
OpenGL® Volumizer
Programmer’s Guide

Document Number 007-3720-001

OpenGL® Volumizer Programmer’s Guide
Document Number 007-3720-001

CONTRIBUTORS

Written by George Eckel
Illustrated by Dany Galgani and others
Edited by Christina Cary
Production by Carlos Miqueo
Engineering contributions by Robert Grzeszczuk

© 1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, IRIX, OCTANE, Onyx, Infinite Reality, and OpenGL are registered
trademarks, and the Silicon Graphics logo, Cosmo 3D, Onyx2, ImageVision,
Inspector, OpenGL Optimizer, Open Inventor, Indigo2, Indigo2 IMPACT, and
Performer are trademarks of Silicon Graphics, Inc. Java is a registered trademark of
Sun Microsystems, Inc.

iii

Contents

List of Figures xi

About This Guide xiii
Audience for This Guide xiii
How to Use This Guide xiii
What This Guide Contains xiv

Part One: Using the Volumizer API xiv
Part Two: Advanced Topics xiv

Recommended Reference Materials xv
Silicon Graphics Publications xv
Third-Party Publications xv

Conventions Used in This Guide xvi

1. Volumizer Advantages 3
Volumizer Advantages 4

Faster Development Cycle 5
High Performance 5
Handles Large Data Sets 5
Easy-to-Use API 5
Low-Level Control 6
Familiar Environment 6
Cross-Platform Support 6
Interoperability With Other Toolkits 6
Multi-Pipe Capability 7
Feature-Rich API 7
Preparing for the Future 7

Where OpenGL Volumizer Fits In 8

iv

Contents

2. Basic Concepts in Volumizer 9
Volumetric vs. Surface-Based Models 9

Volumetric Properties 11
Decoupling Geometry and Appearance 12

Advantage of Separating Geometry and Appearance 14
Tetrahedron as a Primitive 17

Higher-Level Primitives 18
Volume Rendering Techniques 20

Ray Casting vs. Volume Slicing 20
Ray Casting Processing Order 21
Volumizer Processing Order 22

Advantage of Volume Slicing 23
Using Minimal Tessellations 23

Minimal Tessellation Advantages 23
Minimal Tessellation Disadvantages 23

Virtualizing Voxel Memory 25
Bricks 25
Brick Sets 25

Brick Set Collections 26
Brick Overlap 27

Clip Boxes 28
Brick Size Restriction 29

Polygonizing Shapes 30
Faces Clipped to Brick Boundaries 30

Displaying Volumetric Geometry with Other ToolKits 31

3. Programming Template 33
Audience for this Chapter 33
High-Level Overview of Procedure 35
Step 1: Inclusions and Declarations 36

Contents

v

Step 2: Define Appearance 36
Select Optimal Brick Parameters 37
Construct an Instance of a voBrickSetCollection 39
Allocate Storage for Bricks 40
Read Brick Data from Disk 40
Work with Brick Data 42

Scaling Voxel Values 42
Converting Brick Data 42
Transposing Brick Data 44

Optimize Voxel Data 44
Step 3: Define Geometry 45

Allocating Storage for Transient Geometry 47
Step 4: Drawing Volumes 50

Polygonizing Volumes 50
aTetraSet and aBrickSet 51
modelMatrix and projMatrix 51
samplingMode 52
samplingSpace 54
samplesNumber 55
samplingPeriod 56

State Sorting 56
Drawing Polygonized Volume 57

Step 5: Using Lookup Tables 59
voTextureLookup 59

Table Formats 59
Pre-Interpolation Lookup 60
Post-Interpolation Lookup 60
Choosing Between Pre- and Post-Interpolation 61
Lookup Example 61
Selecting Lookup Table Types and Formats 62

vi

Contents

Step 6: Handling Errors 63
Setting Up Error Handlers 63
Setting Error Conditions 64
Debugging Information 64

Step 7: Clean Up 65

4. Sample OpenGL Volumizer Application 67
glwSimpleVolume.cxx 68
glwSimpleMain.cxx 83

5. Volumizer API at a Glance 93
Functional Categories 94
Class Hierarchy 94
Brief Descriptions of the Volumizer Classes 96

6. Volumetric Geometry 101
Data Structures 102

voVertexData 102
Preferred Order of Values in Records 103
Creating an Instance of voVertexData 104
voVertexData Methods 104

voIndices 104
voIndexedSet 105

voIndexedSetIterator 105
voIndexedFaceSet 106

Creating an Instance of voIndexedFaceSet 106
Populating Face Sets with Polygons 107
voIndexedFaceSet Methods 108
Deallocating Indexed Face Sets 108
voIndexedFaceSetIterator 108

voIndexedTetraSet 109
Creating a voIndexedTetraSet 109

Clipping Planes 111
Arbitrarily Shaped Volumes of Interest 111
Using Higher-Level Geometric Primitives 113

Contents

vii

Higher-Level Geometric Primitives and Solids 113
Mixing Volumes and Surfaces 114

Rendering Opaque Geometry with Volumes 115
Rendering Translucent or Overlapping Geometry with Volumes 115
Transient Geometry Caching During polygonize 115

Rendering Multiple Volumes 116
Overlapping Volumes 117

Combining Overlapping Volumes 117
Texture Memory Overlap 117
Interpenetrating Polygons 118

Polygonizing Arbitrarily Oriented Cross Sections 118
Stack of Two-Dimensional Textures 119
Using Angled Slices 120
Multi-planar Reformatting Polygonization 121

Shading 122
Tangent Space Shading 123

Volume Roaming 124
Implementing a Volume of Interest 124

Picking Volumetric Objects 125
Auxiliary Methods 127

viii

Contents

7. Volumetric Appearance 129
 Texture Bricking 130

Data Types 130
Data Formats 131

Data Format Domains 132
Data Format Values 132
Optimal Formats 133
Converting Between Formats 134
Scaling Data 134
Interleaving Bricks 135
Advantages of Interleaving Bricks 135
Manually Interleaving Multiple Bricks 136
Creating Texture Objects 136
When Not to Use Texture Objects 136
Voxel Values 137

Tagged Voxels 137
Voxel Reference Frame 138

Generating Voxel Coordinates 140
Texture Matrices 141

Setting Brick Sizes 141
Setting Brick Sizes Automatically 142

Drawing Brick Outlines 142
Brick Sets 143
Brick Set Collections 143
Allocating Brick Data 144
Loading Brick Data 145

Forcing Download of Texture Data 145

Contents

ix

Creating Custom Loaders 146
Loading Three-Dimensional Data 146
Loading Two-Dimensional Data 147
Unsupported File formats 147
File Format Utilities 147

Converting Voxel Data to the TIFF Format 147
Merging a List of Two-Dimensional Files Into One Three-Dimensional File 148

Test Volumes 148

8. Customized Volume Drawing 149
Customized Volume Drawing Procedure 150
clip() 152

General Clipping 152
Other Applications 153

Drawing Brick Set Collections 154
Example Use of findClosestAxisIndex() 155

A. Volume Rendering Examples 157
OpenGL Examples 157

voglBasic 160
voglCache 160
voglRaw 160
voglSpaceLeap 161
voglMorph 161
voglSphere 162
voglPick 162
voglShade 163
voglUnstructured 163
voglMirror 163
voglMPR1 and voglMPR2 164

Open Inventor Examples 164
IRIS Performer Example 166

Index 171

xi

List of Figures

Figure 1-1 Volumetric Rendering 3
Figure 1-2 OpenGL Volumizer in Relation to Other Graphics APIs 8
Figure 2-1 Geometric Primitives 10
Figure 2-2 Abstract Data Set 10
Figure 2-3 Colored Cubes 11
Figure 2-4 Similarities Between Two- and Three-Dimensional Shapes 13
Figure 2-5 Volume Deformation 14
Figure 2-6 Jaw Modeled as a Separate Part 15
Figure 2-7 Per-part Properties. 16
Figure 2-8 Finely Tessellated Shape 16
Figure 2-9 Tetrahedral Decomposition of Cubic Geometry 17
Figure 2-10 Tessellation of Spherical Geometry 18
Figure 2-11 Volumetric Primitives 19
Figure 2-12 Processing Order 20
Figure 2-13 Volume Rendering as Texture Mapping 21
Figure 2-14 Ray Casting Processing order 21
Figure 2-15 Volume Slicing 22
Figure 2-16 Non Uniform Interpolation 24
Figure 2-17 Brick Set 26
Figure 2-18 Data Replication for Two-dimensional Texturing 26
Figure 2-19 Brick Overlap 27
Figure 2-20 Bricks Overlapping 28
Figure 2-21 Polygonal Slices of a Tetrahedron 30
Figure 2-22 Face Sets Spanning Two Bricks Stacked Vertically 31
Figure 3-1 Five Tetrahedra Defining a Cube 45
Figure 3-2 Indexed Vertices 46
Figure 3-3 voFaceSets 51

xii

List of Figures

Figure 3-4 Sampling Surface 52
Figure 3-5 A Volume Polygonized Using VIEWPORT_ALIGNED and

AXIS_ALIGNED Sampling 53
Figure 3-6 Sampling Spaces 54
Figure 3-7 Increasing Sampling Rate 55
Figure 5-1 Volumizer Class Hierarchy Divided By Function 95
Figure 6-1 Indexed Face Sets 106
Figure 6-2 Arbitrarily Shaped VOI 112
Figure 6-3 Geometric (Sunglasses) and Volumetric Objects

Rendered Together 114
Figure 6-4 Overlapping Volumes 116
Figure 6-5 Merging Multiple Volumes 117
Figure 6-6 MPR with Two-Dimensional Texture Mapping 118
Figure 6-7 MPR Bands 120
Figure 6-8 Shading Off and On 122
Figure 6-9 Volume of Interest 124
Figure 7-1 Data Formats 131
Figure 7-2 Voxel Coordinates 138
Figure 8-1 Polygonization of a Single Tetrahedron. 150
Figure A-1 voglSpaceLeap: Space Leaping Example 161
Figure A-2 voglSphere: A Spherical Region of Interest 162
Figure A-3 voglPick: Voxel Picking Example 162
Figure A-4 voglMirror: A Muti-pass Reflection Algorithm on a

Heterogeneous Scene 163
Figure A-5 Clipping Volumes to Arbitrary Surfaces 165
Figure A-6 Free-form Deformation of Volumes 166

xiii

About This Guide

The OpenGL Volumizer API is a library of C++ classes that facilitates the display and
manipulation of volumetric shapes. This guide provides a developer’s introduction to
the API in two parts: Part One describes all the basic concepts in Volumizer and the
most-commonly used classes in the API. A full-length, annotated example application
shows the Volumizer concepts and API in context.

Part Two of the book presents advanced topics, including concepts, classes, and methods
not presented in Part One.

Audience for This Guide

This book is intended for C++ developers of volumetric applications who understand the
basic concepts of computer graphics programming.

Familiarity with OpenGL concepts and programmatic interfaces is strongly
recommended.

How to Use This Guide

The first chapter introduces you to the central concepts of OpenGL Volumizer. These
concepts are described in terms of the OpenGL Volumizer API in Chapter 2. Chapter 2
also presents a step-by-step guide for creating a OpenGL Volumizer application.

Subsequent chapters explore the OpenGL Volumizer API in greater detail in a
task-oriented format.

xiv

About This Guide

What This Guide Contains

This book contains the following chapters:

Part One: Using the Volumizer API

Chapter 1, “Volumizer Advantages,” provides an overview of OpenGL Volumizer and
lists its advantages.

Chapter 2, “Basic Concepts in Volumizer,” describes, at a high level, the important
concepts you need to understand before developing an OpenGL Volumizer application.

Chapter 3, “Programming Template,” describes in terms of the OpenGL Volumizer API
the concepts discussed in Chapter 1. This chapter also presents the basic steps you take
to create your own OpenGL Volumizer application.

Chapter 4, “Sample OpenGL Volumizer Application,” presents annotated code for a
sample OpenGL Volumizer application.

Chapter 5, “Volumizer API at a Glance,” provides a high-level overview of the entire
API.

Part Two: Advanced Topics

Chapter 6, “Volumetric Geometry,” describes the OpenGL Volumizer classes that relate
to creating volumetric geometry.

Chapter 7, “Volumetric Appearance,” describes the OpenGL Volumizer classes that
relate to applying appearances to volumetric geometry.

Chapter 8, “Customized Volume Drawing,” describes how to create your own draw
action for rendering volumes.

Appendix A, “Volume Rendering Examples,” present OpenGL and OpenInventor
examples using the OpenGL Volumizer API.

A glossary and index follow the appendix.

About This Guide

xv

Recommended Reference Materials

Silicon Graphics Publications

The following are found in IRIS InSight:

• IRIS Performer Programming Guide (SGI_Developer bookshelf)

• MIPS Compiling and Performance Tuning Guide (SGI_Developer bookshelf)
For information on dynamically shared objects (DSOs).

• OpenGL on Silicon Graphics Systems (SGI_Developer bookshelf)

Third-Party Publications

• Farin, Gerald. Curves and Surface for Computer Aided Geometric Design. San Diego,
CA.: Academic Press, Inc., 1988.

• D. Voorhies and J. Foran, “Reflection Vector Shading Hardware” in Computer
Graphics Proceedings, Annual Conference Series, ACM, 1994.

• The OpenGL WWW Center at http://www.sgi.com/Technology/OpenGL.

The following are all produced by Addison-Wesley Publishing:

• Foley, J. D., A. VanDam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles
and Practice, 1990.

• Gamma, E., R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, 1995.

• Kilgard, M. J., Programming OpenGL for the X Window System, 1996. (Also known as
“the Green book.”)

• Watt, A. and M. Watt, Advanced Animation and Rendering Techniques: Theory and
Practice, 1992. Note Chapter 6, “Mapping Techniques: Texture and Environment
Mapping.”

• Wernecke, J., The Inventor Mentor: Programming Object-Oriented 3D Graphics with
Open Inventor, 1994.

• Wernecke, J., The Inventor Toolmaker, 1994.

xvi

About This Guide

Conventions Used in This Guide

All class and function names, and other literals in the OpenGL Volumizer API have
names that begin with prefix vo, followed by a string beginning with an upper case letter,
for example, voBrick. Related utilities use vout prefix, for example voutPerfMeter.

These type conventions and symbols are used in this guide:

Bold C++ class names, C++ member functions, C++ data members, and
function names.

Italics Filenames, manual/book titles, new terms, and variables.

Fixed-width type

Code.

Bold fixed-width type

Keyboard input keys.

ALL CAPS Environment variables, defined constants.

() (Bold Parentheses)
Follow function names. They surround function arguments if needed
for the discussion or are empty if not needed in a particular context.

PART ONE

Volumizer API Basics I

Part One of this book presents the most-commonly used OpenGL Volumizer
concepts, classes, and methods This part presents the steps you take to create an
OpenGL Volumizer application and presents an annotated example as an
extension of the step-by-step programming template.

Chapter 1, “Volumizer Advantages,” provides an overview of OpenGL
Volumizer and lists its advantages over other volume rendering APIs.

Chapter 2, “Basic Concepts in Volumizer,” describes, at a high level, the
important concepts you need to understand before developing an OpenGL
Volumizer application.

Chapter 3, “Programming Template,” describes in terms of the OpenGL
Volumizer API the concepts discussed in Chapter 1. This chapter also presents
the basic steps you take to create your own OpenGL Volumizer application.

Chapter 4, “Sample OpenGL Volumizer Application,” presents an annotated,
sample OpenGL Volumizer application.

Chapter 5, “Volumizer API at a Glance,” provides a high-level overview of the
entire OpenGL Volumizer API.

3

Chapter 1

1. Volumizer Advantages

The OpenGL Volumizer API is a library of C++ classes that facilitates the display and
manipulation of volumetric data. Typical examples of volumetric shapes include:

• Clinical diagnostic images, for example, CT, MRI, and PET.

• Seismic data.

• Unstructured meshes that are common in CFD analysis.

The OpenGL Volumizer API facilitates rapid development of efficient, portable, and
easily maintainable applications that have the ability to manipulate volumes.

Figure 1-1 Volumetric Rendering

OpenGL Volumizer facilitates displaying and manipulating volumetric data by
providing a level of abstraction that shelters the application programmer from the
mundane task of dealing with platform-specific details thereby shortening prototyping
and development cycles and allowing the programmer to focus on the application rather
than the mechanics of the volume rendering process. At the same time, OpenGL

4

Chapter 1: Volumizer Advantages

Volumizer allows the implementers of the API to create highly optimized code that can
be tailored to specific platforms and updated as new hardware and software are
introduced. Applications can thus take full advantage of the underlying hardware while
maintaining a single code base spanning multiple platforms.

This chapter provides a high-level overview of OpenGL Volumizer and differentiates it
from other volume rendering APIs, in the following sections:

• “Volumizer Advantages” on page 4

• “Where OpenGL Volumizer Fits In” on page 8

Volumizer Advantages

OpenGL Volumizer is specifically designed for volume visualization applications. It
hides the details of low-level graphics languages and exposes only those functions that
are necessary for viewing volumetric data.

OpenGL Volumizer provides an unparalleled set of sought-after features. The following
sections describe some of them:

• “Faster Development Cycle” on page 5

• “High Performance” on page 5

• “Handles Large Data Sets” on page 5

• “Easy-to-Use API” on page 5

• “Low-Level Control” on page 6

• “Familiar Environment” on page 6

• “Cross-Platform Support” on page 6

• “Interoperability With Other Toolkits” on page 6

• “Multi-Pipe Capability” on page 7

• “Feature-Rich API” on page 7

• “Preparing for the Future” on page 7

Volumizer Advantages

5

Faster Development Cycle

Volumizer facilitates displaying and manipulating volumetric data by providing a level
of abstraction that shelters the application programmer from the mundane task of
dealing with platform-specific details. Volumizer thereby shortens prototyping and
development cycles.

By handling the mechanics of volume rendering, application development time is
radically shortened.

High Performance

The driving force behind Volumizer is optimal handling and display of volumetric
models. Volumizer enables developers to create highly optimized code tailored to
specific platforms that can be updated as new hardware and software is introduced.

Handles Large Data Sets

Volumizer’s 64-bit support enables access and manipulation of data files larger than
4 GB. A typical seismic data set could be as large as 10 GB. OpenGL Volumizer hides the
details of handling such large data sets.

Easy-to-Use API

Volumizer is the higher-level alternative to OpenGL that allows developers to focus more
directly on the large picture rather than on the fine granularity characteristic of low-level
graphics programming languages, such as OpenGL.

By handling the mechanics of volume rendering, Volumizer enables developers to focus
on the unique qualities that differentiate their application.

6

Chapter 1: Volumizer Advantages

Low-Level Control

Volumizer provides the ease of a higher-level graphics programming language.
However, Volumizer supports full access to OpenGL for programmers needing low-level
control in their applications. Applications can thereby take full advantage of the
underlying hardware while maintaining a single code base spanning multiple platforms.

Familiar Environment

Volumizer operates in the familiar, immediate-mode graphics, which is characteristic of
OpenGL based applications.

Cross-Platform Support

Developing graphics applications for different platforms and different operating systems
is both time consuming and expensive. Now, with Volumizer, developers can create one
application that runs on many platforms and operating systems without modification.
While the current release of Volumizer is for IRIX only, support for other hardware and
software platforms is being considered.

Interoperability With Other Toolkits

Volumizer API is an immediate mode toolkit built on top of OpenGL. Therefore,
Volumizer can be used in the familiar framework of many existing, immediate mode
applications.

Volumizer enables the integration of its volumetric shapes with the geometric shapes
produced by other, higher-level, retained mode toolkits, such as:

• IRIS Performer

• Open Inventor

• OpenGL Optimizer

Volumizer Advantages

7

For example, you can render volumetrically defined clouds in a flight simulator (IRIS
Performer), or a CAD model (OpenGL Optimizer) of a hip prosthesis in the anatomical
context provided by a diagnostic CT scan of a pelvis. This intermixing is possible because
Volumizer converts volumes into a set of polygons; each polygon is a slice of a volume
and each slice can be rendered with polygons from the other toolkits.

OpenGL Volumizer does not explicitly provide support for any of the toolkits mentioned
above. Instead, simple examples of how to create node “wrappers” in these toolkits are
provided.

Multi-Pipe Capability

While Volumizer does not explicitly support multi-pipe operation, Volumizer can be
used in conjunction with other software to provide this functionality. For example,
Volumizer can operate in the frameworks of Optimizer, Performer and Multi Pipe Utility
(MPU) all of which provide this type of functionality.

Feature-Rich API

Volumizer provides a robust set of features, including:

• Volume deformation

• Arbitrarily-shaped volumes of interest

• Volume modeling decoupled from appearance

• Roaming very large data sets

• A unified approach to regular grids and unstructured meshes

• Support for imbedded geometry

• Support for handling multiple volumes

• Voxel picking

Preparing for the Future

Volumizer provides a well-defined transition strategy to the Fahrenheit Scene Graph
environment, which is the anticipated Microsoft-Silicon Graphics graphics API.

