
Message Passing Toolkit: PVM
Programmer’s Manual
007–3686–003

Copyright © 1996, 2000 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Silicon Graphics, Inc.

CONTRIBUTORS

Written by Julie Boney

Edited by Susan Wilkening

Illustrations by Chris Wengelski

Production by Susan Gorski

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR 52.227-14
and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights reserved
under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy.,
Mountain View, CA 94043-1351.

PVM (Parallel Virtual Machine) is based on software that was developed by the Oak Ridge National Laboratory, the University of
Tennessee, and Emory University. This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of
Energy research, U.S. Department of Energy, in part by the National Science Foundation, and in part by the State of Tennessee.

IRIS, IRIX, and Silicon Graphics are registered trademarks and IRIS InSight and the SGI logo are trademarks of Silicon Graphics, Inc.
DEC is a trademark of Digital Equipment Corporation. DynaWeb is a trademark of INSO Corporation. IBM is a trademark of
International Business Machines Corporation. Kerberos is a trademark of Massachusetts Institute of Technology. MIPS is a trademark
of MIPS Technologies, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited. X Window System and the X device are trademarks of The Open Group. XDR is a product of Sun
Microsystems, Inc. X/Open is a registered trademark of X/Open Company Ltd.

New Features in This Manual

This revision of the Message Passing Toolkit: PVM Programmer’s Manual, supports the
1.4 release of the Message Passing Toolkit for IRIX (MPT). The MPT implementation
of PVM for IRIX systems contained in this release is based on the Oak Ridge National
Laboratories (ORNL) version 3.3.10.

007–3686–003 iii

Record of Revision

Version Description

1.0 January 1996
Original Printing.

1.1 August 1996
This revision supports the Message Passing Toolkit (MPT) 1.1
release.

1.2 January 1998
This revision supports the Message Passing Toolkit (MPT) 1.2
release for UNICOS, UNICOS/mk, and IRIX systems.

1.3 February 1999
This revision supports the Message Passing Toolkit (MPT) 1.3
release for UNICOS, UNICOS/mk, and IRIX systems.

003 February 2000
This revision supports the Message Passing Toolkit (MPT) 1.4
release for IRIX systems.

007–3686–003 v

Contents

About This Manual . xv

Related Publications . xv

Other Sources . xv

Obtaining Publications . xvi

Conventions . xvi

Reader Comments . xvii

1. Overview . 1

The PVM Package . 1

PVM on SGI Systems . 2

PVM Terminology . 3

2. PVM Functionality . 5

Multiple Computer Systems As a Virtual Machine 5

Applications and Environments 6

PVM Program Development . 6

Building PVM Executable Files 7

Creating Host Files . 7

Specifying Architecture Types 11

Starting and Stopping the PVM Daemon 12

Running PVM Applications 12

Using NQS to Run PVM Applications 14

Using the PVM Console . 14

Starting the Console . 14

007–3686–003 vii

Contents

Using Console Commands 16

Troubleshooting PVM . 19

PVM Already Running . 19

pvmd3 Fails to Start on Remote System 19

Permission Denied . 20

Login Incorrect . 20

Version Incorrect . 21

Failure of Spawn . 21

Other Problems . 21

Data Types . 22

Environment Variables . 23

3. Functions and Subroutines 27

Error Messages . 28

Process Identifiers . 28

PVM Include Files . 28

Basic Operations . 29

Task Control . 30

Option Management . 30

Dynamic System Configuration 31

Dynamic Task Group Management 31

Data Transmittal . 32

Data Receipt . 34

Barrier Synchronization . 36

Global Operations . 36

Signaling . 37

Error Handling . 37

Appendix A. PVM Error Messages 39

viii 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Appendix B. PVM Man Pages 43

Glossary . 47

Index . 51

007–3686–003 ix

Tables

Table 2-1 Host File Options 8

Table 2-2 Console Commands 16

Table 2-3 N32 ABI Library Data Types 22

Table 2-4 64 ABI Library Data Types 22

Table 2-5 Environment Variables 24

Table 3-1 Basic Operations Functions 29

Table 3-2 Task Control Functions 30

Table 3-3 Option Management Functions 30

Table 3-4 Dynamic System Configuration Functions 31

Table 3-5 Dynamic Task Group Management Functions 32

Table 3-6 Data Transmittal Functions 33

Table 3-7 Data Receipt Functions 35

Table 3-8 Barrier Synchronization Function 36

Table 3-9 Global Operations Functions 37

Table 3-10 Signaling Functions 37

Table 3-11 Error Handling Function 37

Table A-1 Error Messages Issued by PVM Functions 39

007–3686–003 xi

Examples

Example 2-1 Simple Host File 8

Example 2-2 Sample Host File with Host Name Options 11

007–3686–003 xiii

About This Manual

This publication documents the Message Passing Toolkit for IRIX (MPT) 1.4
implementation of PVM-3 supported on SGI MIPS based systems running IRIX
release 6.5 or later.

This implementation of PVM-3 is based on the public domain PVM product, version
3.3.10, developed by researchers at the Oak Ridge National Laboratory (ORNL), the
University of Tennessee (UT), and Emory University (EU). It consists of a PVM library
and several commands that support PVM.

Related Publications
The following documents contain additional information that might be helpful:

• Message Passing Toolkit: MPI Programmer’s Manual

• NQE User’s Guide

• NQE Administration

• Application Programmer’s Library Reference Manual

• Installing Programming Environment Products

All of these publications can be ordered from the Minnesota Distribution Center. For
ordering information, see “Obtaining Publications.”

Other Sources
Material about PVM is available from the following other sources:

• PVM: Parallel Virtual Machine: A User’s Guide and Tutorial for Networked Parallel
Computing, available at the following URL:

http://www.netlib.org/pvm3/book/pvm-book.html

• Usenet news group at comp.parallel.pvm

007–3686–003 xv

About This Manual

• PVM standard, available from the Computer Science and Mathematics Division of
Oak Ridge National Laboratories.

• PVM related web pages from the following PVM home page:

http://www.epm.ornl.gov/pvm

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at
http://techpubs.sgi.com.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

manpage(x) Man page section identifiers appear in parentheses after
man page names. The following list describes the
identifiers:

1 User commands

1B User commands ported from BSD

2 System calls

3 Library routines, macros, and opdefs

4 Devices (special files)

4P Protocols

5 File formats

7 Miscellaneous topics

7D DWB-related information

xvi 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

8 Administrator commands

Some internal routines (for example, the
_assign_asgcmd_info() routine) do not have man
pages associated with them.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

SGI systems include all MIPS based systems running IRIX 6.5 or later.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number can be found on the
back cover.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

007–3686–003 xvii

About This Manual

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xviii 007–3686–003

Chapter 1

Overview

The Message Passing Toolkit for IRIX (MPT) is a software package that supports
interprocess data exchange for applications that use concurrent, cooperating processes
on a single host or on multiple hosts. Data exchange is done through message passing,
which is the use of library calls to request data delivery from one process to another
or between groups of processes.

The MPT 1.4 package contains the following components and the appropriate
accompanying documentation:

• Parallel Virtual Machine (PVM)

• Message Passing Interface (MPI)

• Logically shared, distributed memory (SHMEM) data-passing routines

The Parallel Virtual Machine (PVM) software was initially developed to enable a
collection of heterogeneous computer systems to be used as a coherent and flexible
concurrent computation resource. SGI has taken this initial implementation and
extended it in several ways.

This chapter provides an overview of the PVM software that is included in the toolkit.

The PVM Package
This manual contains instructions for building, installing, and using the MPT
implementation of PVM-3 on IRIX systems. It consists of a PVM library and several
commands that support PVM. The most important of these is a user-level daemon
that runs on each computer system in the PVM system.

The MPT version of PVM has enhancements to use POSIX shared memory, which
provides greater flexibility and robustness than did the previously used IRIX shared
arenas.

Default communication is based on TCP sockets between processes on the same
system and between different systems. Transfer speeds are relatively slow when
sockets are used as the mechanism for communication. The MPT version of PVM also
provides alternative mechanisms for communication. The socket communication has
been optimized to utilize high-speed network devices more effectively. The different
communication mechanisms are discussed further in the PVM man pages, and the

007–3686–003 1

1: Overview

communication costs (in time, resources, and so on) associated with the different
communication mechanisms are discussed in Chapter 2, "PVM Functionality", page 5.

PVM has been integrated with the Network Queuing Environment (NQE) so that you
can use PVM within a batch job in isolation from other PVM jobs. For more
information about NQE, see the NQE User’s Guide, and NQE Administration.

