks0d2s7. For more information on determining partition (also known
as a special file), see the dks(7M) reference page.

4. Back up all files on the disk partition to tape or disk because they will be destroyed
by the conversion process. You can use any backup command (Backup, bru, cpio,
tar, and so on) and back up to a local or remote tape drive or a local or remote disk.
For example, the command for dump for local tape is:

dump 0uCf tapesize dumpdevice partition

tapesize is the tape capacity (also used for backup to disks) and dumpdevice is the
device name for the tape drive. Table 6-1 gives the values of tapesize and dumpdevice
for different local tape drives and disk. You can get the values of tapecntlr and
tapeunit used in the table from the output of the command hinv –c tape.

5. Unmount the partition:

umount partition
148 007-2825-009

Checking for Adequate Free Disk Space When Converting to XFS Filesystems
6. Use the mkfs command to create the new XFS filesystem:

mkfs -b size=blocksize -l size=logsize partition

blocksize is the filesystem block size (see “Choosing the Filesystem Block Size and
Extent Size” on page 126), and logsize is the size of the area dedicated to log records
(see “Choosing the Log Type and Size” on page 128). Example 6-2 shows an
example of this command line and its output.

7. Mount the new filesystem with this command:

mount partition mountdir

8. In the file /etc/fstab, in the entry for partition, replace efs with xfs. For example:

partition mountdir xfs rw,raw=rawpartition 0 0

rawpartition is the raw version of partition.

9. Restore the files to the filesystem from the backup you made in step 4. For example,
if you gave the dump command in step 4, the commands to restore the files from
tape are:

cd mountdir
mt -t device rewind
restore rf dumpdevice

The value of device is the same as dumpdevice without nsv or other letters at the end.

You may need to be patient while the restore is taking place; it does not generate any
output and it can take a while.

Checking for Adequate Free Disk Space When Converting to XFS
Filesystems

XFS filesystems may require more disk space than EFS filesystems for the same files. This
extra disk space is required to accommodate the XFS log and as a result of block sizes
larger than EFS’s 512 bytes. However, XFS represents free space more compactly, on
average, and the inodes are allocated dynamically by XFS, which can result in less disk
space usage.

Use the following procedure to get a rough idea of how much free disk space will remain
after a filesystem is converted to XFS:
007-2825-009 149

6: Creating and Growing Filesystems
1. Get the size in kilobytes of the filesystem to be converted and round the result to the
next megabyte. For example:

df -k
Filesystem Type kbytes use avail %use Mounted on
/dev/root efs 969857 663306 306551 68% /

This filesystem is 969857 KB, which rounds up to 970 MB.

2. If you plan to use an internal log (see “Choosing the Log Type and Size” on
page 128), enter this command to get an estimate of the disk space required for the
files in the filesystem after conversion:

% xfs_estimate -i logsize -b blocksize mountpoint

logsize is the size of the log. blocksize is the block size you chose for user files in
“Choosing the Filesystem Block Size and Extent Size” on page 126. mountpoint is the
directory that is the mount point for the filesystem. For example:

% xfs_estimate -i 1m -b 4096 /
/ will take about 747 megabytes

The output of this command tells you how much disk space the files in the
filesystem (with a blocksize of 4096 bytes) and an internal log of size logsize will take
after conversion to XFS.

3. If you plan to use an external log, give this command to get an estimate of the disk
space required for the files in the filesystem after conversion:

% xfs_estimate -e 0 -b blocksize mountpoint

blocksize is the block size you chose for user files in the section “Choosing the
Filesystem Block Size and Extent Size” on page 126. mountpoint is the directory that
is the mount point for the filesystem. For example,

% xfs_estimate -e 0 -b 4096 /
/ will take about 746 megabytes
 with the external log using 0 blocks or about 1 megabytes

The first line of output from xfs_estimate tells you how much disk space the
files in the filesystem will take after conversion to XFS. In addition to this, you need
disk space on a different disk partition for the external log. Ignore the second line of
output.

4. Compare the size of the filesystem from step 1 with the size of the files from step 2
or step 3. For example:

970 MB - 747 MB = 223 MB free disk space
747 MB / 970 MB = 77% full
150 007-2825-009

Dump and Restore Requirements When Converting to XFS Filesystems
Use this information to decide if there will be an adequate amount of free disk space
if this filesystem is converted to XFS.

If the amount of free disk space after conversion is not adequate, consider these option:

• Implement the usual solutions for inadequate disk space: remove unnecessary files,
archive files to tape, move files to another filesystem, add another disk, and so on.

• Repartition the disk to increase size of the disk partition for the filesystem.

• If there is not sufficient disk space in the root filesystem and you have separate root
and usr filesystems, switch to combined root and usr filesystems on a single disk
partition.

• If the filesystem is on an XLV logical volume, increase the size of the volume.

• Create an XLV logical volume with a log subvolume elsewhere, so that all of the
disk space can be allocated for user files.

Dump and Restore Requirements When Converting to XFS Filesystems

The filesystem conversion procedures in “Converting Filesystems on the System Disk
From EFS to XFS” on page 140 and “Converting a Filesystem on an Option Disk From
EFS to XFS” on page 148 require that you dump the filesystems you plan to convert to
tape or to another disk with sufficient free disk space to contain the dump image.
Dumping to disk is substantially faster than dumping to tape.

When you convert a system disk, you must use the dump and restore commands.
When you convert a filesystem on an option disk, you can use any backup and restore
commands.

If you dump to a tape drive, follow these guidelines:

• Have sufficient tapes available for dumping the filesystems to be converted.

• If you are converting filesystems on a system disk, the tape drive must be local.

• If you are converting filesystems on option disks, the tape drive can be local or
remote.
007-2825-009 151

6: Creating and Growing Filesystems
The requirements for dumping to a different filesystem are:

• The filesystem being converted must have 2 GB or less in use (the maximum size of
the dump image file on an EFS filesystem) unless it is being dumped to an XFS
filesystem.

• The filesystem that will contain the dump must have sufficient disk space available
to hold the filesystems to be converted.

• If you are converting filesystems on a system disk, the filesystem where you place
the dump must be local to the system.

• If you are converting filesystems on option disks, the filesystem you dump to can be
local or remote.
152 007-2825-009

Chapter 7

7. Maintaining Filesystems

This chapter describes administration procedures for maintaining XFS filesystems that
you perform on a routine or as-needed basis. It is extremely important to maintain
filesystems properly, in addition to backing up the data they contain. Failure to do so
might result in loss of valuable system and user information.

The major sections in this chapter are:

• “Routine Filesystem Administration Tasks” on page 153

• “Mounting and Unmounting Filesystems” on page 154

• “Managing Disk Space” on page 159

• “Copying XFS Filesystems With xfs_copy” on page 174

• “Checking XFS Filesystem Consistency With xfs_check and xfs_repair” on page 174

• “Checking Foreign Filesystem Consistency With fpck” on page 178

• “Repairing XFS Filesystem Problems” on page 178

• “Running xfs_repair on the Root Filesystem” on page 182

Routine Filesystem Administration Tasks

To administer filesystems, you need to do the following:

• Monitor the amount of free space and free inodes available.

• If a filesystem is chronically short of free space, take steps to alleviate the problem,
such as removing old files and imposing disk usage quotas.

• Back up filesystems.
007-2825-009 153

7: Maintaining Filesystems
Many routine administration jobs can be performed by shell scripts. Here are a few ideas:

• Use a shell script to investigate free blocks and free inodes, and report on
filesystems whose free space dips below a given threshold.

• Use a shell script to automatically “clean up” files that grow (such as log files).

• Use a shell script to highlight cases of excessive disk use.

These scripts can be run automatically with the cron command and the output can be
sent to you using electronic mail. Typically, these scripts use some combination of the
find, du, mail, and shell commands.

The process accounting system performs many similar functions. If the process
accounting system does not meet your needs, examine the scripts in /usr/lib/acct,
such as ckpacct and remove, for ideas about how to build your own administration
scripts.

Mounting and Unmounting Filesystems

As explained in “Filesystem Mounting and Unmounting” in Chapter 5, in order to be
accessed by IRIX, filesystems must be mounted. The following subsections explain the
use of the mount and umount commands and the file /etc/fstab to mount and
unmount filesystems.

Tip: You can mount and unmount XFS filesystems using the graphical user interface of
the xfsm command. For information, see its online help.

Manually Mounting Filesystems

The mount command is used to mount filesystems manually. The basic forms of the
mount command are:

mount device_file mount_point_directory

mount host:directory mount_point_directory

device_file is a block device file. host:directory is the hostname and pathname of a remote
directory that has been exported on the remote host by using the exportfs command
154 007-2825-009

Mounting and Unmounting Filesystems
on the remote host (it requires NFS). mount_point_directory is the mount point directory.
The mount point must already exist (you can create it with the mkdir command).

If you omit either the device_file or the mount_point_directory from the mount command
line, mount checks the file /etc/fstab to find the missing argument. See “Mounting
Filesystems Automatically With the /etc/fstab File” on page 156 for more information
about /etc/fstab.

For example, to mount a filesystem manually, use this command:

mount /dev/dsk/dks0d1s6 /usr

Another example, which uses a mnemonic device file name, is:

mount /dev/usr /usr

An example of a mount command for a filesystem that is listed in /etc/fstab is:

mount /d2

Other useful mount commands are:

mount -a Mount all filesystems listed in /etc/fstab.

mount -h host
Mount all filesystems listed in /etc/fstab that are remote-mounted
from the system named host.

mount -o quota device_file mount_point_directory
Mount the filesystem device_file at mount_point_directory with disk quota
tracking turned on. See “Using Disk Quotas on XFS Filesystems” on
page 169 for more information.

You can use the -t type option of the mount command to specify what type of filesystem
you are mounting. For a description of the filesystem types that the IRIX operating
system supports, see the filesystems(4) reference page.

See the mount(1M) reference page for more information about the mount command.
007-2825-009 155

7: Maintaining Filesystems
Mounting Filesystems Automatically With the /etc/fstab File

The /etc/fstab file contains information about every filesystem and swap partition
that is to be mounted automatically when the system is booted into multi-user mode. In
addition, the /etc/fstab file is used by the mount command when only the device
block file or the mount point is given to the mount command. Filesystems that are not
mounted with the mount command, such as the /proc filesystem, are not listed in
/etc/fstab.

The procedure in this section explains how to add an entry for a filesystem to
/etc/fstab.

For each filesystem that is to be mounted every time the system is booted, a line similar
to this appears in the file /etc/fstab:

/dev/dsk/dks0d2s7 /test xfs rw,raw=/dev/rdsk/dks0d2s7 0 0

The fields in this line are defined as follows:

/dev/dsk/dks0d2s7
The block device file of the partition where the filesystem is located.

/test The name of the directory where the filesystem will be mounted (the
mount point).

xfs The type of filesystem. In this case, the filesystem is an XFS filesystem.

rw, raw= These are some of many options available when mounting a filesystem
(see the fstab(4) reference page for a complete list). In this instance,
the filesystem is to be mounted read-write, so that root and other users
can write to it. The raw= option gives the filesystem’s raw device
filename. It should be the last option in the options list.

0 0 These two numbers represent the frequency of dump cycles and the
fsck pass priority. These two numbers must be added after the last
option in the options list (raw =). Thefstab(4) reference page contains
additional information.

If you have already mounted the filesystem as described in the section “Manually
Mounting Filesystems” on page 154, you can use the mount command to determine the
appropriate /etc/fstab entry. For example:

mount -p
156 007-2825-009

Mounting and Unmounting Filesystems
This command displays all currently mounted filesystems, including the new filesystem
in /etc/fstab format. Copy the line that describes the new filesystem to /etc/fstab.

The mount command reads /etc/fstab sequentially; therefore, filesystems that are
mounted beneath other filesystems must follow their parent partitions in /etc/fstab
in order for their mount points to exist.

The swap partition on the system disk (partition 1) is not listed in /etc/fstab.
However, additional swap partitions added to the system are listed. For swap partitions,
the mount point field is not used. See the guide and the swap(1M) reference page for
more information.

See the fstab(4) reference page for more information about /etc/fstab entries.

Mounting a Remote Filesystem Automatically

If you have the optional NFS software, you can automatically mount any remote
filesystem whenever it is accessed (for example, by changing directories to the filesystem
with cd). The remote filesystem must be exported with the exportfs command.

For complete information about setting up automounting, including all the available
options, see the automount(1M) and exportfs(1M) reference pages. These commands
are discussed more completely in the .

Unmounting Filesystems

Filesystems are automatically unmounted when the system is shut down. To manually
unmount filesystems, use the umount command. The three basic forms of the command
are shown in Table 7-1. Local filesystems can be unmounted with either of the first two
forms shown in the table; they are equivalent. Similarly, the first and third forms are
equivalent for remote filesystems.
007-2825-009 157

7: Maintaining Filesystems
For example, to unmount a local or remote filesystem mounted at /d2, give this
command:

umount /d2

To unmount the filesystem on the partition /dev/dsk/dks0d1s7, give this command:

umount /dev/dsk/dks0d1s7

To unmount the remote-mounted (NFS) filesystem depot:/usr/spool/news, give
this command:

umount depot:/usr/spool/news

To be unmounted, a filesystem must not be in use. If it is in use and you try to unmount
it, you get a Resource busy message. Error messages and their solutions are explained
in the umount(1M) reference page.

Table 7-1 Forms of the umount Command

Command Comments

umount mount_point_directory mount_point_directory is a directory pathname that is the
mount point for the filesystem. This form can be used for
local or remote filesystems.

umount device_file device_file is a block device file name. This form is only for
local filesystems.

umount host:directory host:directory is a remote directory. This form is only for
remote filesystems.

umount -a Attempt to unmount all the filesystems currently mounted
(listed in /etc/mtab) except / and /usr. This command
is not the complement of the mount -a command, which
mounts all filesystems listed in /etc/fstab.
158 007-2825-009

Managing Disk Space
Managing Disk Space

At some point, you are likely to find yourself short on disk space. In addition to using
disk space intentionally for new files, you and other users may be creating and retaining
files that you do not need.

• People tend to forget about files they no longer use. Outdated files often stay on the
system much longer than necessary.

• Some files, particularly log files such as /var/adm/SYSLOG, grow as a result of
normal system operations. Normally, cron rotates this file once per week so that it
does not grow excessively large. (See /var/spool/cron/crontabs/root.)
However, you should check this file periodically to make sure it is being rotated
properly, or when the amount of free disk space has grown small.

• Some directories, notably /tmp, /usr/tmp, and /var/tmp, accumulate files. These
are often copies of files being manipulated by text editors and other programs.
Sometimes these temporary files are not removed by the programs that created
them.

• The directories /usr/tmp, /var/tmp, and /var/spool/uucppublic are public
directories; people often use them to store temporary copies of files they are
transferring to and from other systems and sites. Unlike /tmp, they are not cleaned
out when the system is rebooted. The site administrator should be even more
conscientious about monitoring disk use in these directories.

• Users move old files to the dumpster without realizing that such files are not fully
deleted from the system.

• vmcore and unix files in /var/adm/crash are accumulating without being
removed.

• Binary core dumps, core files, from crashed application programs are not being
removed.

Tip: The section “Freeing Disk Space” in Chapter 6 of the Personal System Administration
Guide provides additional ideas for identifying unnecessary files.

The following subsections describe various techniques for monitoring disk space usage,
locating unneeded files, and limiting disk usage by individual users.
007-2825-009 159

7: Maintaining Filesystems
Monitoring Free Space and Free Inodes

You can quickly check the amount of free space and free inodes with the df command.
For example,

% df
Filesystem Type blocks use avail %use Mounted on
/dev/root xfs 1939714 1326891 612823 68% /

The avail column shows the amount of free space in blocks.

To determine the number of free inodes, use this command:

% df -i
Filesystem Type blocks use avail %use iuse ifree %iuse Mounted
/dev/root xfs 1939714 1326891 612823 68% 14491 195031 7% /

You see a listing similar to the first df listing, except that it also lists the number of inodes
in use, the number of inodes that are free (available), and the percentage of inodes in use.
For XFS filesystems, the number of free inodes is the maximum number that could be
allocated if needed. XFS allocates inodes as needed. On XFS filesystems inode usage is
very high only on very full filesystems. XFS filesystem performance does not degrade
when XFS filesystems are very full.

Monitoring Key Files and Directories

Almost any system that is used daily has several key files and directories that grow
through normal use. Some examples are shown in Table 7-2.

Table 7-2 Files and Directories That Tend to Grow

File Use

/etc/wtmp History of system logins

/tmp Directory for temporary files (root filesystem)

/var/adm/avail/availlog Log file for the availability monitor (see the availmon(5)
reference page)

/var/adm/avail/notifylog Log file for the availability monitor (see the availmon(5)
reference page)

/var/adm/sulog History of su commands
160 007-2825-009

Managing Disk Space
The frequency with which you should check growing files depends on how active your
system is and how critical the disk space problem is. A good technique for keeping them
down to a reasonable size uses a combination of the tail and mv commands:

tail -50 /var/adm/sulog > /var/tmp/sulog
mv /var/tmp/sulog /var/adm/sulog

This sequence puts the last 50 lines of /var/adm/sulog into a temporary file, then
moves the temporary file to /var/adm/sulog. This reduces the file to the 50 most
recent entries. It is often useful to have these commands performed automatically every
week using cron. For more information on using cron to automate your regular tasks,
see the cron(1M) reference page.