8

Chapter 1: Volumizer Advantages

Where OpenGL Volumizer Fits In

The Volumizer API is a layer of functionality that, like other Silicon Graphics graphics
APIs, sits on top of OpenGL, as shown in Figure 1-2.

Figure 1-2 OpenGL Volumizer in Relation to Other Graphics APIs

Volumizer is positioned on top of OpenGL because Volumizer can:

• Be decomposed into more primitive actions already supported by OpenGL

• Provide a high degree of configurability, extensibility (low level control), and
ease-of-use (high level of abstraction)

OpenGL

Volumizer

Open Inventor,
Performer,
Optimizer

Applications

9

Chapter 2

2. Basic Concepts in
Volumizer

This chapter describes the central concepts in Volumizer in the following sections:

• “Volumetric vs. Surface-Based Models” on page 9

• “Decoupling Geometry and Appearance” on page 12

• “Volume Rendering Techniques” on page 20

• “Using Minimal Tessellations” on page 23

• “Virtualizing Voxel Memory” on page 25

• “Polygonizing Shapes” on page 30

The next chapter describes the API calls associated with these concepts.

Volumetric vs. Surface-Based Models

In computer graphics, a three-dimensional object is any object that exists in
three-dimensional space. Strictly speaking, however, the triangles and other surface
elements used to represent such objects are two-dimensional primitives.

10

Chapter 2: Basic Concepts in Volumizer

Figure 2-1 Geometric Primitives

Two-dimensional primitives suffice in many cases because most objects around us are
adequately represented by their surface. Objects with interesting interiors, however, are
abundant in everyday life. Clouds, smoke, and anatomy are all examples of
volumetrically interesting objects.

Abstract volumetric objects, such as medical (CT, MRI, PET), geophysical, and
computational data sets also contain interesting interior information that cannot easily
be represented by surfaces, as shown in Figure 2-2.

Figure 2-2 Abstract Data Set

Points

Lines

Triangles

Tetras

Volumetric vs. Surface-Based Models

11

Despite their abundance and importance, volumetric objects are either not handled at all
or their treatment is substantially different from that of surface-based models. Handling
heterogeneous scenes that contain volumes and surfaces, as a result, is very challenging
and often done as a special case.

OpenGL Volumizer extends the concepts of surface-based models to include volumetric
shapes. As a result, Volumizer arrives at a single, unified framework capable of handling
both types of models equally well.

Volumetric Properties

A volumetric model is not hollow; it has some property—for example, color or opacity—
that varies throughout the interior of the object. Consider a color cube represented using
two- and three-dimensional primitives:

• Traditionally, a colored surface-only cube is rendered by drawing six polygonal
faces and interpolating the colors across each face.

• A colored volumetric cube interpolates the colors across the entire space occupied
by the cube.

These two cubes look identical from the outside. However, the differences become
apparent as soon as we try to fly through such object, or make the surface
semi-transparent.

Figure 2-3 Colored Cubes

12

Chapter 2: Basic Concepts in Volumizer

Decoupling Geometry and Appearance

In traditional three-dimensional graphics, graphical objects, called models or shapes in
this document, are commonly described in terms of geometry and appearance. For
example, a rectangular shape may be described by a quad mesh (geometry) with a
two-dimensional texture (appearance) mapped onto it. In many cases there is a close
relationship between appearance and geometry. For example, two-dimensional texture
maps, which are rectangular arrays of values (pixels), are often mapped onto a single
rectangular polygon of equal size.

Having an appearance match the size of a geometry, however, is a special, not a general
case. For example, it is possible to move a circular geometry around inside a (larger)
texture image like a magnifying glass, or to texture map an image onto a (smaller) sphere
or a bicubic patch capable of squashing and twisting. In these examples, the shape’s
geometry and appearance are clearly decoupled.

 It is the combination of geometry (for example, a sphere) and appearance (for example,
voxels representing your data) that compose a volumetric shape. In the remainder of the
book, the term “volume” describes the pairing of geometry and appearance.

Note: Although a geometry can be drawn without a texture, a texture cannot be drawn
directly; it can only be used to modify the way a geometry is rendered. This is in stark
contrast to conventional volume rendering techniques, which consider a voxel to be a
drawable entity by itself.

In the simplest case, a volume’s dimensions match that of its data cube. In general,
however, the dimensions of a volume and its appearance differ. Conventional
approaches to volume rendering do not explicitly separate volume and appearance;
volume and appearance in those APIs tend to have the same dimensions. OpenGL
Volumizer liberates your models from that restriction and thereby unifies the approaches
for rendering geometric and volumetric shapes.

Figure 2-4 shows the similarity between polygonal and volumetric definitions of shapes.

Decoupling Geometry and Appearance

13

Figure 2-4 Similarities Between Two- and Three-Dimensional Shapes

• A two-dimensional array of pixels mapped onto a matching size rectangle, (a), is
similar to a three-dimensional array of voxels mapped onto a matching size cube,
(b).

• An octagonal “cookie-cutter” used to focus on a portion of the texture, (c), is similar
to an icosahedral geometry used to focus on a portion of a volume, (d).

• A rectangular texture mapped onto an arbitrary quadrangle and the resulting
distortion, (e), is similar to a regular volume mapped onto an irregular geometry
and the resulting distortion, (f).

14

Chapter 2: Basic Concepts in Volumizer

Advantage of Separating Geometry and Appearance

Because geometry and appearance are defined independently of one another in OpenGL
Volumizer, you never need to write special code that changes the rendering engine for
special features, such as:

• Arbitrarily-shaped volumes of interest (VOIs)

Applications can choose to render only a portion of the volume, for example, a
sub-cube or a spherical region containing interesting features. To do this you pass a
different set of primitives (tetrahedra) as a parameter to the renderer. No changes to
the renderer itself are needed.

• Volume deformation

You can change a shape by changing its volume but without changing its voxels.
This three-dimensional deformation is analogous to stretching a texture-mapped
polygon. Figure 2-5 shows how a cube is transformed into a truncated pyramid.

Figure 2-5 Volume Deformation

The left panel in Figure 2-5 shows a simple free form deformation application in
which the vertices defining the volume’s geometry are moved around affecting the
shape of the model. The right panel illustrates a contrained deformation: the
geometry is distorted radially. This feature can prove useful in applications that
deal with ultrasonic and radar data, which need to be “dewarped.”

Decoupling Geometry and Appearance

15

• Hierarchical modeling

Applications can create tessellations that define sub-parts within shapes. For
example, rather than use a canonical five-tetrahedron tessellation of a volume, for
example a skull, a separate set of tetrahedra can be specified to model the jaw, or a
bone flap. These subsections can be manipulated as separate objects (with different
material properties and transformations) to simulate maxillofacial or brain surgery.

.

Figure 2-6 Jaw Modeled as a Separate Part

• Per-part appearance.

Applications can assign different properties (e.g., colors) to highlight or otherwise
distinguish individual subparts of the model. This can be useful in labeling geological
material in a seismic data interpretation application or for diagnostic data set
segmentation.

16

Chapter 2: Basic Concepts in Volumizer

.

Figure 2-7 Per-part Properties.

• Space leaping techniques

You can use a very fine tessellation to produce a large number of small cubes to skip
areas of void in the scene (analogous to polygon assisted ray casting (PARC) and
other space-leaping techniques) in a simple pre-processing step, as shown in
Figure 2-8.

Figure 2-8 Finely Tessellated Shape

This technique, called space leaping, can sometimes produce a dramatic performance
increase for sparse data sets by reducing pixel fill calculations.

Decoupling Geometry and Appearance

17

Tetrahedron as a Primitive

The triangle is the simplest and most flexible primitive you can use to represent
polygonal geometry; any surface can be decomposed into a collection of triangles to
approximate the surface of a geometry. A circle, for example, can be approximated by
thirty triangles all sharing a common vertex in the center of the circle.

Similarly, a tetrahedron is the simplest and most efficient primitive you can use to represent
volumetric geometry. Any shape can be tessellated into tetrahedra; for example, any cube
can be decomposed into as few as five tetrahedra, as shown in Figure 2-9.

Figure 2-9 Tetrahedral Decomposition of Cubic Geometry

18

Chapter 2: Basic Concepts in Volumizer

Or, for example, an icosahedron (a rough approximation of a sphere) can be tessellated
into 20 tetrahedra by connecting the center of the icosahedron with triangles on the
surface, as shown in Figure 2-10.

Figure 2-10 Tessellation of Spherical Geometry

Higher-Level Primitives

At times it is more convenient to specify higher-level geometric shapes, such as boxes or
solid spheres, as primitives. You might use a higher-level primitive, for example, when
using complex-shaped volumes of interest, for example, a logo of the company filled
with smoke. Some of the polyhedral primitives are shown in Figure 2-11.

Decoupling Geometry and Appearance

19

Figure 2-11 Volumetric Primitives

For more information about higher-level primitives, see “Using Higher-Level Geometric
Primitives” on page 113.

20

Chapter 2: Basic Concepts in Volumizer

Volume Rendering Techniques

There are many traditional ways to render a volume, including ray casting, splatting, and
shear warp. OpenGL Volumizer uses a technique, similar to ray casting, called volume
slicing, to leverage the texture-mapping hardware many workstations now have.

Ray Casting vs. Volume Slicing

Ray casting can be performed in ray-order or sampling-surface order using planes or
spherical surfaces parallel to the line of sight, as shown in Figure 2-12.

Figure 2-12 Processing Order

Volume slicing and ray casting are equivalent in the following ways:

• Ray casting under orthographic projection ((a) and (b) in Figure 2-12) is equivalent
to taking a series of slices along planes parallel to the viewport and compositing
them.

• Ray casting under perspective projection ((c) in Figure 2-12) is equivalent to
sampling along a series of concentric spherical shells centered at the eye.

The end result is volume rendering according to texture mapping, as shown in
Figure 2-13.

Volume Rendering Techniques

21

Figure 2-13 Volume Rendering as Texture Mapping

Ray Casting Processing Order

In ray casting, each point on a ray projected from the eye position through the volume is
processed sequentially. In this technique:

1. The colors, opacity and shading of a volume are sampled, filtered, and accumulated
at a point on a ray a specific distance from the eye position.

2. The distance is incremented along the ray, and the same colors, opacity and shading
computations are repeated by the CPU, as shown in Figure 2-14.

Figure 2-14 Ray Casting Processing order

Eye point

22

Chapter 2: Basic Concepts in Volumizer

3. When the traversal finally extends beyond the viewing frustum, the point of
computation moves to the next ray near the eye point.

Conventionally, the main processing loop operates in ray order.

Volumizer Processing Order

In Volumizer, all points on a plane orthogonal to the line of sight are computed
sequentially in the texture mapping hardware. In this technique:

1. The volume is sampled in surfaces orthogonal to the viewing direction, as shown in
Figure 2-15.

Figure 2-15 Volume Slicing

2. After the points along one plane on all the rays intersecting the volume are
processed, the distance is incremented and the processing occurs again for all points
on all the rays in the new plane.

3. Processing the points continues until the plane of points moves beyond the viewing
frustum, at which point the processing terminates.

Eye point

Using Minimal Tessellations

23

Advantage of Volume Slicing

The results of ray casting and volume slicing are identical. Orthographic projection is
equivalent to volume slicing using sampling planes, and perspective ray casting is
similar to using sampling along generalized (non-planar) surfaces in Volumizer.

There are, however, some important differences between the two techniques in
processing the volumes:

• Volume slicing is faster than ray casting because computations are performed by the
dedicated texture mapping hardware, whereas ray casting computations are
performed by the CPU.

• Volume slicing reduces the volume to a series of texture-mapped, semi-transparent
polygons. These polygons are in no way special and can be merged with any other
polygonal data base handed to any graphics API (for example, OpenGL or
Optimizer) for drawing.

Using Minimal Tessellations

In many common examples, volumes are hexahedral. The minimum tessellation of a
hexahedron, as shown in Figure 2-9, is five tetrahedra. There are, however, advantages
and disadvantages to using minimal tessellations.

Minimal Tessellation Advantages

When voxel coordinates and vertex coordinates coincide, you can use a single, large
tetrahedron that fully encloses a voxel array to increase performance. For example, given
a voxel array of SIZE3, you would use a tetrahedron with vertices at (0, 0, 0), (3 × SIZE,
0, 0), (0, 3*SIZE, 0), and (0, 0, 3 × SIZE). Such a single-tetrahedron tessellation can reduce
polygonization calculations by a factor of five.

Minimal Tessellation Disadvantages

While compact, a minimal tessellation is not uniform and tends to introduce
interpolation artifacts. For example, Figure 2-16 shows how colors are not uniformly
interpolated across a face.

24

Chapter 2: Basic Concepts in Volumizer

Figure 2-16 Non Uniform Interpolation

The vertices of the cube alternate between red (bright) and blue (dark). One would expect
the faces of the cube to be smoothly interpolated between the respective vertices.
However, the interpolation only occurs within a tetrahedron. Therefore, the resulting
faces will have either a red (bright) or a blue (dark) diagonal band running along the edge
of the tetrahedron that divides them. This artifact is analogous to creating T-junctions in
polygonal tessellations.

Connecting multiple boxes through face adjacency leads to inconsistent (and highly
noticeable) interpolation bands. For example, the wire frame box in Figure 2-16 has the
same tessellation and vertex coloring as the solid one.

Yet, due to the asymmetry inherent in the tessellation, the adjacent faces have opposite
diagonals as bases for their tessellations. Therefore, one of the two adjacent faces (solid
box) is rendered with red (bright) running along one diagonal, while the other (wire
frame box) has a similar band running along the opposite diagonal.

Virtualizing Voxel Memory

25

Worse yet, moving one of the vertices shared between two adjacent boxes results in
“cracking.”

These artifacts make the use and manipulation of complex volumetric primitives
cumbersome.

All of the artifacts discussed can be minimized or avoided by splitting the cube into a
larger number of more uniformly distributed tetrahedra. For example, it is possible to
split a cube into 6 pyramids with the apex in the center of the cube using the faces of the
cube as their bases. These pyramids can be further subdivided into four tetrahedra each
for a total of 24 tetrahedron.

Virtualizing Voxel Memory

Some image data bases contain more voxel data than can be stored in a machine’s texture
mapping hardware. To take advantage of hardware acceleration, voxel data is broken up
into subsections, called bricks.

Bricks

A brick is a subset of voxel data that can fit into a machine’s texture mapping hardware.
Bricks are regular hexahedra (boxes) with non-zero width, height, and depth. Displaying
a volume requires paging the appropriate brick data into texture memory. Anticipating
which bricks to page can speed up your application’s performance.

Applications have control over individual bricks; for example, it is an application’s
responsibility to provide voxel data for each brick.

Bricks are three-dimensional objects but can also be used to represent two-dimensional
textures by setting one of the dimensions to 1. This way stacks of 2D images can easily be
handled.

Brick Sets

One or more adjacent bricks constitute a brick set. Volumetric appearance is defined as a
collection of one or more brick sets. Figure 2-17 shows a brick set containing eight bricks,
shown as eight cubes within the large cube.

26

Chapter 2: Basic Concepts in Volumizer

Figure 2-17 Brick Set

Brick Set Collections

Typically, a shape can be described by a single brick set. In certain situations, however,
more than one brick set is required. For example, on machines that do not support
three-dimensional texture mapping, three separate copies of the data set may have to be
maintained, one for each major axis, as shown in Figure 2-18, to minimize sampling
artifacts.

Figure 2-18 Data Replication for Two-dimensional Texturing

For more information about brick set collections, see “Brick Set Collections” on page 143.

Virtualizing Voxel Memory

27

Brick Overlap

Bricks typically have to overlap to prevent seams from appearing at the brick
boundaries.

Figure 2-19 Brick Overlap

Figure 2-19 shows that bricks overlap but clip boxes, described in “Clip Boxes” on
page 28, do not; they are adjacent. the difference in size between the brick and the clip
box determines the brick overlap which helps prevent artifacts, such as seams, in the
image.

The amount of overlap depends on the filtering scheme used. For example, if an
application requested:

• Tri-linear interpolation, the bricks have to overlap by a layer of voxels one voxel
thick in each direction

• Cubic interpolation, three layers are needed in each direction

Another factor that determines the width of brick overlap is gradient computation. When
the gradient is computer, the x, y, and z dimensions for each voxel are graded over x + 1
to x - 1, y + 1 to y - 1, and z + 1 to z - 1. If any of these values fall outside the brick, the
overlap might be greater.

Overlaps create storage overhead that is typically negligible, but may be substantial in
certain situations. For example, requesting that a volume divided into bricks that are one
voxel thick and insisting on 1 voxel overlap in all directions triples the storage overhead.

28

Chapter 2: Basic Concepts in Volumizer

Clip Boxes

Clip boxes are used to clip geometry that spans several bricks in a way that guarantees
that individual pieces join seamlessly. A clip box is centered where a brick is, but is
smaller by the amount of overlap. Clip boxes of adjacent bricks are strictly adjacent; that
is, there is no overlap or void between them.

Figure 2-20 illustrates the spatial relationships for two 4-by-4 bricks overlapping by one
layer of voxels. The clip boxes are represented by the dotted lines.

Figure 2-20 Bricks Overlapping

It is convenient to associate a clip box with a brick. A brick is characterized by its origin
and its size. In Figure 2-20, the brick on the left has its origin at (0,0). The brick on the
right has its origin at (3,0). The left and right clip box origins are (0.5, 0.5) and (3.5, 0.5),
respectively.

Virtualizing Voxel Memory

29

Brick Size Restriction

Brick sizes are required to be a power of 2. This restriction allows implementations to
take advantage of the underlying graphics API, OpenGL. This requirement does not
mean, however, that the volume itself has any size restrictions.

If the volume dimensions do not divide evenly into brick dimensions, you can do one of
the following:

• Ignore the voxels that fall outside of the brick set that evenly divides the volume.

For example, a 256 × 256 × 190 volume bricked into 1283 bricks with one voxel
overlap in each direction creates 8 bricks discarding a single layer of voxels in the X
and Y directions, and 62 layers in the Z direction (Figure 2-12).

• Add an additional layer of bricks in each direction that are partially empty.

In the previous example, that would mean creating 27 × 1283 bricks.

• Try to make the brick as small as possible: determine the smallest power of 2 that
fits the partial brick.

In the previous example, that would result in creating 27 bricks, but the X and Y
dimensions of the partial bricks would be 2, and the Z dimension would be 64. This
means that bricks may be of sizes other than the one requested.

For more information about carrying out these options using the API, see “Work
with Brick Data” on page 42.

30

Chapter 2: Basic Concepts in Volumizer

Polygonizing Shapes

To render a shape, Volumizer slices a volume along a set of parallel surfaces; this slicing
process is called polygonization. The result is a set of polygons, called faces. Textures are
associated with each of these polygons, as shown in Figure 2-21.

Figure 2-21 Polygonal Slices of a Tetrahedron

The figure on the left in Figure 2-21 shows the polygonization of a tetrahedron. The
figure on the right shows the polygonization of five tetrahedra that define a cube.

The orientation of the surfaces is configurable; the simplest case is when the surfaces are
orthogonal to the line of sight of the viewer. The surfaces, however, can be aligned
arbitrarily.

The slices in these figures are planar; they can, however, be of any shape. In particular,
you might choose to shape them spherically to render equidistant points from the
viewpoint.

Faces Clipped to Brick Boundaries

Polygonization clips polygons to brick and volume boundaries to facilitate texture
paging. Figure 2-22 shows a single tetrahedron spanning two bricks, which are stacked
vertically.

Polygonizing Shapes

31

Figure 2-22 Face Sets Spanning Two Bricks Stacked Vertically

Figure 2-22 shows a separate set of polygons for each brick. polygonization() depth sorts
these polygons and hands them to the application for drawing.

For more information about polygonization, see “Polygonizing Volumes” on page 50.

Displaying Volumetric Geometry with Other ToolKits

After Volumizer slices shapes into a set of parallel polygons, the slices can be rendered
by many rendering toolkits, such as IRIS Performer and OpenGL Optimizer. In this way,
it is easy to intermix volumes and surface-only geometries in the same display.

For more information about intermixing volumetric and polygonal shapes, see “Mixing
Volumes and Surfaces” on page 114.

33

Chapter 3

3. Programming Template

This chapter presents a programming template for Volumizer applications. Rigorously
following this template is not required when creating your own Volumizer application.
The template does, however, provide a programming framework in which to understand
the Volumizer API.

This chapter explains the most commonly-used elements of the Volumizer API in the
context of creating an application. Chapter 2, “Basic Concepts in Volumizer,” presented
the concepts behind the API described in this chapter.

The structure of this chapter is parallel to Chapter 4, “Sample OpenGL Volumizer
Application,” in which a full code example is explained. By understanding the API calls
presented in this chapter, you can better understand the complete code example in the
next chapter.