PVM on SGI Systems
As described in this manual, SGI provides versions of PVM to support a variety of
needs. These versions provide users with a single subroutine interface for message
passing programming; this interface is portable and a de facto standard. PVM is
available from its developers as public domain software and is being made available
as vendor-supported software by SGI and a number of other computer vendors. By
using PVM in your application, you can avoid being locked into a proprietary
interface.

PVM is supported on all SGI systems. The PVM software system consists of a library
and commands that support PVM. The PVM software provided by SGI has been
developed specifically for each system on which it runs.

You can choose to use PVM to communicate among processes on a number of
different computer systems. The following characteristics apply to all PVM system
combinations:

• The user building an executable file for use on an SGI system links with a single
PVM library, regardless of how PVM is used.

• The same standard library syntax and behavior are supported, regardless of how
PVM is used (although certain releases may support features not appropriate to
other releases).

• The performance of PVM in different basic scenarios differs significantly; this
difference influences the communications strategy that should be used.

2 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

PVM Terminology
The following PVM terminology is used in this manual:

Term Definition

task The UNIX process that uses PVM for communications.

application A number of tasks running the same program.

process The entity running on the IRIX operating system or
another UNIX system.

007–3686–003 3

Chapter 2

PVM Functionality

This chapter describes the Message Passing Toolkit (MPT) implementation of the
Parallel Virtual Machine (PVM) software. The following concepts are discussed:

• Multiple computer systems as a virtual machine

• Applications and environments

• PVM program development

• Data types

• Environment variables

Multiple Computer Systems As a Virtual Machine
PVM is a software system that enables a collection of heterogeneous computer
systems to be used as a coherent and flexible concurrent computation resource. The
individual systems can be shared-memory or local-memory multiprocessors, vector
supercomputers, specialized graphics engines, or scalar workstations interconnected
by a variety of networks. From the user’s point of view, the combination of these
different systems can be treated as a single virtual machine when using PVM. The term
host refers to one of the member computer systems.

PVM support software executes on each system in a user-configurable pool and
presents a unified, general, and powerful computational environment for concurrent
applications. User programs, written in C or Fortran programming languages, gain
access to PVM in the form of library routines for functions such as the following:

• Process or task initiation

• Message transmission and reception

• Synchronization through the use of barriers or rendezvous

Optionally, users can control the execution location of specific application
components; the PVM system transparently handles message routing, data conversion
for incompatible architectures, and other tasks that are necessary for operation in a
heterogeneous, networked environment.

007–3686–003 5

2: PVM Functionality

Applications and Environments
PVM is ideally suited for concurrent applications composed of many interrelated
subalgorithms, although performance is good even for traditional parallel applications.
PVM is particularly effective for heterogeneous applications that exploit specific
strengths of individual systems on a network. As a loosely coupled, concurrent
supercomputing environment, PVM is a viable scientific computing platform.

PVM has been used for molecular dynamics simulations, superconductivity studies,
distributed fractal computations, matrix algorithms, and as the basis for teaching
concurrent programming.

PVM Program Development
To develop a program that uses PVM, you must perform the following steps:

Procedure 2-1

1. Add PVM function calls to your application for process initiation,
communications, and synchronization. For syntax descriptions of these functions,
see Chapter 3, "Functions and Subroutines", page 27.

2. Build executable files for the systems that you will use, as described in "Building
PVM Executable Files", page 7.

3. Create a host file to define the virtual machine, as described in "Creating Host
Files", page 7.

4. If your program is in distributed mode, execute the PVM daemon and your
application in one of the following ways:

• As described in "Starting and Stopping the PVM Daemon", page 12, for the
PVM daemon, and as described in "Running PVM Applications", page 12, for
your application

• As an NQS job, as described in "Using NQS to Run PVM Applications", page
14

• Through the PVM console by using the console spawn command, as described
in Table 2-2, page 16

5. Troubleshoot the application, if necessary. For information on PVM
troubleshooting, see "Troubleshooting PVM", page 19.

6 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Building PVM Executable Files

After you have added PVM function calls, code can be linked, beginning with the
source file or the object file.

If you begin with the source file, you must specify the -I (include) option and the
Application Binary Interface (ABI) of the application development library (N32 or 64
ABIs), as follows:

cc -I /usr/array/PVM/include -64 -o compute compute.c -lpvm3

If you begin with an object file, the code can be linked as follows:

cc -64 -o compute compute.o -lpvm3

If you have the optional IRIX mpt module loaded, use the following command:

cc -64 -o compute compute.c -lpvm3

After the code is linked, you can install the executable files on the SGI systems you
will be using. If you specified the ep option in the host file for a system, install the
file in the specified directory. Otherwise, install it in the following directory:

$HOME/pvm3/bin/$PVM_ARCH

Creating Host Files

Each system in the PVM virtual machine must have a separate entry in the host file.
Lines that begin with a hash symbol (#), possibly preceded by white space, are
ignored.

If you do not want PVM to start a host immediately, but you might start it later by
using the pvm_addhosts(3) function or the PVM console add command, you do not
need to include the host in the host file. However, if you need to set any of the
options described in Table 2-1, page 8, you should include the specified system in the
host file, preceded by the ampersand (&) character.

This command starts the PVM daemon in the background and tells it that automatic
host file selection should be used. Hosts can be excluded based on many different
resources. For more information on NQE policies, see NQE Administration. If a host
file is also specified, PVM uses the options specified in the host file. A host specified
in the host file will be included in the virtual machine only if that host is available, as
determined by the NQE policy.

007–3686–003 7

2: PVM Functionality

Example 2-1 is an example of a host file that contains the names of systems, which is
the basic information necessary in a host file.

Example 2-1 Simple Host File

my first host file
thud

fred

wilma

gust.sgi.com

rain

You should verify that no system is listed more than once, and that the system on
which the master pvmd3(1) daemon will run (the master host) is included in the host
file (see "Starting and Stopping the PVM Daemon", page 12, for information on
starting the pvmd3 daemon). Automatic host file selection always includes the host
running the master pvmd3(1) daemon.

The $PVM_ROOT and $PVM_ARCH environment variables are set for you automatically
when you load the mpt module to access the Message Passing Toolkit software. To
customize your environment, you can specify the options listed in Table 2-1, after any
system name in the host file.

Table 2-1 Host File Options

Option Description

bx= dpath Specifies the debugger path. You can also set this path by using the
PVM_DEBUGGER environment variable. The default debugger path is
$PVM_ROOT/lib/debugger.

dx= loc Specifies a location for pvmd3 other than the default,
$PVM_ROOT/lib/$PVM_ARCH/pvmd3. This option is useful in debugging new
versions of PVM. The loc variable may be a simple file name, an absolute path
name, or a path relative to the user’s home directory on the remote system.

The pvmd3 daemon is installed in $PVM_ROOT/lib/$PVM_ARCH/pvmd3 when
the MPT version is installed on SGI systems.

8 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Option Description

ep= paths Specifies a series of paths to search for application tasks. A percent sign (%) in
the path expands to the architecture of the remote system. Multiple paths are
separated by a colon (:). By default, PVM looks for application tasks in the
following directories:
$HOME/pvm3/bin/$PVM_ARCH:$PVM_ROOT/bin/$PVM_ARCH

ip= network_name Specifies the network name to be used for communication. The default is
determined by the network routing, as shown by the netstat -i command.
You can use this option to specify HIPPI or another specific device.

lo= userid Specifies an alternative login name for the system. The default is the login
name on the master system.

so=ms Causes the master pvmd3 daemon to request that you manually start a pvmd3
daemon on a slave system when the rsh(1) and rexec(1) network services are
disabled but IP connectivity exists. The default is no request. You cannot start
the master system from the PVM console or background when you specify this
option. (This option is rarely used.)

so=pw Causes PVM to prompt for a password on the remote system. This option is
useful when you have a different login name and password on a remote system.
The master host prompts you for your password, as in the following example:

Password(honk.cs.utk.edu:manchek):

Type your password for the remote system. The startup will then continue as
normal. You cannot start the master host from the PVM console or background
when you specify this option.

sp= value Specifies the relative computational speed of this system compared to other
systems in the configuration. value is an integer in the range 1 through 1,000,000.
The default is 1000. (This option currently has no effect on PVM operation.)

wd= path Specifies the path name of a working directory in which all spawned tasks on
the host will execute. The default is $HOME.

A dollar sign ($) in an option introduces an environment variable name, for example,
$PVM_ARCH. Each PVM daemon expands names from environment variables.

The simple host file in Example 2-1, page 8, works well if both of the following
conditions are met:

• You have a login with the same name on all of the systems in your host file.

• The local system is listed in the .rhosts file on each of the remote systems.