Cleaning Out Temporary Directories

The directory /tmp and all of its subdirectories are automatically cleaned out every time
the system is rebooted. You can control whether or not this happens with thechkconfig
option nocleantmp. By default, nocleantmp is off, and thus /tmp is cleaned.

The directory /var/tmp is not automatically cleaned out when the system is rebooted.
This is a fairly standard practice on IRIX systems. If you wish, you can configure IRIX to
clean out /var/tmp automatically whenever the system is rebooted. Changing this
standard policy is a fairly extreme measure, and many people expect that files left in
/var/tmp are not removed when the system is rebooted. Do not make this change
without warning users well in advance.

To configure IRIX to clean out /var/tmp automatically at system reboot, follow these
steps:

/var/cron/log History of actions of cron

/var/spool/lp/log History of actions of lp

/var/spool/uucp Directory for uucp log files

/var/tmp Directory for temporary files

Table 7-2 (continued) Files and Directories That Tend to Grow

File Use
007-2825-009 161

7: Maintaining Filesystems
1. Notify everyone who uses the system that you are changing the standard policy
regarding /var/tmp, and that all files left in /var/tmp will be removed when the
system is rebooted. Send electronic mail and post a message in the /etc/motd file.

Give the users at least one week’s notice, longer if possible.

2. Copy the file /etc/init.d/rmtmpfiles to a new file in the same directory, for
example, /etc/init.d/rmtmpfiles2:

cd /etc/init.d
cp rmtmpfiles rmptmpfiles2

3. Open rmtmpfiles2 for editing, for example:

vi rmtmpfiles2

4. Find a block of commands in the file that looks something like this:

make /var/tmp exist
if [! -d /var/tmp]
then
 rm -f /var/tmp # remove the directory
 mkdir /var/tmp
fi

5. Before the fi statement add the following lines:

else
 # clean out /var/tmp
 rm -f /var/tmp/*

The complete block of commands should look something like this:

make /var/tmp exist
if [! -d /var/tmp]
then
 rm -f /var/tmp # remove the directory
 mkdir /var/tmp
else
 # clean out /var/tmp
 rm -f /var/tmp/*
fi

6. Save the file and exit the editor.

7. Create a link to the new file in the directory /etc/rc2.d, following the naming
conventions described in /etc/init.d/README. For example:

cd ../rc2.d
ln -s ../init.d/rmtmpfiles S59rmtmpfiles2
162 007-2825-009

Managing Disk Space
Locating Unused Files

Part of the job of cleaning up filesystems is locating and removing files that have not been
used recently. The find command can locate files that have not been accessed recently.

The find command searches for files, starting at a directory named on the command
line. It looks for files that match whatever criteria you wish, for example all regular files,
all files that end in .trash, or any file older than a particular date. When it finds a file
that matches the criteria, it performs whatever task you specify, such as removing the file,
printing the name of the file, changing the file’s permissions, and so forth.

For example:

find /usr -local -type f -mtime +60 -print > /usr/tmp/deadfiles &

In the above example:

/usr specifies the pathname where find is to start.

-local restricts the search to files on the local system.

-type f tells find to look only for regular files and to ignore special files,
directories, and pipes.

-mtime +60 says you are interested only in files that have not been modified in 60
days.

-print means that when a file is found that matches the -type and -mtime

expressions, you want the pathname to be printed.

> /usr/tmp/deadfiles &

directs the output to the temporary file /usr/tmp/deadfiles and runs
in the background. Redirecting the results of the search in a file is a good
idea if you expect a large amount of output.

As another example, you can use the find command to find files over 7 days old in the
temporary directories and remove them. Use the following commands:

find /var/tmp -local -type f -atime 7 -exec rm {} \;
find /tmp -local -type f -atime 7 -exec rm {} \;

This example shows how to use find to locate and remove all core files over a week old:

find / -local -type f -name core -atime +7 -exec rm {} \;
007-2825-009 163

7: Maintaining Filesystems
See the cron(1M) reference page for information on using the cron command to
automate the process of locating and possibly removing.

Identifying Accounts That Use Large Amounts of Disk Space

A number of commands are useful for tracking down accounts that use large amounts of
space: du, find, quota commands, and diskusg. Their use is described in the following
subsections.

Checking Disk Space Usage With du

du displays disk use, in blocks, for files and directories. For example:

du /usr/share/catman/u_man
5 /usr/share/catman/u_man/cat1/audio
266 /usr/share/catman/u_man/cat1/Xm
1956 /usr/share/catman/u_man/cat1/X11
72 /usr/share/catman/u_man/cat1/Inventor
413 /usr/share/catman/u_man/cat1/dmedia
752 /usr/share/catman/u_man/cat1/explorer
12714 /usr/share/catman/u_man/cat1
1 /usr/share/catman/u_man/cat3/audio
63 /usr/share/catman/u_man/cat3
12 /usr/share/catman/u_man/cat6/video
1077 /usr/share/catman/u_man/cat6
92 /usr/share/catman/u_man/cat2
425 /usr/share/catman/u_man/cat4
170 /usr/share/catman/u_man/cat5
13 /usr/share/catman/u_man/cat1m
14557 /usr/share/catman/u_man

This displays the block count for all directories in the directory
/usr/share/catman/u_man. By default the du command displays disk use in
512-byte blocks. To display disk use in 1024-byte blocks, use the -k option. For example:

du -k /usr/people/ralph

The -s option produces a summary of the disk use in a particular directory. For example:

du -s /usr/people/alice

For a complete description of du and its options, see the du(1M) reference page.
164 007-2825-009

Managing Disk Space
Checking Disk Space Usage With find

Use find to locate specific files that exceed a given size limit. For example:

find /usr -local -type f -size +10000 -print

This example produces a display of the pathnames of all files (and directories) in the usr
filesystem that are larger than 10,000 512-byte blocks.

Monitoring Disk Space Usage with Disk Quota Accounting

The disk quotas system, described in the section “Disk Quotas” in Chapter 5, can be used
to monitor disk space usage without enforcing disk usage limits. Disk quota accounting
can be enabled by user, or by project.

On XFS filesystems, use these commands to turn on disk usage accounting without
enforcement, stop disk usage accounting, and report disk space usage:

• To turn on disk usage accounting automatically on a filesystem for user quotas,
include the option qnoenforce in the /etc/fstab entry, for example:

/dev/root / xfs rw,qnoenforce,raw=/dev/rroot 0 0

To turn on disk usage accounting automatically on a filesystem for project quotas,
include the option pqnoenforce in the /etc/fstab entry, for example:

/dev/root / xfs rw,pqnoenforce,raw=/dev/rroot 0 0

• To turn on disk usage accounting manually for user quotas on a non-root filesystem,
when mounting the filesystem, use this mount command:

mount -o qnoenforce fsname rootdir

fsname is the device name of the filesystem. rootdir is the directory where the
filesystem is mounted.

To turn on disk usage accounting manually on a non-root filesystem for project
quotas when mounting the filesystem, use this mount command:

mount -o pqnoenforce fsname rootdir

• To turn on disk usage accounting manually on the root filesystem for user quotas,
execute the following commands. The quotaon command turns on disk
accounting with enforcement, and the quotaoff -o command turns off the
enforcement.
007-2825-009 165

7: Maintaining Filesystems
/usr/etc/quotaon -v /
/usr/etc/quotaoff -v -o enforce /
reboot

To turn on disk usage accounting manually on the root filesystem for project quotas,
give these commands:

/usr/etc/quotaon -v -o pquota /
/usr/etc/quotaoff -v -o pqenforce /
reboot

• To stop disk usage accounting on a filesystem for user quotas, give this command:

/usr/etc/quotaoff fsname

To stop disk usage accounting on a filesystem for project, give this command:

/usr/etc/quotaoff -o pquota fsname

• To get information about disk usage, use the commands described in “Checking
Disk Space Usage With quot” on page 166 and “Checking Disk Space Usage on XFS
Filesystems With quota” on page 167.

Checking Disk Space Usage With quot

The quot command reports the amount of disk usage per user on a filesystem. It is part
of the disk quotas system, although you need not use quotas to use this command. (On
XFS filesystems, you must turn on quotas without enforcement; for instructions see
“Monitoring Disk Space Usage with Disk Quota Accounting” on page 165.)

You can use the output of the quot command to inform your users of their disk space
usage. An example of the command that displays disk space usage (on the root filesystem
in this example), is:

/usr/etc/quot /
/dev/root (/):
 371179 root
 265712 ellis
 12606 aevans
 7927 demos
 5526 bin
 2744 lp
 682 uucp
 379 guest
 207 adm
 7 sys
166 007-2825-009

Managing Disk Space
Checking Disk Space Usage on XFS Filesystems With quota

The quota command reports the amount of disk usage per user or per project on a
filesystem, as well as additional information about the disk quotas. On XFS filesystems,
you must turn on quotas to use this feature, even if you are not going to enforce quota
limits. For instructions on monitoring disk space usage without enforcing disk usage
limits see “Monitoring Disk Space Usage with Disk Quota Accounting” on page 165.

For information on the ouput of the quota command, see “Displaying Disk Quota
Information on XFS Filesystems” on page 171.

Checking Disk Space Usage With diskusg

The diskusg command is part of the process accounting subsystem and serves the same
purpose as quot. diskusg, however, is typically used as part of general system
accounting. This command generates disk usage information on a per-user basis. For
example,

/usr/lib/acct/diskusg /dev/root
0 root 736795
2 bin 11035
3 uucp 1342
4 sys 9
5 adm 1011
9 lp 5418
126 ellis 528263
993 demos 15737
998 guest 740
5315 aevans 24836

diskusg prints one line for each user identified in the /etc/passwd file. Each line
contains the user’s UID number and login name, and the total number of 512-byte blocks
of disk space currently being used by the account.

The output of diskusg is normally the input to acctdisk (see the acct(1M) reference
page), which generates total disk accounting records that can be merged with other
accounting records. For more information on the accounting subsystem, consult IRIX
Admin: Backup, Security, and Accounting and the acct(4) reference page.
007-2825-009 167

7: Maintaining Filesystems
Running Out of Space in the Root Filesystem

For systems that have separate root and usr filesystems, running out of disk space on
the root filesystem can occur for several reasons:

• New software options that place files in the root filesystem have been installed.

• A new IRIX release that requires more disk space in the root filesystem has been
installed.

• Files created while filesystems were unmounted have been unintentionally placed
in the root filesystem instead of their intended filesystem. For example, suppose
that the usr filesystem is unmounted and the file /usr/tempfile is created.
When the usr filesystem is mounted at /usr, the file /usr/tempfile is not
accessible, but it is still using disk space.

• Applications that create files in /tmp are creating many files or very large files that
fill up the root filesystem.

You can pursue several possible courses of action when the root filesystem is too full:

• Check for hidden files. Unmount filesystems other than the root filesystem (you
may find this easiest to do from the miniroot) and list the contents of each of the
mount point directories.

• Check the /lost+found directory. You may find that large files have accumulated
there.

• Increase the size of the root filesystem by combining the root and usr filesystems or
by making the root filesystem larger by taking disk space from the usr filesystem.

• Identify applications that are creating files in /tmp and cause the most problems,
and configure them to use /usr/tmp instead of /tmp for temporary files. Most
applications recognize the TMPDIR environment variable, which specifies the
directory to use instead of the default. For example, with csh:

% setenv TMPDIR /usr/tmp

With sh:

% TMPDIR=/usr/tmp ; export TMPDIR

• Make /tmp a mounted filesystem. (See “Mount a Filesystem as a Subdirectory” in
Chapter 5.) You can “carve” a /tmp filesystem out of other filesystems if necessary.
168 007-2825-009

Managing Disk Space
Using Disk Quotas on XFS Filesystems

This section describes basic commands for administering disk quotas on XFS filesystems.
Additional commands are described on the quota(1), edquota(1M), quot(1M), and
repquota(1M) reference pages.

You can set disk quotas for individual users and you can set disk quotas for projects,
according to project ID. For information on project IDs and how they are established, see
IRIX Admin: Backup, Security, and Accounting .

For XFS filesystems, you must first turn on disk quotas on a filesystem, then set quotas
on that filesystem for users and projects.

Turning on Disk Quotas for Users on XFS Filesystems

You can turn on quotas for users in these ways:

• To turn on disk quotas automatically for users on a filesystem, include the option
quota in the /etc/fstab entry, for example:

/dev/root / xfs rw,quota,raw=/dev/rroot 0 0

• To turn on disk quotas manually for users on a non-root filesystem, mount the
filesystem with this command:

mount -o quota fsname rootdir

fsname is the device name of the filesystem. rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas manually for users on the root filesystem, give these
commands:

/usr/etc/quotaon -v /
reboot

Turning on Disk Quotas for Projects on XFS Filesystems

You can turn on quotas for projects in these ways:

• To turn on disk quotas automatically for projects on a filesystem, include the option
pquota in the /etc/fstab entry, for example:

/dev/root / xfs rw,pquota,raw=/dev/rroot 0 0
007-2825-009 169

7: Maintaining Filesystems
• To turn on disk quotas manually for projects on a non-root filesystem, mount the
filesystem with this command:

mount -o pquota fsname rootdir

fsname is the device name of the filesystem. rootdir is the directory where the
filesystem is mounted.

• To turn on disk quotas manually for projects on the root filesystem, give these
commands:

/usr/etc/quotaon -o pquota -v /
reboot

Setting Disk Quota Limits for Users on XFS Filesystems

After turning on disk quotas on a filesystem, you can set limits for users on that
filesystem using the commands below. You can preview the results of each of these
commands by adding a -n option, which is the dry-run option.

• To specify limits for users interactively, give this command:

/usr/etc/edquota name ...

name is a user ID. The screen clears, and you are placed in the editor specified by the
EDITOR environment variable (vi if $EDITOR is not set) to edit the disk quotas for
the filesystem mounted at rootdir for the first user listed on the command line. You
see:

fs rootdir kbytes (soft = 0, hard = 0) inodes (soft = 0, hard = 0)

The first pair of soft and hard numbers are the soft and hard limits for disk usage in
kilobytes in the filesystem at rootdir. The second pair of soft and hard numbers are
the soft and hard limits for the number of file that user can own in the filesystem.

Edit the zeros to set the limits to sizes you choose. A limit of zero is not enforced.
After you set the limits, save the file and quit the editor. If you specified more than
one user on the command line, another instance of the editor appears with the line
above. Edit this line to enter the limits for the second user. Continue until lines have
been edited for all users.

• To specify that users are to have the same limits as another user (proto_name), enter
this command:

/usr/etc/edquota -p proto_name name ...
170 007-2825-009

Managing Disk Space
• To specify limits for a user non-interactively, enter this command:

/usr/etc/edquota -f rootdir -l \
uid=userid,bsoft=value,bhard=value,isoft=value,ihard=value

userid is a numeric user ID. Each value is a soft or hard limit in kilobytes.

• To use the file (quotafile) created by command repquota -e (see the section
“Administering Disk Quotas on XFS Filesystems” on page 173) as input to the
edquota command, enter this command:

/usr/etc/edquota -i quotafile

Setting Disk Quota Limits for Projects on XFS Filesystems

After turning on disk quotas on a filesystem, you can set limits for projects on that
filesystem. You set limits for projects just as you do for users, by using the edquota
command as described in “Setting Disk Quota Limits for Users on XFS Filesystems” on
page 170.

To use the edquota command to set limits for a project, you include the -j option on the
command line. When you use the -j option with edquota, any name specified on the
command line is considered a project name. For example, to specify limits for projects
interactively, give this command:

/usr/etc/edquota -j name ...

name is a project ID. For information on additional options of the edquota command,
see the edquota(1M) man page.

Displaying Disk Quota Information on XFS Filesystems

Some commands that display information about disk quotas are as follows:

• To display a report that shows whether disk quotas are on or off for each filesystem,
give this command as superuser:

/usr/etc/repquota -sa
/dev/xlv/g (/g):

Status
 user quota accounting : on
 user quota limit enforcement: on
 proj quota accounting : on
 proj quota limit enforcement: on
007-2825-009 171

7: Maintaining Filesystems
Quota Storage
 user quota inum 67, blocks 2, extents 2
 proj quota inum 68, blocks 2, extents 2
Default Limits
 blocks time limit: 1.0 week
 files time limit: 1.0 week
Cache
 dquots currently cached in memory: 4

The sections of the output are as follows:

Status Lists the status of disk space accounting (on or off) and enforcement
of disk quotas (on or off) for this filesystem.

Quota Storage Blocks and extents are the number of filesystem blocks and extents
used to store disk quota information. The inum value is the inode
number at which quota information is stored and is for internal use
only.

Default Limits The blocks and files time limits are the default lengths of time for
this filesystem that users have to reduce their disk space usage or
number of files below their soft limits. These time limits can be set
on a per-user basis by the command edquota -t.