Audience for this Chapter

Developers working with the Volumizer API can be divided into two groups:

• Those who want to use the supplied Volumizer application with their own image
database.

• Those who want to create their own Volumizer application.

Developers in the first group need only to learn about file input and output. OpenGL
Volumizer provides several loaders in sample applications. If none of these loaders work,
then you need to create your own loader. For help doing that, refer to “Creating Custom
Loaders” on page 146.

Note: The examples are provided as illustrative and often do not provide full
functionality.

34

Chapter 3: Programming Template

The other parts of this chapter present topics relevant to the second group of developers.
The basic steps you take to create your own OpenGL Volumizer application are
discussed in the following sections:

• “Step 1: Inclusions and Declarations” on page 36

• “Step 2: Define Appearance” on page 36

– Selecting Optimal Brick Parameters

– Defining Appearance (voBrickSetCollection)

– Allocating Storage for Voxel Data

– Reading Voxel Data from Disk

– Working with the Brick Data

– Optimizing Appearances

• “Step 3: Define Geometry” on page 45Defining Geometry (voIndexedTetraSet)

– Allocating Storage for Transient Polygons

• “Step 4: Drawing Volumes” on page 50

– Polygonizing a Volume

– State Sorting

– Loading Voxel Data into Texture Cache

– Drawing Polygonized Volume

• “Step 5: Using Lookup Tables” on page 59 (optional)

• “Step 6: Handling Errors” on page 63

• “Step 7: Clean Up” on page 65

High-Level Overview of Procedure

35

High-Level Overview of Procedure

This section provides a conceptual overview of the programming template. The sections
following this one describe in much more detail how to accomplish each of the
programming tasks discussed in this section.

For more information about any of the concepts in this section, see Chapter 2, “Basic
Concepts in Volumizer.”

When creating a Volumizer application, you perform the following tasks:

1. Define a volumetric shape:

• Define appearance.

• Define geometry.

2. Render the shape:

• Sample the shape along a set of surfaces, often planes parallel to the viewport.

In this process, called polygonization, the surfaces are clipped to the boundaries
of the unbounded volume’s geometry; as a result, the clipped planes become
polygons.

The polygons are then clipped to brick boundaries to take advantage of
hardware acceleration. A brick is the amount of texture that can be cached into a
machine’s texture memory.

• Depth sort the set of polygons from back to front.

• Map textures onto the polygons from the voxel information and composite the
polygons together in the frame buffer to produce the final image.

The polygonization process converts the volume shape into a set of semi-transparent
textured polygons that can be handed back to applications. These polygons are in no way
special (other than being semi-transparent) and can subsequently be mixed with other
polygons in a scene.

The following sections explain how these concepts are implemented by the Volumizer
API.

36

Chapter 3: Programming Template

Step 1: Inclusions and Declarations

The first step in creating a Volumizer application is to include all necessary OpenGL,
Motif (or other Graphical User Interface API), and C++ header files and to declare global
variables. Most applications need to include the following header files to assure that all
Volumizer-specific declarations are present:

#include <vo/GeometryActions.h>
#include <vo/AppearanceActions.h>

These header files include a number of other Volumizer headers. The other header files
are listed in “glwSimpleVolume.cxx” on page 68.

Step 2: Define Appearance

To define appearance, use the following procedure:

1. “Select Optimal Brick Parameters” on page 37

2. “Construct an Instance of a voBrickSetCollection” on page 39

3. “Allocate Storage for Bricks” on page 40

4. “Read Brick Data from Disk” on page 40

5. “Work with Brick Data” on page 42

6. “Optimize Voxel Data” on page 44

Step 2: Define Appearance

37

Select Optimal Brick Parameters

Different hardware platforms provide varying functionality and feature sets making it
difficult for application developers to write portable, efficient and maintainable code. To
insulate the API proper from machine dependencies, several helper routines are
provided that localize such dependencies, such as
voAppearanceActions::getBestParameters(). Its purpose is to suggest optimal values for
several machine dependent variables:

xBrickSize = xVolumeSize;
yBrickSize = yVolumeSize;
zBrickSize = zVolumeSize;

voAppearanceActions::getBestParameters(
interpolationType, renderingMode, dataType, // In
diskDataFormat, // In
internalFormat, externalFormat, // Out
xBrickSize, yBrickSize, zBrickSize); // In/Out

interpolationType can have the following values:

enum voInterpolationType {
DEFAULT,
_2D,
_3D

};

_2D and _3D select two-dimensional and three-dimensional textures as internal voxel
representation, respectively. Setting this parameter to DEFAULT selects _3D on
machines that support hardware three-dimensional texture mapping, _2D otherwise.

renderingMode can have the following values:

enum voRenderingMode{
DEFAULT,
MONOCHROME,
COLOR

};

The value depends on the requested rendering mode: gray scale (MONOCHROME) or
RGBA.

dataType and diskDataFormat are based on the numerical representation of the voxel data
used by the application.

38

Chapter 3: Programming Template

voDataType describes the data type of the voxel data. The values of the enumerant are
of type voDataTypeScope and can be one of the following values:

enum voDataType {
DEFAULT,
UNSIGNED_BYTE,
BYTE,
UNSIGNED_BYTE_3_3_2_EXT,
UNSIGNED_SHORT,
SHORT,
UNSIGNED_SHORT_4_4_4_4_EXT,
UNSIGNED_SHORT_5_5_5_1_EXT,
UNSIGNED_INT,
INT,
UNSIGNED_INT_8_8_8_8_EXT,
UNSIGNED_INT_10_10_10_2_EXT,
FLOAT

};

The dimensions, xBrickSize, yBrickSize, zBrickSize, specify the optimal brick size; If
possible, the brick size will match the volume size.

Based on the above set of input parameters, the getBestParameters() method determines
the optimal internalFormat, externalFormat and brick sizes for a given platform. For
example, given the disk format of INTENSITY, a rendering mode of MONOCHROME
and brick sizes of [256, 256, 256], and an SGI OCTANE with 4 MB of texture memory, the
method returns LUMINANCE_ALPHA for externalFormat,
LUMINANCE8_ALPHA8_EXT for internalFormat, and [128, 128, 64] for brick sizes. The
same call, with identical input parameters returns LUMINANCE, INTENSITY8_EXT,
and [256, 256,256], respectively, on an SGI Onyx2 IR with 64 MB of texture memory.

voInternalFormatType describes the format used internally by the texture subsystem to
maintain voxel data. It can be one of the following values:

enum voInternalFormatType{
DEFAULT,
INTENSITY8_EXT,
LUMINANCE8_EXT,
LUMINANCE8_ALPHA8_EXT,
RGBA8_EXT,
RGB8_EXT,
RGBA4_EXT,
DUAL_LUMINANCE_ALPHA8_SGIS,
DUAL_INTENSITY8_SGIS,
QUAD_LUMINANCE8_SGIS

};

Step 2: Define Appearance

39

voExternalFormatType is the format that the application uses to pass the voxel data to
the texture subsytem. The values of the enum are of type voExternalFormatTypeScope
and can be one of the following values:

enum voExternalFormatType {
DEFAULT,
INTENSITY,
LUMINANCE_ALPHA,
LUMINANCE,
RGBA,
ABGR_EXT

};

getBestParameters() does not create anything, but merely suggests suitable parameters
to use with subsequent calls. The application can overwrite the suggested values with the
understanding that some changes may affect performance or the validity of subsequent
operations.

For example, overwriting the internal format results in an additional format conversions
every time the volume is downloaded. Or, for example, increasing the total size of a brick
is likely to cause failure during the first download because of memory overrun. It is okay,
however, to make bricks smaller.

Construct an Instance of a voBrickSetCollection

Once the optimal brick parameters are selected, they can be used to construct an instance
of a voBrickSetCollection given the voxel array dimensions, brick sizes, voxel formats,
and interpolation type to encapsulate the appearance, as follows:

voBrickSetCollection (
int xVolumeSize, int yVolumeSize, int zVolumeSize,
int xBrickSize, int yBrickSize, int zBrickSize,
voPartialBrickType _fractionalBricks,
 int _overlap,
voInternalFormatType _internalFormat,
voExternalFormatType _externalFormat,
voDataType _dataType,
voInterpolationType _interpolationType);

40

Chapter 3: Programming Template

A brick set collection is a collection of brick sets. The brick set collection contains the
voxel data and all information about the data types, formats, and memory layout of the
brick sets in the collection.

Note: This constructor does not allocate memory for voxel data.

For more information about voBrickSetCollection, see “Brick Set Collections” on
page 143. For a discussion of advanced topics in appearance, see Chapter 7, “Volumetric
Appearance.”

Allocate Storage for Bricks

Each brick holds an array of voxel data. To allocate voxel memory for all of the brick sets
in the brick set collection, interate over the bricks using the following nested loop:

// iterate over all brick sets in the brick set collection
for (voBrickSet * brickSet; brickSet = collectionIter();) {

// iterate over all bricks within the brick set
voBrickSetIterator brickSetIter(brickSet);
for (voBrick * brick; brick = brickSetIter();)
voAppearanceActions::dataAlloc(brick);
}

aVolume->setCurrentBrickSet(voPlaneOrientationScope::XY);

Applications that prefer to manage their own data can set the data pointer of the brick
directly to point to the memory area that contains the voxel data by calling the
setDataPtr() member method. In either case, the application is responsible for memory
management. In particular, the voxel memory has to be deallocated with a call to
voAppearanceActions::dataFree() or some application-specific way once the application
is done using it.

Read Brick Data from Disk

Applications read voxel data from the disk brick by brick. To read a brick from a disk into
host memory (not texture memory, which is covered in “Read Brick Data from Disk” on
page 40), you can use one of the supplied IFL loaders, for example:

extern int myReadBrickIfl(
char *fileName, void *data,
int xBrickOrigin, int yBrickOrigin, int zBrickOrigin,
int xBrickSize, int yBrickSize, int zBrickSize,
int xVolumeSize, int yVolumeSize, int zVolumeSize);

Step 2: Define Appearance

41

The above routine reads a set of voxels that fall within a subvolume, determined by the
arguments, from any file supported by the Image Format Library (IFL), for example, a
three-dimensional TIFF file. Another loader provided with the API reads a brick of
voxels from a stack of “raw” two-dimensional images:

int myReadBrickRaw(char **fileNames, void *data,
int xBrickOrigin, int yBrickOrigin, int zBrickOrigin,
int xBrickSize, int yBrickSize, int zBrickSize,
int xVolumeSize, int yVolumeSize, int zVolumeSize,
int headerLength, int bytesPerVoxel)

For more information about stacks of two-dimensional images, see “Stack of
Two-Dimensional Textures” on page 119.

A “raw” two-dimensional image is a voxel stream in row-major order possibly
proceeded with a fixed-size header (the content of which is ignored).

OpenGL Volumizer provides several loaders. However, if you find that your data set
cannot be read by any supplied Volumizer sample application, you need to make your
own loader. “Creating Custom Loaders” on page 146 provides code for a loader that you
can modify to handle your data.

All bricks of a brick set can be read in using the following construct:

voBrickSetIterator brickSetIter(aVolume->getCurrentBrickSet());
for (voBrick * brick; brick = brickSetIter();) {

int xBrickOrigin, yBrickOrigin, zBrickOrigin;
int xBrickSize, yBrickSize, zBrickSize;

void *vdata = brick->getDataPtr();

// get brick sizes -- they may different than those requested
brick->getBrickSizes(xBrickOrigin, yBrickOrigin, zBrickOrigin,
xBrickSize, yBrickSize, zBrickSize);
// read the data; OK to use brick data area as a temp buffer
myReadBrickIfl(dataFileName, vdata,
xBrickOrigin, yBrickOrigin, zBrickOrigin,
xBrickSize, yBrickSize, zBrickSize,
xVolumeSize, yVolumeSize, zVolumeSize);

}

Multiple copies of the brick sets with different memory layouts can be read this way, or
voAppearanceActions::volumeMakeTransposed() can be used to create the remaining
copies.

42

Chapter 3: Programming Template

Work with Brick Data

Once you read the brick data from disk into host memory, you might need to:

• Scale it, page 42

• Convert it, page 42

• Replicate it, page 44

• Transpose it, page 44

• Optimize it, page 44

Scaling Voxel Values

To scale the voxel values within a brick from an application-specific dynamic range to a
standard range (such as <0,255> for unsigned char, <0,65535> for unsigned short, and
<0.0,1.0> for floats), you use the following voAppearanceActions method on each brick:

static int dataScaleRange(voTexture3D* aBrick, float& loValue,
float& hiValue)

loValue and hiValue are the minimum and maximum values, respectively, for the original
range. For example, while working with 12-bit unsigned short data, the application
should use values of 0.0 and 4095.0, respectively.

Converting Brick Data

In certain situations the disk data format does not match the external format, for
example, when the data format is INTENSITY on disk and the external (that is,
application-side) format is LUMINANCE_ALPHA. In this situation, each voxel within
the brick needs to be duplicated so the sequence I1I2I3I4... becomes I1I1I2I2I3I3I4I4....
The following voAppearanceActions method converts the brick data to the format
requested in the constructor:

static int dataConvert(voTexture3D* aTexture3D, void* data,
voExternalFormatType diskFormat);

voTexture3D and voExternalFormatType are defined in “Step 2: Define Appearance” on
page 36 .

Step 2: Define Appearance

43

Converting data may require additional buffer space, such as in the case where the
converted voxel data occupies twice as much memory area as the original voxels.
Applications can choose to use an additional buffer to facilitate the conversion, as follows:

// select next brick
voBrick *brick = ...

// IO buffer
unsigned char data[BIG_ENOUGH];
// allocate storage for a brick
(void)voAppearanceActions::dataAlloc(brick);
// read the data into buffer
myReadBrickIfl(fileName, data, minX, minY, minZ, xBrickSize,
 yBrickSize, zBrickSize);
// replicate to the desired externalFormat
voAppearanceActions::dataConvert(brick,data,

UNSIGNED_BYTE);

dataConvert(), however, can perform most conversions using the brick data area for
intermediate storage. In this approach, voxel data is read directly into the data area of the
brick, and is converted in place, for example:

// allocate storage for each brick
unsigned char *data = voAppearanceActions::dataAlloc(brick);
// read the data; OK to use brick data area as a temporary buffer
myReadBrickIfl(fileName, data, minX, minY, minZ, xBrickSize,
 yBrickSize, zBrickSize);
// replicate to the desired externalFormat
voAppearanceActions::dataConvert(brick,data,_DATA_TYPE_UNSIGNED_BYTE);

Using the brick data area for intermediate storage is preferable because, in some cases, it
may minimize the amount of data copying.

44

Chapter 3: Programming Template

Transposing Brick Data

In some instances, the API needs to maintain multiple copies of the same data set with
different memory layouts, for example, to avoid sampling artifacts while using
two-dimensional texturing.The API enables you to create the copies using the following
method:

static int volumeMakeTransposed(voBrickSetCollection* aVolume);

This action is a no-op for three-dimensional volumes using tri-linear interpolation that
were defined with voInterpolationTypeScope::_3D. However, you should always
include this call during initialization to assure platform independence.

Optimize Voxel Data

Voxel data can be optimized for better performance in the following ways:

• Interleave bricks

• Create texture objects

To enable appearance optimization, set the last argument in
voAppearanceActions::volumeOptimize() to one or more of the following values
logically ORd together:

• INTERLEAVE, to interleave bricks

• TEXTURE_OBJECTS, to create texture objects

• BEST, to interleave bricks and create texture objects

For example, for full optimization, use a statement similar to the following:

voAppearanceActions::volumeOptimize(myBrickSetCollection,
BEST_PERFORMANCE);

For more information about interleaving bricks, see “Interleaving Bricks” on page 135.

For more information about texture objects, see “Creating Texture Objects” on page 136.

Step 3: Define Geometry

45

Step 3: Define Geometry

To define a volume, an application needs to define both its appearance and its geometry.
Volumetric geometry is defined by a set of tetrahedra. For example, a cube can be
minimally represented as a set of five tetrahedra as shown inFigure 3-1.

Figure 3-1 Five Tetrahedra Defining a Cube

A volume is generally tessellated into a collection of tetrahedra. Volumizer provides a
voIndexedTetraSet object type to represent such collections. The vertex coordinates of
the tetrahedra are indexed because the same set of coordinates can be shared by multiple
tetrahedra. Rather than record the same point for multiple tetrahedra, index pointers for
each of the tetrahedra point to one set of vertex coordinates, as shown in Figure 3-2.

46

Chapter 3: Programming Template

Figure 3-2 Indexed Vertices

For example, consider a solid sphere represented by 100 tetrahedra, all of which share a
vertex in the center of the sphere. Instead of having 100 sets of the same coordinates, one
index from each tetrahedra can point at one vertex coordinate substantially reducing
memory requirements for storing vertex coordinates.

Vertices

Indices

Vertex
coordinates

Step 3: Define Geometry

47

Each group of four indices associated with voIndexedTetraSet form a single tetrahedron.
For example, in the following array, each row represents a tetrahedron; there are five
tetrahedra in the array in total defined by 20 indices:

static int cubeIndices[] =
 {
 0, 2, 5, 7,
 3, 2, 0, 7,
 1, 2, 5, 0,
 2, 7, 6, 5,
 5, 4, 0, 7,
 };

These indices point into the vertex data array. The array of vertex coordinates might look
like the following:

float cubeVertices[] = {

0, 0, 0,
xSize, 0, 0,
xSize, ySize, 0,

0, ySize, 0,
0, 0, zSize,

xSize, 0, zSize,
xSize, ySize, zSize,

0, ySize, zSize
};

One can create an instance of volumetric geometry describing a minimal tessellation of a
cube using the following call:

voIndexedTetraSet *aTetraSet = new
 voIndexedTetraSet(cubeVertices, 8, 3, cubeIndices, 20);

Allocating Storage for Transient Geometry

To display a volume, the tetrahedra that make up the volume are polygonized into a set
of polygons, called faces, by slicing them with a family of sampling surfaces, for example,
planar surfaces parallel to the viewport. Each face is a textured slice of the volume
clipped to brick and volume boundaries. To prepare for the results of polygonization,
you need to create a set of faces equal to the number of bricks times the number of faces
in each brick.

48

Chapter 3: Programming Template

When a volume is polygonized, it is sliced into faces. Each face is a textured slice of the
volume clipped to brick and volume boundaries. To handle the faces, use voVertexData
and voIndexedFaceSet.

voVertexData is an array of records that holds per-vertex information for a list of
vertices, defined as follows:

voVertexData(int _countMax, int _valuesPerVertex, float* data=NULL)

Each record describes a set of properties of a vertex, such as vertex coordinates, colors,
normals, texture coordinates, and optional user-defined data.

_countMax is the number of vertices.

_valuesPerVertex indicates how many floats describe a vertex.

The number of properties per vertex is application dependent. The information may
include vertex coordinates, colors, textures, normals, and user-defined per-vertex scalar
or vector properties. All the properties are resampled and clipped during the
polygonization process. Vertex coordinates (three floats) are required; optional data
include colors, texture coordinates, and arbitrary user-supplied data. By convention, the
order of per-vertex data is:

1. User

2. Texture coordinates

3. Colors

4. Vertex coordinates

The texture coordinates do not have semantics associated with them directly. By
convention, however, the texture coordinates are specified in voxels; for example, in a
2563 volume the last vertex has coordinates [255, 255, 255].

The allocated storage is guaranteed to be contiguous in memory. Optionally, the
application can pass a pre-allocated array of floating point values to be used by reference,
that is, no copy of data is made. Keep in mind, however, that voVertexData’s destructor
deletes the data storage only if voVertexData’s constructor allocated it. Therefore, if an
application passes a pre-allocated array to a constructor, it is the application’s
responsibility to delete this storage.

For more information about voVertexData, see “voVertexData” on page 102.

Step 3: Define Geometry

49

Each polygon resulting from polygonization is called a face. Polygonization creates a set
of parallel faces, which are generally coplanar polygons. voIndexedFaceSet specifies a
collection of indexed polygons, defined as follows:

voIndexedFaceSet (int _countMaxV, int _valuesPerVertex,
int _countMaxI);

voIndexedFaceSet (voVertexData* _vertexData, int _countMaxI)

_countMaxV is the number of vertices in the face set.

_valuesPerVertex indicates how many floats describe a vertex.

_countMaxI is the number of indices in the face set.

_vertexData is a pointer to a data structure that holds per-vertex information for a list of
vertices.

Each polygon in the face set is described by a group of indices. The first index within a
group specifies the number of the vertices in the polygon; the following indices point to
individual vertex records.

For more information about voIndexedFaceSet, see “voIndexedFaceSet” on page 106.

To iterate through a voIndexedFaceSet, use voIndexedFaceSetIterator, as described in
“voIndexedSetIterator” on page 105.