007–3686–003 9

2: PVM Functionality

To supply an alternative login name for the thud system, add the lo option to its
host file entry, as follows:

thud lo=NAME

To be queried for your password on a system named cyclone, add so=pw to its host
file entry, as follows:

cyclone so=pw

To specify the path of the daemon executable file for a system named sun114, add
the dx option, as follows:

sun114 dx=/usr/fred/pvm3/lib/Sun/pvmd3

Note: By default, the MPT version of pvmd3 is installed in
$PVM_ROOT/lib/$PVM_ARCH/pvmd3, where $PVM_ROOT and $PVM_ARCH are set
for you automatically when you load the mpt module.

The string specified in the previous example is passed to a shell so that variable
expansion works. Following is another example that uses variable expansion:

sun114 dx=bin/$MYBIN/pvmd3

You can change the default value of any option for all hosts in a host file by specifying
them on a line with an asterisk (*) in the host field, as in the following example:

thud.cs.utk.edu

gust.sgi.com

sun114 dx=/tmp/pvmd3

* lo=afriend so=pw

The preceding example sets the default login name (on remote systems) to afriend
and queries for a password on each system. Defaults set in this way are effective
forward from the location at which they occur in the host file. They can be changed
with another * line.

You can override the location of executable files by adding the ep option to your host
file entries, as in the following example:

ep=$HOME/pvm3/bin

Unlike the dx option, which names the daemon file, the ep option names a directory.

10 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Example 2-2 shows a more complex host file in which host names are followed by
options.

Example 2-2 Sample Host File with Host Name Options

host file for testing on various platforms

default to my executable

* dx=pvm/SUN4/pvmd3

fonebone

refuge
sigi.cs dx=pvm/PMAX/pvmd3

reset default for other systems

* dx=$PVM_ROOT/lib/$PVM_ARCH/pvmd3

do not start this system, but define ep in case we add it later

& rain.sgi.com ep=$(HOME)/bin ip=rain-hippi
borrowed accts, "guest", don’t trust fonebone

* lo=guest so=pw

sn666.jrandom.com ep=$(HOME)/bin

cubie.misc.edu ep=pvm/IPSC/pvmd3

Specifying Architecture Types

Before you run a PVM executable file on an IRIX system, you must specify the
architecture type by setting the PVM_ARCH environment variable. Four architecture
types are supported for IRIX systems. With the software installed in the default
locations, you must also set the PVM_ROOT environment variable to /usr/array/PVM
and the PATH environment variable to $PVM_ROOT/lib/$PVM_ARCH. The following
C shell example shows the setting of all three variables:

setenv PVM_ARCH SGIMP64

setenv PVM_ROOT /usr/array/PVM

setenv PATH ${PATH}:${PVM_ROOT}/lib/$PVM_ARCH

The architecture types shown in the following list are arranged in an approximate
order of lowest to highest performance types:

Architecture type Description

SGI32 N32 ABI/MIPS III version using sockets

SGI32mips4 N32 ABI/MIPS IV version using sockets

SGIMP64mips3 64 ABI/MIPS III version using POSIX shared memory
and sockets

007–3686–003 11

2: PVM Functionality

SGIMP64 64 ABI/MIPS IV version using POSIX shared memory
and sockets

Starting and Stopping the PVM Daemon

After you have written a host file, you can start up the master pvmd3(1) daemon by
passing it the host file as an argument. You must specify the appropriate path for
pvmd3(1). For example, you can enter one of the following:

pvmd3 hostfile &

or

pvm [hostfile]

If you do not specify a host file when starting the PVM console, the PVM daemon
found in the default location will be started on the local machine.

The ampersand (&) in the first line tells the operating system to run pvmd3(1) in the
background, which is what you will normally want to do.

You should not run pvmd3(1) in the background if you have to enter passwords for
any of the slave systems (that is, if you included the so=pw option for one or more
systems). In this case, run pvmd3(1) in the foreground and then stop it (by pressing
CONTROL-Z) and put it in the background (by entering bg at the prompt) after all
systems have started up.

To shut off PVM, enter halt at a PVM console prompt. For detailed information on
using console prompts, see "Using Console Commands", page 16.

If the master pvmd3(1) daemon has trouble starting a slave pvmd3(1) daemon on a
system, the error message written to the PVM log file from the master pvmd3(1) may
indicate the problem.

Running PVM Applications

When the pvmd3(1) daemon is running successfully, you can start your application.
PVM provides the following methods of starting applications:

• Start the application from the shell command line.

12 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

With this method, you start the application as any command or application would
be started. For example, if the application is named a.out, enter the following
command at the shell command line prompt:

./a.out

• Start the application from the PVM console by using the spawn command.

With this method, you first start the console. After the pvm> prompt has
appeared, enter the spawn command followed by the application name or path, as
needed. For example, to run an application named cannon, enter the following
command at the console command line prompt:

spawn cannon

You can obtain help for the spawn command by typing help spawn at the console
command line prompt.

Once the application has started, it displays standard output and standard error
information for the initial task, but not for the other tasks in the application. PVM
captures this output information and sends it to the master daemon. The daemon, in
turn, prefaces each line with a PVM task identifier that identifies its source, and
writes it to the PVM log file.

The log file can contain very useful information about the virtual machine and its
tasks. By default, the log file contains output from the PVM daemon, including error
messages and output from tasks. Optionally, the log file can contain debugging
output from the daemon.

When PVM is run without NQS, the log file is located in /tmp. The IRIX
implementation allows overlapping PVM virtual machines. Therefore, more than one
PVM daemon started by the same user can run on the same host. The log file is
located in /tmp/pvml.uid.vmid, where uid is the user ID and vmid is the virtual
machine ID. By default, vmid is 0, but if the PVM_VMID (formerly PVMJID)
environment variable is set, vmid will equal the numeric value of PVM_VMID.

Instead of having the data written to the PVM log file, you can request that output be
sent as a PVM message to another task’s output device. For more information, see the
PvmOutputTid and PvmOutputCode options on the pvm_setopt(3) man page.

You can also redirect output by using options on the console spawn command (see
Table 2-2, page 16) or by using the pvm_catchout(3) function.

007–3686–003 13

2: PVM Functionality

Using NQS to Run PVM Applications

PVM applications can be run as part of an NQS job script. Each NQS job has its own
PVM daemon; therefore, the PVM daemon must be started within the NQS job script.
This is different from interactive use, in which one daemon is run per user per
system. Any application run as part of the same NQS job script uses the same PVM
daemon. Using the PVM_VMID environment variable allows more than one daemon to
run per user per system. A single user running multiple NQE jobs on a single host
should set the PVM_VMID environment variable for each batch job.

PVM processes spawned by the daemon inherit the limits of the NQS job. This allows
a user to run multiple NQS jobs that use PVM, each with limits of the NQS job being
run. Previous versions of PVM used the same daemon for multiple NQS jobs.

The following example is an NQS job script to run the application foo:

module load mpt

pvmd3 hostfile & # Start the daemon

sleep 60 # Wait for startup

foo # Run application
pvm << EOF # Start console to halt pvm

halt

EOF

Using the PVM Console

Using the PVM console is an alternative to using the pvmd3(1) command to start the
daemon and execute your application. The pvm(1) command starts the console, which
can be started and stopped multiple times on any of the systems on which PVM is
running.

Starting the Console

Start the PVM console by using the following command line:

pvm [hostfile]

When the console is started, it checks to see if a PVM daemon is running. If so, it
simply attaches itself to the daemon and can be used to monitor ongoing PVM
processes as shown:

14 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

% pvm
pvmd already running

pvm>

If the daemon is not started, the pvm(1) command tries to start one, but the command
must first find the daemon. (Currently, the pvm(1) command does not examine the
hostfile argument, if provided, but simply passes its name to the daemon. Therefore,
the pvm command cannot use information from this file.)

The logic used by the pvm command to start the daemon is as follows:

1. The command tries to execute $HOME/pvm3/lib/pvmd on all systems.
$HOME/pvm3/lib/pvmd must be an executable file that is one of the following:

• A shell script that starts up the PVM daemon, perhaps by using a host file. If
you use this option, you may find it useful to have the script do other
preparatory or related work.

• A symbolic link to the PVM daemon. The following example shows how you
can set up a link:

% mkdir ~/pvm3

% mkdir ~/pvm3/lib

% ln -s $PVM_ROOT/lib/$PVM_ARCH/pvmd3 ~/pvm3/lib/pvmd

2. If pvmd3(1) is not found or cannot be executed, the pvm(1) command explicitly
tries to start $PVM_ROOT/lib/$PVM_ARCH/pvmd3.

a. If a daemon is started, you see the following:

% pvm
pvm>

b. If a daemon is not started, you see the following:

% pvm

libpvm [pid-1]: Console: Can’t start pvmd

%

007–3686–003 15

2: PVM Functionality

Using Console Commands

When you enter the pvm(1) command, the console responds with a prompt and
accepts the commands described in Table 2-2.