Cache This section is for internal use only

• To get information about your disk quotas, enter this command:

quota -v
Disk quotas for margo (uid 1606):
Filesystem usage quota limit timeleft files quota limit timeleft
/ 138360 0 0 14971 0 0
/e 4156360 41200 0 1.6 days 222264 0 0

The columns in this output are:

Filesystem Lists each of the filesystems that have quotas turned on.

usage Lists the user’s disk usage on each filesystem.

quota The user’s soft limit for disk usage or files on each filesystem.

limit The user’s hard limit for disk usage or files on each filesystem.

timeleft For filesystems where the user’s soft limit for disk usage or files is
exceeded, gives the number of days until the user is prohibited from
using additional disk space or creating more files.

files The number of files owned by the user on each filesystem.
172 007-2825-009

Managing Disk Space
• To get information about your project disk quotas, enter this command:

quota -j -v
Disk quotas for xfsproj (projid 260):
Filesystem usage quota limit timeleft files quota limit timeleft
/sprite01 230 0 0 17 0 0

• To get information about the disk usage and quotas of all users, enter this
command:

/usr/etc/quot -a

Administering Disk Quotas on XFS Filesystems

If the filesystem being dumped contains quotas, xfsdump will use repquota(1M) to
store the quotas in a file called xfsdump_quotas in the root of the filesystem to be
dumped. This file will then be included in the dump. Upon restoration, edquota(1M)
can be used to reactivate the quotas for the filesystem. Note, however, that the
xfsdump_quotas file will probably require modification to change the filesystem or
UIDs if the filesystem has been restored to a different partition or system.

To create a file that lists the current quota limits of all the filesystems for users, enter this
command as superuser:

/usr/etc/repquota -a -e quotafile

To create a file that lists the current quota limits of all the filesystems for projects, enter
this command as superuser:

/usr/etc/repquota -j -a -e quotafile

If you are familiar with using disk quotas on EFS filesystems, note that some quota
commands that are used on EFS filesystems are not used on XFS filesystems. These
commands are:

• quotacheck. There is no need to run quotacheck manually.

• chkconfig quota on and chkconfig quota off. Disk quotas are turned on
during mounting, so mount options control whether disk quotas are on or off, not
chkconfig.

• chkconfig quotacheck on and chkconfig quotacheck off. quotacheck is
not used on XFS filesystems so these chkconfig commands have no effect.
007-2825-009 173

7: Maintaining Filesystems
• /etc/init.d/quotas start. This command has no effect on disk quota
tracking on XFS systems.

• touch quotas. There is no need to create files called quotas in the root directory
of each filesystem. Quota information is hidden in the XFS filesystem structure.

• repquota by non-superusers. Only the superuser can use the repquota
command on XFS filesystems.

Copying XFS Filesystems With xfs_copy

The xfs_copy command can be used to copy an XFS filesystem with an internal log
(XFS filesystems with external logs or real-time subvolumes cannot be copied with
xfs_copy). One or more copies can be created on disk partitions, logical volumes, or
files. Each copy has a unique filesystem identifier, which enables them to be run as
separate filesystems on the same system. (Programs that do block-by-block copying,
such as dd, do not create unique filesystem identifiers.) Multiple copies are created in
parallel. For more information, see the xfs_copy(1M) reference page.

An example of the xfs_copy command is:

xfs_copy /dev/dsk/dks0d3s7 /dev/dsk/dks5d2s7
... 10% ... 20% ... 30% ... 40% ... 50% ... 60% ... 70% ... 80%
... 90% ... 100%
Done.
All copies completed.

Checking XFS Filesystem Consistency With xfs_check and xfs_repair

XFS filesystem consistency checking can be done using the xfs_check command and
the dry-run mode of the xfs_repair command. The xfs_repair command is
sometimes able to repair filesystem inconsistencies.

Checking Filesystem Consistency

The filesystem consistency checking commands for XFS filesystems are xfs_check and
xfs_repair -n. (fsck is used only for EFS filesystems.) Unlike fsck, neither
174 007-2825-009

Checking XFS Filesystem Consistency With xfs_check and xfs_repair
xfs_check nor xfs_repair are invoked automatically on system startup. They
should be used only if you suspect a filesystem consistency problem.

Before running xfs_check or xfs_repair -n, the filesystem to be checked must be
unmounted cleanly using normal system administration procedures (the umount
command or system shutdown), not as a result of a crash or system reset. If the filesystem
has not been unmounted cleanly, mount it and unmount it cleanly before running
xfs_check or xfs_repair -n.

xfs_repair -n checks XFS filesystem consistency. xfs_repair -n performs a more
complete check than xfs_check, but cannot be used to check filesystems with extended
attributes or filesystems on XLV real-time subvolumes. The command line for
xfs_repair -n is:

xfs_repair -n device

device is the device file for a disk partition or logical volume that contains an XFS
filesystem, for example /dev/xlv/xlv0.

The following example shows output with no consistency problems found:

Phase 1 - find and verify superblock...
Phase 2 - scan filesystem freespace and inode maps...
 - found root inode chunk
Phase 3 - for each AG...
 - scan (but don’t clear) agi unlinked lists...
 - process known inodes and perform inode discovery...
 - process newly discovered inodes...
 - agno = 0
 - agno = 1
 ...
Phase 4 - check for duplicate blocks...
 - setting up duplicate extent list...
 - check for inodes claiming duplicate blocks...
 - agno = 0
 - agno = 1
 ...
No modify flag set, skipping phase 5
Phase 6 - check inode connectivity...
 - traversing filesystem starting at / ...
 - traversal finished ...
 - traversing all unattached subtrees ...
 - traversals finished ...
 - moving disconnected inodes to lost+found ...
007-2825-009 175

7: Maintaining Filesystems
Phase 7 - verify link counts...
No modify flag set, skipping filesystem flush and exiting.

xfs_check also checks XFS filesystem consistency. It can be used on filesystems with
Extended Attributes (see the attr(1) reference page). (xfs_repair performs only
limited checking of Extended Attributes.) The command line for xfs_check is:

xfs_check device

If no consistency problems were found, xfs_check returns without displaying any
messages.

Repairing Inconsistent Filesystems

xfs_repair (without the-n option) checks XFS filesystem consistency and, if problems
are detected, corrects them if possible. The filesystem to be checked and repaired must
have been unmounted cleanly using normal system administration procedures (the
umount command or system shutdown), not as a result of a crash or system reset. If the
filesystem has not been unmounted cleanly, mount it and unmount it cleanly before
running xfs_repair.

The command line for xfs_repair when you want it to repair any inconsistencies it
finds is:

xfs_repair device

device is the device file for a disk partition or logical volume that contains an XFS
filesystem, for example /dev/xlv/xlv0. It must not be mounted.
176 007-2825-009

Checking XFS Filesystem Consistency With xfs_check and xfs_repair
An example of the output you see from running xfs_repair on a clean filesystem is:

Phase 1 - find and verify superblock...
Phase 2 - zero log...
 - scan filesystem freespace and inode maps...
 - found root inode chunk
Phase 3 - for each AG...
 - scan and clear agi unlinked lists...
 - process known inodes and perform inode discovery...
 - agno = 0
 - agno = 1
 ...
 - process newly discovered inodes...
Phase 4 - check for duplicate blocks...
 - setting up duplicate extent list...
 - clear lost+found (if it exists) ...
 - check for inodes claiming duplicate blocks...
 - agno = 0
 - agno = 1
 ...
Phase 5 - rebuild AG headers and trees...
 - reset superblock counters...
Phase 6 - check inode connectivity...
 - ensuring existence of lost+found directory
 - traversing filesystem starting at / ...
 - traversal finished ...
 - traversing all unattached subtrees ...
 - traversals finished ...
 - moving disconnected inodes to lost+found ...
Phase 7 - verify and correct link counts...
done

For information about using xfs_repair on an inconsistent filesystem, see “Repairing
XFS Filesystem Problems” on page 178.
007-2825-009 177

7: Maintaining Filesystems
Checking Foreign Filesystem Consistency With fpck

The IRIX operating system provides the fpck command to check and repair hfs (mac)
and dos (fat) filesystems. When the fpck utility locates major filesystem structure
destruction, such as critical sector damage or an unrecoverable error, it gives an error
message. For less severe filesystem inconsistencies, it gives a warning message

Note: For repair of foreign filesystems, it can be more constructive to use the filesystem
repair tools of the foreign operating system.

For information on using the fpck utility, see the fpck(1M) reference page. For further
information on foreign filesystem types, see the filesystems(4) reference page. For
information on creating foreign filesystems, see the mkfp(1M) reference page.

Repairing XFS Filesystem Problems

The xfs_repair command checks XFS filesystem consistency and sometimes repairs
problems that are found. This section describes the messages that you may see from
xfs_repair and what to do if xfs_repair is not able to repair a filesystem.

Common Error Messages

Some common error messages from xfs_repair and the repairs that it performs are the
following:

disconnected inode 242002, moving to lost+found

xfs_repair found an inode that is in use, but is not connected to the
filesystem. The inode is moved to the filesystem’s lost+found
directory. Its name is its inode number, in this example 242002. If the
disconnected inode is a directory, the directory’s subtree is preserved—
all its child inodes are automatically moved with it, so the entire
directory subtree moves to lost+found.

imap claims in-use inode 2444941 is free, correcting imap

The inode allocation map in the filesystem behaves as if inode 2444941
is free, but the inode itself looks like it is still in use. xfs_repair
corrects the inode map to say that the inode is in use.
178 007-2825-009

Repairing XFS Filesystem Problems
entry references free inode 2444940 in shortform directory 2444922

junking entry “fb” in directory inode 2444922

A directory entry points to an inode that xfs_repair has determined
is actually free. xfs_repair junks the directory entry. The term
shortform means a small directory. In larger directories, the entry deletion
is usually a two-pass process. In this case, the second part of the message
reads something like marking bad entry, marking entry to be
deleted, or will clear entry.

resetting inode 241996 nlinks from 5 to 3

xfs_repair detected a mismatch between the number of directory
entries pointing to the inode (links) and the number of links recorded in
the inode. It corrected the number (from 5 to 3 in this case).

cleared inode 2444926

There was something wrong with the inode that was not correctable, so
xfs_repair turned it into a zero-length free inode. This usually
happens because the inode claims blocks that are used by something
else or the inode itself is badly corrupted. Typically, the cleared inode

message is preceded by one or more messages indicating why the inode
needs to be cleared.
007-2825-009 179

7: Maintaining Filesystems
Error Messages When Files Are in lost+found

If xfs_repair has put files and directories in a filesystem’s lost+found directory and
you do not remove them, the next time you run xfs_repair it temporarily disconnects
the inodes for those files and directories. They are reconnected before xfs_repair
terminates. As a result of the disconnected inodes in lost+found, you see output like
this:

Phase 1 - find and verify superblock...
Phase 2 - zero log...
 - scan filesystem freespace and inode maps...
 - found root inode chunk
Phase 3 - for each AG...
 - scan and clear agi unlinked lists...
 - process known inodes and perform inode discovery...
 - agno = 0
 - agno = 1
 ...
 - process newly discovered inodes...
Phase 4 - check for duplicate blocks...
 - setting up duplicate extent list...
 - clear lost+found (if it exists) ...
 - clearing existing “lost+found” inode
 - deleting existing “lost+found” entry
 - check for inodes claiming duplicate blocks...
 - agno = 0
imap claims in-use inode 242000 is free, correcting imap
 - agno = 1
 - agno = 2
 ...
Phase 5 - rebuild AG headers and trees...
 - reset superblock counters...
Phase 6 - check inode connectivity...
 - ensuring existence of lost+found directory
 - traversing filesystem starting at / ...
 - traversal finished ...
 - traversing all unattached subtrees ...
 - traversals finished ...
 - moving disconnected inodes to lost+found ...
disconnected inode 242000, moving to lost+found
Phase 7 - verify and correct link counts...
done
180 007-2825-009

Repairing XFS Filesystem Problems
In this example, inode 242000 was an inode that was moved to lost+found during a
previous xfs_repair run. This run of xfs_repair found that the filesystem is
consistent. If the lost+found directory had been empty, in phase 4 only the messages
about clearing and deleting the lost+found directory would have appeared. The
left-justified imap claims and disconnected inodemessages appear (one pair of
messages per inode) if there are inodes in the lost+found directory.

What to Do If xfs_repair Cannot Repair a Filesystem

If xfs_repair fails to repair the filesystem successfully, try giving the same
xfs_repair command twice more; xfs_repair may be able to make more repairs on
successive runs. If xfs_repair fails to fix the consistency problems in three tries, your
next step depends upon where it failed:

• If xfs_repair failed in phase 1, you must restore lost files from backups.

• If xfs_repair failed in phase 2 or later, you may be able to restore files from the
disk by backing up and restoring the files on the filesystem.

If xfs_repair failed in phase 2 or later, follow these steps:

1. Mount the filesystem using mount –r (read-only).

2. Make a filesystem backup with xfsdump.

3. Use mkfs to a make new filesystem on the same disk partition or XLV logical
volume.

4. Restore the files from the backup with xfsrestore.

See IRIX Admin: Backup, Security, and Accounting for information about xfsdump and
xfsrestore.

Mounting A Filesystem Without Log Recovery

If a filesystem is damaged to the extent that you are unable to mount the filesystem
successfully in the standard fashion, you may be able to recover some of its data by
mounting the filesystem with the -o norecover option of the mount command. This
option mounts the filesystem without running log recovery. You must mount the
filesystem as read-only when you use this option.
007-2825-009 181

7: Maintaining Filesystems
When you mount the filesystem in norecovery mode when it was not unmounted
cleanly, the filesystem is likely to be inconsistent, and you will be unable to read all of its
data. However, you may be able to recover data that you can cannot otherwise access.

For information on the mount command and its options, see the mount(1M) and the
fstab(4) reference pages.

Running xfs_repair on the Root Filesystem

If you find that your root filesystem is corrupted, you can run xfs_repair on the root
filesystem itself. In order to do this, you run the xfs_repair command from the
miniroot using the following procedure:

1. Boot the miniroot. The procedure for performing a miniroot installation is provided
in IRIX Admin: Software Installation and Licensing.

2. From the miniroot Main Menu, select the Administrative Commands menu.

3. Get a single-user shell by selecting sh.

4. Run xfs_repair on the root filesystem, which in most cases will be
/dev/dsk/dks0d1s0.
182 007-2825-009

Chapter 8

8. System Administration for Guaranteed-Rate I/O

Guaranteed-rate I/O, or GRIO for short, is a mechanism that enables a user application
to reserve part of a system’s I/O resources for its exclusive use. For example, it can be
used to enable “real-time” retrieval and storage of data streams. GRIO manages the
system resources among competing applications, so the actions of new processes do not
affect the performance of existing ones. GRIO can read and write only files on a real-time
subvolume of an XFS filesystem. To use GRIO, the subsystem eoe.sw.xfsrt must be
installed.

This chapter explains important guaranteed-rate I/O concepts, describes how to
configure a system for GRIO; and provides instructions for creating an XLV logical
volume for use with applications that use GRIO.

The major sections in this chapter are:

• “Guaranteed-Rate I/O Overview” on page 184

• “GRIO Guarantee Types” on page 187

• “GRIO System Components” on page 190

• “Hardware Configuration Requirements for GRIO” on page 191

• “Configuring a System for GRIO” on page 191

• “Additional Procedures for GRIO” on page 195

• “Using Real-Time Subvolumes” on page 199

• “GRIO File Formats” on page 200

For additional information, see the grio(5) reference page.
007-2825-009 183

8: System Administration for Guaranteed-Rate I/O
Note: By default, IRIX supports four GRIO streams (concurrent uses of GRIO). To
increase the number of streams to 40, you can purchase the High Performance
Guaranteed-Rate I/O—5-40 Streams software option. For even more streams, you can
purchase the High Performance Guaranteed-Rate I/O—Unlimited Streams software
option.

Guaranteed-Rate I/O Overview

The guaranteed-rate I/O system (GRIO) allows applications to reserve specific I/O
bandwidth to and from the filesystem. Applications request guarantees by providing a
file descriptor, data rate, duration, and start time. The filesystem calculates the
performance available and, if the request is granted, guarantees that the requested level
of performance can be met for a given time. This frees programmers from having to
predict system I/O performance and is critical for media delivery systems such as
video-on-demand.

The GRIO mechanism is designed for use in an environment where many different
processes attempt to access scarce I/O resources simultaneously. GRIO provides a way
for applications to determine that resources are already fully utilized and attempts to
make further use would have a negative performance impact.

If the system is running a single application that needs access to all the system resources,
the GRIO mechanism does not need to be used. Because there is no competition, the
application gains nothing by reserving the resources before accessing them.

Applications negotiate with the system to make a GRIO reservation, an agreement by the
system to provide a portion of the bandwidth of a system resource for a period of time.
The system resources supported by GRIO are files residing within real-time subvolumes
of XFS filesystems. A reservation can by transferred to any process and to any file on the
filesystem specified in the request.

A GRIO reservation associates a data rate with a filesystem. A data rate is defined as the
number of bytes per a fixed period of time (called the time quantum). The application
receives data from or transmits data to the filesystem starting at a specific time and
continuing for a specific period. For example, a reservation could be for 1.2 MB every 1.29
seconds, for the next three hours, to or from the filesystem on /dev/xlv/video1. In
this example, 1.29 seconds is the time quantum of the reservation.
184 007-2825-009

Guaranteed-Rate I/O Overview
The application issues a reservation request to the system, which either accepts or rejects
the request. If the reservation is accepted, the application then associates the reservation
with a particular file. It can begin accessing the file at the reserved time, and it can expect
that it will receive the reserved number of bytes per time quantum throughout the time
of the reservation. If the system rejects the reservation, it returns the maximum amount
of bandwidth that can be reserved for the resource at the specified time. The application
can determine whether the available bandwidth is sufficient for its needs and issue
another reservation request for the lower bandwidth, or it can schedule the reservation
for a different time.