50

Chapter 3: Programming Template

Step 4: Drawing Volumes

A volumetric shape is drawn in three phases.

1. The geometry representing the shape is polygonized by sampling it with a family of
surfaces.

2. The resulting polygons are sorted by state and depth.

3. The polygons are composited from back-to-front (or front-to-back) into the frame
buffer.

The following sections describe these steps in greater detail.

Polygonizing Volumes

To render a volumetric shape, the set of tetrahedra representing the volume’s geometry
needs to be polygonized. This is accomplished by “slicing” the volume along a family of
sampling surfaces. In the simplest case, the sampling surfaces form a set of planes
parallel to the viewport. Each such plane is intersected with each tetrahedron resulting
in a single polygon (a triangle or a a quadrangle). This polygon needs to be clipped to the
brick boundaries. The number of polygons produced is equal to or less than the number
of bricks. Each of the resulting polygons is at most a 10-gon (clipping an n-gon to a box
produces at most an (n+6)-gon). This whole procedure is accomplished with help of
polygonize().

int polygonize(
voIndexedTetraSet *aTetraSet,
voBrickSet *aBrickSet,
GLdouble modelMatrix[16],
GLdouble projMatrix[16],
voSamplingMode samplingMode,
voSamplingSpace samplingSpace,
int &samplesNumber,
float samplingPeriod[3],
voIndexedFaceSet ***aIndexedFaceSet);

polygonize() returns a set of polygons. There is one polygon set for each sampling
surface (i.e., depth) and per each brick. Therefore, there are samplesNumber *
bricksNumber polygons that get generated. An instance of voIndexedFaceSet stores the
polygons resulting from the polygonization process:

voIndexedfaceSet *faces[brickNumber][sampleNumber]

Step 4: Drawing Volumes

51

voGeometryActions::polygonize() performs the following tasks:

1. Slices the tetrasets into sets of planes parallel to the viewport, as shown in
Figure 3-3.

Figure 3-3 voFaceSets

2. Clips each plane of the tetraset to brick boundaries.

The voFaceSets in Figure 3-3 are shown as belonging to two bricks stacked
vertically. Faces are colored differently depending on which brick they belong to.

The following sections discuss each of the arguments of polygonize().

aTetraSet and aBrickSet

aTetraSet describes the set of tetras to be polygonized. aBrickSet provides the coordinates
of the bricks for clipping.

modelMatrix and projMatrix

modelMatrix and projMatrix describe the current position and orientation of the volume
and the viewing parameters. They help determine the orientation of the sampling
surfaces. They can be obtained from the following OpenGL state:

GLdouble modelMatrix[16];
GLdouble projMatrix[16];
glGetDoublev(GL_MODELVIEW_MATRIX, modelMatrix);
glGetDoublev(GL_PROJECTION_MATRIX, projMatrix);

52

Chapter 3: Programming Template

samplingMode

samplingMode determines what type of sampling surface family to use. The following are
valid values:

enum voSamplingMode{
DEFAULT,
VIEWPORT_ALIGNED,
AXIS_ALIGNED,
SPHERICAL,

};

DEFAULT allows the API to pick a family that is optimized for performance.

Figure 3-4 shows the graphical implication of these values.

Figure 3-4 Sampling Surface

VIEWPORT_ALIGNED selects planes parallel to the viewport. This is the optimal
sampling strategy in terms of rendering quality on systems which support
three-dimensional texture mapping (it requires properly sampled and filtered oblique
slices through the volume). On systems that do not support three-dimensional texture
mapping this mode may not be supported or may be slow.

Viewport Aligned Primary Object Axis Relative to Eye

Sampling Surface

Eye Point

Step 4: Drawing Volumes

53

AXIS_ALIGNED samples volumes along planes that are aligned with the primary axes
(X,Y,Z) of the voxel cube. Three copies of the volume (each sliced in one of the primary
directions) may be required. This type of sampling allows machines that do not support
three-dimensional texture mapping to render volumes. In this mode, the axis that is most
parallel to the line of sight is selected.

It is possible to request this mode on a machine that does support three-dimensional
texture mapping to improve performance: the polygonize action does not have to be
invoked nearly as often as for in AXIS_ALIGNED mode and the texture data is accessed
in a more predictable, cache-friendly fashion. There is no quality degradation in this case,
as one can still request tri-linear interpolation (providing that three-dimensional textures
are perspectively corrected).

SPHERICAL (not currently supported) allows for sampling of the data set with a family
of concentric spherical shells centered at the camera position. This simulates more
accurately ray casting in wide-angle perspective camera, for example, during
fly-throughs. This mode is not currently implemented in Volumizer. Applications may
choose to implement their own if need arises.

In Figure 3-5, a volume is viewed from one of its corners. The volume is polygonized
with sampling planes parallel to the viewport (left) and the primary axes (right). The
volume consists of two bricks coded in green and red.

Figure 3-5 A Volume Polygonized Using VIEWPORT_ALIGNED and AXIS_ALIGNED
Sampling

54

Chapter 3: Programming Template

samplingSpace

During the polygonization process samplesNumber (e.g., 256) different sampling surfaces
will be used to sample the volume. By default, they are evenly distributed over the whole
sampling space. samplingSpace determines what “sampling space” is and how to
compute the bounds (e.g., the locations of the first and last surface). Here are the
allowable values:

enum voSamplingSpace {
DEFAULT,
VIEW_VOLUME,
OBJECT,
PRIMITIVE,

};

Figure 3-6 shows the graphical implication of these values.

Figure 3-6 Sampling Spaces

VIEW_VOLUME divides the view frustum into samplesNumber evenly distributed
samples. For example, in the VIEWPORT_ALIGNED sampling mode, the first plane
coincides with the ZFar clipping plane, and the last with ZNear. The disadvantage of this
technique is that typically some of the sampling surfaces never intersect the object being
sampled. Similarly, translating the object though the frustum results in subtle sampling
artifacts. On the other hand, it produces a uniform, static sampling grid which makes
merging multiple volumes and overlapping transparent geometry somewhat easier.

Over View Volume Over Object

Axis AlignedViewport Aligned

Step 4: Drawing Volumes

55

OBJECT divides the bounding box of the volume, rather than the whole viewing
frustum, into samplesNumber of evenly distributed samples. Therefore, this option adjusts
to the position and orientation of the volume to assure optimal sampling rate.

Figure 3-7 Increasing Sampling Rate

samplesNumber

samplesNumber has overloaded meaning. If samplingPeriod is NULL, samplesNumber
determines how many sampling surfaces to use during the polygonization process. If
samplingPeriod is not NULL, samplesNumber determines the upper bound of the number of
sampling surfaces. Regardless of the value of samplingPeriod, no more than
samplesNumber of sampling planes are generated. This functionality can guard against
buffer overflows.

samplesNumber should be set in accordance with the Nyquist sampling limit. The higher
the sampling rate, the higher the quality (to a point), but the slower the performance.

56

Chapter 3: Programming Template

samplingPeriod

If samplingPeriod is NULL, it is ignored. Otherwise, it is used to change the number of
sampling surfaces depending on the position, orientation of the surfaces, and viewing
parameters.

For example, requesting samplingPeriod of (1.0, 1.0, 1.0) under
voSamplingSpaceScope::OBJECT sampling results in SIZE samples when the volume
is head on, and sqrt(3) × SIZE when a view of a cube SIZE on the size along the major
diagonal is requested. Requesting a samplingPeriod of 0.5 assures that the Nyquist
criterion is satisfied in that direction.

The number of samples computed is always clamped to the samplesNumber parameter to
avoid unexpected overflows. In either case, samplesNumber is modified to reflect the actual
number of slicing planes used.

State Sorting

Once the volume is polygonized it needs to drawn. Because volumes are generally
semi-transparent, all processing must take place in depth-sorted order. In the case of a
multi-brick volume, the bricks are processed one at a time:

1. Each brick is selected.

2. The selected brick is loaded into the texture cache.

3. The polygonization faces that fall within the brick are drawn.

4. The next brick is selected for processing.

To assure proper results, the bricks need to be sorted from back-to-front (or
front-to-back). This is done to minimize the graphics API state changes. Use the
following method for state sorting:

voSortAction aSortAction(
aVolume->getCurrentBrickSet(), modelMatrix, projMatrix);

The bricks can then be accessed in depth-sorted order, as follows:

voBrickSetCollection *aVolume;
int brickSortedNo = aSortAction[brickNo];
voBrick *aBrick aVolume->getCurrentBrickSet()->getBrick(brickSortedNo);

This code returns brick number, brickNo, in depth-sorted order.

Step 4: Drawing Volumes

57

Drawing Polygonized Volume

Once the volume is polygonized, and its bricks are sorted by depth, the application needs
to draw the resulting polygons for each brick in order. Before that happens, you need to
establish a graphics state by doing the following:

1. Enable texture mapping.

2. Enable the OpenGL texgen feature, if the application did not specify the per-vertex
texture coordinates explicitly.

3. Set up a suitable blending function.

To enable texture mapping, the applications can use
voAppearanceActions::textureEnable(), where the argument, interpolationType, is one of
the following:

enum voInterpolationType{
DEFAULT = -1,
_2D,
_3D

};

If the application did not explicitly specify per-vertex texture coordinates, a one-to-one
mapping from vertex coordinates to voxel coordinates is assumed. In this case, it is
convenient to use texgen functionality of OpenGL to compute the texture coordinates
from the vertex coordinates. To enable this feature use

if (!hasTextureComponent(interleavedArrayFormat))
voAppearanceActions::texgenEnable().

To define the blending function, use OpenGL directly before any drawing happens:

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

58

Chapter 3: Programming Template

Once the graphics state was set up all the transient geometry generated by the
polygonize() can be drawn:

// Iterate over all bricks.
 for (brickNo = 0; brickNo < BrickCount; brickNo++) {
 int brickSortedNo = aSortAction[brickNo];
 voBrick *aBrick =

aVolume->getCurrentBrickSet()->getBrick(brickSortedNo);

 // Update texgen equation for the current brick.
 if (!hasTextureComponent(interleavedArrayFormat))
 voAppearanceActions::texgenSetEquation(aBrick);

 // load the texture from host to texture memory
 voAppearanceActions::textureBind(aBrick);

 // iterate over all sampling planes
 for (int binNo = 0; binNo < samplesNumber ; binNo++) {
 voGeometryActions::draw(
 aPolygonSetArray[brickSortedNo][binNo],
 interleavedArrayFormat);
 }

}

Step 5: Using Lookup Tables

59

Step 5: Using Lookup Tables

Lookup table values control the opacity and colors of volumes. For example, you might
choose to vary the opacity of skin such that when it becomes transparent, you can see
through the skin to muscular or skeletal systems. Or you might choose to color parts of
a volume differently, for example, you might enable the user to color a tumor differently
from its surroundings.

voTextureLookup

voLookupTable is an abstract class that is used as a base class for both pre- and
post-interpolation lookups. voLookupTable() constructs a lookup table in which the
external and internal values of the table are defined in the argument of the method, as
follows:

voLookupTable (GLenum _internalFormat, int _width,
GLenum _externalFormat, GLenum _dataType, void* _data=NULL);

The arguments are defined in “Step 2: Define Appearance” on page 36.

Table Formats

The internal table format can contain either of the following values:

• Luminance and alpha: LUMINANCE8_ALPHA8_EXT

• RGBA: RGBA8_EXT

Lookup tables can be enabled and disabled using voTextureLookup::enable() or
voTextureLookup::disable(), respectively.

60

Chapter 3: Programming Template

Pre-Interpolation Lookup

voTextureLookupPre() performs a pre-interpolation lookup, which occurs in the image
pipeline as the texture is loaded into the texture memory. Typically this class implements
functionality provided in hardware with GL_COLOR_TABLE_SGI or any other tables
along the imaging pipeline. The constructor is defined as follows:

voLookupTablePre(GLenum _internalFormat, int _width,
GLenum _externalFormat, GLenum _dataType, void* _data);

The arguments are defined in “Step 2: Define Appearance” on page 36.

For changes caused by the lookup table to take effect, pre-interpolation lookups require
reloading of the entire volume, even if it is already in texture memory. For this reason,
pre-interpolation lookups are generally slower than post-interpolation lookups.

Pre-interpolations lookups are used to replace default functionality.

Post-Interpolation Lookup

voTextureLookupPost() performs a post-interpolation lookup, which occurs during the
rasterization phase when the image is on its way from the texture cache to the frame
buffer. Typically this class implements functionality provided in hardware with
GL_TEXTURE_COLOR_TABLE_SGI. The constructor is defined as follows:

voLookupTablePost(GLenum _internalFormat, int _width,
GLenum _externalFormat, GLenum _dataType, void* _data);

The arguments are defined in “Step 2: Define Appearance” on page 36.

Volumes do not need to be reloaded for post-interpolation changes to take effect. For this
reason, post-interpolation lookups are generally faster than pre-interpolation lookups.

Post -interpolations lookups are used to alter default functionality.

Step 5: Using Lookup Tables

61

Choosing Between Pre- and Post-Interpolation

The results of pre- and post-interpolation lookups are usually different. Make sure to
choose the one appropriate to your intent.

For example, in post-interpolation lookup, two values, 100 and 200, are linearly
interpolated and the resulting values (spanning the range 100-200) are looked up.
Alternatively, in pre-interpolation lookup, the two values, 100 and 200, are looked up
first, and the looked-up values are interpolated. If the values in a lookup table are linear,
the results of pre- and post-interpolation lookups are identical; with a non-linear table,
however, the results of pre- and post-interpolation differ.

Some platforms may impose restrictions on the use of post-interpolation lookups. For
example, it is not possible to do a full RGBA post-interpolation lookup on Indigo2 Impact
where the table length is limited to 256 entries.

Lookup Example

Example 3-1 shows an example of a table lookup use.

Example 3-1 Lookup Example

float lookupEntries[2*256];
voTextureLookupPost *aLookupTable = new voTextureLookupPost(

LUMINANCE8_ALPHA8_EXT,
256,
LUMINANCE_ALPHA,
FLOAT,
lookupEntries);

for(int j1=0;j1<256;j1++)
lookupEntries[2*j1] = lookupEntries[2*j1+1] = 0.5*(float)j1/256.0;

aLookupTable->load();
aLookupTable->enable();

Note: If you use a linear ramp for table lookups, you could replace the for() loop with
the following method:

aLookupTable->set(voTextureLookup::LINEAR,195,50);

This construct also allows certain types of optimizations to be performed.

62

Chapter 3: Programming Template

Selecting Lookup Table Types and Formats

The Volumizer API provides a routine, getBestParameters(), that selects a suitable table
type, and internal and external table formats given the following parameters:

• Volumetric shape

• Required rendering mode (MONOCHROME or COLOR)

• Requested table length

Example 3-2 provides a sample implementation of getBestParameters().

Example 3-2 Selecting Lookup Table Types and Formats

voLookupTableType lookupType = POST_INTERPOLATION; // preferred type
voInternalFormatType internalFormat;
voExternalFormatType externalFormat;

voLookupTable::getBestParameters(aVolume, renderingMode, lookupLength,
 lookupType, internalFormat, externalFormat);

if (lookupType == PRE_INTERPOLATION)
aLookupTable = new voLookupTablePre(

internalFormat,
lookupLength,
externalFormat,
_DATA_TYPE_FLOAT,
lookupEntries);

 else
aLookupTable = new voLookupTablePost(

internalFormat,
lookupLength,
externalFormat,
_DATA_TYPE_FLOAT,
lookupEntries);

Step 6: Handling Errors

63

Step 6: Handling Errors

The voError class handles errors and prints debugging information. voError can provide
simple error checking and call error handling routines if used after each API call.

After each API call the application can test for any new error conditions with a call to
getErrorNumber() and get the description of any such errors with a call to
getErrorString(). For example, to test for errors after polygonizing a volume, your code
segment would look similar to the following:

voGeometryActions::polygonize(...);

if(voError::getErrorNumber() != voError::NO_ERROR)
fprintf(stderr,”voError %s\n”,voError::getErrorString());

The error conditions that can arise are listed below:

enum voErrorType{
NO_ERROR ,
BAD_VALUE,
BAD_ENUM,
OUT_OF_MEMORY,
UNSUPPORTED

};

Calls to getErrorNumber() and getErrorString() return the most recently set error code
number and string, respectively, and then reset the current error number and string to
NO_ERROR and NULL, respectively.

Setting Up Error Handlers

An alternative way of handing API errors is to set up an error handler with a call to
setErrorHandler(), which allows the application to intercept all the errors and act on
them immediately, as shown in the following code fragment:

voGeometryActions::polygonize(...);

if(voError::getErrorNumber() != voError::NO_ERROR)
fprintf(stderr,"voError %s\n",voError::getErrorString());

voGeometryActions::draw(...);

if(voError::getErrorNumber() != voError::NO_ERROR)
fprintf(stderr,"voError %s\n",voError::getErrorString());

64

Chapter 3: Programming Template

This fragment has a similar effect to the following fragment:

void myExceptionHandler(void)
 {
 // inform the user AND reset the error flags and messages
 fprintf(stderr,"OpenGL Volumizer error %d: %s\n",
 voError::getErrorNumber(),voError::getErrorString());

 // take other actions e.g., reallocate storage
 ...
 }

 ...
 voError::setErrorHandler(myExceptionHandler);

 voGeometryActions::polygonize(...);
 voGeometryActions::draw(...);
 ...

The solution based on the error handler always reacts to the first error condition (even if
it occurred internally within the API), it is less error prone, and less burdensome, which
results in cleaner code. A pointer to the previously set handler (or NULL, if none was set)
is returned to facilitate building of stacks of error handling functions.

Setting Error Conditions

Applications can set their own error number and error string using setErrorNumber()
and setErrorString(), respectively.

Debugging Information

Volumizer prints out some debugging information.

setDebugLevel() enables you to determine the minimum level of debugging information
you want to print. If it is set to 0, no debugging information is printed.

setDebugStream() sets the output for the debug information.

Step 7: Clean Up

65

Step 7: Clean Up

Applications are required to clean up upon completion. This involves freeing all the
objects used to describe the volumetric shape (tetra sets, brick set collections), but also all
the voxel memory, transient geometry, and texture objects:

// free storage for TRANSIENT geometry
 for (int j1 = 0; j1 < maxBrickCount; j1++) {
 for (int j2 = 0; j2 < maxSamplesNumber + 1; j2++)
 delete aPolygonSetArray[j1][j2];
 delete aPolygonSetArray[j1];
 }
 delete[]aPolygonSetArray;
 delete allVertexData;

 // free all voxel data storage
 voBrickSetCollectionIterator collectionIter(aVolume);
 for (voBrickSet * brickSet; brickSet = collectionIter();) {
 // iterate over all bricks within the brickCollection
 voBrickSetIterator brickSetIter(brickSet);
 for (voBrick * brick; brick = brickSetIter();)
 voAppearanceActions::dataFree(brick);
 }

 // delete the volumetric object itself
 delete aVolume;

 delete aTetraSet;

67

Chapter 4

4. Sample OpenGL Volumizer Application

This chapter presents a sample OpenGL Volumizer application. It employs a simple
trackball user interface and displays a textured cube.

The sample application is divided into two parts:

• “glwSimpleVolume.cxx” on page 68.

• “glwSimpleMain.cxx” on page 83

This chapter explains in detail the steps you take to create an OpenGL Volumizer
application.

68

Chapter 4: Sample OpenGL Volumizer Application

glwSimpleVolume.cxx

glwSimpleVolume.cxx sets the geometry and appearance parameters and displays the
shape.

The protgramatic structure of glwSimpleVolume.cxx is characteristic of OpenGL
Volumizer applications:

1. Inclusions and declarations

2. Set the appearance parameters

3. Allocate memory for geometry

4. Allocate memory for bricks

5. Read in the brick data

6. Create the geometry

7. Set drawing parameters

8. Polygonize the shape

9. Draw the shape

10. Clean up

glwSimpleVolume.cxx

69

Inclusions and Declarations

OpenGL Volumizer and standard C++
includes.