Table 2-2 Console Commands

Command Description

add hostnames Adds systems to the virtual machine.

alias[name command [args]] Defines or lists console command aliases.

conf Lists the PVM system configuration. Fields in the output from
conf are as follows:

HOST Host name

DTID PVM daemon task identifier

ARCH PVM system name (architecture)

SPEED Relative speed of this system

delete hostnames Deletes systems from the virtual machine. PVM processes that
are still running on these systems are lost.

echo [args] Echoes arguments.

halt Kills all PVM processes and shuts down PVM; all daemons exit.
This is the best way to exit the console if you are done using
PVM. See quit.

help [command] Provides minimal information about the console commands. If
you enter help followed by a command name, a brief
description of the syntax is displayed.

id Prints the pvm_tid task identifier of the console. (The console is
simply another PVM task.)

jobs [-l] Displays a list of running jobs. The -l option provides more
detailed output.

kill [-c]taskids Kills a PVM user process. The -c option indicates that children
of the task IDs should also be killed.

mstat hostnames Gives status for each system listed.

16 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Command Description

ps [-a] [-h host] [-n host] [-l][-x] Gives a listing of current processes and their status. The
following options are available:

-a All systems (default is local)

-h host Task ID of the system (with no blanks)

-n host System name (with no blanks)

This example illustrates -n host usage:

ps -ngust

This command requests the status of a
system named gust.

-l Shows long output

-x Shows console task

ps output includes the following fields:

HOST System executing the process

A.OUT Executable name (if known to PVM)

TID Task identifier

PTID Parent’s task identifier (-l only)

PID Task process identifier (-l only)

FLAG Process status. Can be one or more of the
following:

a Task is waiting for authorization.

c Task is connected to pvmd.

o Task connection is being closed.

H Host starter task is identified.

R Resource manager task is identified.

T Task starter task is identified.

pstat tid Displays the status of the specified PVM process.

quit (or EOF) Exits the console, but leaves the daemons and processes running.
See halt.

007–3686–003 17

2: PVM Functionality

Command Description

reset Resets the virtual machine. Causes a SIGKILL signal to be sent
to every running process. All message queues are cleared. The
pvmd daemons are left in an idle state.

setenv [name [value]] Displays or sets environment variables.

sig num task Sends a signal to specified tasks.

spawn [options]file Starts a PVM application for the specified file. Options are as
follows:

- count Number of tasks (default is 1)

- host Spawn on host

- arch Spawn on hosts of arch

-? Enables debugging

-> Redirects output of job to console

-> file Redirects output of job to file

->> file Appends output of job to file

If NQE load balancing is available, the spawn command places
tasks based on the load balancer, but within the restrictions
specified on the spawn command. In the following example, the
spawn command spawns four instances of a.out on the system
named gust.

pvm> spawn -4 -gust a.out

trace [names] Sets or displays a trace event mask. The names argument refers
to names defined in the PVM include file,
$PVM_ROOT/include/pvmtev.h. Alternatives are as follows:

trace [+] names

trace [-] names

trace [+] *

trace [+] *

unalias name Undefines the specified command alias.

version Displays the libpvm version.

18 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Troubleshooting PVM

This section describes common problems encountered when using PVM and provides
suggested solutions. There are several kinds of problems that can keep pvmd3(1) from
building a virtual machine. The most common are permission problems.

If you do not specify the pw option for a particular system, your .rhosts file on that
system must contain the name of the host from which you start the master pvmd.
Otherwise, you will get a message like one of the following (although you may not
get the entire message):

pvmd3@hostname: Permission denied

pvmd3@hostname: Login incorrect

To get the entire error message, enter the following command at a shell prompt:

rsh hostname daemon

daemon is the location of the PVM daemon (for example, /tmp/pvm/pvmd3 or
$PVM_ROOT/lib/$PVM_ARCH/pvmd3).

Look at the output of the command and consult whichever of the following sections
most closely applies.

PVM Already Running

When you start the pvmd3(1) daemon, you may receive a message that PVM is
already running because a file exists in /tmp. If no pvmd3(1) is running, it is likely
that the last time you used PVM you did not terminate pvmd3(1) by using the console
halt command, or the previous execution of the pvmd3 daemon terminated
abnormally, leaving the files in /tmp. Remove the file named in the message and start
pvmd3(1) again.

pvmd3 Fails to Start on Remote System

If you use a shell (such as .kshrc) that does not automatically execute a startup
script that sets $PVM_ROOT on added hosts, you can set the PVM_DPATH environment
variable to the full or relative path of the pvmd startup script, or include the dx
option in the host file to specify the path to the startup script. The pvmd startup
script automatically sets $PVM_ROOT on the remote host.

007–3686–003 19

2: PVM Functionality

The following command shows how to set the PVM_DPATH environment variable:

setenv PVM_DPATH $PVM_ROOT/lib/pvmd

The following command shows how to specify the pvmd startup script in the host file:

dx=/opt/ctl/mpt/mpt/pvm3/lib/pvmd

Note: The dx option in the host file overrides the PVM_DPATH environment variable,
and $PVM_ROOT is not acknowledged for dx, so the dx path must be a full pathname.

Permission Denied

If you get a message denying you permission, it probably means that your .rhosts
file on the remote system does not include your local system name. Add a line like
the following to your .rhosts file on the remote system:

local-host-name your-local-user-name

Sometimes a system has more than one name, and the remote system may think your
local system has a name that is different from the one that you have specified. To
determine the name of your local system on the remote system, execute telnet(1) or
rlogin(1) to get to the remote system and enter the following UNIX command:

% who am i

Look at the last column of the output of this command, which contains the first 16
characters of what the remote system (the one to which you connected) thinks is the
name of your local system (the one on which you entered telnet(1) or rlogin(1)).
Make sure you put that system name (the full name, not just the first 16 characters) in
your .rhosts file on the remote system. Your /etc/hosts file should contain the
full name. If you do not have this file, see your system administrator for the name.
Some older systems require that you spell the name exactly the same, including the
case; newer systems accept the name in either uppercase or lowercase.

Login Incorrect

If you get a message saying your login is incorrect, there is probably no account on
the remote system that has the same login name as your login name on the local
system. In this case, you need to add a lo= username option to your PVM host file.

20 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Version Incorrect

If you get a message about a version mismatch, it indicates that the versions of PVM
on the two systems were built from different PVM releases. You may be building
with an old library, accessing an old PVM version built from the public domain
version, or having some similar problem. Ensure that the versions of PVM on the two
systems are compatible.

As a general rule, releases of the public domain implementation of PVM with the
same second digit in the version number (for example, 3.2.0 and 3.2.6) will
interoperate. Changes that result in incompatibility are held until a major version
change (for example, from version 3.2 to version 3.3). For compatibility, you might
need to upgrade one of your versions of PVM.

Failure of Spawn

A common application problem is the failure of a pvm_spawn() request. The PVM
console command tickle 6 4 enables tracing of spawn requests. The complete
executable path is printed in the PVM log file.

Other Problems

If you get any other messages, ensure that your .cshrc file on the remote system is
not printing something out when you log in or is not trying to set your terminal
characteristics (usually by using the stty(1) or tset(1) commands).

If you want to print from your .cshrc file when you log in, put the relevant
commands in an if statement in your .cshrc file, as in the following example:

if ({ tty -s } && $?prompt) then
example of printing something when you log in

echo terminal type is $TERM

example of setting terminal attributes

stty erase ’^?’ kill ’^u’ intr ’^c’ echo endif

This statement ensures that printing occurs only when you log in from a terminal
(and when you are not running a csh(1) command script).

007–3686–003 21

2: PVM Functionality

Data Types
This section describes how PVM data types are implemented on IRIX systems. This
discussion assumes that you are familiar with the functions used to pack and unpack
data; for more information, see "Data Transmittal", page 32, and "Data Receipt", page
34.

Table 2-3 and Table 2-4 present basic information about data types on IRIX systems.