The GRIO reservation continues until it expires or an explicit grio_unreserve_bw()
library call is made (for more information, see the grio_unreserve_bw(3) reference
pages). A GRIO reservation is also removed on the last close of a file currently associated
with a reservation.

If a process has a rate guarantee on a file, any reference by that process to that file uses
the rate guarantee, even if a different file descriptor is used. However, any other process
that accesses the same file does so without a guarantee or must obtain its own guarantee.
This is true even when the second process has inherited the file descriptor from the
process that obtained the guarantee.

Sharing file descriptors between processes in an ancestral process group is supported for
files used for GRIO, and the processes share the guarantee. For example, if a process got
a rate guarantee of 2 Mb/s on a file and then forked, and the parent and child access the
same file, they would be able to receive a combined rate of 2 Mb/s. If the child wanted a
4 Mb/s guarantee on the file, it would have to close and reopen the file and get a new
rate guarantee of 4 Mb/s on it.
007-2825-009 185

8: System Administration for Guaranteed-Rate I/O
Four sizes are important to GRIO:

Optimal I/O size
Optimal I/O size is the size of the I/O operations that the system
actually issues to the disks. All the disks in the real-time subvolume of
an XLV volume must have the same optimal I/O size. Optional I/O
sizes of disks in real-time subvolumes of different XLV volumes can
differ. For more information see “/etc/grio_disks File Format” on
page 200.

XLV volume stripe unit size
The XLV volume stripe unit size is the amount of data written to a single
disk in the stripe. The XLV volume stripe unit size must be an even
multiple of the optimal I/O size for the disks in that subvolume. See
“Introduction to XLV Logical Volumes” in Chapter 3 for more
information.

Reservation size (also known as the rate)
The reservation size is the amount of I/O that an application issues in a
single time quantum.

Application I/O size
The application I/O size is the size of the individual I/O requests that
an application issues. An application I/O size that equals the
reservation size is recommended, but not required. The reservation size
must be an even multiple of the application I/O size, and the application
I/O size must be an even multiple of the optimal I/O size.

The application is responsible for making sure that all I/O requests are issued within a
given time quantum, so that the system can provide the guaranteed data rate.
186 007-2825-009

GRIO Guarantee Types
GRIO Guarantee Types

In addition to specifying the amount and duration of the reservation, the application
must specify the type of guarantee desired. There are four different classes of options that
need to be determined when obtaining a rate guarantee:

• The rate guarantee can be made on a per-file or per-filesystem basis.

• The rate guarantee can be private or shared.

• The rate guarantee can be a fixed rotor, slip rotor, or non-rotor type.

• The rate guarantee can have deadline or real-time scheduling, or it can be
nonscheduled.

If the user does not specify any options, the rate guarantee has these options by default:
shared, non-rotor options, and deadline scheduling. The per-file or per-filesystem
guarantee is determined by the libgrio calls to make the reservation: either the
grio_reserve_file() or grio_reserve_file_system() library calls.

Per-File and Per-Filesystem Guarantees

A per-file guarantee indicates that the given rate guarantee can be used only on one
specific file. When a per-filesystem guarantee is obtained, the guarantee can be transferred
to any file on the given filesystem.

Private and Shared Guarantees

A private guarantee can be used only by the process that obtained the guarantee; it cannot
be transferred to another process. A shared guarantee can be transferred from one process
to another. Shared guarantees are only transferable; they cannot be used by both
processes at the same time.

Rotor and Non-Rotor Guarantees

The rotor type of guarantee (either fixed or slip) is also known as a VOD (video on
demand) guarantee. It allows more streams to be supported per disk drive, but requires
that the application provide careful control of when and where I/O requests are issued.
007-2825-009 187

8: System Administration for Guaranteed-Rate I/O
Rotor guarantees are supported only when using a striped real-time subvolume. When
an application accesses a file, the accesses are time-multiplexed among the drives in the
stripe. An application can only access a single disk during any one time quantum, and
consecutive accesses are assumed to be sequential. Therefore, the stripe unit must be set
to the number of kilobytes of data that the application needs to access per time quantum.
(The stripe unit is set with the xlv_make command when volume elements are created.)
If the application tries to access data on a different disk when it has a slip rotor guarantee,
the system attempts to change the process’s rotor slot so that it can access the desired
disk. If the application has a fixed rotor guarantee it is suspended until the appropriate
time quantum for accessing the given disk.

An application with a fixed rotor reservation that does not access a file sequentially, but
rather skips around in the file, has a performance impact. For example, if the real-time
subvolume is created on a four-way stripe, it could take as long as four (the size of the
volume stripe) times the time quantum for the first I/O request after a seek to complete.

Non-rotor guarantees do not have such restrictions. Applications with non-rotor
guarantees normally access the file in entire stripe size units, but can access smaller or
larger units without penalty as long as they are within the bounds of the rate guarantee.
The accesses to the file do not have to be sequential, but must be on stripe boundaries. If
an application tries to access the file more quickly than the guarantee allows, the actions
of the system are determined by the type of scheduling guarantee.

An Example Comparing Rotor and Non-Rotor Guarantees

Assume the system has eight disks, each supporting twenty-three 64 KB operations per
second. (You can use the command grio_bandwidth to learn the number of I/O
operations of a given size that can be performed on a particular disk in one second.) For
non-rotor GRIO, if an application needs 512 KB of data each second, the eight disks are
arranged in a eight-way stripe. The stripe unit is 64 KB. Each application read/write
operation is 512 KB and causes concurrent read/write operations on each disk in the
stripe. The application can access any part of the file at any time, provided that the
read/write operation always starts at a stripe boundary. This configuration provides 23
process streams with 512 KB of data each second.

With a rotor guarantee, the eight drives are given an optimal I/O size of 512 KB. Each
drive can support seven such operations each second. The higher rate (7 x 512 KB versus
23 x 64 KB) is achievable because the larger transfer size does less seeking. Again the
drives are arranged in an eight-way stripe but with a stripe unit of 512 KB. Each drive
can support seven 512K streams per second for a total of 8 * 7 = 56 streams. Each of the
188 007-2825-009

GRIO Guarantee Types
56 streams is given a time period (also known as a time “bucket”). There are eight
different time periods with seven different processes in each period. Therefore, 8 * 7 = 56
processes are accessing data in a given time unit. At any given second, the processes in a
single time period are allowed to access only a single disk.

Using a rotor guarantee more than doubles the number of streams that can be supported
with the same number of disks. The tradeoff is that the time tolerances are very stringent.
Each stream is required to issue the read/write operations within one time quantum. If
the process issues the call too late and real-time scheduling is used, the request blocks
until the next time period for that process on the disk. In this example, this could mean
a delay of up to eight seconds. In order to receive the rate guarantee, the application must
access the file sequentially. The time periods move sequentially down the stripe allowing
each process to access the next 512 KB of the file.

Real-Time Scheduling, Deadline Scheduling, and Nonscheduled Reservations

Three types of reservation scheduling are possible: real-time scheduling, deadline
scheduling, and non-scheduled reservations.

Real-time scheduling means that an application receives a fixed amount of data in a fixed
length of time. The data can be returned at any time during the time quantum. This type
of reservation is used by applications that do only a small amount of buffering. If the
application requests more data than its rate guarantee, the system suspends the
application until it falls within the guaranteed bandwidth.

Deadline scheduling means that an application receives a minimum amount of data in a
fixed length of time. Such guarantees are used by applications that have a large amount
of buffer space. The application requests I/O at a rate at least as fast as the rate guarantee
and is suspended only when it is exceeding its rate guarantee and there is no additional
device bandwidth available.

Nonscheduled reservations means that the guarantee received by the application is only
a reservation of system bandwidth. The system does not enforce the reservation limits
and therefore cannot guarantee the I/O rate of any of the guarantees on the system.
Nonscheduled reservations should be used with extreme care.
007-2825-009 189

8: System Administration for Guaranteed-Rate I/O
GRIO System Components

Several components make up the GRIO mechanism: a system daemon, support
commands, configuration files, and an application library.

The system daemon isggd. It is started from the script/etc/rc2.d/S94griowhen the
system is started. It is always started; unlike some other daemons, it is not turned on and
off with the chkconfig command. A lock file is created in the /tmp directory to prevent
two copies of the daemon from running simultaneously. Requests for rate guarantees are
made to the ggd daemon. The daemon reads the GRIO configuration file
/etc/grio_disks.

/etc/grio_disks describes the performance characteristics for the types of disk
drives that are supported on the system, including how many I/O operations of each size
(64 KB, 128 KB, 256 KB, or 512 KB) can be executed by each piece of hardware in one
second. You can edit the file to add support for new drive types. (You can use the
command grio_bandwidth to learn the number of I/O operations of a given size that
can be performed on a particular disk in one second.) The format of this file is described
in “/etc/grio_disks File Format” on page 200.

The command grio_bandwidth can be used to learn the number of I/O operations of
a given size that can be performed on a particular disk in one second.

The /usr/lib/libgrio.so libraries contain a collection of routines that enable an
application to establish a GRIO session. The library routines are the only way in which
an application program can communicate with the ggd daemon. The library also
includes a library routine that applications can use to check the amount of bandwidth
available on a filesystem. This enables them to quickly get an idea of whether or not a
particular reservation might be granted—more quickly than actually making the request.
190 007-2825-009

Hardware Configuration Requirements for GRIO
Hardware Configuration Requirements for GRIO

Guaranteed-rate I/O requires the hardware to be configured so that it follows these
guidelines:

• Put only real-time subvolume volume elements on a single disk (not log or data
subvolume volume elements). This configuration is recommended for soft
guarantees and required for hard guarantees.

• Each XLV volume you create with a real-time subvolume must include a data
subvolume, even if you do not intend to use it. The data subvolume is used by XFS
to store inodes and other internal filesystem information.

• Disks used in the data and log subvolumes of the XLV logical volume must have
their retry mechanisms enabled. The data and log subvolumes contain information
critical to the filesystem and cannot afford an occasional disk error.

Configuring a System for GRIO

Caution: The procedure in this section can result in the loss of data if it is not performed
properly. It is recommended only for experienced IRIX system administrators.

This section describes how to configure a system for GRIO: create an XLV logical volume
with a real-time subvolume, make a filesystem on the volume and mount it, and
configure and restart the ggd daemon.

1. Choose disk partitions for the XLV logical volume and confirm the hardware
configuration as described in “Hardware Configuration Requirements for GRIO”
on page 191. This includes modifying the disk drive parameters as described in
“Disabling Disk Error Recovery” on page 195. Be sure to create a data disk partition
and subvolume for each real-time subvolume you create.

2. Determine the values of variables used while constructing the XLV logical volume:

vol_name The name of the volume with a real-time subvolume.

rate The rate at which applications using this volume access the data. rate
is the number of bytes per time quantum per stream (the rate)
divided by 1 KB. This information may be available in published
information about the applications or from the developers of the
applications.
007-2825-009 191

8: System Administration for Guaranteed-Rate I/O
num_disks The number of disks included in the real-time subvolume of the
volume.

stripe_unit When the real-time disks are striped (required for video on demand
and recommended otherwise), this is the amount of data written to
one disk before writing to the next. It is expressed in 512-byte
sectors.

For non-rotor guarantees:

stripe_unit = rate * 1K / (num_disks * 512)

For rotor guarantees:

stripe_unit = rate * 1K / 512

extent_size The filesystem extent size.

For non-rotor guarantees:

extent_size = rate * 1K

For rotor guarantees:

extent_size = rate * 1K * num_disks

opt_IO_size The optimal I/O size. It is expressed in kilobytes. By default, the
possible values for opt_IO_size are 64 (64 KB), 128 (128 KB), 256
(256 KB), and 512 (512 KB). Other values can be added by editing the
/etc/grio_disks file (see “/etc/grio_disks File Format” on
page 200 for more information).

For non-rotor guarantees, opt_IO_size must be an even factor of
stripe_unit, but not less than 64.

For rotor guarantees opt_IO_size must be an even factor of rate.
Setting opt_IO_size equal to rate is recommended.
192 007-2825-009

Configuring a System for GRIO
Table 8-1 gives examples for the values of these variables.

Table 8-1 Examples of Values of Variables Used in Constructing an XLV Logical Volume
Used for GRIO

Variable Type of Guarantee Comment
Example
Value

vol_name any This name matches the last component of the
device name for the volume,
/dev/xlv/vol_name

xlv_grio

rate any For this example, assume 512 KB per second per
stream

512

num_disks any For this example, assume 4 disks 4

stripe_unit non-rotor 512*1K/(4*512) 256

rotor 512*1K/512 1024

extent_size non-rotor 512 * 1K 512 KB

rotor 512 * 1K * 4 2048 KB

opt_IO_size non-rotor 128/1 = 128 or 128/2 = 64 are possible 64

rotor Same as rate 512
007-2825-009 193

8: System Administration for Guaranteed-Rate I/O
3. Create an xlv_make script file that creates the XLV logical volume. (See “Creating
Volume Objects With xlv_make” in Chapter 4 for more information.) Example 8-1
shows an example script file for a volume.

Example 8-1 Configuration File for a Volume Used for GRIO

Configuration file for logical volume vol_name. In this
example, data and log subvolumes are partitions 0 and 1 of
the disk at unit 1 of controller 1. The real-time
subvolume is partition 0 of the disks at units 1-4 of
controller 2.
#
vol vol_name
data
plex
ve dks1d1s0
log
plex
ve dks1d1s1
rt
plex
ve -stripe -stripe_unit stripe_unit dks2d1s0 dks2d2s0 dks2d3s0 dks2d4s0
show
end
exit

4. Run xlv_make to create the volume:

xlv_make script_file

script_file is the xlv_make script file you created in step 3.

5. Create the filesystem by entering this command:

mkfs -r extsize=extent_size /dev/xlv/vol_name

6. To mount the filesystem immediately, enter these commands:

mkdir mountdir
mount /dev/xlv/vol_name mountdir

mountdir is the full pathname of the directory that is the mount point for the
filesystem.

7. To configure the system so that the new filesystem is automatically mounted when
the system is booted, add this line to /etc/fstab:

/dev/xlv/vol_name mountdir xfs rw,raw=/dev/rxlv/vol_name 0 0
194 007-2825-009

Additional Procedures for GRIO
8. Restart the ggd daemon:

/etc/init.d/grio stop
/etc/init.d/grio start

Now the user application can be started. Files created on the real-time subvolume
volume can be accessed using guaranteed-rate I/O.

Additional Procedures for GRIO

The following subsections describe additional special-purpose procedures for
configuring disks and GRIO system components. It is not advisable to perform these
tuning procedures, because they can cause bad data to be returned from disk drives.
However, in situations where data access speed is more important than data integrity,
these tunings may be helpful.

Disabling Disk Error Recovery

Caution: Setting disk drive parameters must be performed correctly on approved disk
drive types only. Performing the procedure incorrectly, or performing it on an
unapproved type of disk drive can severely damage the disk drive. Setting disk drive
parameters should be performed only by experienced system administrators.

The procedure for setting disk drive parameters is shown below. In this example all of
the parameters shown in Table 8-2 are changed for a disk on controller 131 at drive
address 1.

Table 8-2 Disk Drive Parameters for GRIO

Parameter New Setting

Auto bad block reallocation (read) Disabled

Auto bad block reallocation (write) Disabled

Delay for error recovery (disabling this parameter
enables the read continuous (RC) bit)

Disabled
007-2825-009 195

8: System Administration for Guaranteed-Rate I/O
1. Start fx in expert mode:

fx -x
fx version 6.4, Sep 29, 1996

2. Specify the disk whose parameters you want to change by answering the prompts:

fx: "device-name" = (dksc) Enter
fx: ctlr# = (0) 131
fx: drive# = (1) 1
fx: lun# = (0)
...opening dksc(131,1,0)

...drive selftest...OK

3. Confirm that the disk drive is disk drive type SGI 0664N1D 6s61 or disk drive type
SGI 0664N1D 4I4I. These disk drive types are approved for changing disk
parameters. The disk drive type appears in the next line of output:

Scsi drive type == SGI 0664N1D 6s61
----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/

4. Show the current settings of the disk drive parameters (this command uses the
shortcut of separating commands on a series of hierarchical menus with slashes):

fx > label/show/parameters

----- current drive parameters-----
Error correction enabled Enable data transfer on error
Don't report recovered errors Do delay for error recovery
Don't transfer bad blocks Error retry attempts 10
Do auto bad block reallocation (read)
Do auto bad block reallocation (write)
Drive readahead enabled Drive buffered writes disabled
Drive disable prefetch 65535 Drive minimum prefetch 0
Drive maximum prefetch 65535 Drive prefetch ceiling 65535
Number of cache segments 4
Read buffer ratio 0/256 Write buffer ratio 0/256
Command Tag Queueing disabled

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/
[b]adblock/ [exe]rcise/ [r]epartition/
196 007-2825-009

Additional Procedures for GRIO
The parameters in Table 8-2 correspond to Do auto bad block reallocation
(read), Do auto bad block reallocation (write), and Do delay for
error recovery, in that order. Each of them is currently enabled.