#include <stdio.h>

#include <stdlib.h>

#include <vo/GeometryActions.h>

#include <vo/AppearanceActions.h>

Method declaration that returns data
about the geometry’s file.
The reader must provide this.

extern int myGetVolumeSizesIfl(

char *fileName, int &xSize, int &ySize,

int &zSize,

voExternalFormatType & diskDataFormat,

voDataType & dataType);

Method declaration that returns texture
and geometry values.
The reader must provide this.

extern int myReadBrickIfl(

char *fileName, void *data,

int xBrickOrigin, int yBrickOrigin,

int zBrickOrigin,

int xBrickSize, int yBrickSize,

int zBrickSize,

int xVolumeSize, int yVolumeSize,

int zVolumeSize);

Declaration of scaling factor, one value
for each dimension.

extern float modelScale[3];

The number of bricks in the largest copy
of the volume.

int maxBrickCount = 0;

Determines maximum number of
sampling planes.

int maxSamplesNumber = 256;

Value determines that every voxel is
sampled.

float samplingRate = 1.0;

70

Chapter 4: Sample OpenGL Volumizer Application

Vertex format; here only vertex
coordinates are specified, not textures
or colors.

voInterleavedArrayType interleavedArrayFormat =

voInterleavedArrayTypeScope::V3F;

Storage for transient polygons. voVertexData *allVertexData;

voIndexedFaceSet ***aPolygonSetArray;

Set the Appearance Parameters

Method for displaying an error string.
This also resets the error condition
state.

void

my_ExceptionHandler(void)

{

fprintf(stderr,

"OpenGL Volumizer error %d: %s\n",

voError::getErrorNumber(),

voError::getErrorString());

}

Method for handling appearance,
which is a collection of bricksets.

voBrickSetCollection *

my_InitAppearance(int argc, char **argv)

{

The size of the geometry and texture. int xVolumeSize, yVolumeSize, zVolumeSize;

int xBrickSize, yBrickSize, zBrickSize;

Data formats to use externally and
internally.

voExternalFormatType diskDataFormat;

voExternalFormatType externalFormat;

voInternalFormatType internalFormat;

Describes what format the voxels are in. voDataType dataType;

glwSimpleVolume.cxx

71

Specifies whether the texture is
sampled using bilinear or trilinear
interpolation.

voInterpolationType interpolationType =

voInterpolationTypeScope::DEFAULT;

Sets rendering mode to monochrome. voRenderingMode renderingMode =

voRenderingModeScope::MONOCHROME;

 float loValue = -1.0, hiValue = -1.0;

Prompts user if filename of geometry
was not included on the command line.

if (argc < 2) {

fprintf(stderr, “Usage: %s inFileName\n”,argv[0]);

exit(1);

 }

Retrieves the file name of the volume in
the first argument of the command.

char *dataFileName = argv[1];

Get volume sizes and voxel format and
exits.

if (myGetVolumeSizesIfl(dataFileName,

xVolumeSize, yVolumeSize, zVolumeSize,

diskDataFormat, dataType))

exit(1);

Sets the texture size to the geometry
size.

xBrickSize = xVolumeSize;

yBrickSize = yVolumeSize;

zBrickSize = zVolumeSize;

Returns, in the last three arguments, the
optimal size for bricks based on the
current machine’s hardware.

voAppearanceActions::getBestParameters(

interpolationType, renderingMode, dataType,

diskDataFormat, internalFormat, externalFormat,

xBrickSize, yBrickSize, zBrickSize);

72

Chapter 4: Sample OpenGL Volumizer Application

Defines the brick collection. This
method does not read or allocate any
data, it only computes bricks’ origins
and sizes given the volume dimensions.

voBrickSetCollection *aVolume =

new voBrickSetCollection(

xVolumeSize, yVolumeSize, zVolumeSize,

xBrickSize, yBrickSize, zBrickSize,

voPartialBrickTypeScope::TRUNCATE,

1,

internalFormat,

externalFormat,

dataType,

interpolationType);

Handles errors. if (voError::getErrorNumber() !=

voErrorTypeScope::NO_ERROR) {

fprintf(stderr, “%s”, voError::getErrorString());

exit(1);

}

Allocate Memory for Bricks

Uses aVolume as the brick set collection
to iterate through.

voBrickSetCollectionIterator collectionIter(aVolume);

Iterates over all of the brick sets within
the collection of brick sets.

for (voBrickSet * brickSet; brickSet =

collectionIter();) {

Iterates over all of the bricks within
each brick set.

voBrickSetIterator brickSetIter(brickSet);

for (voBrick * brick;brick = brickSetIter();)

Inside the double for loop, this line
allocates memory for all of the bricks in
all of the bricksets.

voAppearanceActions::dataAlloc(brick);

}

glwSimpleVolume.cxx

73

Get the brick set of aVolume and then
iterate over all the bricks in the brick set.
brick is a pointer to a brickset.

aVolume->setCurrentBrickSet(

voPlaneOrientationScope::XY);

voBrickSetIterator

brickSetIter(aVolume->getCurrentBrickSet());

for (voBrick * brick; brick = brickSetIter();) {

int xBrickOrigin, yBrickOrigin, zBrickOrigin;

int xBrickSize, yBrickSize, zBrickSize;

void *vdata = brick->getDataPtr();

Gets brick sizes and locations; the brick
sizes might be different from those
requested.

brick->getBrickSizes(

xBrickOrigin, yBrickOrigin, zBrickOrigin,

xBrickSize, yBrickSize, zBrickSize);

Load the Brick Data

Reads in the brick data from disk. It is
okay to use the brick’s data area as a
temporary buffer.

myReadBrickIfl(dataFileName, vdata,

xBrickOrigin, yBrickOrigin, zBrickOrigin,

xBrickSize, yBrickSize, zBrickSize,

xVolumeSize, yVolumeSize, zVolumeSize);

Replicate to the desired external format voAppearanceActions::dataConvert(

brick, vdata, diskDataFormat);

74

Chapter 4: Sample OpenGL Volumizer Application

Converts geometry to the desired
external format. Scales the voxel values
within a brick from a specified dynamic
range to the following standard ranges:
(<0,255> for ubyte, <0,65535> for
ushort, and <0.0,1.0> for floats).

voAppearanceActions::dataScaleRange(brick,

loValue, hiValue);

}

If the texture is sampled using bilinear
interpolation, transpose the volume.

if (aVolume->getInterpolationType() ==

voInterpolationTypeScope::_2D)

voAppearanceActions::volumeMakeTransposed

(aVolume);

Determines the largest number of
bricks in a brick set, in the brick set
collection. This number is used to
allocate the buffers.

voBrickSetCollectionIterator aCollectionIterator

(aVolume);

voBrickSet *aBrickSet;

 for (int j1 = 0; aBrickSet = aCollectionIterator();

j1++)

Revise the value for maxBrickCount if
the number of bricks in the brickset
exceeds the current value for
maxBrickCount, which was initialized as
256.

if (j1 == 0 || aBrickSet->getBrickCount() >

maxBrickCount)

maxBrickCount = aBrickSet->getBrickCount();

Set the maximum number of sampling
surfaces to twice the largest dimension.

maxSamplesNumber = xVolumeSize;

if (maxSamplesNumber < yVolumeSize)

maxSamplesNumber = yVolumeSize;

if (maxSamplesNumber < zVolumeSize)

maxSamplesNumber = zVolumeSize;

maxSamplesNumber *= 2;

return aVolume;

}

glwSimpleVolume.cxx

75

Create the Containers to Hold the
Faces

Procedure to create a geometry. voIndexedTetraSet *

 my_InitGeometry(

voBrickSetCollection * aVolume)

{

voError::setErrorHandler(my_ExceptionHandler);

int xVolumeSize, yVolumeSize, zVolumeSize;

aVolume->getCurrentBrickSet()->getVolumeSizes(

xVolumeSize, yVolumeSize, zVolumeSize);

Set vertex coordinates. Texgen will be
used to generate tex coords.

static float vtxData[8][3] = {

0, 0, 0,

xVolumeSize, 0, 0,

xVolumeSize, yVolumeSize, 0,

0, yVolumeSize, 0,

0, 0, zVolumeSize,

xVolumeSize, 0, zVolumeSize,

xVolumeSize, yVolumeSize, zVolumeSize,

0, yVolumeSize, zVolumeSize,

};

76

Chapter 4: Sample OpenGL Volumizer Application

Defines the geometry to be drawn.
Each row defines one tetrahedron, five
of which define a cube. Values index
into vtxData[].
Constructs the tetra set.

static int cubeIndices[] =

{

 0, 2, 5, 7,

 3, 2, 0, 7,

 1, 2, 5, 0,

 2, 7, 6, 5,

 5, 4, 0, 7,

};

int tetraCount =

sizeof(cubeIndices) / (VO_TETRA_VERTICES *

sizeof(cubeIndices[0]));

int valuesPerVtx = sizeof(vtxData[0]) / sizeof(float);

Allocates storage for transient
polygons; note that all the polygons
share vertex data area allVertexData[]
to minimize fragmentation
boundFaceCount() determines the
maximum number of indices required
to store a polygon (11).

Sizeof refers to the number of vertices.

voIndexedTetraSet *aTetraSet = new voIndexedTetraSet(

(float *) vtxData,

 8,

 valuesPerVtx,

 cubeIndices,

 20);

glwSimpleVolume.cxx

77

Holds all intermediate PER_VERTEX
information.

allVertexData = new voVertexData(100000,

valuesPerVtx);

aPolygonSetArray = new voIndexedFaceSetPtrPtr

[maxBrickCount];

for (int j1 = 0; j1 < maxBrickCount; j1++) {

aPolygonSetArray[j1] = new

voIndexedFaceSetPtr[maxSamplesNumber + 1];

for (int j2 = 0; j2 < maxSamplesNumber + 1; j2++)

aPolygonSetArray[j1][j2] = new

voIndexedFaceSet(allVertexData,

boundFaceCount(tetraCount));

 }

 return aTetraSet;

}

Set Drawing Parameters

Initializes graphics. void my_InitGfx(voIndexedTetraSet *,

voBrickSetCollection * aVolume)

{

Optimizes based on performance. voAppearanceActions::volumeOptimize(aVolume,

voOptimizeVolumeTypeScope::BEST_PERFORMANCE);

}

Draw the Volume

Defines draw method. void my_DrawVolume(voIndexedTetraSet * aTetraSet,

voBrickSetCollection * aVolume)

{

Chooses wireframe mode. GLboolean wireframe = GL_TRUE;

78

Chapter 4: Sample OpenGL Volumizer Application

Type definitions of the number of bricks
in the geometry and the modelview and
projection matrices.

int brickNo;

GLdouble modelMatrix[16], projMatrix[16];

Returns the modelview matrix, which is
the cumulative product of multiplying
viewing and modeling transformation
matrices.

glGetDoublev(GL_MODELVIEW_MATRIX, modelMatrix);

Returns the projection matrix, which is
the viewing frustum.

glGetDoublev(GL_PROJECTION_MATRIX, projMatrix);

If using 2D textures, select an
appropriate BrickSet from among
XY,XZ,YZ. Note, that individual brick
sets may have differrent dimensions
and thus change certain PER_FRAME
properites, for example, BrickCount.

if (aVolume->getInterpolationType() ==

voInterpolationTypeScope::_2D

aVolume->setCurrentBrickSet(

voGeometryActions::findClosestAxisIndex(

modelMatrix, projMatrix,

voSamplingModeScope::AXIS_ALIGNED));

int BrickCount = aVolume->getCurrentBrickSet()->

getBrickCount();

Disables texture and draws opaque
(embedded) geometry.

voAppearanceActions::textureDisable(

aVolume->getInterpolationType());

Draw tetrahedron wireframes in
yellow.

if (wireframe == GL_TRUE) {

glColor4f(1.0, 1.0, 0.0, 1.0);

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

voGeometryActions::draw(aTetraSet,

interleavedArrayFormat);

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

glwSimpleVolume.cxx

79

Draw brick outlines in blue, but only if
bricks are 3D.

if (aVolume->getInterpolationType() ==

voInterpolationTypeScope::_3D) {

glColor4f(0.0, 0.0, 1.0, 1.0);

for (brickNo=0;brickNo<BrickCount; brickNo++)

voGeometryActions::draw(

aVolume->getCurrentBrickSet()->getBrick(

brickNo));

}

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

}

Polygonize the Shape

Given a aTetraSet, bricks’ dimensions,
and count, sampling mode and rate,
find all slicing polygons and clip them
to brick boundaries.

If aVolume is three-dimensional, make
the face sets viewport aligned;
otherwise make them sampling-axis
aligned.

Specify the number of faces in the face
set, call the face set aPolygonSetArray.

int samplesNumber;

 float samplingPeriod[3] = {

 samplingRate / modelScale[0],

 samplingRate / modelScale[1],

 samplingRate / modelScale[2] };

voGeometryActions::polygonize(

aTetraSet, aVolume->getCurrentBrickSet(),

interleavedArrayFormat,

modelMatrix, projMatrix,

aVolume->getInterpolationType() ==

voInterpolationTypeScope::_3D ?

voSamplingModeScope::VIEWPORT_ALIGNED :

voSamplingModeScope::AXIS_ALIGNED,

voSamplingSpaceScope::OBJECT,samplingPeriod,

maxSamplesNumber,

samplesNumber,aPolygonSetArray);

80

Chapter 4: Sample OpenGL Volumizer Application

If not using texgen(), transform texture
coords explicitly.

if (hasTextureComponent(interleavedArrayFormat))

voAppearanceActions::xfmVox2TexCoords(

aVolume->getCurrentBrickSet(),

samplesNumber,aPolygonSetArray,

interleavedArrayFormat);

Depth sort the bricks.

End of polygonize.

voSortAction aSortAction(

aVolume->getCurrentBrickSet(),

modelMatrix, projMatrix);

Draw the Shape

Enable 2D or 3D texturing depending
on the interpolation type.

voAppearanceActions::textureEnable(

aVolume->getInterpolationType());

If no explicit texture coordinates were
given, enable texgen().

if(!hasTextureComponent(interleavedArrayFormat))

voAppearanceActions::texgenEnable();

Set up drawing mode and color glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

glColor4f(1.0, 1.0, 1.0, 1.0);

glDepthMask(GL_FALSE);

Iterate over all bricks and sort them
back to front.

for (brickNo = 0; brickNo < BrickCount; brickNo++) {

int brickSortedNo = aSortAction[brickNo];

voBrick *aBrick = aVolume->

getCurrentBrickSet()->

getBrick(brickSortedNo);

glwSimpleVolume.cxx

81

Update texgen equation for the current
brick.

if (!hasTextureComponent(

interleavedArrayFormat))

voAppearanceActions::texgenSetEquation(

aBrick);

Load the texture to texture memory
unless it is already there.

voAppearanceActions::textureBind(aBrick);

Iterate over all sampling planes and
draw them.

for (int binNo=0; binNo < samplesNumber; binNo++)

{

voGeometryActions::draw(

aPolygonSetArray[brickSortedNo][binNo],

interleavedArrayFormat);

}

}

Disable the texture and disable the
texture generation.

voAppearanceActions::textureDisable(

aVolume->getInterpolationType());

voAppearanceActions::texgenDisable();

glDepthMask(GL_TRUE);

} // end of procedure my_DrawVolume

Clean Up

Deletes geometry and textures. void my_Cleanup(voIndexedTetraSet *aTetraSet,

voBrickSetCollection *aVolume)

{

82

Chapter 4: Sample OpenGL Volumizer Application

Frees storage for transient geometry. for (int j1 = 0; j1 < maxBrickCount; j1++) {

for (int j2 = 0; j2 < maxSamplesNumber + 1; j2++)

delete aPolygonSetArray[j1][j2];

delete aPolygonSetArray[j1];

}

delete[]aPolygonSetArray;

delete allVertexData;

Frees all voxel data storage. voAppearanceActions::volumeUnoptimize(aVolume);

voBrickSetCollectionIterator

collectionIter(aVolume);

for (voBrickSet * brickSet; brickSet =

collectionIter();) {

Iterate over all bricks within the brick
collection and release the memory used
for the bricks.

voBrickSetIterator brickSetIter(brickSet);

for(voBrick * brick; brick=brickSetIter();)

voAppearanceActions::dataFree(brick);

}

Delete volumetric geometry. delete aVolume;

delete aTetraSet;

} // end of my_Cleanup

glwSimpleMain.cxx

83

glwSimpleMain.cxx

glwSimpleMain.cxx contains a simple, trackball user interface, global declarations, and
the main loop. The structure of the main loop follows the Motif programming model.

The programatic structure of glwSimpleMain.cxx is:

1. Inclusions

2. Global State Declarations

3. GUI Definitions

4. Handling Input From a Trackball

5. Main Routine

84

Chapter 4: Sample OpenGL Volumizer Application

Inclusions

X, OpenGL, and standard C++ includes. #include <X11/X.h>

#include <X11/Intrinsic.h>

#include <X11/keysym.h>

#include <Xm/Xm.h>

#include <GL/gl.h>

#include <GL/GLwMDrawA.h>

#include <iostream.h>

#include <stdio.h>

#include <stdlib.h>

Include statements for Volumizer actions. #include <vo/AppearanceActions.h>

#include <vo/GeometryActions.h>

Global State Declarations

Declare a volume’s geometry. voIndexedTetraSet *aTetraSet;

Declare a volume’s appearance. voBrickSetCollection *aVolume;

The coordinates for the center of the cube,
the dimensions of its sides, and the
scaling factor in three dimensions.

float modelCentroid[3] = { 64.0, 64.0, 32.0};

float modelSize[3] = {128.0, 128.0, 128.0};

float modelScale[3] = { 1.8, 1.8, 3.0 };

GUI Definitions

glwSimpleMain.cxx

85

Type declarations. float latitude = 0, longitude = 0,

lastLatitude = 0, lastLongitude = 0;

int lastX = 0, lastY = 0, lastButton = Button1;

Widget drawArea;

GLXContext glCtxt;

External symbols for appearance. extern voBrickSetCollection *my_InitAppearance(

int argc, char **argv)

External symbols for geometry. extern voIndexedTetraSet *my_InitGeometry(

voBrickSetCollection *);

External symbols for graphics
intialization. X and Motif functions are
declared as external C functions because
the C++ preprocessor mangles C++
function names.

extern void my_InitGfx(voIndexedTetraSet *,

voBrickSetCollection *);

External symbols for draw action. extern void my_DrawVolume(voIndexedTetraSet *,

voBrickSetCollection *);

External symbols for deleting geometry
and appearance.

extern void my_Cleanup(voIndexedTetraSet *,

voBrickSetCollection *);

86

Chapter 4: Sample OpenGL Volumizer Application

Intialize internal data structures,
including the visual data structure,
XVisualInfo.

void GinitCB(Widget w, XtPointer , XtPointer)

{

Arg arg;

XVisualInfo *vip;

XtSetArg(arg, GLwNvisualInfo, &vip);

XtGetValues(w, &arg, 1);

glCtxt = glXCreateContext(XtDisplay(w), vip,

NULL, GL_TRUE);

glXMakeCurrent(XtDisplay(w), XtWindow(w), glCtxt);

 my_InitGfx(aTetraSet, aVolume);

}

Draw method begins by clearing the
screen to black.

void Draw()

{

glEnable(GL_DEPTH_TEST);

glClearColor(0.0, 0.0, 0.0, 1.0);

OpenGL methods to clear the buffer then
load it with prescribed rotation, scaling,
and translation values.

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glRotated(-latitude-90, 1.0, 0.0, 0.0);

glRotated(-longitude, 0.0, 0.0, 1.0);

glScalef(modelScale[0], modelScale[1],

modelScale[2]);

 glTranslatef(-modelCentroid[0],

-modelCentroid[1], -modelCentroid[2]);

glwSimpleMain.cxx

87

Swap buffers to display the loaded image. my_Draw(aTetraSet, aVolume);

GLwDrawingAreaSwapBuffers(drawArea);

}

Callback for X Window System “expose”
event.

void ExposeCB(Widget w, XtPointer , XtPointer cal)

{

GLwDrawingAreaCallbackStruct *csp =

(GLwDrawingAreaCallbackStruct *) cal;

Makes glCtxt the graphics context and
attaches it to an X window.

glXMakeCurrent(XtDisplay(w), XtWindow(w),

glCtxt);

Specifies that the current matrix pertains
to the projection view.

glMatrixMode(GL_PROJECTION);

Initializes the current projection matrix so
that it is unaffected by previous matrix
values.

glLoadIdentity();

Specifies the transformation between
normalized-device and window
coordinates.

glViewport(0, 0, csp->width, csp->height);

glOrtho(

-modelSize[0] * 1.2, modelSize[0] * 1.2,

-modelSize[1] * 1.2, modelSize[1] * 1.2,

-modelSize[2] * 2.5, modelSize[2] * 2.5);

Specifies that the current matrix and all
future transformations pertains to the
model view.
Then do the actual draw.

glMatrixMode(GL_MODELVIEW);

Draw();

}

88

Chapter 4: Sample OpenGL Volumizer Application

Handling keyboard input. The Escape
key terminates the application and
deletes the geometry and textures used in
the application.

void KeybdInput(XKeyEvent * keyEvent)

{

KeySym keySym;

char buf[32];

XLookupString(keyEvent, buf, 32, &keySym, NULL);

switch (keySym) {

case XK_Escape:

my_Cleanup(aTetraSet,aVolume);

exit(0);

 }

}

Handles button input for a virtual
trackball:

This code temporarily stores, in
lastButton, lastLatitude and lastLongitude,
which button was pushed and the
location of the trackball cursor when the
button was pushed.

void ButtonInput(XButtonEvent * btnEvent)

{

switch (btnEvent->button) {

case Button1:

lastButton = Button1;

lastLatitude = latitude;

lastLongitude = longitude;

break;

}

lastX = btnEvent->x;

lastY = btnEvent->y;

}

glwSimpleMain.cxx

89

Uses the ButtonInput() data to move the
shape accordingly. The left button rotates
the shape. The movement is scaled by
one-tenth.

void MotionInput(XMotionEvent * motionEvent)

{

switch (lastButton) {

case Button1:

latitude = (float) (lastLatitude + (lastY

- motionEvent->y) / 10.0);

longitude = (float) (lastLongitude + (lastX

- motionEvent->x) / 10.0);

 break;

}

}

90

Chapter 4: Sample OpenGL Volumizer Application

Callback function for trackball. Handles
trackball button press, trackball motion,
trackball button release, keyboard input,
and notification.

void InputCB(Widget w, XtPointer, XtPointer callData)

{

 XmDrawingAreaCallbackStruct *dacs =

(XmDrawingAreaCallbackStruct *) callData;

glXMakeCurrent(XtDisplay(w), XtWindow(w),glCtxt);

switch (dacs->event->type) {

case ButtonPress:

ButtonInput((XButtonEvent *) dacs->event);

break;

case MotionNotify:

MotionInput((XMotionEvent *) dacs->event);

break;

case KeyRelease:

KeybdInput((XKeyEvent *) dacs->event);

return;

case ButtonRelease:

return;

default:

break;

Draw();

}

Main Routine

glwSimpleMain.cxx

91

Handles command line arguments and
prints out basic information: version
number and mouse button functionality.

void main(int argc, char **argv)

{

fprintf(stderr,”%s\n”,voVersion());

fprintf(stderr,”\nLeft mouse button to rotate.\n”);

Creates a geometry and an appearance. aVolume = my_InitAppearance(argc, argv);

aTetraSet = my_InitGeometry(aVolume);

Type and value declarations. Widget toplevel;

XtAppContext appCtxt;

XVisualInfo *visual;

Cardinal n1 = 0;

Arg args[4];

Elements of the attribute group set the
graphics state.