Table 2-3 N32 ABI Library Data Types

Data characteristics C functions Fortran names

8 bits, not typed pvm_pkbyte BYTE1

16 bits, signed integer pvm_pkshort INTEGER2

32 bits, signed integer pvm_pkint,
pvm_pklong

INTEGER4

16 bits, unsigned integer pvm_pkushort Not applicable

32 bits, unsigned integer pvm_pkuint,
pvm_pkulong

Not applicable

32 bits, floating-point pvm_pkfloat, REAL4

64 bits, floating-point pvm_pkdouble REAL8

Two 32 bits, floating-point pvm_pkcplx COMPLEX8

Two 64 bits, floating-point pvm_pkdcplx COMPLEX16

Null-terminated character string pvm_pkstr Not applicable

Fortran character constant or
variable

Not applicable STRING

Table 2-4 64 ABI Library Data Types

Data characteristics C functions Fortran names

8 bits, not typed pvm_pkbyte BYTE1

16 bits, signed integer pvm_pkshort INTEGER2

22 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Data characteristics C functions Fortran names

32 bits, signed integer pvm_pkint INTEGER4

64 bits, signed integer pvm_pklong Not applicable

16 bits, unsigned integer pvm_pkushort Not applicable

32 bits, unsigned integer pvm_pkuint Not applicable

64 bits, unsigned integer pvm_pkulong Not applicable

32 bits, floating-point pvm_pkfloat, REAL4

64 bits, floating-point pvm_pkdouble REAL8

Two 32 bits, floating-point pvm_pkcplx COMPLEX8

Two 64 bits, floating-point pvm_pkdcplx COMPLEX16

Null-terminated character string pvm_pkstr Not applicable

Fortran character constant or
variable

Not applicable STRING

Environment Variables
To customize your PVM environment, you can use the environment variables
described in Table 2-5, page 24.

007–3686–003 23

2: PVM Functionality

Table 2-5 Environment Variables

Variable Description Default

NLB_SERVER Specifies the location of the NQE load balancer.
This host is known as the master server. Your
system administrator might have this set
automatically in the nqeinfo file. If NQE
load balancing is enabled on your system, it is
used automatically by PVM. To disable NQE
load balancing for PVM applications, set the
NLB_SERVER environment variable to 0. For
more information, see the NQE User’s Guide.

Note: Support for this environment variable is
deferred on UNICOS/mk and IRIX systems.

Value in the nqeinfo
file

PVM_DEBUGGER Specifies the debugger script to use when
pvm_spawn(3) is called with PvmTaskDebug
set.

$PVM_ROOT/lib/debugger

PVM_DPATH Specifies the path of the pvmd3(1) command
or the startup script.
If you use a shell (such as .kshrc) that does
not automatically execute a startup script that
sets PVM_ROOT on added hosts, you can set
PVM_DPATH to the full or relative path of the
pvmd startup script, such as
$PVM_ROOT/lib/pvmd. This startup script
automatically sets PVM_ROOT.

$PVM_ROOT/lib/pvmd.
You can override this
setting by using the
dx= loc option in the
host file.

PVM_EXPORT Names the environment variables that a parent
task exports to its children by using the
pvm_spawn(3) function. Multiple names must
be separated by a colon.

None

24 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Variable Description Default

PVM_POLICY Specifies the NQE policy used for load
balancing. For more information on specifying
policies, see NQE Administration.

Note: Support for this environment variable is
deferred on UNICOS/mk and IRIX systems.

PVM

PVM_ROOT Specifies the path where PVM libraries and
system programs are installed. For PVM to
function, this variable must be set on each
PVM system.

Set automatically when
you load the mpt
module to access the
Message Passing
Toolkit software

PVM_RSH Specifies that an alternative remote shell
command, such as krsh (a Kerberos version of
rsh), can be selected. PVM_RSH can specify
the full path or relative path to the alternative
remote command.

IRIX: If using Array
Services,
/usr/sbin/arshell.
If not using Array
Services,
/usr/bsd/rsh.

PVM_SHMEM_DIR Directory location of the POSIX shared
memory files.

/usr/tmp (Only valid
for SGIMP64 and
SGIMP64mips3
architecture types)

PVM_SLAVE_STARTUP_TIMEOUT Specifies the length of time that the master
daemon will wait for a slave daemon to make
contact after the slave daemon is started.

60 seconds

007–3686–003 25

2: PVM Functionality

Variable Description Default

PVM_VMID Sets the virtual machine identification (VMID)
number for the host. This environment
variable allows a host to be included in more
than one virtual machine by using one pvmd3
command per virtual machine per host. The
virtual machine number is appended to the file
name of the PVM log and daemon socket files,
so that they appear as pvml.uid.vmid and
pvmd.uid.vmid.
The previous name of this variable is PVMJID.
This name is supported in the MPT 1.3 release,
but will not be supported in subsequent
releases.

0

Note: This environment variable prevents IRIX
PVM from interoperating with any
implementation other than SGI IRIX PVM
implementations.

PVMBUFSIZE Specifies the size of the shared memory buffer
for each task and daemon.

1 Mbyte

26 007–3686–003

Chapter 3

Functions and Subroutines

This chapter provides general information about PVM error messages and include
files, and briefly describes tasks and associated functions.

You can use the C and Fortran interfaces to the PVM library functions to perform the
following kinds of tasks:

• Basic operations (see "Basic Operations", page 29)

• Task control (see "Task Control", page 30)

• Option management (see "Option Management", page 30)

• Dynamic system configuration (see "Dynamic System Configuration", page 31)

• Dynamic task group management (see "Dynamic Task Group Management", page
31)

• Data transmittal (see "Data Transmittal", page 32)

• Data receipt (see "Data Receipt", page 34)

• Barrier synchronization (see "Barrier Synchronization", page 36)

• Global operations (see "Global Operations", page 36)

• Signaling (see "Signaling", page 37)

• Error handling (see "Error Handling", page 37)

This chapter briefly describes these tasks. The functions associated with each task are
listed in a table. In each table, the functions are grouped as they are described on the
man pages, and the groups are listed in the order you usually use them to perform
the tasks.

In most cases, each logical PVM function is represented by a C function and a Fortran
subroutine. For more information about a specific function or subroutine, use the
man(1) command to view the associated man page online. To simplify references, this
discussion refers to C functions, C++ functions, and Fortran subroutines as functions
unless individual differences require documentation.

When the C interfaces specify char * as a data type, the Fortran interfaces generally
permit specification of Fortran character variables or constants. However, these

007–3686–003 27

3: Functions and Subroutines

Fortran values are processed as C strings; therefore, a null character in the middle of
the character sequence, which is valid in Fortran, terminates the string.

Error Messages
For a complete list of the PVM error messages and the value associated with each, see
"PVM Error Messages", page 39. In general, PVM functions return PvmOk (0) or a
negative number for errors. Some functions return positive values with other
meanings or have special return codes. Error checks should be coded as less than 0,
rather than not equal to 0.

You can control the actions that PVM takes when it detects an error. The default is to
print an ASCII message and return an error code to the caller. For more information,
see the pvm_setopt(3) man page for a description of the PvmAutoErr option.

Process Identifiers
All processes that enroll in PVM are represented by an integer task identifier, a
pvm_tid. Because pvm_tid values must be unique across the entire virtual machine,
they are supplied by PVM and are not chosen by the user. The following routines
return pvm_tid values:

pvm_bufinfo(3)
pvm_gettid(3)
pvm_mytid(3)
pvm_parent(3)
pvm_spawn(3)

PVM Include Files
PVM include files for the MPT release are installed in the $PVM_ROOT/include
directory. If the mpt module has been loaded, this include file directory will be
searched before any standard include directories.

For better portability, you can refer to PVM include files in your source and specify
the include file directory on the compiler command line, as follows:

28 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

From C:

#include <pvm3.h>
cc -I $PVM_ROOT/include

From Fortran:

include "fpvm3.h"

f90 -I $PVM_ROOT/include

Basic Operations
You can perform basic PVM operations by using the functions in Table 3-1.

Table 3-1 Basic Operations Functions

C and C++ function Fortran subroutine Description

_my_pe MY_PE Returns the PE number of the PVM task
that calls it

_num_pes NUM_PES Returns the total number of PEs (or PVM
tasks) in the program

pvm_freezegroup PVMFFREEZEGROUP Freezes dynamic group membership and
caches information locally

pvm_get_PE PVMFGETPE Converts a task ID into a PE number

pvm_hostsync PVMFHOSTSYNC Gets the time-of-day clock from the PVM
host

pvm_mytid PVMFMYTID Returns the pvm_tid of the calling task

pvm_parent PVMFPARENT Returns the pvm_tid for the task that
spawned the calling task

pvm_tidtohost PVMFTIDTOHOST Returns the pvm_tid for the PVM
daemon task

007–3686–003 29

3: Functions and Subroutines

Task Control
You can control PVM process creation and termination by using the task control
functions in Table 3-2.