5. Give the command to start setting disk drive parameters and press Enter until you
reach a parameter that you want to change:

fx> label/set/parameters
fx/label/set/parameters: Error correction = (enabled) Enter
fx/label/set/parameters: Data transfer on error = (enabled) Enter
fx/label/set/parameters: Report recovered errors = (disabled) Enter

6. To change the delay for error recovery parameter to disabled, enter “disable” the
prompt:

fx/label/set/parameters: Delay for error recovery = (enabled) disable

7. Press Enter through other parameters that do not need changing:

fx/label/set/parameters: Err retry count = (10) Enter
fx/label/set/parameters: Transfer of bad data blocks = (disabled) Enter

8. To change the auto bad block reallocation parameters, enter disable at their
prompts:

fx/label/set/parameters: Auto bad block reallocation (write) = (enabled) disable
fx/label/set/parameters: Auto bad block reallocation (read) = (enabled) disable

9. Press Enter through the rest of the parameters:

fx/label/set/parameters: Read ahead caching = (enabled) Enter
fx/label/set/parameters: Write buffering = (disabled) Enter
fx/label/set/parameters: Drive disable prefetch = (65535) Enter
fx/label/set/parameters: Drive minimum prefetch = (0) Enter
fx/label/set/parameters: Drive maximum prefetch = (65535) Enter
fx/label/set/parameters: Drive prefetch ceiling = (65535) Enter
fx/label/set/parameters: Number of cache segments = (4) Enter
fx/label/set/parameters: Enable CTQ = (disabled) Enter
fx/label/set/parameters: Read buffer ratio = (0/256) Enter
fx/label/set/parameters: Write buffer ratio = (0/256) Enter
007-2825-009 197

8: System Administration for Guaranteed-Rate I/O
10. Confirm that you want to make the changes to the disk drive parameters by
entering “yes” to this question and start exiting fx:

 * * * * * W A R N I N G * * * * *
about to modify drive parameters on disk dksc(131,1,0)! ok? yes

----- please choose one (? for help, .. to quit this menu)-----
[exi]t [d]ebug/ [l]abel/ [a]uto
[b]adblock/ [exe]rcise/ [r]epartition/ [f]ormat
fx> exit

11. Confirm again that you want to make the changes to the disk drive parameters by
pressing Enter in response to this question:

label info has changed for disk dksc(131,1,0). write out changes? (yes) Enter

Restarting the ggd Daemon

After either the /etc/grio_disks or /etc/config/ggd.options files are
modified, ggd must be restarted to make the changes take effect. Give these commands
to restart ggd:

/etc/init.d/grio stop
/etc/init.d/grio start

When ggd is restarted, current rate guarantees are lost.

Running ggd as a Real-time Process

Running ggd as a real-time process dedicates one or more CPUs to performing GRIO
requests exclusively. Follow this procedure on a multiprocessor system to run ggd as a
real-time process:

1. Create or modify the file /etc/config/ggd.options and add -c cpunum to the
file. cpunum is the number of a processor to be dedicated to GRIO. This causes the
CPU to be marked isolated, restricted to running selected processes, and
nonpreemptive. Processes using GRIO should mark their processes as real-time and
runable only on CPU cpunum. The sysmp(2) reference page explains how to do this.

2. Restart the ggd daemon. See “Restarting the ggd Daemon” on page 198 for
directions.
198 007-2825-009

Using Real-Time Subvolumes
3. After ggd is restarted, you can confirm that the CPU is marked by entering this
command (cpunum is 3 in this example):

mpadmin -s
processors: 0 1 2 3 4 5 6 7
unrestricted: 0 1 2 5 6 7
isolated: 3
restricted: 3
preemptive: 0 1 2 4 5 6 7
clock: 0
fast clock: 0

4. To mark an additional CPU for real-time processes after ggd is restarted, enter these
commands:

mpadmin -rcpunum2
mpadmin -Icpunum2
mpadmin -Ccpunum2

Using Real-Time Subvolumes

The files you create on the real-time subvolume of an XLV logical volume are known as
real-time files. The next two sections describe the special characteristics of these files.

Files on the Real-Time Subvolume and Commands

Real-time files have some special characteristics that cause standard IRIX commands to
operate in ways that you might not expect. In particular:

• You cannot create real-time files using any standard commands. Only specially
written programs can create real-time files. The section “File Creation on the
Real-Time Subvolume” on page 200 explains how.

• Real-time files are displayed by ls, just as any other file. However, there is no way
to tell from the ls output whether a particular file is on a data subvolume or is a
real-time file on a real-time subvolume. Only a specially written program can
determine the type of a file. The F_FSGETXATTR fcntl() system call can
determine whether a file is a real-time or a standard data file. If the file is a real-time
file, the fsx_xflags field of the fsxattr structure has the
XFS_XFLAG_REALTIME bit set.
007-2825-009 199

8: System Administration for Guaranteed-Rate I/O
• The df command displays the disk space in the data subvolume by default. When
the -r option is given, the real-time subvolume’s disk space and usage is added. df
can report that there is free disk space in the filesystem when the real-time
subvolume is full, and df –r can report that there is free disk space when the data
subvolume is full.

File Creation on the Real-Time Subvolume

To create a real-time file, use the F_FSSETXATTR fcntl() system call with the
XFS_XFLAG_REALTIME bit set in the fsx_xflags field of the fsxattr structure. This
must be done after the file has first been created/opened for writing, but before any data
has been written to the file. Once data has been written to a file, the file cannot be changed
from a standard data file to a real-time file, nor can files created as real-time files be
changed to standard data files.

Real-time files can only be read or written using direct I/O. Therefore, read() and
write() system call operations to a real-time file must meet the requirements specified
by the F_DIOINFO fcntl() system call. See the open(2) reference page for a discussion
of the O_DIRECT option to the open() system call.

GRIO File Formats

The following subsections contain reference information about the contents of the two
GRIO configuration files /etc/grio_disks and /etc/config/ggd.options.

/etc/grio_disks File Format

The file /etc/grio_disks contains information that describes I/O bandwidth
parameters of the various types of disk drives that can be used on the system.

By default, /etc/grio_disks contains the parameters for disks supported by Silicon
Graphics for optimal I/O sizes of 64 KB, 128 KB, 256 KB, and 512 KB. Table 8-3 lists some
of these disks. Table 8-4 shows the optimal I/O sizes and the number of optimal I/O size
requests each of the disks listed in Table 8-3 can handle in one second.
200 007-2825-009

GRIO File Formats
To add other disks or to specify a different optimal I/O size, you must add information
to the /etc/grio_disks file. If you modify /etc/grio_disks, you must restart the
ggd daemon for the changes to take effect (see “Restarting the ggd Daemon” on
page 198).

Table 8-3 Disks in /etc/grio_disks by Default

Disk ID String

"SGI IBM DFHSS2E 1111"

"SGI SEAGATE ST31200N8640"

"SGI SEAGATE ST31200N9278"

"SGI 066N1D 4I4I"

"SGI 0064N1D 4I4I"

"SGI 0664N1D 4I4I"

"SGI 0664N1D 6S61"

"SGI 0664N1D 6s61"

"SGI 0664N1H 6s61"

"IBM OEM 0663E15 eSfS"

"IMPRIMIS 94601-15 1250"

"SEAGATE ST4767 2590"

Table 8-4 Optimal I/O Sizes and the Number of Requests per Second Supported

Optimal I/O Size Number of Requests per Second

65536 23

131072 16

262144 9

524288 5
007-2825-009 201

8: System Administration for Guaranteed-Rate I/O
The records in /etc/grio_disks are in these two forms:

ADD "disk id string" optimal_iosize number_optio_per_second

REPLACE devicename optal_iosize number_optio_per_second

If the first field is the keyword ADD, the next field is a 28-character string that is the drive
manufacturer’s disk ID string. The next field is an integer denoting the optimal I/O size
of the device in bytes. The last field is an integer denoting the number of optimal I/O size
requests that the disk can satisfy in one second.

Some examples of these records are:

ADD “SGI SEAGATE ST31200N9278” 64K 23

ADD “SGI 0064N1D 4I4I” 50K 25

If the first field is the keyword REPLACE, the next field is the pathname of a device (for
a description of pathnames, see the grio(1M) man page). The third field is an integer
denoting the optimal I/O size to be used on the device, and the number of I/O
operations of that size that it can deliver per second.

An example of a REPLACE record is:

REPLACE /dev/rdsk/dks136d1s0 50K 20

/etc/config/ggd.options File Format

/etc/config/ggd.options contains command-line options for the ggd daemon.
Options you might include in this file are:

-c cpunum Dedicate CPU cpunum to performing GRIO requests exclusively.

-o iosize Specify default optimal I/O size for all devices (e.g., 64, 128, 256, 512).

If you change this file, you must restart ggd to make your changes take effect. See
“Restarting the ggd Daemon” on page 198 for more information.
202 007-2825-009

Appendix A

A. EFS Filesystems

Note: Support for EFS filesystems will be discontinued in a future IRIX release. For
information on converting EFS filesystems to XFS filesystems, see Chapter 6, “Creating
and Growing Filesystems.”

The EFS filesystem is the original IRIX filesystem. This appendix describes the EFS
filesystem and provides information on how to perform various administration tasks on
EFS filesystems.

The major sections in this appendix are:

• “EFS Filesystem Overview” on page 203

• “EFS Filesystem Creation” on page 205

• “EFS Filesystem Creation Procedure” on page 205

• “Growing an EFS Filesystem Onto Another Disk” on page 207

• “EFS Filesystem Checking” on page 208

• “EFS Filesystem Reorganization” on page 210

• “Repairing EFS Filesystem Problems” on page 213

EFS Filesystem Overview

The EFS filesystem is the original IRIX filesystem. It contains an enhancement to the
standard UNIX filesystem called extents (defined below), and thus is called the Extent
File System (EFS). The maximum size of an EFS filesystem is about 8 GB. It uses a
filesystem block size of 512 bytes and allows a maximum file size of 2 GB minus 1 byte.
007-2825-009 203

A: EFS Filesystems
Advanced features of EFS are that it keeps multiple inode tables in close proximity to
data blocks rather than a single inode table, and it uses a bitmap to keep track of free
blocks instead of a list of free blocks.

Inodes are created when an EFS filesystem is created, not when files are created. When a
file is created, an inode is allocated to that file. Thus, the maximum number of files in a
filesystem is limited by the number of inodes in that filesystem. By default, the number
of inodes created is a function of the size of the partition or logical volume. Typically one
inode is created for every 4 KB in the partition or logical volume. You can specify the
number of inodes with the -n option to the filesystem creation command, mkfs. Inodes
use disk space, so there is a tradeoff between the number of inodes and the amount of
disk space available for files.

The first block of an EFS filesystem is not used. Information about the filesystem is stored
in the second block of the filesystem (block 1), called the superblock. This information
includes:

• The size of the filesystem, in both physical and logical blocks

• The read-only flag; if set, the filesystem is read only

• The superblock-modified flag; if set, the superblock has been modified

• The date and time of the last update

• The total number of index nodes (inodes) allocated

• The total number of inodes free

• The total number of free blocks

• The starting block number of the free block bitmap

The superblock bitmap is followed by the inodes and data blocks. Each contiguous group
of data blocks that make up a file is called an extent. There are 12 extent addresses in an
inode. Extents are of variable length, anywhere from 1 to 148 contiguous blocks.

An inode contains addresses for 12 extents, which can hold a combined 1536 blocks, or
786,432 bytes. If a file is large enough that it cannot fit in the 12 extents, each extent is then
loaded with the address of up to 148 indirect extents. The indirect extents then contain the
actual data that makes up the file. Because EFS uses indirect extents, you can create files
up to 2 GB, assuming you have that much disk space available in your filesystem.

The last block of the filesystem is a duplicate of the filesystem superblock. This is a safety
precaution that provides a backup of the critical information stored in the superblock.
204 007-2825-009

EFS Filesystem Creation
EFS Filesystem Creation

To turn a disk partition or logical volume into an EFS filesystem, the mkfs command
must be used. It takes a disk partition or logical volume and divides it up into areas for
data blocks, inodes, and free lists, and writes out the appropriate inode tables,
superblocks, and block maps. It creates the filesystem’s root directory and a
lost+found directory.

An example mkfs command for making an EFS filesystem is:

mkfs -t efs /dev/rdsk/dks0d2s7

After using mkfs to create an EFS filesystem, run the fsck command to verify that the
disk is consistent. For information on the fsck command, see“Repairing EFS Filesystem
Problems” on page 213.

For more instructions on making EFS filesystems see “EFS Filesystem Creation
Procedure” on page 205, and the mkfs(1M) and mkfs_efs(1M) reference pages.

EFS Filesystem Creation Procedure

The procedure in this section explains how to make an EFS filesystem on a disk partition
or on a logical volume and mount it. (See Chapter 4, “Creating and Administering XLV
Logical Volumes,” for information on creating logical volumes.) This procedure assumes
that the disk or logical volume is empty. If it contains valuable data, the data must be
backed up because it is destroyed during this procedure.

Tip: You can make an EFS filesystem on a disk partition using the Disk Manager in the
System Toolchest. For information on the Disk Manager, see the “Disk Manager” section
in Chapter 3 of the Personal System Administration Guide.

Caution: When you create a filesystem, all files already on the disk partition or logical
volume are destroyed.
007-2825-009 205

A: EFS Filesystems
1. Identify the device name of the partition or logical volume where you plan to create
the filesystem. This is the value of partition in the examples below. For example, if
you plan to use partition 7 (the entire disk) of a SCSI option disk on controller 0 and
drive address 2, partition is /dev/dsk/dks0d2s7. For more information on
determining partition, see “Introduction to XLV Logical Volumes” in Chapter 3, and
the dks(7M) reference page.

2. If the disk partition is already mounted, unmount it:

umount partition

Any data that is on the disk partition is destroyed. To convert the data rather than
destroy it, use the procedure in “Converting a Filesystem on an Option Disk From
EFS to XFS” in Chapter 6 instead.

3. Create a new filesystem with the mkfs command, for example,

mkfs -t efs /dev/rdsk/dks0d2s7

The argument to mkfs is the block or character device for the disk partition or
logical volume. You can use either the block device or the character device.

In the above example, mkfs uses default values for the filesystem parameters. If
you want to use parameters other than the default, you can specify these on the mkfs
command line. See the mkfs_efs(1M) reference page for information about using
command line parameters and proto files.

4. To use the filesystem, you must mount it. For example,

mkdir /rsrch
mount /dev/dsk/dks0d2s7 /rsrch

For more information about mounting filesystems, see “Manually Mounting
Filesystems” in Chapter 7.

5. To configure the system so that this filesystem is automatically mounted when the
system is booted up, add an entry in the file /etc/fstab for the new filesystem.
For example,

/dev/dsk/dks0d2s7 /rsrch efs rw,raw=/dev/rdsk/dks0d2s7 0 0

For more information about automatically mounting filesystems, see “Mounting
Filesystems Automatically With the /etc/fstab File” in Chapter 7.
206 007-2825-009

Growing an EFS Filesystem Onto Another Disk
Growing an EFS Filesystem Onto Another Disk

The procedure in this section explains how to grow an EFS filesystem onto another disk.

The following steps show how to grow a filesystem mounted at /disk2 onto an XLV
logical volume created out of the /disk2 disk partition and a new disk. The procedure
assumes that the new disk is installed on the system and partitioned.

Caution: All files on the additional disk are destroyed by this procedure.

1. Make a backup of the filesystem you are going to extend.

2. Unmount the /disk2 filesystem:

umount /disk2

3. Use xlv_make to create an XLV logical volume out of the /disk2 partition and the
new disk. The /disk2 partition must be the first volume element in the data
subvolume. For example:

xlv_make
xlv_make> vol xlv0
xlv0
xlv_make> data
xlv0.data
xlv_make> plex
xlv0.data.0
xlv_make> ve dks0d2s7
xlv0.data.0.0
xlv_make> ve dks0d3s7
xlv0.data.0.1
xlv_make> end
Object specification completed
xlv_make> exit
Newly created objects will be written to disk.
Is this what you want?(yes) yes
Invoking xlv_assemble

4. Grow the EFS filesystem into the logical volume with the growfs command:

growfs /dev/xlv/xlv0

5. Run fsck on the expanded filesystem:

fsck /dev/xlv/xlv0
007-2825-009 207

A: EFS Filesystems
6. Mount the logical volume:

mount /dev/xlv/xlv0 /disk2

7. Change the entry for /disk2 in the file /etc/fstab to mount the logical volume
rather than the disk partition:

/dev/xlv/xlv0 /disk2 efs rw,raw=/dev/rxlv/xlv0 0 0

EFS Filesystem Checking

The fsck command checks EFS filesystem consistency and data integrity. Filesystems
are usually checked automatically when the system is booted. Except for the root
filesystem, filesystems must be unmounted while being checked. You might want to
invoke fsck manually at these times:

• Before making a backup

• After doing a restore

• After doing disk maintenance

• Before installing software

• Before manually mounting a dirty filesystem

• When fsck runs automatically and has many errors

For a detailed explanation of the checks performed by fsck and the options it presents
when it finds problems, see “Repairing EFS Filesystem Problems” on page 213.