GLint attribs[] =

 {GLX_RGBA, GLX_DOUBLEBUFFER, GLX_RED_SIZE, 1,

 GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1,

GLX_DEPTH_SIZE, 1, None};

Sets up display. toplevel = XtAppInitialize(&appCtxt,

“Lean”, NULL, 0, &argc, argv, NULL, NULL, 0);

XtSetArg(args[n1], XmNwidth, 400); n1++;

XtSetArg(args[n1], XmNheight, 400); n1++;

XtSetArg(args[n1], GLwNattribList, attribs); n1++;

drawArea = GLwCreateMDrawingArea(toplevel, “pb”,

args, n1);

92

Chapter 4: Sample OpenGL Volumizer Application

visual is a pointer to an XVisualInfo
structure, which uses the display, toplevel,
and the graphics state, attribs. An error
message is printed if the pointer is NULL.

visual = glXChooseVisual(XtDisplay(toplevel),

0, attribs);

if (!visual)

 fprintf(stderr, “Bad visual\n”);

Callback registration. Callbacks take
action upon user input.

XtAddCallback(drawArea, GLwNinputCallback,

InputCB, NULL);

XtAddCallback(drawArea, GLwNginitCallback,

GinitCB, NULL);

XtAddCallback(drawArea, GLwNexposeCallback,

ExposeCB, NULL);

Create a hierarchy of shapes to group
shapes into a logical collection.

XtManageChild(drawArea);

Creates an X window on the screen in
which the shapes are displayed.

XtRealizeWidget(toplevel);

Enter event loop to handle user input. XtAppMainLoop(appCtxt);

}

93

Chapter 5

5. Volumizer API at a Glance

In chapters one through four, you learned about a subsection of the Volumizer API. This
chapter provides a high-level overview of the entire API.

Part Two of this book, “Advanced Topics,” describes in greater depth the advanced
Volumizer concepts, classes, and methods not already covered in Part One.

Sections in this chapter include:

• “Functional Categories” on page 94

• “Class Hierarchy” on page 94

• “Brief Descriptions of the Volumizer Classes” on page 96

94

Chapter 5: Volumizer API at a Glance

Functional Categories

The classes in the Volumizer API fall into one of the following functional categories:

• Classes that define a geometry, such as voVertexData, voFaceSet, and
voIndexedFaceSet.

• Classes that perform operations on volumetric geometry, such as
voGeometryActions.

• Classes that define appearance, such as voTexture3D, voBrick, and voBrickSet.

• Classes that perform operations on an appearance, such as voAppearanceActions.

• All other classes.

Class Hierarchy

Figure 5-1 shows the hierarchy of Volumizer classes. Child classes are shown to the right
of their parent class.

Because the hierarchy is shallow, the classes have been grouped according to function.

Class Hierarchy

95

Figure 5-1 Volumizer Class Hierarchy Divided By Function

voAppearanceActions

voBrickSet
voBrickSetCollection
voBrickSetCollectionIterator
voBrickSetIterator

voGeometryActions

voIndexedSet
 voIndexedFaceSet
 voIndexedTetraSet

 voutIndexedHexaSet
 voutIndexedHexaStrip

voIndexedSetIterator
 voIndexedFaceSetIterator

voIndices

voOverlapTypeClass

voPlaneOrientationClass

voSamplingSurfaceSet
 voSamplingPlaneSet

voVertexData

voInterpolationTypeClass

voOptimizeVolumeTypeClass

voPartialBrickTypeClass

voTexture3D
 voBrick

voCache
 voDrawActionCache

voErrorClass

voLookupTable
 voLookupTablePost
 voLookupTablePre

voRenderingModeClass

voSortAction

voutPerfMeter

voutTimer

Appearance-Related Classes

Geometry-Related Classes

voutGeometry
 voutCone
 voutCylinder
 voutGeoSphere
 voutSphere

voutIndexedSet
 voutIndexedHexaSet
 voutIndexedHexaStrip
 voutIndexedPrismBaseStrip
 voutIndexedPrismEdgeStrip
 voutIndexedPrismFaceStrip
 voutIndexedPrismSet
 voutIndexedPyramidSet
 voutIndexedPyramidStrip
 voutIndexedTetraEdgeStrip
 voutIndexedTetraFaceStrip

Geometric Utilities

Other Classes

96

Chapter 5: Volumizer API at a Glance

Brief Descriptions of the Volumizer Classes

This section provides a very brief description of each class in the Volumizer API. The
classes are divided into the same sections shown in Figure 5-1.

Appearance-Related Classes

voAppearanceActions Implements operations on volume appearance, for
example, textures.

voBrick An anchored voTexture3D; that is, a texture that has
position, in addition to sizes associated with it.

voBrickSet A set of one or more bricks that define a large array of
voxels.

voBrickSetCollection Implements a collection of voBrickSets, that is, a set of
sets of bricks.

voBrickSetCollectionIterator Iterator for stepping through the collection of
voBrickSets.

voBrickSetIterator Iterator for stepping through the set of bricks.

voInterpolationTypeScope An enum that specifies two- or three-dimensional
interpolation.

voOptimizeVolumeTypeScope An enum that specifies types of optimizations.

voPartialBrickTypeScope An enum that specifies how to handle partially filled
bricks.

voTexture3D Atomic chunk of texture (3D or 2D) that maps directly
on the hardware-supported textures of the underlying
graphics API implementation, for example,
GL_TEXTURE_3D_EXT and GL_TEXTURE_2D in
OpenGL.

Brief Descriptions of the Volumizer Classes

97

Geometry-Related Classes

voGeometryActions Implements operations on volume geometry, for
example, TetraSets, and transient geometry generated in
the polygonization process.

voIndexedFaceSet An indexed geometry set describing a collection of
polygons.

voIndexedFaceSetIterator An interator for the voIndexedFaceSet class.

voIndexedSet Abstract base class for indexed geometry sets.

voIndexedSetIterator An abstract base class for geometry set iterators.

voIndexedTetraSet An indexed geometry set describing a collection of
tetrahedra.

voIndices Data structure maintaining generic index information.

voPlaneOrientationScope Specifies the alignment of the volume.

voSamplingPlaneSet An class describing a set of parallel planes.

voSamplingSurfaceSet An abstract class describing a set of sampling surfaces,
for example., planes and spheres.

voVertexData Data structure maintaining per-vertex information.

voutCone Implements a cone abstract geometry class

voutCylinder Implements a cylinder abstract geometry class

voutGeoSphere Implements a sphere abstract geometry class tessellated
via sub division

voutGeometry Base class for all utility geometry classes

voutIndexedHexaSet Implements a strip of hexahedra (boxes).

voutIndexedHexaStrip Implements a strip of hexahedra (boxes).

voutIndexedPrismBaseStrip Implements a strip of prisms, each connected to each
other by a top/bottom face.

voutIndexedPrismEdgeStrip Implements a strip of prisms, each connected to each
other at a single edge.

98

Chapter 5: Volumizer API at a Glance

voutIndexedPrismFaceStrip Implements a strip of prisms, each connected to each
other by a side face.

voutIndexedPrismSet Implements a set of prisms

voutIndexedPyramidSet Implements a set of pyramids.

voutIndexedPyramidStrip Implements a strip of pyramids.

voutIndexedSet Abstract base class for indexed utility geometry sets.

voutIndexedTetraEdgeStrip Implements a strip of tetrahedra, connected at a single
edge.

voutIndexedTetraFaceStrip Implements a strip of tetrahedra, connected at a single
point.

voutSphere Implements a sphere abstract geometry class

Other Classes

voCache A structure for preserving transient data (for example,
geometry resulting from polygonization) from frame to
frame.

voDrawActionCache A class for maintaining transient data (primarily
geometry) from frame to frame.

voError An error handling class.

voLookupTable An abstract class describing lookup tables.

voLookupTablePost Post-interpolation lookup table.

voLookupTablePre Pre-interpolation lookup table.

voRenderingModeScope Determines monochrome or color rendering

voSortAction Implements sorting of a brick set.

voutPerfMeter An API-specific set of timers used to time the phases of
the volume rendering process. (utility)

voutTimer Generic cumulative timer. (utility)

PART TWO

Advanced Volumizer Topics II

Chapters 6 through 8 discuss advanced concepts and the Volumizer API not
discussed in Part One.

Chapter 6, “Volumetric Geometry,” describes volumetric geometry.

Chapter 7, “Volumetric Appearance,” describes three-dimensional textures.

Chapter 8, “Customized Volume Drawing,” describes how to create a
customized draw method.

101

Chapter 6

6. Volumetric Geometry

This chapter covers advanced topics in volumetric geometry. For an understanding of
basic volumetric terms and concepts, see “” on page 9. For an understanding of the API
associated with these basic concepts, see “Read Brick Data from Disk” on page 40.

This chapter discusses the following advanced, volumetric topics:

• “Data Structures” on page 102

• “Clipping Planes” on page 111

• “Arbitrarily Shaped Volumes of Interest” on page 111

• “Higher-Level Geometric Primitives and Solids” on page 113

• “Mixing Volumes and Surfaces” on page 114

• “Rendering Multiple Volumes” on page 116

• “Polygonizing Arbitrarily Oriented Cross Sections” on page 118

• “Shading” on page 122

• “Volume Roaming” on page 124

• “Picking Volumetric Objects” on page 125

• “Auxiliary Methods” on page 127

102

Chapter 6: Volumetric Geometry

Data Structures

The Volumizer API defines several data structures to facilitate representation of
volumetric geometry as well as the polygonal geometry that is derived to render the
volumetric geometry, including voIndexedTetraSet and voIndexedFaceSet. Both classes
are derived from the base class, voIndexedSet, and use voVertexData and voIndices
internally.

voVertexData

voVertexData is an array of records. Each record describes a set of properties of a vertex,
such as:

• Vertex coordinates

• Vertex colors

• Vertex normals

• Texture coordinates

• Optional user-defined data

Note: The records are similar in structure and function to interleaved vertex arrays, as
specified by the OpenGL 1.2 specification.

The number of properties per vertex is application-dependent. Vertex coordinates (three
values) are always required; other properties are optional. The only supported value
type is float.

To see the use of voVertexData in the context of an application, see “Allocate Storage for
Bricks” on page 40.

Data Structures

103

Preferred Order of Values in Records

The API associates very little semantics with the per-vertex values. For example, all
per-vertex properties are re-sampled and clipped during polygonize() action regardless
of their interpretation. In rare cases, for example, voGeometryActions::draw(), the order
of data actually matters. The preferred order of per-vertex data is:

1. User-defined

2. Normals

3. Voxel coordinates

4. Colors

5. Vertex coordinates

Any of the optional properties can be omitted. For example, if the application specifies
only texture and vertex coordinates, each record consists of six values (s,t,r,x,y,z); the
record type is T3F_V3F (Texture 3 floats, Vertex 3 floats).

The following commonly used combinations are supported:

enum voInterleavedArrayType {
DEFAULT,
V3F,
T3F_V3F,
C3F_V3F,
C4F_V3F,
T3F_C3F_V3F,
T3F_C4F_V3F,
USER_V3F

};

USER_V3F is a catch-all type that can be used by applications that provide less common
combinations of vertex properties. Applications that use USER_V3F or an
unconventional order of properties should provide their own version of
voGeometryActions::draw().

104

Chapter 6: Volumetric Geometry

Creating an Instance of voVertexData

The constructor for voVertexData is

voVertexData(int _countMax, int _valuesPerVertex, float* data=NULL);

You can construct an instance of voVertexData by requesting either:

• An empty instance of _countMax vertices, each with _valuesPerVertex values.

In this case, a new data area is allocated.

• Passing a pre-allocated array of floats to the constructor.

For more information about this option, see “Creating an Instance of
voIndexedFaceSet” on page 106.

voVertexData Methods

In addition to a conventional set of constructor and accessors functions, voVertexData
implements two methods:

• empty() sets the vertex count to zero, thereby marking the vertex array as empty.

• The array operator [] returns a pointer to the requested vertex record.

voIndices

voIndices implements a simple array of indices, defined as follows:

voIndices(int _countMax, int* indices=NULL);

voIndices is a component of several voIndexedSets. voIndices has no semantics
associated with it.

In addition to a conventional set of constructor and accessors functions, voIndices
implements the following two methods:

• empty() sets the index count to zero, thereby marking the object as empty.

• The array operator [] returns a requested element of the index array.

Data Structures

105

voIndexedSet

voIndexedSet is an abstract class that contains one voVertexData and one voIndices and
serves as a base class for both voIndexedTetraSet and voIndexedFaceSet. voIndexedSet
has no semantics associated with its data.

In addition to a conventional set of constructor and accessors functions, voIndexedSet
provides several methods that are shared by all the derived classes:

• empty() marks the given set as not containing any data.

• The array operator [] returns a pointer to an individual vertex record specified by
the given index. (The semantics of such access varies among derived classes.)

voIndexedSetIterator

voIndexedSetIterator is an abstract class that enforces consistent traversal of
voIndexedSets. For example, given a voIndexedFaceSet, that is, a set of polygons, you
can use an instance of voIndexedFaceSetIterator to step through every vertex of each
polygon.

In addition to a constructor, a voIndexedSetIterator has three methods:

• nextVertex() returns the next vertex of the current primitive, for example, a
polygon, or NULL if all vertices of the current primitive were already traversed.

• nextPrimitive() steps to the next primitive.

• doneP() returns TRUE or FALSE depending on whether the whole indexed set was
traversed.

106

Chapter 6: Volumetric Geometry

voIndexedFaceSet

voIndexedFaceSet describes a collection of indexed polygons. These polygons are often
different, planar slices of the same volume, as shown in Figure 6-1.

Figure 6-1 Indexed Face Sets

The polygons are the product of voGeometryAction::polygonize(), in which the volume
is sliced into polygons.

Each group of indices describes a single polygon.

For more information about polygonize(), see “Polygonizing Volumes” on page 50.

Creating an Instance of voIndexedFaceSet

An empty instance of voIndexedFaceSet can be created by requesting a
voIndexedFaceSet of _countVertices vertices, each with _valuesPerVertex fields, with, at
most, _countIndices indices using the following constructor:

voIndexedFaceSet (int _countMaxV, int _valuesPerVertex,
int _countMaxI);

For example,

voIndexedFaceSet *aFaceSet1 = voIndexedFaceSet(1000, 3, 5000);

This call constructs an empty instance of voIndexedFaceSet with a private vertex data
array capable of holding 1,000 vertices each with three fields per vertex, and a private
index array of 5,000 entries.

Data Structures

107

Another way to construct a face set is to specify a pre-allocated array of voVertexData
and the maximum number of indices using the following constructor:

voIndexedFaceSet (voVertexData* _vertexData, int _countMaxI);

For example:

voVertexData *vertexData = voVertexData(1000, 3);
voIndexedFaceSet *aFaceSet2 = voIndexedFaceSet(vertexData, 5000);

The advantage of supplying a pre-allocated array is that a single instance of
voVertexData can be shared among many voIndexedFaceSets, for example:

voVertexData *vertexData = voVertexData(1000, 3);
voIndexedFaceSetPtr aFaceSetArray[10];
for(int i1;j1<10;i1++)

aFaceSetArray[i1] = voIndexedFaceSet(vertexData, 5000);

Pre-allotting the array reduces data fragmentation and lends itself more easily to
parallelization.

Populating Face Sets with Polygons

All instances of voIndexedFaceSet constructed as above are initially empty. To populate
them with polygons, use voIndexedFaceSet::appendPoly(), as follows:

float vdata[] = { 100,100,100, 200,100,100, 200,200,100, };
aFaceSet->appendPoly(vdata, 3);

This code excerpt adds a triangle, defined by vdata[], to the face set.

If vdata in appendPoly() is NULL or points to the first empty record of the shared
voVertexData array, Volumizer assumes that the application already placed the vertex
data in the vertex array, so only indices are updated. Otherwise, the vertex data is copied
from vdata into the vertex data array starting with the first available record. Appended
vertex data are guaranteed to be copied into contiguous records.

108

Chapter 6: Volumetric Geometry

voIndexedFaceSet Methods

voIndexedFaceSet inherits empty() from voIndexedSet. Calling empty() on an instance
of voIndexedFaceSet constructed with a private vertex data area sets both the vertex and
index counts to zero. The contents of the vertex data array and the index array is
undefined after a call to empty().

Calling empty() on an instance constructed with a shared vertex data sets the index count
to zero, but leaves the vertex data count unchanged. This is done in order to assure that
other objects that may be sharing the vertex array are unaffected. Application should
empty the vertex array explicitly in such situations:

for(int i1;j1<10;i1++)
aFaceSetArray[i1]->empty();

vertexData->empty();

Deallocating Indexed Face Sets

Calling a destructor on an instance of voIndexedFaceSet deallocates all storage allocated
by the constructor. That means that vertex data storage is deallocated only on instances
created with the first version of the constructor. For instances that use a pre-allocated
array, the application must deallocate the storage, for example:

for(int i1;j1<10;i1++)
delete aFaceSetArray[i1];

delete vertexData;

voIndexedFaceSetIterator

voIndexedFaceSetIterator facilitates traversal through a voIndexedfaceSet. For
example, the following code steps though all polygons and prints out all the vertex
coordinates for each polygon on a separate line:

for(voIndexedFaceSetIterator iter(aFaceSet);
iter.done();iter.nextPrimitive())

 {
 while((ptr = iter.nextVertex()) != NULL)
 fprintf(stderr,”(%f %f %f) “,
 ptr[valuesPerVertex-3],
 ptr[valuesPerVertex-2],
 ptr[valuesPerVertex-1]);
 fprintf(stderr,”\n”);
 }

Data Structures

109

voIndexedTetraSet

voIndexedTetraSet describes a collection of indexed tetrahedra; a collection of
tetrahedra in Volumizer defines a solid shape. Each group of four indices in a tetraset
form a single tetrahedron. The indices point into a vertex data array as in all other
derivations of voIndexedSet.

Creating a voIndexedTetraSet

An empty instance of voIndexedTetraSet can be created by calling a constructor with
countVertices, valuesPerVertex, and countIndex as arguments using the following
constructor:

voIndexedTetraSet(int _countMaxV, int _valuesPerVertex,
int _countMaxI);

voIndexedTetraSet(float* data, int _countMaxV, int _valuesPerVertex,
int* _indices, int _indexMaxI);

_countMaxV is the number of vertices in the tetraset.

_valuesPerVertex are floating point values describing the vertices.

_countMaxI is the number of indices in the tetraset.

data must point to a linear array of floats that is at least _countMax*_valuesPerVertex long
and the count is set to _countMax. If no data is specified, the storage is allocated and the
vertex count is set to zero.

_indices points to index values.

_indexMaxI is the number of indices in the tetraset.