Table 3-2 Task Control Functions

C and C++ function Fortran subroutine Description

pvm_catchout PVMFCATCHOUT Catches output from child tasks

pvm_exit PVMFEXIT Exits PVM

pvm_halt PVMFHALT Shuts down the entire PVM system

pvm_kill PVMFKILL Terminates a PVM task

pvm_pstat PVMFPSTAT Determines if a PVM task is executing

pvm_reg_hoster (Not applicable) Registers a task as the PVM host starter

pvm_reg_tasker (Not applicable) Registers a task as the PVM task starter

pvm_spawn PVMFSPAWN Starts a new PVM task

Option Management
You can control PVM options by using the functions in Table 3-3.

Table 3-3 Option Management Functions

C and C++ function Fortran subroutine Description

pvm_setopt PVMFSETOPT Sets a PVM option

pvm_getopt PVMFGETOPT Returns the current value of a PVM option

30 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Dynamic System Configuration
The dynamic system configuration functions, described in Table 3-4, allow PVM to be
dynamically configured by the application. Systems may be added or removed from
the virtual machine, and information can be obtained about a particular system or
about the virtual machine as a whole.

Table 3-4 Dynamic System Configuration Functions

C and C++ function Fortran subroutine Description

pvm_addhosts
pvm_delhosts

PVMFADDHOST
PVMFDELHOST

Adds or deletes one or more systems

pvm_config PVMFCONFIG Returns the configuration of the virtual
machine

pvm_mstat PVMFMSTAT Returns the status of the specified system

pvm_tasks PVMFTASKS Returns information about tasks

Dynamic Task Group Management
A PVM application can form dynamic groups of tasks during its execution. Usually,
these groups are established to simplify multicasting (the broadcast of data to a number
of tasks) and barrier synchronization. Tasks can join and leave groups as desired.

A group is identified by a character string that is assigned by the user. All tasks that
want to join a group must specify the same character string.

Dynamically joining and leaving a group must be done with care. Synchronization
problems can arise if, for example, one task is joining a group at the same time
another task is broadcasting a message to the group. Participating tasks should
synchronize at a barrier before trying to use a group.

Dynamic task group management functions are described in Table 3-5.

007–3686–003 31

3: Functions and Subroutines

Table 3-5 Dynamic Task Group Management Functions

C and C++ function Fortran subroutine Description

pvm_getinst PVMFGETINST Returns the instance number of a task

pvm_gettid PVMFGETTID Returns the pvm_tid for a task

pvm_gsize PVMFGSIZE Returns the number of tasks in a group

pvm_joingroup
pvm_lvgroup

PVMFJOINGROUP
PVMFLVGROUP

Joins or leaves a dynamic group

Data Transmittal
There are two methods in PVM for sending messages. The simpler method, which
involves the use of the pvm_psend(3) function, lets you make a single call to transmit
a contiguous block of data to another PVM task.

The more complex method involves three steps:

1. Initializing a send buffer

2. Packing one or more blocks of data into the buffer

3. Transmitting the buffer to one or more tasks

The second method is more powerful and flexible than the first, but runs more slowly.
Messages can be sent to a particular task, can be broadcast to all members of a group,
can be broadcast to all tasks, or can be multicast to a list of tasks.

You can use the data transmittal functions in Table 3-6, to transmit data.

32 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Table 3-6 Data Transmittal Functions

C and C++ function Fortran subroutine Description

pvm_bcast PVMFBCAST Broadcasts a message to all tasks in a
group.

pvm_getsbuf PVMFGETSBUF Returns the buffer identifier of the current
send buffer.

pvm_initsend PVMFINITSEND Initializes a send buffer.

pvm_mcast PVMFMCAST Broadcasts a message to all tasks in an
array.

pvm_mkbuf
pvm_freebuf

PVMFMKBUF
PVMFFREEBUF

Creates send buffers or releases buffers.

pvm_psend PVMFPSEND Packs and sends data in one call.

pvm_pkint
pvm_pkshort
pvm_pklong
pvm_pkuint
pvm_pkushort
pvm_pkulong
pvm_pkfloat
pvm_pkdouble
pvm_pkcplx
pvm_pkdcplx
pvm_pkbyte
pvm_pkstr
pvm_packf

PVMFPACK Inserts data values into the send buffer.
See pvm_pk(3).

pvm_send PVMFSEND Sends a message to a single task.

pvm_setsbuf PVMFSETSBUF Specifies a new buffer as the current send
buffer.

007–3686–003 33

3: Functions and Subroutines

Data Receipt
There are two methods in PVM for receiving messages. The simpler method, which
involves the use of the pvm_precv(3) function, lets you make a single call to receive
a message and store its data into a contiguous block of data. This is a blocking receive;
the calling task does not return until an appropriate message arrives.

The more complex method involves two steps:

1. Receiving a message. (You can choose either a blocking or a nonblocking form of
receive.)

2. Unpacking one or more blocks of data from the message.

Both methods allow you to choose the message to receive. You can choose to receive
a message of any of the following types:

• A message with a specific message tag sent by a specific PVM task

• Any message sent by a specific PVM task

• A message with a specific message tag sent by any PVM task

• Any message at all

In addition, PVM provides an optional capability that lets you select a message based
on any criteria (including the contents of the message itself). To use this feature, you
must write a comparison function (in C) and call pvm_recvf(3) or pvm_trecv(3).
PVM then calls this comparison function on each subsequent pvm_recv(3) or
pvm_nrecv(3) call to identify the message that should be selected.

After a message has been received, the data is available in an internal receive buffer,
and additional functions must be called to transfer (and convert) this data into user
buffers. Any combination and number of calls to the unpacking functions may be
made to move this data into user memory, but it is recommended that the sequence
of unpacking calls match the sequence of packing calls that built up the data for the
message. It may be possible to use a different sequence, but you should be aware that
this depends on undocumented, underlying data packing and transfer mechanisms.
(This is particularly dangerous if you use pvm_pkstr(3) or if you use
pvm_pkbyte(3) with a byte count that is not a multiple of 8. Also, if you ever
anticipate using this code on another system or across heterogeneous systems, you
should avoid using a different sequence.)

The data receipt functions are described in Table 3-7.

34 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Table 3-7 Data Receipt Functions

C and C++ function Fortran subroutine Description

pvm_bufinfo PVMFBUFINFO Returns information about a message.

pvm_freebuf PVMFFREEBUF Releases receive buffers. See
pvm_mkbuf(3).

pvm_getrbuf PVMFGETRBUF Returns the buffer identifier of the current
receive buffer.

pvm_precv PVMFPRECV Receives a message directly into a buffer.

pvm_recv
pvm_nrecv
pvm_probe

PVMFRECV
PVMFNRECV
PVMFPROBE

Receives a message or probes for a
message.

pvm_recvf (Not applicable) Supplies a user-written comparison
function.

pvm_setrbuf PVMFSETRBUF Specifies a new buffer as the current
receive buffer.

pvm_trecv PVMFTRECV Receives a message with a time-out.

pvm_upkint
pvm_upkshort
pvm_upklong
pvm_upkuint
pvm_upkushort
pvm_upkulong
pvm_upkfloat
pvm_upkdouble
pvm_upkcplx
pvm_upkdcplx
pvm_upkbyte
pvm_upkstr
pvm_unpackf

PVMFUNPACK Extracts values from received messages.
See pvm_upk(3).

007–3686–003 35

3: Functions and Subroutines

Barrier Synchronization
The pvm_barrier(3) function described in Table 3-8 lets PVM tasks explicitly
synchronize with one another. Calling this function causes the task to block (wait) until
a specified number of tasks in a group have called the function. When this occurs, all
waiting tasks are unblocked. The calling task must be a member of the group, and
the count argument must be the same for all tasks that use the same barrier.

The barrier(3) function described in Table 3-8 lets multitasked PVM tasks explicitly
synchronize with one another. This function is useful when PVM is being used in
stand-alone mode for global synchronization between all multitasked PVM tasks.

Table 3-8 Barrier Synchronization Function

C and C++ function Fortran subroutine Description

barrier BARRIER Creates a barrier to synchronize
multitasked PVM tasks

pvm_barrier PVMFBARRIER Creates a barrier to synchronize tasks

Global Operations
The functions in Table 3-9 allow the tasks in a group to participate in a global
operation. All tasks in the group must call the same function at the same time.

The pvm_reduce(3) function supports sum, product, max, and min operations, as
well as user-defined operations.

36 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Table 3-9 Global Operations Functions

C and C++ function Fortran subroutine Description

pvm_gather PVMFGATHER Gathers data from group members into an
array

pvm_reduce PVMFREDUCE Performs a reduction operation across a
group

pvm_scatter PVMFSCATTER Sends a section of an array to each
member of the group

Signaling
The functions in Table 3-10 support sending signals of different kinds to PVM tasks.