Before checking an EFS filesystem other than the root filesystem for consistency, the
filesystem should be unmounted. (The root filesystem can be checked while mounted.)
Unmounting can be achieved by explicitly unmounting the filesystem, or by shutting the
system down and bringing it up in single-user mode. (See“Unmounting Filesystems” in
Chapter 7 for information on unmounting filesystems and the single(1M) reference
page for information on shutting the system down and bringing it up in single-user
mode.) Checking unmounted filesystems is described in “Checking Unmounted
Filesystems” on page 209.
208 007-2825-009

EFS Filesystem Checking
If you cannot shut down the system and cannot unmount the filesystem, but you need to
perform the check immediately, you can run fsck in “no-write” mode. The fsck
command checks the filesystem, but makes no changes and does not repair
inconsistencies. The procedure is explained in “Checking Mounted Filesystems” on
page 210.

You may find it convenient to check multiple filesystems at once. This is also known as
parallel checking. The fsck -m flag is used for parallel checking. For more information
about this and other fsck options, see the fsck(1M) reference page.

Checking Unmounted Filesystems

To check a single, unmounted filesystem, enter this command as root:

fsck filesystem

filesystem is the device file name of the filesystem’s disk partition or logical volume, for
example /dev/usr, /dev/dsk/dks0d2s7, or /dev/dsk/lv2; see “Introduction to
XLV Logical Volumes” in Chapter 3 and “Filesystem Names” in Chapter 5 for more
information.

As fsck runs, it proceeds through a series of steps, or phases. You may see an error-free
check:

fsck: Checking /dev/usr
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
7280 files 491832 blocks 38930 free

If there are no errors, you are finished checking the filesystem.

If errors are detected in the filesystem, fsck displays an error message. “Repairing EFS
Filesystem Problems” on page 213 explains how to proceed.
007-2825-009 209

A: EFS Filesystems
Checking Mounted Filesystems

If you cannot shut down the system and cannot unmount the filesystem, but you need to
perform the check immediately, you can run fsck in “no-write” mode. The fsck
command checks the filesystem, but makes no changes and does not repair
inconsistencies.

For example, the following command invokes fsck in no-write mode:

fsck -n /dev/usr

If inconsistencies are found, they are not repaired. You must run fsck again without the
-n flag to repair any problems. The benefit of this procedure is that you should be able
to gauge the severity of the problems with your filesystem. The disadvantage of this
procedure is that fsck may show inconsistencies that do not really exist (because the
filesystem is active).

EFS Filesystem Reorganization

EFS filesystems can become fragmented over time. When a filesystem is fragmented,
blocks of free space are small and files have many extents. The fsr command, when run
on an EFS filesystem, reorganizes filesystems so that the layout of the extents is improved
and free disk space is coalesced. This improves overall performance.

By default, fsr is run automatically once a week from crontab. If the fsr command
determines that a mounted filesystem is an EFS filesystem, the command calls the
fsr_efs command. See the fsr(1M) reference page for information on the fsr
command, and the fsr_efs(1M) man page for information on the fsr_efs options for
the command.
210 007-2825-009

EFS Filesystem Disk Space Management
EFS Filesystem Disk Space Management

Consider the following characteristics of EFS filesystems when managing your disk
space:

• If you find yourself short on disk space, consider that the lost+found directory at
the root of EFS filesystems may be full. If you log in as root, you can check this
directory and determine if the files there can be removed.

• On EFS filesystems, when a filesystem is more than about 90- to 95-percent full,
system performance may degrade, depending on the size of the disk. (The number
of free disk blocks on a 97-percent full large disk is larger than the number of free
disk blocks on a 97-percent full small disk.) Monitor the amount of available space
and take steps to keep an adequate amount available.

Using Disk Quotas on EFS Filesystems

The use of disk quotas to limit users’ use of disk space is discussed in the section “Disk
Quotas” in Chapter 5. The following subsections explain how to impose and monitor
disk quotas on EFS filesystems. For additional information, see the quota(1),
edquota(1M), quot(1M), quotacheck(1M), quotaon(1M), repquota(1M), and
quotas(4) reference pages.

Imposing Disk Quotas on EFS Filesystems

To impose soft disk quotas on EFS filesystems, follow these steps:

1. To enable the quotas subsystem, enter these commands:

chkconfig quotas on
chkconfig quotacheck on

2. Create a file named quotas in the root directory of each filesystem that is to have a
disk quota. This file should be zero length and should be writable only by root. To
create the quotas file, give this command as root in the root directory of each of
these filesystems:

touch quotas
007-2825-009 211

A: EFS Filesystems
3. Establish the quota amounts for individual users. The edquota command can be
used to set the limits for each user. For example, to set soft limits of 100 MB and 100
inodes on the user ID sedgwick, give the following command:

/usr/etc/edquota sedgwick

The screen clears, and you are placed in the editor specified by the EDITOR
environment variable (vi if $EDITOR is not set) to edit the user’s disk quota. You
see:

fs / kbytes(soft=0, hard=0) inodes(soft=0, hard=0)

The filesystem appears first, in this case the root filesystem (/). The numeric values
for disk space are in kilobytes, not megabytes, so to specify 100 megabytes, you
must multiply the number by 1024. The number of inodes should be entered
directly.

4. Edit the line to appear as follows:

fs / kbytes(soft=102400, hard=0) inodes(soft=100, hard=0)

5. Save the file and quit the editor after you enter the correct values. If you leave the
value at 0, no limit is imposed. Because you are setting only soft limits in this
example, the hard values have not been set.

6. Use the -p option of edquota to assign the same quota to multiple users. Unless
explicitly given a quota, users have no limits set on the amount of disk they can use
or the number of files they can create.

7. Issue the quotaon command to put the quotas into effect. For quotas to be accurate,
this command should be issued on a local filesystem immediately after the
filesystem has been mounted. The quotaon command enables quotas for a
particular filesystem, or with the -a option, enables quotas for all filesystems
indicated in /etc/fstab as using quotas. See the fstab(4) reference page for
complete details on the /etc/fstab file.

Quotas will be automatically enabled at boot time in the future. The script
/etc/init.d/quotas handles enabling of quotas and uses the chkconfig command
to check the quotas configuration flag to decide whether or not to enable quotas. If you
need to turn quotas off, use the quotaoff command.
212 007-2825-009

Repairing EFS Filesystem Problems
Monitoring Disk Quotas on EFS Filesystems

Periodically, check the records retained in the quota file for consistency with the actual
number of blocks and files allocated to the user using the quotacheck command. It is
not necessary to unmount the filesystem or disable the quota system to run this
command, though on active filesystems, slightly inaccurate results may be seen.

quotacheck is run automatically at boot time by the /etc/init.d/quotas script if
the quotacheck flag has been turned on with chkconfig. quotacheck can take a
considerable amount of time to execute, so it is convenient to have it done at boot time.

Repairing EFS Filesystem Problems

The fsck command checks EFS filesystem consistency and sometimes repairs problems
that are found. This section describes the messages that are produced by each phase of
fsck, what they mean, and what you should do about each one.

General Errors

The following abbreviations are used in fsck error messages:

BLK Block number

DUP Duplicate block number

DIR Directory name

MTIME Time file was last modified

UNREF Unreferenced

The following sections use these single-letter abbreviations:

B Block number

F File (or directory) name

I Inode number

M File mode

O User ID of a file’s owner
007-2825-009 213

A: EFS Filesystems
S File size

T Time file was last modified

X Link count, or number of BAD, DUP, or MISSING blocks, or number of
files (depending on context)

Y Corrected link count number, or number of blocks in filesystem
(depending on context)

Z Number of free blocks

In actual fsck output, these abbreviations are replaced by the appropriate numbers.

Two error messages may appear in any phase. Although fsck prompts for you to
continue checking the filesystem, it is generally best to regard these errors as fatal. Stop
the command and investigate what may have caused the problem.

CAN NOT READ: BLK B (CONTINUE?)
The request to read a specified block number B in the filesystem failed.
This error indicates a serious problem, probably a hardware failure or an
error that causes fsck to try to read a block that is not in the filesystem.
Press n to stop fsck. Shut down the system to the System Maintenance
Menu and run hardware diagnostics on the disk drive and controller.

CAN NOT WRITE: BLK B (CONTINUE?)
The request for writing a specified block number B in the filesystem
failed. The disk may be write-protected or there may be a hardware
problem. Press n to stop fsck. Check to make sure the disk is not set to
“read only.” (Some, though not all, disks have this feature.) If the disk is
not write-protected, shut down the system to the System Maintenance
Menu and run hardware diagnostics on the disk drive and controller.

Initialization Phase

The command line syntax is checked. Before the filesystem check can be performed,
fsck sets up some tables and opens some files. The fsck command terminates if there
are initialization errors.
214 007-2825-009

Repairing EFS Filesystem Problems
Phase 1 Check Blocks and Sizes

This phase checks the inode list. It reports error conditions resulting from:

• Checking inode types

• Setting up the zero-link-count table

• Examining inode block numbers for bad or duplicate blocks

• Checking inode size

• Checking inode format

Phase 1 Error Messages

Phase 1 has three types of error messages: information messages, messages with a
CONTINUE? prompt, and messages with a CLEAR? prompt. The responses that you give to
Phase 1 prompts affect fsck functions. The possible responses are discussed in “Phase 1
Responses” on page 217. Typically, the right answer is Yes, except as noted.

UNKNOWN FILE TYPE I=I (CLEAR?)
The mode word of the inode I suggests that the inode is not a pipe,
special character inode, regular inode, directory inode, symbolic link, or
socket.

LINK COUNT TABLE OVERFLOW (CONTINUE?)

There is no more room in an internal table for fsck containing allocated
inodes with a link count of zero.

B BAD I=I Inode I contains block number B with a number lower than the number
of the first data block in the filesystem or greater than the number of the
last block in the filesystem. This error condition may invoke the
EXCESSIVE BAD BLKS error condition in Phase 1 if inode I has too many
block numbers outside the filesystem range. This error condition
invokes the BAD/DUP error condition in Phase 2 and Phase 4.

EXCESSIVE BAD BLOCKS I=I (CONTINUE?)
There is more than a tolerable number (usually 50) of blocks with a
number lower than the number of the first data block in the filesystem
or greater than the number of the last block in the filesystem associated
with inode I.
007-2825-009 215

A: EFS Filesystems
B DUP I=I Inode I contains block number B, which is already claimed by another
inode. This error condition may invoke the EXCESSIVE DUP BLKS error
condition in Phase 1 if inode I has too many block numbers claimed by
other inodes. This error condition invokes Phase 1B and the BAD/DUP
error condition in Phase 2 and Phase 4. Typically, you should answer No
the first time this error appears and Yes the second time if you know the
files claimed by the other inode.

EXCESSIVE DUP BLKS I=I (CONTINUE?)
There is more than a tolerable number (usually 50) of blocks claimed by
other inodes.

DUP TABLE OVERFLOW (CONTINUE?)

There is no more room in an internal table in fsck containing duplicate
block numbers.

PARTIALLY ALLOCATED INODE I=I (CLEAR?)
Inode I is neither allocated nor unallocated.

RIDICULOUS NUMBER OF EXTENTS (n) (max allowed n)
The number of extents is larger than the maximum the system can set
and is therefore ridiculous.

ILLEGAL NUMBER OF INDIRECT EXTENTS (n)
The number of extents or pointers to extents (indirect extents) exceeds
the number of slots in the inode for describing extents.

BAD MAGIC IN EXTENT

The pointer to an extent contains a “magic number.” If this number is
invalid, the pointer to the extent is probably corrupt.

EXTENT OUT OF ORDER

An extent’s idea of where it is in the file is inconsistent with the extent
pointer in relation to other extent pointers.

ZERO LENGTH EXTENT

An extent is zero length.

ZERO SIZE DIRECTORY

It is erroneous for a directory inode to claim a size of zero. The
corresponding inode is cleared.

DIRECTORY SIZE ERROR

A directory’s size must be an integer number of blocks. The size is
recomputed based on its extents.
216 007-2825-009

Repairing EFS Filesystem Problems
DIRECTORY EXTENTS CORRUPTED

If the computation of size (above) fails, fsck prints this message and
asks to clear the inode.

NUMBER OF EXTENTS TOO LARGE

The number of extents or pointers to extents (indirect extents) exceeds
the number of slots in the inode for describing extents.

POSSIBLE DIRECTORY SIZE ERROR

The number of blocks in the directory computed from extent pointer
lengths is inconsistent with the number computed from the inode size
field.

POSSIBLE FILE SIZE ERROR

The number of blocks in the file computed from extent pointer lengths
is inconsistent with the number computed from the inode size field.
fsck gives the option of clearing the inode in this case.

Phase 1 Responses

Table A-1 explains the significance of responses to Phase 1 prompts:

Table A-1 Meaning of fsck Phase 1 Responses

Prompt Response Meaning

CONTINUE? n Terminate the command.

CONTINUE? y Continue with the command. This error condition means that a
complete check of the filesystem is not possible. A second run of
fsck should be made to recheck this filesystem.

CLEAR? n Ignore the error condition. A No response is appropriate only if the
user intends to take other measures to fix the problem.

CLEAR? y Deallocate inode I by zeroing its contents. This may invoke the
UNALLOCATED error condition in Phase 2 for each directory entry
pointing to this inode.
007-2825-009 217

A: EFS Filesystems
Phase 1B Rescan for More Bad Dups

When a duplicate block is found in the filesystem, the filesystem is rescanned to find the
inode that previously claimed that block. When the duplicate block is found, the
following information message is printed:

B DUP I=I Inode I contains block number B, which is already claimed by another
inode. This error condition invokes the BAD/DUP error condition in Phase
2. Inodes with overlapping blocks can be determined by examining this
error condition and the DUP error condition in Phase 1.

Phase 2 Check Pathnames

This phase traverses the pathname tree, starting at the root directory. fsck examines
each inode that is being used by a file in a directory of the filesystem being checked.

Referenced files are marked in order to detect unreferenced files later on. The command
also accumulates a count of all links, which it checks against the link counts found in
Phase 4.

Phase 2 reports error conditions resulting from the following:

• Root inode mode and status incorrect

• Directory inode pointers out of range

• Directory entries pointing to bad inodes

fsck examines the root directory inode first, because this directory is where the search
for all pathnames must start.

If the root directory inode is corrupted, or if its type is not directory, fsck prints error
messages. Generally, if a severe problem exists with the root directory it is impossible to
salvage the filesystem. fsck allows attempts to continue under some circumstances.

Phase 2 Error Messages

The following error messages result from problems with the root directory inode. The
possible responses are discussed in “Phase 2 Responses” on page 220.
218 007-2825-009

Repairing EFS Filesystem Problems
ROOT INODE UNALLOCATED. TERMINATING

The root inode points to incorrect information. There is no way to fix this
problem, so the command stops.

If this problem occurs on the root filesystem, you must reinstall IRIX. If
it occurs on another filesystem, you must recreate the filesystem using
mkfs and recover files and data from backups.

ROOT INODE NOT A DIRECTORY. FIX?

The root directory inode does not seem to describe a directory. This error
is usually fatal. The typical answer is Yes.

DUPS/BAD IN ROOT INODE. CONTINUE?

Something is wrong with the block addressing information of the root
directory. The typical answer is Yes.

Other Phase 2 messages have a REMOVE? prompt. These messages are:

I OUT OF RANGE I=I NAME=F (REMOVE?)
A directory entry F has an inode number I that is greater than the end of
the inode list. The typical answer is Yes.

UNALLOCATED I=I OWNER=O MODE=M SIZE=S MTIME=T NAME=F(REMOVE?)
A directory entry F has an inode I that is not marked as allocated. The
owner O, mode M, size S, modify time T, and filename F are printed. If
the filesystem is not mounted and the -n option is not specified, and if
the inode that the entry points to is size 0, the entry is removed
automatically.

DUP/BAD I=I OWNER=O MODE=M SIZE=S MTIME=T DIR=F (REMOVE?)
Phase 1 or Phase 1B found duplicate blocks or bad blocks associated
with directory entry F, directory inode I. The owner O, mode M, size S,
modify time T, and directory name F are printed. Typically, you should
answer No the first time this error appears and Yes the second time if
you know the files claimed by the other inode.

DUP/BAD I=I OWNER=O MODE=M SIZE=S MTIME=T FILE=F (REMOVE?)
Phase 1 or Phase 1B found duplicate blocks or bad blocks associated
with file entry F, inode I. The owner O, mode M, size S, modify time T,
and filename F are printed. Typically, you should answer No the first
time this error appears and Yes the second time if you know the files
claimed by the other inode.
007-2825-009 219

A: EFS Filesystems
Phase 2 Responses

Table A-2 describes the significance of responses to Phase 2 prompts:

Phase 3 Check Connectivity

Phase 3 of fsck locates any unreferenced directories detected in Phase 2 and attempts to
reconnect them. It reports error conditions resulting from:

• Unreferenced directories

• Missing or full lost+found directories

Phase 3 Error Messages

Phase 3 has two types of error messages: information messages and messages with a
RECONNECT? prompt. The possible responses are discussed in “Phase 3 Responses” on
page 221.