An alternative is to pass an array of floating point numbers describing the vertex data
together with an array of indices using the following constructor:

voIndexedTetraSet(voVertexData* data, voIndices* indices);

110

Chapter 6: Volumetric Geometry

For example, the code below constructs an instance of voIndexedTetraSet describing a
five-tetrahedron decomposition of a cube. Each vertex of the cube has color and
coordinates associated with it.

 const static float VSizeX = 128;
 const static float VSizeY = 128;
 const static float VSizeZ = 128;

 static float vtxData[8*6] = {
 1, 0, 0, 0, 0, 0,
 0, 1, 0, VSizeX, 0, 0,
 0, 0, 1, VSizeX, VSizeY, 0,
 0, 1, 1, 0, VSizeY, 0,
 1, 0, 1, 0, 0, VSizeZ,
 1, 1, 0, VSizeX, 0, VSizeZ,
 1, 1, 1, VSizeX, VSizeY, VSizeZ,
 0, 1, 1, 0, VSizeY, VSizeZ,
 };

 static int cubeIndeces[20] = {
 0, 2, 5, 7,
 3, 2, 0, 7,
 1, 2, 5, 0,
 2, 7, 6, 5,
 5, 4, 0, 7,
 };

aTetraSet = new voIndexedTetraSet(vtxData, 8, 6, cubeIndeces, 20);

Clipping Planes

111

Clipping Planes

Clipping planes into face sets is handled automatically either directly though OpenGL or
with Volumizer API calls. In almost all cases, planes are clipped as part of
voGeometryActions::polygonize() before drawing polygonized volumes.

In rare cases, an application might clip planes explicitly using
voGeometryActions::clip(). For an example, see “Polygonizing Arbitrarily Oriented
Cross Sections” on page 118.

Arbitrarily Shaped Volumes of Interest

Decoupling appearance from geometry for volumetric shapes and using tetrahedral
tessellations allows you to select VOIs bounded by arbitrarily complex constraints. For
example, a spherical VOI can be crudely approximated with an icosahedron tessellated
into tetrahedra. Including a conventional clip plane produces a semi-spherical VOI. It is
important to notice, that this kind of modeling does not require any special
programming, but merely a different set of geometry to be rendered. This way, the task
of modeling is clearly decoupled from the rendering stage.

Similarly, one can render everything outside of a sphere by tessellating the space
between two concentric spherical shells and making sure that the radius of the external
sphere is large enough to encompass the whole volume. Rendering a volume minus a
cylinder can be useful for looking at occluded objects. For example, in radiation therapy
planning, it is common to visualize the prostate un-obscured by the hip bone and the
bladder, but with enough anatomical context to facilitate treatment planning.

Figure 6-2 shows a tessellation that enables the mandible to be treated as a separate
model part.

112

Chapter 6: Volumetric Geometry

Figure 6-2 Arbitrarily Shaped VOI

Using Higher-Level Geometric Primitives

113

Using Higher-Level Geometric Primitives

The Volumizer API can render only those geometric shapes that are sets of tetrahedra. At
times, however, it is more convenient to specify higher level geometric shapes, such as
boxes or spheres. This section describes a set of helper routines that facilitate such
high-level volumetric modeling.

The utility functions provide polyhedral shapes based on tetrahedra, pyramids, prisms,
and hexahedra, as shown in Figure 2-11 on page 19. In addition, there are utilities that
enable applications to easily model cylinders, cones, and spheres.

Higher-Level Geometric Primitives and Solids

Volumizer offers the following higher-level polyhedral primitives:

• voutIndexedTetraFaceStrip

• voutIndexedTetraEdgeStrip

• voutIndexedHexaSet

• voutIndexedHexaStrip

• voutIndexedPyramidSet

• voutIndexedPyramidStrip

• voutIndexedPrismSet

• voutIndexedPrismFaceStrip

• voutIndexedPrismBaseStrip

• voutIndexedPrismEdgeStrip

There is also support for higher order solids (these are non-indexed):

• voutCone

• voutCylinder

• voutSphere

• voutGeoSphere

114

Chapter 6: Volumetric Geometry

All these utility types are derived from an abstract base class, voutGeometry, and all the
indexed types are also derived from voutIndexedSet. All of these classes provide a
tessellate() method that returns a voIndexedTetraSet that is a tessellation of the given
shape. For example:

voutSphere *aSphere(0,0,0,100, 32, 32);
voIndexedTetraSet *tetras = aSphere->tesselate();

voutSphere implements a sphere abstract geometry class.

Mixing Volumes and Surfaces

Rendering scenes containing conventional, surface-based and volumetric objects is
essential for many applications. For example, for seismic data interpretation, it is often
necessary to display oil wells and horizontal surfaces separating layers of geological
material. Or, for the purpose of surgical simulation, you might like to render a scalpel, or
a CAD model of a prosthetic device in the context of a patient’s anatomy, as specified by
a CT volume. Figure 6-3 was created by rendering a polygonal sphere inside of a CT
volume.

Figure 6-3 Geometric (Sunglasses) and Volumetric Objects Rendered Together

The surface geometry being combined with volumes can be either opaque or translucent.

Mixing Volumes and Surfaces

115

Rendering Opaque Geometry with Volumes

To add opaque geometry to a scene, follow these steps:

1. Enable Z-buffering.

2. Render the surfaces in the scene.

3. Disable Z buffer writes (while leaving Z test enabled).

4. Render the three-dimensional volumes.

Rendering Translucent or Overlapping Geometry with Volumes

The Volumizer API reduces all volumes to a set of semi-translucent polygons during the
polygonization stage. To render translucent or overlapping geometry with volumes, you
can use any renderer that knows how to handle transparency. You can merge the polygon
lists from the volume and the surface models and render them in visibility order.

There are a number of techniques that can be used for that purpose. For example, Binary
Space Partition (BSP) trees are commonly used to repeatedly depth sort a polygonal
scene. Applications can take advantage of highly coherent structures of a
volume-derived polygonal scene (many polygons share a supporting plane, and all
planes are parallel) to create well balanced trees.

Transient Geometry Caching During polygonize

The voIndexedFaceSets generated by polygonize() can often be reused. For example, for
AXIS_ALIGNED sampling, the set of voIndexedFaceSets remains unchanged from view
to view and can be cached without any consequences. Similarly, in
VIEWPORT_ALIGNED mode, you can reuse sampling geometry from the previous
frame if the two viewpoints are not very different. While such lazy evaluation may result
in some quality degradation, it can be used for increased interactivity.

voGeometryActions::draw() initializes and maintains cache content. glwCache.cxx
provides an example implementation of voGeometryActions::draw().

116

Chapter 6: Volumetric Geometry

One thing to watch for when not using viewport-parallel sampling is perspective correction
for your textures. When the sampling planes are parallel to the viewport, the textures do not
need to be perspectively corrected because they are the same depth. In other cases, however,
the underlying hardware correct the perspective otherwise artifacts may occur.

While two-dimensional textures are often perspective corrected, three-dimensional
textures may not be (e.g., Impact) graphics in SGI’s Indigo2 and Octane workstations).
Therefore, it is safe to render in axis-aligned mode using two-dimensional interpolation,
but it may not be safe to use other types of sampling with tree-dimensional textures.

Rendering Multiple Volumes

Often you want to display images like these:

• Two non-associated, non-overlapping volumes, such as clouds.

• Two associated, overlapping volumes, such as a volume of radiation dose
distribution and the corresponding CT data set describing the patient’s anatomy, as
shown in Figure 6-4.

• Two unassociated, overlapping volumes, such as a a CT and PET scan of a patient’s
head.

Figure 6-4 Overlapping Volumes

Rendering non-associated, non-overlapping volumes is straightforward: the bricks of all
the volumes in the scene are merged in a single list and sorted from back to front and the
rest of the algorithm proceeds as described in Chapter 3, “Programming Template.”

There are, however, additional considerations when volumes overlap.

Rendering Multiple Volumes

117

Overlapping Volumes

When the volumes overlap, you must decide how to:

• Combine overlapping parts

• Overlap texture memory

Combining Overlapping Volumes

The semantics of the application often dictate how to combine overlapping volumes. For
example, if the volumes are interpenetrating clouds, they need to absorb light according
to the laws of optics.

If, on the other hand, a radiation dose distribution is to be “painted” over the anatomy,
the values need to be merged through multiplicative blending, as shown in Figure 6-4. In
this case, it may be necessary to use an offscreen buffer to produce individual slices.

Texture Memory Overlap

Every pair of bricks that overlaps has to be resident in the texture memory
simultaneously. This condition halves the maximum brick size value and requires some
of the bricks to be loaded more than once. Because texture downloading is expensive,
you should create as few downloads as possible.

Figure 6-5 Merging Multiple Volumes

Viewport Aligned

A

B

C

D

1

2

3

4

A

B

C

D

1

2

3

4

Axis Aligned

A

B

C

D

1

2

3

4

A

B

C

D

1

2

3

4

118

Chapter 6: Volumetric Geometry

Figure 6-5 shows multiple volumes merged under viewport aligned sampling (on the
left) and under axis-aligned sampling (on the right). In this example, it’s best if the bricks
are small enough so that three bricks fit the texture memory simultaneously. Otherwise,
the same brick may have to be reloaded several times.

Interpenetrating Polygons

If the sampling of two volumes by voGeometryActions::polygonize() does not occur
along an identical set of surfaces, for example, in axis-aligned planes, the situation
becomes complicated. In this scenario, the polygons resulting from the polygonization of
each volume need to be depth sorted. The depth sorting is complicated by the fact that
some of the polygons might be interpenetrating. To correctly depth sort the polygons,
you need to use a BSP tree or some similar mechanism.

Polygonizing Arbitrarily Oriented Cross Sections

Arbitrarily oriented cross sections, also called Multi-Planar Reformations (MPRs), of
volumes are easily implemented on machines that support three-dimensional texture
mapping hardware: the slicing plane is clipped, using voGeometryActions::clip(), to the
volume’s geometry and the brick boundaries and the resulting polygons are drawn with
texturing enabled.

Note: The above technique may produce, what appears like geometric distortions on
machines that do not perspectively correct three-dimensional textures (e.g., Impact
graphics).

Without three-dimensional texture-mapping hardware, however, computing a
tri-linearly filtered oblique slice through a volume is more challenging. This section
describes how to accomplish this task using two-dimensional texture mapping and
blending circuits commonly available on even the lowest-end machines.

Figure 6-6 MPR with Two-Dimensional Texture Mapping

Polygonizing Arbitrarily Oriented Cross Sections

119

Figure 6-6 shows a tri-linearly interpolated slice using two-dimensional texture
mapping. The three instances in the figure show:

(a) A weighted average between two two-dimensional images

(b) An oblique slice between two two-dimensional images

(c) An oblique slice through a stack of two-dimensional images.

Stack of Two-Dimensional Textures

Consider a stack of two-dimensional textures representing a three-dimensional volume
of voxels. One can sample such volume only along any plane that coincides with any of
the image planes to obtain a properly filtered image using only bi-linear interpolation.

Figure 6-6 shows a simple technique to sample along any plane that is parallel to the
acquisition plane, but not necessarily coincident with any individual slice.

To obtain an image for the planes between the slices, use a weighted average of the two
images, using the following procedure:

1. Enable the first two-dimensional texture.

2. Set the current color to (1-d, 1-d, 1-d, 1-d).

3. Draw the requested polygon.

4. Enable the second two-dimensional texture.

5. Set the current color to (d, d, d, d).

6. Enable additive blending before drawing the same polygon a second time.

7. Disable Z-testing or use the polygon offset has to assure that Z-fighting does not
prevent the second pass from appearing the frame buffer.

8. Draw the second polygon.

120

Chapter 6: Volumetric Geometry

Using Angled Slices

The above procedure can be extended to obtain a properly-textured polygon that is
cutting at an angle through two adjacent two-dimensional images, as shown in
Figure 6-6(b).

The polygon is drawn twice using additive blending. However, rather than using
constant opacity for the polygon, the opacity of each vertex is set to either 0 or 1,
depending on whether the vertex falls into the active texture or not. For example, when
texture Z is enabled, the opacity of vertex A is set to 0 and the opacity of vertex B is set
to 1. Therefore, when the first texture is enabled, the pattern mapped onto the polygon is
effectively multiplied by a linear ramp fading away in the parts of the polygon that are
further away from the active image. Subsequently, the other texture is enabled, and the
opacities of the vertices are reversed.

To minimize state changes once the texture is enabled, all polygons that use the same
state should be drawn; for example, in Figure 6-6(c), once texture Z was enabled,
polygons A-B and B-C should be drawn.

Figure 6-7 shows the partial results of the algorithm applied to every other slice.

Figure 6-7 MPR Bands

You can compute an oblique slice through a stack of two-dimensional images by
bounding each texture at most once and drawing the polygon exactly twice. The cross
section, then, is computed at half the fill rate for two-dimensional textured polygons plus
the overhead of computing the polygon’s coordinates.

In the worst case, slicing through a n^3 volume requires computing 2 × n2 polygonal
vertices. However, they can be easily found using tri-linear interpolation. This technique
significantly reduces the overall complexity of tri-linearly sampling the entire slice.

Polygonizing Arbitrarily Oriented Cross Sections

121

Multi-planar Reformatting Polygonization

polygonizeMPR() actions, described as follows, computes a set of polygons along an
oblique section (Multi-planar Reformatting) clipped to brick boundaries. Two alternative
actions differing by their inputs are provided. The first instance of the action will clip a
plane, given its equation Ax+By+Cz+D=0. The second will clip an arbitrary polygon,
described by their vertices.

static int polygonizeMPR(
float planeEquation[4], voBrickSet* aBrickSet,
voIndexedFaceSet*** polygonSet,
voInterleavedArrayType interleavedArrayFormat);

static int polygonizeMPR(
voVertexData* vData, voBrickSet* aBrickSet,
voIndexedFaceSet*** polygonSet,
voInterleavedArrayType interleavedArrayFormat);

The plane is given by its equation, planeEquation[4].

The input polygon is described by voVertexData.

Note: Currently, this method is implemented only for two-dimensional textures.

122

Chapter 6: Volumetric Geometry

Shading

Shading increases the realism of an image by applying lighting calculations to the object
being rendered. For example, the image on the right in Figure 6-8 was shaded (using a
Z-buffer shading technique), while the one on the left was rendered with simple opacity
blending only.

Figure 6-8 Shading Off and On

In addition to looking more realistic, the shaded image enhances many surface details
that are not apparent in the blended rendition, for example, the small bones in the nasal
cavity, and staples holding the pieces of forehead together.

Currently, the API does not define how polygons produced by polygonize() are blended.
Applications can use OpenGL’s glBlendFunc() to select a suitable blending, for example,
OVER or MIP.

A more sophisticated scenario calls for computation of per-voxel gradient. The gradient
is used as an approximation for the surface normal in lighting calculations. You can
implement gradient-based shading by maintaining a gradient volume in addition to the
original voxel data.

Shading

123

Tangent Space Shading

A significantly more flexible technique that allows for on-the-fly per-voxel gradient
computation is based on the tangent-space techniques that were recently proposed for
bump mapping (consult SIGGRAPH97 Proceedings, and SIGGRAPH98 Course 17 by
Tom McReynolds for details). In this multi-pass approach, each sampling polygon is
drawn twice using blending operations to estimate the component of the gradient in the
direction of the light source.

More specifically, the polygon is drawn first into a off-screen memory. Subsequently, the
vertex coordinates of the polygon are offset by a unit in the direction of the light source
(alternatively, the texture coordinates are shifted by a corresponding fraction in the
opposite direction).

The offset polygon is drawn for the second time subtracting it from the first image (this
operation can also be implemented efficiently with an accumulation buffer). Effectively,
this operation computes the projection of the gradient vector onto the direction of the
light vector, or the dot product of these two vectors. Once the subtracted image is
computed it is copied into the frame buffer and blended using conventional OVER
operator.

The main advantage of the technique is the ability to compute the shading directly from
the intensity data thus avoiding memory bloat and bandwidth issues which plague
algorithms that require storing of the pre-computed gradient volume. Further, it allows
for post-lookup, post-interpolation gradient calculation that may be required by high
quality applications. The main drawback is use of the un-normalized gradient, which can
produce shading artifacts similar to using un-normalized vertex normals with
conventional models.

A sample implementation of this technique is provided with the distribution.

124

Chapter 6: Volumetric Geometry

Volume Roaming

Many applications deal with very large volumes. In these cases, only a subregion of the
volume can be displayed at any given time. This subregion is called the Volume of
Interest (VOI).

The VOI can be of any volumetric shape. Figure 6-9 shows a cubical VOI in the midst of
geological data.

Figure 6-9 Volume of Interest

Implementing a Volume of Interest

You can enable a user to translate and scale a VOI, such as a cube or a sphere. For
example, suppose you roam a 20483 (8 GB) volume bricked into 64 2563 bricks. The VOI
is a 5123 cube, which can be translated and scaled. Every time the position or size of the
VOI changes, the application has to:

1. Determine which bricks have shifted into the field of view.

2. Read those bricks in from the disk.

3. Determine which bricks have shifted out of the field of view.

4. Discard those bricks and mark them as inactive.

Picking Volumetric Objects

125

These tasks can be accomplished by defining the vertices of the geometry,
voIndexedTetraSet, so they coincide with the vertices of the VOI rather than the vertices
of the voxel data cube. The same approach can be used to manipulate arbitrarily shaped
VOIs.

More importantly, thanks to virtualized (bricked) appearance, applications can control
the amount of voxel data present in the memory and can implement just-in-time brick
loading.

Picking Volumetric Objects

Many applications are interested in selecting objects being drawn. For volumetric shapes
such selection can be on two different levels: sub-part level and voxel level.

Applications that tessellate objects into individual parts may require that an individual
part be selectable. For example, a mandible may have to be selected and moved around
for maxillofacial surgery planning. For this type of per-part selection it is best to use
OpenGL picking and selection mechanisms. Simply draw the faces of the tetrahedra
defining the part just as if you were dealing with a conventional, surface-based model,
using voGeometryActions::draw().

At the low level, an application may want to inspect individual voxels of a model. For
example, a distance between two three-dimensional anatomical landmarks may be
required for a morphometric measurement. Similarly, a seismic data interpretation
application may want to automatically segment out a layer of geological material by
simply pointing at it on the screen.

Voxel picking was provided for the purpose of analyzing the volume on a point by point
basis. In order to make the picking functionality general purpose, the API does not make
any application-specific decisions. Instead, an array of voxels along a line (typically the
line of sight through the cursor) is returned. It is application’s responsibility to do its own
signal processing to extract features of interest, for example, find the closest voxel along
the line of sight that has a value above the threshold.

126

Chapter 6: Volumetric Geometry

To return an array of voxels and their coordinates for an intersected volumetric object,
use the following voGeometryActions method:

static voBool pick(
int pixelPosition[2], int viewport[4], voIndexedTetraSet* tetraSet,
voBrickSet* aBrickSet, voInterleavedArrayType
interleavedArrayFormat, GLdouble modelMatrix[16],
GLdouble projMatrix[16], float samplingPeriod[3],
voBool flag, voVertexData* coordinates, void* voxels);

This method determines whether or not aBrickSet is intersected by a line-of-sight ray
through the cursor. The method returns VO_TRUE if the brickset is intersected or
VO_FALSE otherwise.

The equation of the line is determined from the (row, col) screen position, the viewport,
and modelview/projection matrices. This line is intersected with the volume described
by aTetraSet and aBrickSet. Sampling period determines how often to sample along this
line. The routine computes the values of voxels and their respective coordinates.

The requested voxel data is returned in voxels in the format and voxel type of the brick
set. If flag is set to VO_FALSE, the original voxel values along the line of sight are
returned using nearest neighbor interpolation. If flag is set to VO_TRUE, the current
graphics state is applied, for example, tri-linear interpolation, lookup tables, or
interpolated-per-vertex colors.

The first voxel-coordinate pair refers to the intersection point on the volume closest to the
viewpoint; the last voxel-coordinate pair refers to the intersection point on the volume
furthest from the viewpoint. The coordinates along the line are returned in coordinates
as specified by the voInterleavedArrayFormat enum, as defined in “Preferred Order of
Values in Records” on page 103.

Setting flag to VI_TRUE, if it is implemented in hardware, is generally faster for a
single-brick brick set, but may result in fully reloading each brick in a multi-brick brick
set through the texture memory. Setting voxels to NULL returns vertex data but no voxel
data so that the application can compute their own voxel values.

Auxiliary Methods

127

The other form of the same voGeometryActions method is:

static voBool pick(int pixelPosition[2], int voewport[4],
voIndexedTetraSet* tetraSet, voBrick* aBrick,
voInterleavedArrayType interleavedArrayFormat,
GLdouble modelMatrix[16], GLdouble projMatrix[16],
float samplingPeriod[3], voBool flag, voVertexData* coordinates,
void* voxels);

The second version of the method tests to see if a voBrick instead of a voBrickSet is
intersected. Applications can use this overloaded method to apply hardware-assisted
picking on a brick by brick basis. For example, the application can sort the bricks by
depth and only apply the pick action to the closest brick thus reducing download
requirements significantly.