Table 3-10 Signaling Functions

C and C++ function Fortran subroutine Description

pvm_notify PVMFNOTIFY Notifies tasks of specific events

pvm_sendsig PVMFSENDSIG Sends a signal to a task

Error Handling
The function in Table 3-11 provides simple help for handling PVM-generated errors.

Table 3-11 Error Handling Function

C and C++ function Fortran subroutine Description

pvm_perror PVMFPERROR Outputs a PVM error message

For more information on controlling PVM behavior, see the pvm_setopt(3) man page.

007–3686–003 37

Appendix A

PVM Error Messages

lists the errors detected by PVM. These error message descriptions include the
following information:

• Text of the error message written to standard error by PVM functions

• Numeric value of the error returned by PVM functions

• Symbol name for each error, as defined within the PVM include files

• Additional information about the error

Be cautious in your use of the numeric values, because the values assigned to the
symbols may change at any time and without any notice.

Errors with numeric values of –100 and below are SGI extensions.

Table A-1 Error Messages Issued by PVM Functions

Error text Value Symbol Additional information

0 PvmOk

–1 Reserved

Bad parameter –2 PvmBadParam A bad parameter was passed to the
function.

Count mismatch –3 PvmMismatch The count parameter does not match
the count used in peer tasks.

Value too large –4 PvmOverflow A value is too large to be packed or
unpacked.

End of buffer –5 PvmNoData The end of a message buffer was
reached while trying to unpack data.

No such host –6 PvmNoHost There is no host in the virtual machine
with the specified name, or the name
could not be resolved to an address.

007–3686–003 39

A: PVM Error Messages

Error text Value Symbol Additional information

No such file –7 PvmNoFile The specified executable file does not
exist.

–8 Reserved

–9 Reserved

Malloc failed –10 PvmNoMem malloc failed to get memory for
libpvm.

–11 Reserved

Can’t decode message –12 PvmBadMsg The received message has a data
format native to another machine,
which cannot be decoded by libpvm.

–13 Reserved

System error –14 PvmSysErr libpvm could not contact a pvmd
daemon on the local host, or the pvmd
failed during an operation.

No current buffer –15 PvmNoBuf There is no current message buffer to
pack or unpack.

No such buffer –16 PvmNoSuchBuf There is no message buffer with the
specified buffer handle.

Null group name –17 PvmNullGroup A null group name was passed to a
function.

Already in group –18 PvmDupGroup The task is already a member of the
group it attempted to join.

No such group –19 PvmNoGroup The specified group does not exist.

Not in group –20 PvmNotInGroup The specified group has no such
member task.

No such instance –21 PvmNoInst The specified group has no member
with this instance.

Host failed –22 PvmHostFail A foreign host in the virtual machine
failed during the requested operation.

No parent task –23 PvmNoParent This task has no parent task.

40 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Error text Value Symbol Additional information

Not implemented –24 PvmNotImpl This libpvm function or option is not
implemented.

Pvmd system error –25 PvmDSysErr An internal mechanism in the pvmd
daemon failed during the requested
operation.

Version mismatch –26 PvmBadVersion Two PVM components (a pvmd daemon
and a task, two pvmd daemons, or two
tasks) have incompatible protocol
versions and cannot interoperate.

Out of resources –27 PvmOutofRes The requested operation could not be
completed due to lack of resources.

Duplicate host –28 PvmDupHost An attempt was made to add the same
host to a virtual machine more than
once, or to add a host already a
member of another virtual machine
owned by the same user.

Can’t start pvmd –29 PvmCantStart A pvmd daemon could not be started on
the local host, or a slave pvmd daemon
could not be started on a remote host.

Already in progress –30 PvmAlready The requested operation requires
exclusive access, and another operation
was already in progress.

No such task –31 PvmNoTask No task exists with the given TID.

No such entry –32 PvmNoEntry The class server has no entry matching
the lookup request.

Duplicate entry –33 PvmDupEntry The class server already has an entry
matching the insert request.

Name too long –100 PvmTooLong

Async transfers
still active

–101 PvmStillActive

Precision lost on
default pack

–102 PvmLostPrecision

007–3686–003 41

A: PVM Error Messages

Error text Value Symbol Additional information

Out of buffers –103 PvmOutOfResBuf The requested operation could not be
completed due to lack of data buffer
resources.

Out of shared memory
pool

–104 PvmOutOfResSMP The requested operation could not be
completed due to lack of SMP
resources.

Too many group
members

–105 PvmOutOfResGmems The requested operation could not be
completed due to lack of resources.

Too much data packed –106 PvmTooMuchData

Hit PVM_TOTAL_PACK
limit

–107 PvmMemLimit

Cannot communicate –200 PvmNoCom A multitasked task cannot
communicate with the PVM daemon.

42 007–3686–003

Appendix B

PVM Man Pages

The following list shows the online PVM man pages, which document the specified
commands and functions (arranged alphabetically).

man1 pages:

• pvm_intro(1)

• pvm(1)

• pvmd3(1)

man3 pages:

• pvm_addhosts(3)

• pvm_barrier(3)

• pvm_bcast(3)

• pvm_bufinfo(3)

• pvm_catchout(3)

• pvm_channels(3)

• pvm_config(3)

• pvm_disptrace(3)

• pvm_exit(3)

• pvm_freezegroup(3)

• pvm_gather(3)

• pvm_getfds(3)

• pvm_get_PE(3)

• pvm_getinst(3)

• pvm_getrbuf(3)

• pvm_getsbuf(3)

007–3686–003 43

B: PVM Man Pages

• pvm_gettid(3)

• pvm_gsize(3)

• pvm_halt(3)

• pvm_hostsync(3)

• pvm_initsend(3)

• pvm_joingroup(3)

• pvm_kill(3)

• pvm_mcast(3)

• pvm_mkbuf(3)

• pvm_mstat(3)

• pvm_mytid(3)

• pvm_notify(3)

• pvm_parent(3)

• pvm_perror(3)

• pvm_pk(3)

• pvm_precv(3)

• pvm_psend(3)

• pvm_pstat(3)

• pvm_recv(3)

• pvm_recvf(3)

• pvm_reduce(3)

• pvm_reg_hoster(3)

• pvm_reg_tasker(3)

• pvm_scatter(3)

• pvm_send(3)

44 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

• pvm_sendsig(3)

• pvm_setopt(3)

• pvm_setrbuf(3)

• pvm_setsbuf(3)

• pvm_spawn(3)

• pvm_tasks(3)

• pvm_tidtohost(3)

• pvm_trecv(3)

• pvm_upk(3)

007–3686–003 45

Glossary

asynchronous

An asynchronous operation or function proceeds in parallel with its initiator. The
initiator must check later to see if the operation or function has completed.

blocking

A blocking function is one that does not return until the function is complete.

broadcast

To send messages to multiple tasks. Often, a broadcast is used in the sense of sending
to all tasks, whereas multicast is used in the sense of sending to an arbitrary set of
tasks.

cplx

A data item consisting of two successive float types.

dcplx

A data item consisting of two successive double types.

dynamic groups

Groups in which tasks can join and leave groups at any time.

EU

Emory University.

global groups

A group consisting of all the tasks (or PEs) in the MPP partition.

message passing

A parallel programming style in which explicit messages (containing a user-defined,
integer message type and data) are sent between tasks.

007–3686–003 47

Glossary

multicast

To send messages to multiple tasks. See also broadcast.

nonblocking

A nonblocking function is one that returns immediately.

NQE

Network Queuing Environment.

ORNL

Oak Ridge National Laboratory.

PE

Processing element.

probe

A message passing concept in which a check is made to see if a message is available,
though the message is not actually received at that time.

PVM

Parallel Virtual Machine.

PVM console

A user-level command that lets you monitor and control your PVM system. The
console is run with the command pvm.

PVM daemon

A user-level process that controls and manages PVM activity on a given host
machine. The daemon is run with the command pvmd3.

pvm_tid

The name used in this manual to refer to a PVM task identifier, which is used to
reference a specific PVM task.

48 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

RPC

Remote Procedure Call.

SIMD

Single instruction, multiple data.

SPMD

Same program, multiple data.

Stand-alone mode

PVM is used for communication between tasks within a single executable file with no
PVM daemon present.

stride

The spacing between elements.

synchronous

A synchronous operation or function does not return control to its initiator until it has
completed the requested operation or function.

task

An independent, parallel process.

task identifier

A 32-bit integer uniquely identifying a PVM task.

UDP

User datagram protocol.

UT

University of Tennessee.

007–3686–003 49

Glossary

XDR

eXternal Data Representation.