Table A-2 Meaning of Phase 2 fsck Responses

Prompt Response Meaning

FIX? n fsck terminates.

FIX? y fsck treats the contents of the inode as a directory, even though the
inode mode indicates otherwise. If the directory is actually intact,
and only the inode mode is incorrectly set, this may recover the
directory.

CONTINUE? n fsck terminates.

CONTINUE? y fsck attempts to continue with the check. If some of the root
directory is still readable, pieces of the files system may be salvaged.

REMOVE? n Ignore the error condition. A No response is appropriate only if the
user intends to take other action to fix the problem.

REMOVE? y Remove a bad directory entry.
220 007-2825-009

Repairing EFS Filesystem Problems
UNREF DIR I=I OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT?)
The directory inode I was not connected to a directory entry when the
filesystem was traversed. The owner O, mode M, size S, and modify
time T of directory inode I are printed. The fsck command forces the
reconnection of a nonempty directory. The typical answer is yes.

SORRY. NO lost+found DIRECTORY

No lost+found directory is in the root directory of the filesystem;
fsck ignores the request to link a directory in lost+found. The
unreferenced file is removed.

Use fsck -l to recover and remake the lost+found directory as
soon as possible.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in
the root directory of the filesystem; fsck ignores the request to link a
directory in lost+found. The unreferenced file is removed.

Use fsck -l to recover and clean out the lost+found directory as
soon as possible.

DIR I=I1 CONNECTED. PARENT WAS I=I2
This is an advisory message indicating that a directory inode I1 was
successfully connected to the lost+found directory. The parent inode
I2 of the directory inode I1 is replaced by the inode number of the
lost+found directory.

Phase 3 Responses

Table A-3 explains the significance of responses to Phase 3 prompts:

Table A-3 Meaning of fsck Phase 3 Responses

Prompt Response Meaning

RECONNECT? n Ignore the error condition. This invokes the UNREF error condition
in Phase 4. A No response is appropriate only if the user intends to
take other action to fix the problem.

RECONNECT? y Reconnect directory inode I to the filesystem in the directory for
lost files (lost+found). This may invoke a lost+found error
condition if there are problems connecting directory inode I to
lost+found. If the link was successful, this invokes a
CONNECTED information message.
007-2825-009 221

A: EFS Filesystems
Phase 4 Check Reference Counts

This phase checks the link count information seen in Phases 2 and 3 and locates any
unreferenced regular files. It reports error conditions resulting from:

• Unreferenced files

• A missing or full lost+found directory

• Incorrect link counts for files, directories, or special files

• Unreferenced files and directories

• Bad and duplicate blocks in files and directories

• Incorrect counts of total free inodes

Phase 4 Error Messages

Phase 4 has five types of error messages:

• Information messages

• Messages with a RECONNECT? prompt

• Messages with a CLEAR? prompt

• Messages with an ADJUST? prompt

• Messages with a FIX? prompt

The possible responses are discussed in “Phase 4 Responses” on page 224.The typical
answer is Yes, except as noted.

UNREF FILE I=I OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT?)
Inode I was not connected to a directory entry when the filesystem was
traversed. The owner O, mode M, size S, and modify time T of inode I
are printed. If the -n option is omitted and the filesystem is not
mounted, empty files are cleared automatically. Nonempty files are not
cleared.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the
filesystem; fsck ignores the request to link a file in lost+found.

Use fsck -l to recover and create the lost+found directory as soon
as possible.
222 007-2825-009

Repairing EFS Filesystem Problems
SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in
the root directory of the filesystem; fsck ignores the request to link a file
in lost+found.

Use fsck -l to recover and clean out the lost+found directory as
soon as possible.

(CLEAR) The inode mentioned in the immediately previous UNREF error condition
cannot be reconnected, so it is cleared.

LINKCOUNTFILEI=IOWNER=OMODE=MSIZE=SMTIME=TCOUNT=XSHOULDBEY(ADJUST?)

The link count for inode I, which is a file, is X but should be Y. The owner
O, mode M, size S, and modify time T are printed.

LINK COUNT DIR I=I OWNER=O MODE=M SIZE=S MTIME=T COUNT=X SHOULD BEY (ADJUST?)

The link count for inode I, which is a directory, is X but should be Y. The
owner O, mode M, size S, and modify time T of directory inode I are
printed.

LINK COUNT F I=I OWNER=O MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE Y (ADJUST?)

The link count for F inode I is X but should be Y. The filename F, owner
O, mode M, size S, and modify time T are printed.

UNREF FILE I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)
Inode I, which is a file, was not connected to a directory entry when the
filesystem was traversed. The owner O, mode M, size S, and modify
time T of inode I are printed. If the -n option is omitted and the
filesystem is not mounted, empty files are cleared automatically.
Nonempty directories are not cleared. Typically, you should answer no
the first time this error appears and yes the second time if you know the
files claimed by the other inode.

UNREF DIR I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)
Inode I, which is a directory, was not connected to a directory entry
when the filesystem was traversed. The owner O, mode M, size S, and
modify time T of inode I are printed. If the -n option is omitted and the
filesystem is not mounted, empty directories are cleared automatically.
Nonempty directories are not cleared. Typically, you should answer no
the first time this error appears and yes the second time if you know the
files claimed by the other inode.

BAD/DUP FILE I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)
Phase 1 or Phase 1B found duplicate blocks or bad blocks associated
with file inode I. The owner O, mode M, size S, and modify time T of
007-2825-009 223

A: EFS Filesystems
inode I are printed. Typically, you should answer no the first time this
error appears and yes the second time if you know the files claimed by
the other inode.

BAD/DUP DIR I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)
Phase 1 or Phase 1B found duplicate blocks or bad blocks associated
with directory inode I. The owner O, mode M, size S, and modify time T
of inode I are printed. Typically, you should answer no the first time this
error appears and yes the second time if you know the files claimed by
the other inode.

FREE INODE COUNT WRONG IN SUPERBLK (FIX?)

The actual count of the free inodes does not match the count in the
superblock of the filesystem.

Phase 4 Responses

Table A-4 describes the significance of responses to Phase 4 prompts:

Table A-4 Meaning of fsck Phase 4 Responses

Prompt Response Meaning

RECONNECT? n Ignore this error condition. This invokes a CLEAR error condition
later in Phase 4.

RECONNECT? y Reconnect inode I to filesystem in the directory for lost files
(lost+found). This can cause a lost+found error condition in this
phase if there are problems connecting inode I to lost+found.

CLEAR? n Ignore the error condition. A No response is appropriate only if the
user intends to take other action to fix the problem.

CLEAR? y Deallocate the inode by zeroing its contents.

ADJUST? n Ignore the error condition. A No response is appropriate only if the
user intends to take other action to fix the problem.

ADJUST? y Replace link count of file inode I with the link counted computed
in Phase 2.

FIX? n Ignore the error condition. A No response is appropriate only if the
user intends to take other action to fix the problem.

FIX? y Fix the problem.
224 007-2825-009

Repairing EFS Filesystem Problems
Phase 5 Check Free List

Phase 5 checks the free-block list. It reports error conditions resulting from:

• Bad blocks in the free-block list

• Bad free-block count

• Duplicate blocks in the free-block list

• Unused blocks from the filesystem not in the free-block list

• Total free-block count incorrect

Phase 5 Error Messages

Phase 5 has four types of error messages:

• Information messages

• Messages that have a CONTINUE? prompt

• Messages that have a FIX? prompt

• Messages that have a SALVAGE? prompt

The possible responses are discussed in “Phase 5 Responses” on page 226.The typical
answer is Yes.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX?)
The actual count of free blocks does not match the count in the
superblock of the filesystem.

BAD FREE LIST (SALVAGE?)

This message is always preceded by one or more of the Phase 5
information messages.
007-2825-009 225

A: EFS Filesystems
Phase 5 Responses

Table A-5 describes the significance of responses to Phase 5 prompts:

Phase 6 Salvage Free List

This phase reconstructs the free-block bitmap. There are no error messages that can be
generated in this phase and no responses are required.

Cleanup Phase

Once a filesystem has been checked, a few cleanup functions are performed. The cleanup
phase displays advisory messages about the filesystem and status of the filesystem.

Cleanup Phase Messages

X files Y blocks Z free
This is an advisory message indicating that the filesystem checked
contained X files using Y blocks leaving Z blocks free in the filesystem.

Table A-5 Meanings of Phase 5 fsck Responses

Prompt Response Meaning

CONTINUE? n Terminate the command.

CONTINUE? y Ignore the rest of the free-block list and continue execution of fsck.
This error condition always invokes a BAD BLKS IN FREE LIST
error condition later in Phase 5.

FIX? n Ignore the error condition. A No response is appropriate only if the
user intends to take other action to fix the problem.

FIX? y Replace count in superblock by actual count.

SALVAGE? n Ignore the error condition. A No response is appropriate only if the
user intends to take other action to fix the problem.

SALVAGE? y Replace actual free-block bitmap with a new free-block bitmap.
226 007-2825-009

Repairing EFS Filesystem Problems
SUPERBLOCK MARKED DIRTY

A field in the superblock is queried by system commands to decide if
fsck must be run before mounting a filesystem. If this field is not
“clean,” fsck reports and asks if it should be cleaned.

PRIMARY SUPERBLOCK WAS INVALID

If the primary superblock is too corrupt to use, and fsck can locate a
secondary superblock, it asks to replace the primary superblock with the
backup.

SECONDARY SUPERBLOCK MISSING

If there is no secondary superblock, and fsck finds space for one, it asks
to create a secondary superblock.

CHECKSUM WRONG IN SUPERBLOCK

An incorrect checksum makes a filesystem unmountable.

***** FILE SYSTEM WAS MODIFIED *****

This is an advisory message indicating that the current filesystem was
modified by fsck.

***** REMOUNTING ROOT... *****

This is an advisory message indicating that fsck made changes to a
mounted root filesystem. The automatic remount ensures that in-core
data structures and the filesystem are consistent.
007-2825-009 227

Index
/ filesystem. See root filesystem.

A

allocation groups, 130
attributes, 111

B

backup and restore
commands, 112
during conversion to XFS, 142, 148, 151

bad block handling, 4
block device files

as a type of file, 108
description, 14-18

block sizes
and mkfs, 132, 149
guidelines, 126
range of sizes, 111, 126
syntax, 126

C

CacheFS filesystems, 114
cfsadmin command, 114
character device files

as a type of file, 108
description, 14-18

chkconfig command
nocleantmp option, 161
quotacheck option, 211, 213
quotas option, 211, 212

cloning system disks, 46-48
compatibility

32-bit programs and XFS, 111
dump/restore and filesystem type, 112
NFS, 111

concatenation
definition, 61
guidelines, 69
not allowed on root filesystems, 66

controllers
identifying controller number, 20
number of disk drives, 2
supported, 2

conventions, typographical, xxiv
CPUs

and versions of fx, 29
and versions of sash, 13, 29
restrict to running GRIO processes, 198, 202

CXFS filesystems, xxiii, 101, 112

D

daemons
GRIO, 190, 198
XLV, 65

deadline scheduling, 189
007-2825-009 229

Index
/debug filesystem, 114
device files

creating mnemonic names, 36
description, 14-18
ls listings, 15
major and minor device numbers, 16
names, 16-18
permissions and owner, 16
See also block device files, character device files.
using as command arguments, 21
XLV device file names, 51, 65

device names
disk for dump file, 141
identifying with devnm, 141
mnemonic, 36
tape drive, 141

devnm command, 141
/dev/xlv directory, 65
df command and XLV, 200
direct I/O, 200
directories

as a type of file, 108
cleaning temporary, 161
definition, 106
hidden, 119
standard IRIX, 102
temporary, 168
/tmp and /var/tmp, 161

directory organization, 102
disk blocks

bad block handling, 4
definition, 4

disk drives
adding a new disk as a filesystem, 122
device parameters, 13
growing a filesystem onto new, 122
identifying controller number and drive address,

20
non-SCSI disks, xxiii

parameters for GRIO, 195
physical structure, 3
replacing for a plexed volume, 89
supported types, 2

disk partitions
and external log size, 67
and volume elements, 62
block and character devices, 51
considerations in choosing partition layouts, 10
creating custom layouts, 32
creating standard layouts, 31
definition, 4
device names, 141
displaying with prtvtoc, 26
making an XFS filesystem, 132
on older systems, 8
overlapping, 5
partition numbers, names, and functions, 6
planning, 131
repartitioning, 131
repartitioning during conversion, 144
repartitioning with fx, 27
sizes for striped volume elements, 68
standard partition layouts, 7
types, 11

Disk Plexing Option, 58
disk quotas

accounting, 165
and mount command, 155, 165, 169
description, 123
edquota command, 170, 212
imposing on EFS filesystems, 211
imposing on XFS filesystems, 169
monitoring, 213
project, 169, 171
quot command, 166, 167, 173
quota command, 172
quotacheck command, 213
quotaoff command, 166, 212
quotaon command, 169, 212
230 007-2825-009

Index
repquota command, 171
user, 169, 170

disk space
estimating with xfs_estimate, 149
files that grow, 160
for logs, 129
getting more, 151
growing a logical volume, 80
identifying large users, 164
increasing for XFS, 149
monitoring free inodes, 160
monitoring free space, 160
unused files, 159

drive addresses
identifying, 20
setting, 3

du command, 164
dump command

commands used during conversion to XFS, 142,
148

requirements for conversion to XFS, 151
when to use, 112

dvhtool command
adding files to the volume header, 22
and volume element sizes, 68
description, 13
examining a volume header, 23
removing files in the volume header, 24

E

edquota command, 170, 212
EFS filesystems

and XLV logical volumes, 52
checking for consistency, 205, 208
description, 113, 203
fragmentation, 210
history, xxiii
inodes, 204

maximum file size, 113, 203
maximum filesystem size, 113, 203
reorganizing, 211
XLV subvolumes, 67

efs partition type, 11
error recovery

disabling for GRIO, 195-198
/etc/config/ggd.options file, 202
/etc/fstab file

entries for filesystems, 136, 156
entries for system disk, 142
entries for XLV logical volumes, 75, 99, 194

/etc/grio_disks file, 190, 200
/etc/init.d/grio file, 198
/etc/init.d/quotas file, 212
/etc/init.d/rmtmpfiles file, 162
/etc/nodelock file, 72
/etc/rc2.d/S94grio file, 190
exportfs command, 113
Extended Attributes, 111
extent size, 126, 192, 194
extents

EFS filesystem, 204
indirect, 204
XFS filesystem, 111

external logs
and log subvolumes, 53
creating with mkfs, example, 135
definition, 7, 128
disk partitions for, 11
example, 76
See also logs.
size, 129

F

fcntl system call, 111, 199
007-2825-009 231

Index
files
and hard links, 108
and symbolic links, 108
definition, 105
files that grow, 160
information in inodes, 107
locating unused, 163
possible unused files, 159
types, 108

filesystem directory format, 127
filesystems

adding space, 121
checking for consistency, 174-178, 205, 208
corruption, 124, 174
creating, 118
definition, 105
foreign filesystems, 118, 137, 178
mounting, 119, 154-157
names, 110
NFS, 113
/proc, 114
remote, 157
routine administration tasks, 153
See also EFS filesystems, XFS filesystems.
unmounting, 120, 157

FLEXlm licenses, xxvii
Disk Plexing Option, xxvi, 58, 66
High Performance Guaranteed-Rate I/O, xxvi, 184

font conventions, xxiv
foreign filesystems, 118, 137, 178
formatting disks, 4, 21
fragmentation, 210, 211
fsck command

description, 205, 208
using, 209, 213-227

fsck_cachefs command, 114
fsr command, 121, 210, 211
fsr_efs command, 210
fsr_xfs, 121

fx command
and device parameters, 13
and partition types, 11
in volume header, 12
IRIX version, 30
repartitioning disks, 27-36
repartitioning example, 38, 43
standalone version, 28
standard vs. custom partitions, 11
using expert mode to assign partition types, 12
using the standalone version, 145
versions for different processors, 29

G

ggd daemon
description, 190
restarting, 195, 198

GRIO
configuring the ggd daemon, 198
creating an XLV logical volume for, 191
deadline scheduling, 189
default guarantee options, 187
description, 183, 184
disabling disk error recovery, 195-198
features, 184
file descriptors, 185
file formats, 200-202
guarantee types, 187-189
hard guarantees, 191
hardware configuration requirements, 191
lock file, 190
non-scheduled reservations, 189
overview, 184
per-file guarantees, 187
per-filesystem guarantees, 187
private guarantees, 187
rate, 184
real-time scheduling, 189
reservations, 184
232 007-2825-009

Index
shared guarantees, 187
sizes to choose, 186
streams, 184
system components, 190

guaranteed-rate I/O. See GRIO.