50 007–3686–003

Index

A

add command, 7, 16
alias command, 16
Alternative login name, 9
Ampersand use, 7, 12
Applications

output, 13
PVM, 6
running, 12
terminology, 3

Architecture types, 11
Asynchronous operation, 47

B

barrier function, 36
BARRIER subroutine, 36
Barrier synchronization functions, 36
Basic operations functions, 29
Blocking function, 47
Broadcasting messages, 47

C

C and C++ functions, 27
Communication, 1
Computational speed, 9
conf command, 16
Console

commands, 16
starting, 14
usage, 14

cplx item, 47
csh command, 21

.cshrc file, 21
Customizing environment, 8

D

Daemon starting, stopping, 12
Data

receipt functions, 34
transmittal functions, 32

Data types, 22
dcplx item, 47
Debugger path, 8
delete command, 16
Dollar sign use, 9
Dynamic

groups, 47
system configuration functions, 31
task management functions, 31

E

echo command, 16
Environment variables, 23

NLB_SERVER, 24
PVM_DEBUGGER, 24
PVM_DPATH, 24
PVM_EXPORT, 24
PVM_POLICY, 25
PVM_ROOT, 25
PVM_RSH, 25
PVM_SHMEM_DIR, 25
PVM_SLAVE_STARTUP_TIMEOUT, 25
PVM_VMID, 26
PVMBUFSIZE, 26

Error handling

007–3686–003 51

Index

functions, 37
Errors

messages, 12, 39
PVM messages, 28

Executable file building, 7

F

Files
pvm3/lib/pvmd, 24
$PVM_ROOT/lib/debugger, 24
$PVM_ROOT/lib/pvmd, 24

Fortran subroutines, 27
Functions

barrier synchronization, 36
basic operations, 29
data receipt, 34
data transmittal, 32
dynamic system configuration, 31
error handling, 37
global operations, 36
_my_pe, 29
nonblocking, 48
_num_pes, 29
option management, 30
PVM task descriptions, 27
return codes, 28
signaling, 37
task control, 30

G

Global groups, 47
Global operation functions, 36

H

halt command, 12, 16, 19
help command, 16

Host file
example, 8, 11
format, 7
options, 8
sample, 8

I

id command, 16
Incorrect login, 20
Incorrect version, 21

J

jobs command, 16

K

kill command, 16

L

Library
PVM, 1

Login incorrect, 20
Login name, 9

M

Master host, 8
Message

error, 39
passing, 47

MPT components, 1
MPT overview, 1
mstat command, 16

52 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

Multicasting, 31, 48
MY_PE subroutine, 29
_my_pe function, 29

N

Network name, 9
NLB_SERVER environment variable, 24
Nonblocking function, 48
NQE

integrated with PVM, 2
policy, 7

NQS for PVM applications, 14
NUM_PES subroutine, 29
_num_pes function, 29

O

Option management, 30

P

Passwords, 9, 10, 12
Paths, 9
Permission problems, 19
Probe concept, 48
Process

definition, 3
identifiers, 28

Program
development, 6
output, 13

ps command, 17
pstat command, 17
PVM

applications, 5, 6
as a virtual machine, 5
building executable files, 7
data types, 22

detected errors, 28
error messages, 39
functionality, 5
host, 5
include files, 28
library, 1
man page list, 43
overview, 1
program development, 6
task descriptions, 27
terminology, 3
troubleshooting, 19
versions, 2

PVM applications, 12
pvm command, 14
pvm3/lib/pvmd file, 24
pvm_addhosts function, 7, 31
pvm_barrier function, 36
pvm_bcast function, 33
pvm_bufinfo function, 28, 35
pvm_catchout function, 13, 30
pvm_config function, 31
PVM_DEBUGGER environment variable, 24
pvm_delhosts function, 31
PVM_DPATH environment variable, 24
pvm_exit function, 30
PVM_EXPORT environment variable, 24
pvm_freebuf function, 33, 35
pvm_freezegroup function, 29
pvm_gather function, 37
pvm_get_PE function, 29
pvm_getinst function, 32
pvm_getopt function, 30
pvm_getrbuf function, 35
pvm_getsbuf function, 33
pvm_gettid function, 28, 32
pvm_gsize function, 32
pvm_halt function, 30
pvm_hostsync function, 29
pvm_initsend function, 33
pvm_joingroup function, 32

007–3686–003 53

Index

pvm_kill function, 30
pvm_lvgroup function, 32
pvm_mcast function, 33
pvm_mkbuf function, 33
pvm_mstat function, 31
pvm_mytid function, 28, 29
pvm_notify function, 37
pvm_parent function, 28, 29
pvm_perror function, 37
pvm_pkint function, 33
pvm_pklong function, 33
pvm_pkshort function, 33
pvm_pkuint function, 33
pvm_pkushort function, 33
PVM_POLICY environment variable, 25
pvm_precv function, 35
pvm_psend function, 33
pvm_pstat function, 30
pvm_recv function, 35
pvm_recvf function, 35
pvm_reduce function, 37
pvm_req_hoster function, 30
pvm_req_tasker function, 30
PVM_ROOT environment variable, 25
$PVM_ROOT/lib/debugger file, 24
$PVM_ROOT/lib/pvmd file, 24
PVM_RSH environment variable, 25
pvm_scatter function, 37
pvm_send function, 33
pvm_sendsig function, 37
pvm_setopt function, 13, 30
pvm_setrbuf function, 35
pvm_setsbuf function, 33
PVM_SHMEM_DIR environment variable, 25
PVM_SLAVE_STARTUP_TIMEOUT environment

variable, 25
pvm_spawn failure, 21
pvm_spawn function, 28, 30
pvm_tasks function, 31
pvm_tids, 28
pvm_tidtohost function, 29
pvm_trecv function, 35

pvm_upkint function, 35
PVM_VMID environment variable, 26
PVMBUFSIZE environment variable, 26
pvmd3 location, 8, 10, 12
PVMFADDHOST subroutine, 31
PVMFBARRIER subroutine, 36
PVMFBCAST subroutine, 33
PVMFBUFINFO subroutine, 35
PVMFCATCHOUT subroutine, 30
PVMFCONFIG subroutine, 31
PVMFEXIT subroutine, 30
PVMFFREEBUF subroutine, 35
PVMFFREEZEGROUP subroutine, 29
PVMFGATHER subroutine, 37
PVMFGETINST subroutine, 32
PVMFGETOPT subroutine, 30
PVMFGETPE subroutine, 29
PVMFGETRBUF subroutine, 35
PVMFGETSBUF subroutine, 33
PVMFGETTID subroutine, 32
PVMFGSIZE subroutine, 32
PVMFHALT subroutine, 30
PVMFHOSTSYNC subroutine, 29
PVMFINITSEND subroutine, 33
PVMFJOINGROUP subroutine, 32
PVMFKILL subroutine, 30
PVMFMCAST subroutine, 33
PVMFMKBUF subroutine, 33
PVMFMSTAT subroutine, 31
PVMFMYTID subroutine, 29
PVMFNOTIFY subroutine, 37
PVMFPACK subroutine, 33
PVMFPARENT subroutine, 29
PVMFPERROR subroutine, 37
PVMFPRECV subroutine, 35
PVMFPSEND subroutine, 33
PVMFPSTAT subroutine, 30
PVMFRECV subroutine, 35
PVMFREDUCE subroutine, 37
PVMFSCATTER subroutine, 37
PVMFSEND subroutine, 33

54 007–3686–003

Message Passing Toolkit: PVM Programmer’s Manual

PVMFSENDSIG subroutine, 37
PVMFSETOPT subroutine, 30
PVMFSETRBUF subroutine, 35
PVMFSETSBUF subroutine, 33
PVMFSPAWN subroutine, 30
PVMFTASKS subroutine, 31
PVMFTIDTOHOST subroutine, 29
PVMFTRECV subroutine, 35
PVMFUNPACK subroutine, 35
PvmOutputCode option, 13
PvmOutputTid option, 13

Q

quit command, 17

R

Remote systems
passwords, 12
permission, 20
start failure, 19
start-up, 9

reset command, 18
Return codes, 28
rexec command, 9
.rhosts file, 19, 20
rlogin command, 20
rsh command, 9, 19

S

setenv command, 18
sig command, 18
Signaling functions, 37
SIMD mode, 49
spawn command, 13, 18
SPMD mode, 49
Starting the daemon, 12

Stopping the daemon, 12
Stride, 49
stty command, 21
Synchronization, 36

T

Task
control functions, 30
definition, 3
groups, 31
identifier, 49

telnet command, 20
tickle comand, 21
trace command, 18
Transfer speeds, 1
Troubleshooting, 19
tset command, 21

U

unalias command, 18
User-defined operations, 36

V

Version
incorrect, 21

version command, 18
Virtual machine

description, 5

W

who am i command, 20
Working directory, 9

007–3686–003 55