H

hard errors, 66
hard guarantees, 191
hard links, 108
hardware graph, 115
hardware requirements, 110, 191
heads, recording, definition, 3
hidden directories, 119
/hw filesystem, 115
hwgraph, 115

I

ide diagnostics program, 12
initializing a disk, 21
inodes

checking by fsck, 215
description, 107
in EFS filesystems, 204
monitoring free inodes, 160
XFS filesystems, 111

internal logs
and the data subvolume, 53
and xfslog partitions, 11
creating with mkfs, example, 134
definition, 7, 128
See also logs.
size, 130

ioconfig command, 117

IRIX administration documentation, xxi-xxii, xxvii
IRIX directory organization, 102

J

journaling information, 58, 111

L

links, 108
ln command

creating hard links, 109
creating mnemonic names, 36
creating symbolic links, 109

log size, 129
logical volume labels

and logical volume assembly, 65
daemon that updates them, 65
definition, 12
information used at system startup, 57
removing with dvhtool, 24
written by xlv_make, 72

logical volumes
adding plexes, 82
advantages, 52
coming up at system startup, 57, 65
creating, examples, 73-76
creating, overview, 54
definition of volume, 56
deleting objects, 85
description, 51
detaching plexes, 84
device names, 65
disadvantages, 52
displaying objects, 79
example (figure), 54
growing, 80
hierarchy of objects, 54
007-2825-009 233

Index
increasing size, 80
lv, 51
moving to a new system, 57, 65
naming, 65
read and write errors, 66
removing labels in volume headers, 24
See also XLV logical volumes.
selecting subvolumes, 67
sizes, 67
striping, choosing stripe unit size, 63
striping, definition and illustration, 53
used as raw devices, 51, 57
volume composition, 56
XLV. See XLV logical volumes.

logs
choosing size, 129
choosing type, 128
creating external with fx, 11
description, 128
example of external, 76
external, definition, 128
external, specifying size, 129
internal log, when used, 67
internal, definition, 128
internal, specifying size, 130
size syntax, 130

lost+found directories, 118
lv logical volumes

converting to XLV, 97
no longer supported, 51

lv_to_xlv command, 97
lvlab logical volume labels, 12, 25

M

major device numbers, 16
MAKEDEV command, 14
manual pages, xxvii
metadata, filesystem, 53

miniroot, using for filesystem administration, 121
minor device numbers, 16
mkfs command

command line syntax, 132, 135, 149
example commands, 205
example output, 133, 135
for GRIO, 194

mknod command, 14
mnemonic device file names, 36
mount command, 154-157, 165, 169
mount point, 119
mounting filesystems

and disk quotas, 155, 165, 169
CacheFS filesystems, 114
description, 119
illustration, 106, 119
methods, 120

mpadmin command, 198

N

named pipes, 108
NFS compatibility, 111
NFS filesystems, 113, 157
non-scheduled reservations, 189

O

optimal I/O size, 192, 200
option disks

adding a new, 49-50
definition, 6
possible partition layouts, 9
turning into a system disk, 42
234 007-2825-009

Index
P

partitions. See disk partitions.
per-file guarantees, 187
per-filesystem guarantees, 187
platters, definition, 3
plex revives, 60, 83
plexes

adding to volumes, 82
booting off alternate root, 95
checking for required software, 72
definition, 59
deleting, 85
detaching, 84
Disk Plexing Option, xxvi, 58
displaying, 79
example of creating, 75, 76
for root filesystem, 92
holes in address space, 59, 68
monitoring plex revives, 83
mounting, 86
plex composition, 60
read and write errors, 66
removing, 86
See also logical volumes.
volume element sizes, 68
when to use, 68

prerequisite hardware, 110, 191
private guarantees, 187
/proc filesystems, 114
prtvtoc command

description, 13
displaying disk partitions, 26

Q

quot command, 166, 167, 173
quota command, 172

quotacheck command, 213
quotaoff command, 166, 212
quotaon command, 169, 212
quotas file, 211
quotas subsystem, 123

R

raw device files. See character device files.
raw partition type, 11
real-time files, 199
real-time process, 198
real-time scheduling, 189
real-time subvolumes

and utilities, 199
creating files, 199
GRIO files, 184
hardware requirements, 191
only real-time on disk, 59

reference pages, xxvii
remote filesystems, 157
repartitioning

definition, 10
example, 38, 43
See also disk partitions.

repquota command, 171
reserved partition, 6
restore command

and XFS filesystems, 112
commands used during conversion to XFS, 146,

149
retry mechanisms, 191
root filesystem

and fsck, 205, 208
and the miniroot, 121
booting off an alternate plex, 95
combining with usr, 151
007-2825-009 235

Index
converting to XFS, 140
definition, 106
dumping, 142
mounting and unmounting restrictions, 120
on plexed logical volume, 92
repairing, 182
restoring all files, 146
restrictions, 68
running out of space, 168
standard directories, 102

root partition, 6
and striping, 68
and XLV, 66
combining with usr partition, 145
converting to XFS, 140-147
device name, 141

/root prefix for files, 121

S

sash standalone program, 13
scripting XLV configurations, 100
SCSI address. See drive addresses.
scsiadminswap command, 92
scsihotswap command, 92
scsiquiesce command, 92
sgilabel

creating with fx, 13
description, 12

shared guarantees, 187
special files. See device files.
stripe unit, 130

choosing, 63
definition, 63

striped volume elements. See volume elements.
striping disks

choosing stripe unit size, 63
description and illustration, 53

subvolumes
composition, 57
data subvolume definition, 58
displaying, 79
log subvolume definition, 58
real time subvolume definition, 59
See also logical volumes.
subvolume types, 58

super-blocks, 204, 224-227
surfaces, definition, 3
swap partition, 6, 157
symbolic links

as a type of file, 108, 109
dangling, 109
definition, 109
for older pathnames, 102

symmon standalone program, 12
system administration documentation, xxi-xxii, xxvii
system disks

creating by cloning, 46-48
creating from IRIX, 42-46
creating from the PROM Monitor, 37-42
definition, 6
possible partition layouts, 7
required disk partitions, 6

T

temporary directories
cleaning, 161
setting TMPDIR, 168

To, 165
tracks, definition, 4

U

umount command, 157
236 007-2825-009

Index
unit number. See drive addresses.
UNIX domain sockets, 108
unmounting filesystems

methods, 120
umount command, 157

unwritten extents, 127
usr filesystem

combining with root filesystem, 151
converting to XFS, 140
dumping, 142
required for system operation, 120
restoring all files, 147
standard directories, 104

usr partition, 6
combining with root partition, 145
device name, 141

/usr/lib/libgrio.so, 190

V

volhdr partition, 6
volhdr partition type, 11
volume elements

changing size with dvhtool, 68
definition, 62
deleting, 85
displaying, 79
multipartition volume elements, 64, 69
single partition volume elements, definition, 62
striped, definition, 63
striped, example of creating, 75
striping, when to use, 68

volume header
adding files, 22
examining with dvhtool, 23
removing files, 24

volume headers
description, 12
when used, 13

volume partition, 6
volume partition type, 11
volumes. See logical volumes.

W

warm-plug feature, 92

X

xdkm command, 26
XFS filesystem

allocation groups, 130
directory format, 127
stripe unit, 130

XFS filesystems
adding space, 121
and standard commands, 112
block sizes, 111, 126
changing size, 122
checking for consistency, 120, 174
commands, 112
converting a system disk, 140-147
converting an option disk, 148
copying with xfs_copy, 174
corruption, 124, 174
creating, 118
description, 110
extents, 111
features, 110
filesystem on a new disk partition, 132
history, xxiii
inodes, 107
journaling information, 58
logs. See logs.
007-2825-009 237

Index
making filesystems, 132-136
maximum file size, 111
maximum filesystem size, 111
mounting, 119, 154-157
names, 110
on system disk, 140
preparing to make filesystems, 125-152
restore compatibility, 112
unmounting, 120, 157

xfs partition type, 11
xfs_check command

description, 120
how to use, 174

xfs_copy command, 174
xfs_estimate command, 149
xfs_growfs command

description, 122
example, 81
extending a filesystem onto a logical volume, 138,

207
xfs_repair command

repairing filesystems, 178-181
repairing root filesystem, 182
using to check filesystems, 175
using to repair filesystems, 176

xfsdump command, 112
xfslog partition, 6
xfslog partition type, 11
xfsm command

creating an XFS filesystem, 132
mounting and unmounting filesystems, 154

xfsrestore command, 112
XLV logical volumes

configuring system for more than ten, 97
converting lv logical volumes, 97
creating out of old and new disks, 138, 207
creating spare objects, 81
daemons, 65
do not use, 66

error policy, 66
history, xxiii
names, 51
no configuration file, 65
overview, 52-66
planning logical volumes, 66-69
recording configuration, 99
See also logical volumes.
with EFS, 52

xlv partition type, 11
xlv_labd daemon, 65
xlv_make command

and disk partition types, 74
GRIO example, 194
using to create a logical volume for an existing

filesystem, 138, 207
using to create volume objects, 72-76

xlv_mgr command
adding a plex, 82
checking that plexing software is installed, 72
deleting volume objects, 85
detaching a plex, 84
displaying objects, 79
growing a volume, 80

xlv_plexd daemon, 65, 86
xlvd daemon, 65
xlvlab logical volume labels. See logical volume

labels.
xlvm command, 71
XVM logical volumes, 7, 51
XVM Volume Manager, 1
238 007-2825-009

	IRIX® Admin: Disks and Filesystems
	Record of Revision
	Figures
	Tables
	Examples
	IRIX Admin Manual Set
	About This Guide
	What This Guide Contains
	Conventions Used in This Guide
	How to Use This Guide
	Product Support
	Additional Resources
	Reader Comments

	Disk Concepts
	Disk Drives on Silicon Graphics Systems
	Physical Disk Structure
	Disk Partitions
	System Disks, Option Disks, and Partition Layouts
	Partition Types
	Volume Headers
	Device Files
	Block and Character Devices
	Device Permissions and Owner
	Major and Minor Devices
	Device Names

	Performing Disk Administration Procedures
	Listing the Disks on a System With hinv
	Formatting and Initializing a Disk With fx
	Adding Files to the Volume Header With dvhtool
	Removing Files in the Volume Header With dvhtool
	Displaying a Disk’s Partitions With prtvtoc
	Repartitioning a Disk With xdkm
	Repartitioning a Disk With fx
	Before Repartitioning
	Invoking fx From the Command Monitor
	Invoking fx From IRIX
	Creating Standard Partition Layouts
	Creating Custom Partition Layouts
	After Repartitioning

	Creating Mnemonic Names for Device Files With ln
	Creating a System Disk From the PROM Monitor
	Creating a New System Disk From IRIX
	Creating a New System Disk by Cloning
	Adding a New Option Disk

	XLV Logical Volume Concepts
	Introduction to XLV Logical Volumes
	Composition of XLV Logical Volumes
	Volumes
	Subvolumes
	Plexes
	Volume Elements
	Single-Partition Volume Elements
	Striped Volume Elements
	Multipartition Volume Elements

	XLV Logical Volume Names
	XLV Daemons
	XLV Error Policy
	XLV Logical Volume Planning
	When to Avoid Using XLV
	Selecting Subvolumes
	Choosing Subvolume Sizes
	Choosing Whether To Plex
	Choosing Whether To Stripe
	Choosing Whether to Concatenate Disk Partitions

	Creating and Administering XLV Logical Volumes
	Verifying That Plexing Is Supported
	Creating Volume Objects With xlv_make
	Example 1: Creating A Simple XLV Logical Volume
	Example 2: Creating A Striped, Plexed XLV Logical Volume
	Example 3: Creating A Plexed XLV Logical Volume for an XFS Filesystem With an External Log

	Displaying XLV Logical Volume Objects
	Adding a Volume Element to a Plex (Growing an XLV Logical Volume)
	Adding a Plex to an XLV Logical Volume
	Detaching a Plex From an XLV Logical Volume
	Deleting an XLV Object
	Removing and Mounting a Plex
	Replacing a Disk For a Plexed Volume
	Remove the Volume Element From XLV
	Physically Replace the Disk Drive
	Remake the XLV Volume Element Using the New Drive

	Creating a Plexed XLV Logical Volume for Root
	Booting the System Off an Alternate Plex
	CHALLENGE L, CHALLENGE XL, and CHALLENGE DM
	All Other Models

	Configuring the System for More Than Ten XLV Logical Volumes
	Converting lv Logical Volumes to XLV Logical Volumes
	Creating a Record of XLV Logical Volume Configurations

	Filesystem Concepts
	IRIX Directory Organization
	General Filesystem Concepts
	Inodes
	Types of Files
	Hard Links and Symbolic Links
	Filesystem Names

	XFS Filesystems
	CXFS Filesystems
	EFS Filesystems
	Network File Systems (NFS)
	Cache File Systems (CacheFS)
	/proc Filesystem
	/hw Filesystem
	Foreign Filesystems
	XFS Filesystem Creation
	Filesystem Mounting and Unmounting
	XFS Filesystem Checking
	Filesystem Reorganization
	Filesystem Administration From the Miniroot
	How to Add Filesystem Space
	Mount a Filesystem as a Subdirectory
	“Steal” Space From Another Filesystem
	Grow an XFS Filesystem Onto Another Disk

	Disk Quotas
	Filesystem Corruption

	Creating and Growing Filesystems
	Planning an XFS Filesystem
	Prerequisite Software
	Choosing the Filesystem Block Size and Extent Size
	Choosing the Filesystem Directory Format and Directory Block Size
	Choosing the Log Type and Size
	Choosing Allocation Groups and Stripe Units
	Disk Repartitioning

	Making an XFS Filesystem
	Making a Filesystem From inst
	Making a Foreign Filesystem
	Growing an XFS Filesystem Onto Another Disk
	Converting Filesystems on the System Disk From EFS to XFS
	Converting a Filesystem on an Option Disk From EFS to XFS
	Checking for Adequate Free Disk Space When Converting to XFS Filesystems
	Dump and Restore Requirements When Converting to XFS Filesystems

	Maintaining Filesystems
	Routine Filesystem Administration Tasks
	Mounting and Unmounting Filesystems
	Manually Mounting Filesystems
	Mounting Filesystems Automatically With the /etc/fstab File
	Mounting a Remote Filesystem Automatically
	Unmounting Filesystems

	Managing Disk Space
	Monitoring Free Space and Free Inodes
	Monitoring Key Files and Directories
	Cleaning Out Temporary Directories
	Locating Unused Files
	Identifying Accounts That Use Large Amounts of Disk Space
	Checking Disk Space Usage With du
	Checking Disk Space Usage With find
	Monitoring Disk Space Usage with Disk Quota Accounting
	Checking Disk Space Usage With quot
	Checking Disk Space Usage on XFS Filesystems With quota
	Checking Disk Space Usage With diskusg

	Running Out of Space in the Root Filesystem
	Using Disk Quotas on XFS Filesystems
	Turning on Disk Quotas for Users on XFS Filesystems
	Turning on Disk Quotas for Projects on XFS Filesystems
	Setting Disk Quota Limits for Users on XFS Filesystems
	Setting Disk Quota Limits for Projects on XFS Filesystems
	Displaying Disk Quota Information on XFS Filesystems
	Administering Disk Quotas on XFS Filesystems

	Copying XFS Filesystems With xfs_copy
	Checking XFS Filesystem Consistency With xfs_check and xfs_repair
	Checking Filesystem Consistency
	Repairing Inconsistent Filesystems

	Checking Foreign Filesystem Consistency With fpck
	Repairing XFS Filesystem Problems
	Common Error Messages
	Error Messages When Files Are in lost+found
	What to Do If xfs_repair Cannot Repair a Filesystem
	Mounting A Filesystem Without Log Recovery

	Running xfs_repair on the Root Filesystem

	System Administration for Guaranteed-Rate I/O
	Guaranteed-Rate I/O Overview
	GRIO Guarantee Types
	Per-File and Per-Filesystem Guarantees
	Private and Shared Guarantees
	Rotor and Non-Rotor Guarantees
	An Example Comparing Rotor and Non-Rotor Guarantees
	Real-Time Scheduling, Deadline Scheduling, and Nonscheduled Reservations

	GRIO System Components
	Hardware Configuration Requirements for GRIO
	Configuring a System for GRIO
	Additional Procedures for GRIO
	Disabling Disk Error Recovery
	Restarting the ggd Daemon
	Running ggd as a Real-time Process

	Using Real-Time Subvolumes
	Files on the Real-Time Subvolume and Commands
	File Creation on the Real-Time Subvolume

	GRIO File Formats
	/etc/grio_disks File Format
	/etc/config/ggd.options File Format

	EFS Filesystem Overview
	EFS Filesystem Creation
	EFS Filesystem Creation Procedure
	Growing an EFS Filesystem Onto Another Disk
	EFS Filesystem Checking
	Checking Unmounted Filesystems
	Checking Mounted Filesystems

	EFS Filesystem Reorganization
	EFS Filesystem Disk Space Management
	Using Disk Quotas on EFS Filesystems
	Imposing Disk Quotas on EFS Filesystems
	Monitoring Disk Quotas on EFS Filesystems

	Repairing EFS Filesystem Problems
	General Errors
	Initialization Phase
	Phase 1 Check Blocks and Sizes
	Phase 1 Error Messages
	Phase 1 Responses
	Phase 1B Rescan for More Bad Dups

	Phase 2 Check Pathnames
	Phase 2 Error Messages
	Phase 2 Responses

	Phase 3 Check Connectivity
	Phase 3 Error Messages
	Phase 3 Responses

	Phase 4 Check Reference Counts
	Phase 4 Error Messages
	Phase 4 Responses

	Phase 5 Check Free List
	Phase 5 Error Messages
	Phase 5 Responses

	Phase 6 Salvage Free List
	Cleanup Phase
	Cleanup Phase Messages

	Index