Auxiliary Methods

The following voGeometryActions auxiliary methods determine the position of the
camera and the direction it is facing from OpenGL matrices, respectively:

static void findCameraPosition(
double eyePos[3], double viewDir[4], GLdouble modelMatrix[16],
GLdouble projMatrix[16]);

static void findViewDirection (
double viewDir[3], GLdouble modelMatrix[16],
GLdouble projMatrix[16]);

findCameraPosition() determines the view direction and eye position given the
modelview and projection matrices. If the projection matrix describes an orthographic
projection, set viewDir[3] to 0.0 and do not try to find the eye position. If the matrices
were singular, for example., scaled by factor of 0.0 for projective shadows, voErrorNo is
returned as BAD_VALUE and no eye position is found.

findViewDirection() determines the viewing direction given the modelview and
projection matrix. This should generally not be a problem, unless the matrices are
singular; for example, the view frustum is reduced to 0 depth by a scaling factor of 0.0,
which is a common practice for projective shadows technique. If the direction cannot be
computed, voErrorNo is set to BAD_VALUE, and viewDir[] is set to (0.0,0.0,1.0).

129

Chapter 7

7. Volumetric Appearance

This chapter discusses advanced topics in volumetric appearance. For an understanding
of basic appearance concepts, see “Decoupling Geometry and Appearance” on page 12.
For an understanding of the API associated with these concepts, see “Step 2: Define
Appearance” on page 36.

This chapter discusses the following topics:

• “Texture Bricking” on page 130

• “Brick Sets” on page 143

• “Brick Set Collections” on page 143

• “Allocating Brick Data” on page 144

• “Loading Brick Data” on page 145

• “Creating Custom Loaders” on page 146

• “Test Volumes” on page 148

130

Chapter 7: Volumetric Appearance

 Texture Bricking

Voxel data sets often exceed the size of texture memory. To handle such large data sets,
volumes are subdivided into a number of chunks, each of which are small enough to fit
into texture memory. These chunks are called bricks.

A voBrick is a hexahedral (box-like), three-dimensional textures that you use to
approximate volumes. A voBrick is the same as a voTexture3D object except that a
voBrick has a defined position; voTexture3D does not.

Note: A voBrick can also represent a two-dimensional texture when you set one of the
voBrick’s dimensions to one.

Data Types

A voBrick can hold voxels represented by various data types. OpenGL Volumizer
supports the following types:

enum voDataType{
DEFAULT,
UNSIGNED_BYTE,
BYTE,
UNSIGNED_BYTE_3_3_2_EXT,
UNSIGNED_SHORT,
SHORT,
UNSIGNED_SHORT_4_4_4_4_EXT,
UNSIGNED_SHORT_5_5_5_1_EXT,
UNSIGNED_INT,
INT,
INT_8_8_8_8_EXT,
INT_10_10_10_2_EXT,
FLOAT

};

These data types map directly onto types supported by OpenGL (consult documentation
on glDrawPixels(3G) or glTexImage2D(3G) for details). For example, a data type of
BYTE indicates that every voxel holds a single, 8-bit value represented as an unsigned
char. Similarly, INT_8_8_8_8_EXT indicates that four 8-bit values, for example, RGBA
components, are packed into a single voxel of type unsigned int.

Texture Bricking

131

The choice of data type is driven by convenience, performance, and memory usage. More
compact types consume less memory and may download associated textures faster.
Some types are faster to convert to the native format of the graphics accelerator.

Data Formats

The data format refers to the number of channels encoded in the voxel information, for
example, a one-channel data format specifies the INTENSITY of the voxel; a four-channel
data format might specify the red, green, blue, and alpha (RGBA) values of the voxel.

In Volumizer, data can be used in a variety of formats at different processing stages, as
shown in Figure 7-1.

Figure 7-1 Data Formats

GL_COLOR_INDEX
GL_STENCIL_INDEX
GL_DEPTH_COMPONENT
GL_RED
GL_GREEN
GL_BLUE
GL_ALPHA
GL_RGB
GL_RGBA
GL_LUMINANCE
GL_LUMINANCE_ALPHA
GL_ABGR_EXT

GL_ALPHA8_EXT
GL_LUMINANCE8_EXT
GL_LUMINANCE12_EXT
GL_LUMINANCE12_EXT
GL_LUMINANCE8_ALPHA8_EXT
GL_INTENSITY8_EXT
GL_INTENSITY16_EXT
GL_RGB4_EXT
GL_RGB8_EXT
GL_RGBA16_EXT
GL_DUAL_LUMINANCE_ALPHA8_SGIS

Storage Memory Cache

External Format Internal Format

1/App 1/Frame

132

Chapter 7: Volumetric Appearance

Data Format Domains

As voxel data is processed at various stages of the visualization pipeline, the data can be
stored in various formats. In Volumizer, there are three places where the data can be
stored in different formats:

• Native format—is the data format that is used to store data on the disk.

• External format—is the data format used by the application.

• Internal format—is the format that the underlying graphics API uses to save the
voxel data in texture memory.

We refer to the transitions between these stages as “texture read” and “texture
download” respectively.

For example, your data may be stored on disk as a single value, INTENSITY, per voxel.
You may choose to use a LUMINANCE_ALPHA external format for your
application-side processing. This choice requires that each voxel value be duplicated
after a brick is read. Finally, you could use the RGBA internal format as the storage
format in texture memory. The voxel data may need to be converted as it goes from one
processing stage to another.

You specify each of these formats in the voTexture3D constructor.

Every time a brick is downloaded from the host memory to texture memory, the formats
are converted. Format choices can be driven by convenience, performance, and memory
usage considerations.

Data Format Values

Because native and external formats are conceptually the same, they can both be any of
the following values:

enum voExternalFormatType{
DEFAULT,
INTENSITY,
LUMINANCE_ALPHA,
LUMINANCE,
RGBA,
ABGR_EXT

};

Texture Bricking

133

The following internal formats, on the other hand, are more sensitive to the internal
memory layout:

enum voInternalFormatType{
DEFAULT,
INTENSITY8_EXT,
LUMINANCE8_EXT,
LUMINANCE8_ALPHA8_EXT,
RGBA8_EXT,
RGB8_EXT,
RGBA4_EXT,
QUAD_LUMINANCE8_SGIS,
DUAL_LUMINANCE_ALPHA8_SGIS

};

The conversion from the native format to the external format is typically only done once
per-brick during the initialization phase. The conversion from external to internal format
has to be done every time a brick is downloaded from the host to texture memory.

There may be a performance penalty associated with specific formats depending on the
underlying hardware. Therefore, it may be advantageous to keep all the formats as
similar as possible.

Optimal Formats

There is typically an optimal format for any given platform. For example, on Impact
graphics hardware, LUMINANCE_ALPHA and LUMINANCE8_ALPHA8_EXT
produce optimal performance for grayscale rendering. However, it results in a times-two
memory bloat because the same piece of information, the voxel’s intensity, is replicated
in the ALPHA channel.

On the other hand, using a “tighter” external format reduces your application’s memory
requirements. So an application can request INTENSITY as the external format and
LUMINANCE8_ALPHA8_EXT as internal and minimize its memory usage at the
expense of run-time performance penalty during texture download.

134

Chapter 7: Volumetric Appearance

Converting Between Formats

In situations where the disk format differs from the external format, voxel data can be
suitably converted with help of voAppearanceActions::dataConvert() after it was read:

static int dataConvert(voTexture3D* aTexture3D, void* data,
voExternalFormatType diskFormat);

In this method the voxel data, aTexture3D, is converted to the specified format,
diskFormat, and the result is pointed to by data.

data can point at the brick’s data storage, in which case the conversion is done in place.
This may be a little faster (and certainly more economical in terms of memory usage and
code size) than using an additional I/O buffer.

Scaling Data

Some data values have to be scaled into the range expected by the graphics API. For
example, if the voxel data type is float, it has to fit in the range of <0.0, 1.0>. Similarly,
unsigned short voxels need to be scaled to <0, 65535>.

voAppearanceActions::dataScaleRange() expands the values of data to span the entire
dynamic range of the underlying data type.

Example 7-1 initializes the voxel data by loading, converting, and expanding it.

Example 7-1 Initializing Voxel Data

voBrickSetIterator aBrickSetIter(aBrickSet);
for(voBrick *brick; brick = aBrickSetIter();) {

unsigned char *vdata = (unsigned char *)
voTexture3DActions::dataAlloc(brick);

myReadBrickIfl(fileName, vdata, xBrickOrigin, yBrickOrigin,
zBrickOrigin, xBrickSize, yBrickSize, zBrickSize);

// convert to the desired externalFormat
Texture3DActions::dataConvert(brick,vdata,INTENSITY);

// expand the values to span the whole dymanic range
voAppearanceActions::dataScaleRange(brick, loValue, hiValue);

}

Consult InitAppearance.cxx for sample source code.

Texture Bricking

135

Interleaving Bricks

On certain architectures, texel values are internally stored and manipulated as RGBA
quadruples regardless of their original format. Therefore, even if the external, application
side voxel format is INTENSITY, this single value is replicated 4 times during the
download and stored internally as 1111. This means that a 4 MB texture memory can hold
at most 1 MVoxel of intensity data. Other forms of packing texels are also possible. On
some machines it is possible to increase the effective size of the texture memory and
improve the download performance by brick interleaving.

When two bricks are interleaved, their voxels are combined together: the first voxel of the
first brick is followed by the first voxel of the second, and so on. This way two values (one
from each brick) in the INTENSITY_ALPHA format can be packed on the host into a
single RGBA value, one in each channel pair. This 2-way interleaved texture can be
transferred into the texture memory with a single command (reducing download effort
2-fold) and either one of the two original textures can be selected.

To determine if two bricks are interleaved, use voTexture3DActions::cliqueTest(brick1,
brick2). Only 2-way interleaving is currently supported in Volumizer.

Advantages of Interleaving Bricks

Interleaving bricks provides two important advantages:

• Transfer of appearance information is dramatically increased.

If, for example, two LUMINANACE_ALPHA voxels are stored in a single RGBA
value, the texture transfer rate is increased by 200%.

• Memory is conserved.

If, for example, two LUMINANACE_ALPHA voxels are stored in a single RGBA
value, the number of voxels that can be held in memory is increased by 200%.

136

Chapter 7: Volumetric Appearance

Manually Interleaving Multiple Bricks

To perform two-way interleaving of bricks manually, use one of the following methods,
respectively:

static int textureInterleave (
voTexture3D* aBrick1, voTexture3D* aBrick2);

In order for two bricks to be suitable for interleaving they both have to be in compatible
format. That is, their sizes, with a call to data types, and external formats have to be
identical.

Note: An application can easily interleave all of the bricks of the brick set with a call to
oAppearanceActions::volumeOptimize() using the INTERLEAVE value in the
argument. voAppearanceActions::textureInterleave() is reserved for unconventional
uses.

Creating Texture Objects

The TEXTURE_OBJECTS flag takes advantage of the Texture Manager in OpenGL by
creating texture objects out of textures thus relieving the application from explicit texture
memory management. Without texture objects, the application itself has to keep track of
the texture memory usage. For example, if the whole volume fits into the texture
memory, the application should make sure not to repeatedly re-load the texture.

With texture objects, the texture manager takes over this bookkeeping task. If a texture
object is bound repeatedly, no explicit downloads occur. For more information about
texture objects, see OpenGL Programming Guide.

Note: Texture object creation requires a valid graphics context.

When Not to Use Texture Objects

If a texture object is used for only one or two frames and then discarded, textures should
not be converted into texture objects because the advantage of single-time processing is
lost. Performance might be harmed because the creation of a new texture object for every
frame is more costly than processing a texture for each new frame.

For example, if your application displays a beating heart, texture object creation should
not be enabled because the texture changes in each frame.

Texture Bricking

137

Voxel Values

Voxel values do not have to represent the intensity or color, but can describe other values,
such as stencils, also called tags. Tags are discussed in “Tagged Voxels” on page 137.

Similarly, data in the voxel may be subject to interpretation by applications. For example,
an RGB value may contain gradient components rather than colors.

Tagged Voxels

You might tag individual voxels with class identifiers to, for example:

• Render different parts of a volume with different parameters.

For example, in clinical applications, rendering a variety of tissues with different
color/transparency parameters.

• Clip textures to arbitrary surfaces in situations where the surface is too fine to be
tessellated into individual tetrahedra.

For example, when interpreting seismic data, you volumetrically render only the
sub-volume that falls between two horizontal planes. Defining the sub-volume as
WIDTH x HEIGHT number of hexahedra may not be a viable alternative so a tagged
volume should be used instead.

The functionality provided in the current release of the API allows application
programmers to render tagged volumes using a simple multi-pass algorithm. Namely,
the application can maintain an additional volume of tags and use stencil planes to select
individual classes for rendering.

138

Chapter 7: Volumetric Appearance

Voxel Reference Frame

Just as you can map two dimensional texture coordinates onto a polygon, you can map
voxel coordinates onto volumetric geometry (tetrasets), as shown in Figure 7-2.

Figure 7-2 Voxel Coordinates

In the OpenGL Volumizer API, the geometry and voxel reference frames coincide: the
voxel coordinates span [0,0,0] to [xVolumeSize-1, yVolumeSize-1, zVolumeSize-1]. When the
size of the volumetric geometry matches the size of the voxel data array, the voxel and
vertex coordinates are identical. Since this is a very common occurrence, applications do
not have to explicitly specify texture coordinates in this situation.

3D Texture

3D Texture

Direct Mapping

Distortion

s

t

r t

s

r

Volumetric
Object

Volumetric
Object

Texture Bricking

139

However, there are situations where there may not be a 1-to-1 mapping from coordinates
to voxel coordinates. For example, that may be required for modeling reasons: the
volumetric object may have to exist in the world space that has dimensions of
<1.0,1.0,1.0> even though the voxel array has sizes of <256.0,256.0,256.0>. In a more
involved scenario, the volume may be deformed. In such situations, the application is
required to explicitly specify both voxel and vertex coordinate triples.

The voxel reference frame is different from the texture reference frame. For a single brick
volume, there is a simple linear mapping that takes the voxel coordinates and scales them
back to <0.0, 1.0> range so that they can be used as texture coordinates. In the general
case of a multi-brick volume, there is a series of such piecewise linear mappings that map
a voxel coordinate into texture coordinates (s, t, r) within each individual brick by
applying a suitable scale and bias.

During polygonization, the voxel coordinates, if specified, are sampled and clipped with
the vertex coordinates. To draw the resulting polygons, however, these clipped voxel
coordinates have to be transformed into the brick texture’s reference frame such that the
coordinate system, (s, t, r), spans [0,0,0] to [1,1,1] for each brick.

voAppearanceActions::xfmVox2TexCoords(), defined as follows, performs this
transformation for each voFaceSet within a brick. It must be used before any draw calls.

static void xfmVox2TexCoords(voBrick* brick,
voIndexedFaceSet* aFaceSet,
voInterleavedArrayType interleavedArrayFormat,
voPlaneOrientation orientation);

static void xfmVox2TexCoords(voBrickSet* aBrickSet,
int samplesNumber, voIndexedFaceSet*** aFaceSet,
voInterleavedArrayType interleavedArrayFormat);

140

Chapter 7: Volumetric Appearance

In the case where the voxel and vertex coordinates match, it is unnecessary to specify the
voxel coordinates. Instead you use voAppearanceActions::texgenEnable() once per
drawing loop to generate the texture coordinates, and
voAppearanceActions::texgenSetEquation() for each brick before drawing any face sets,
as follows:

 if(interleavedArrayFormat == _V3F)
 voAppearanceActions::texgenEnable();
 else
 voAppearanceActions::xfmVox2TexCoords(
 aBrickSet,
 samplesNumber,
 aPolygonSetArray,
 interleavedArrayFormat);

 // iterate over all bricks
 for(brickNo=0;brickNo < BrickCount;brickNo++)
 {
 ...

 // update texgen equation for the current brick
 if(interleavedArrayFormat == _V3F)
 voAppearanceActions::texgenSetEquation(aBrick);

 // iterate over all sampling planes
 for(int binNo=0;binNo < samplesNumber;binNo++)
 voGeometryActions::draw(

aPolygonSetArray[brickSortedNo][binNo],GL_FILL,interleavedArrayFormat);

 }
 if(interleavedArrayFormat == _V3F)
 voAppearanceActions::texgenDisable();

Generating Voxel Coordinates

Generating voxel coordinates with voAppearanceActions::texgenEnable() is convenient
and it may increase performance because fewer data items are transmitted down the
graphics pipeline. In some situations, however, voxel coordinate generation can harm
performance because the coordinates cannot be cached and the generation relies on
hardware acceleration, which a machine may not have.

Texture Bricking

141

Texture Matrices

Instead of using xfmVox2TexCoords() to explicitly transform the voxel coordinates into
the brick texture reference frame, you can use a texture matrix to apply scale and bias to
brick coordinates on the fly. Use voAppearanceActions::textureMakeMatrix(), defined
as follows, to construct a suitable matrix and push it onto the texture matrix stack with
standard OpenGL calls.

static void textureMakeMatrix (voBrick* aBrick, float* matrix);

Setting Brick Sizes

You can set and return the size of a voBrick using the following voBrick methods:

void setBrickSizes(float _xmin, float _ymin, float _zmin,
float _xSize, float _ySize, float _zSize)

inline void getBrickSizes (int& _xmin, int& _ymin, int& _zmin,
int& _xSize, int& _ySize, int& _zSize);

inline void getBrickSizes (float* _position, float* _size);

These methods use, as arguments, the coordinates of kitty-corner corners of a hexahedral
brick to set or return its size. The size values are relative to the min values rather than the
coordinate-axis origin. For example, if the min values are (1, 1, 1), the size values could
also be (1, 1, 1), in which case, the kitty-corner coordinates are (2, 2, 2).

Note: The brick origin can be an arbitrary number, but the brick sizes are typically (but
not necessarily) powers of two.

142

Chapter 7: Volumetric Appearance

Setting Brick Sizes Automatically

Selecting optimal brick sizes for a shape is tedious. Volumizer, therefore, provides the
following helper routine to select the optimum brick size:

xBrickSize = xVolumeSize;
yBrickSize = yVolumeSize;
zBrickSize = zVolumeSize;

voAppearanceActions::getBestParameters(
interpolationType, renderingMode, dataType, // In
diskDataFormat, // In
internalFormat, externalFormat, // Out
xBrickSize, yBrickSize, zBrickSize); // In/Out

For more information about voAppearanceActions::getBestParameters(), see “Step 2:
Define Appearance” on page 36.

To see sample code that determines brick size, refer to InitAppearance.cxx.

Drawing Brick Outlines

You can draw the outline of a brick using the following action:

static void voGeometryActions::draw(voBrick *);

You might draw the outline of a brick for debugging purposes.

Brick Sets

143

Brick Sets

Typically, it takes more than one brick to represent a volume. A number of such adjacent,
possibly-overlapping, bricks constitute a voBrickSet. Applications can use voBrickSet
to access volume size, requested brick sizes, handles to individual voBrick objects in the
set, and the set’s orientation.

For more information about implementing brick sets, see “Allocate Storage for Bricks”
on page 40.

Brick Set Collections

Some volumes must be represented by multiple voBrickSets. For example, machines
that do not support three dimensional texture mapping require maintaining three
separate copies of a brickset: one for each major axis, as shown in Figure 2-18 on page 26.
In this case, each copy is represented by a separate voBrickSet and the entire volume is
represented by the collection of the three voBrickSets.

voBrickSetCollection works like a switch that allows applications to select one of the
voBrickSets in the collection. For example, the following call selects the voBrickSet
within the collection sliced in planes that are the most perpendicular to the line of sight:

aBrickSetCollection->setCurrentBrickSet(
findClosestAxisIndex(modelMatrix,projMatrix,AXIS_ALIGNED));

For multiple voBrickSets, it is convenient to know the maximum number of bricks in a
collection. For example, the maximum number of bricks in a 256x256x128 volume
represented by three stacks of two dimensional images is 256. this value can be used to
allocate a single buffer for transient geometry that will be large enough to hold the results
of polygonization regardless of the volume’s orientation.

144

Chapter 7: Volumetric Appearance

Allocating Brick Data

Creating a voBrick does not allocate voxel data storage. Applications must call the
voAppearanceActions method, dataAlloc(), defined as follows, before operating on any
data.

static void* dataAlloc(voTexture3D* aTexture3D);

static void* dataAlloc(voBrickSet* brickSet);

The following code allocates data for all of the bricks in a voBrickSet:

voBrickSetIterator aBrickSetIter(aBrickSet);
for(voBrick *brick; brick = aBrickSetIter();)

(void)voTexture3DActions::dataAlloc(brick);

dataAlloc() returns a pointer to the voxel data storage. This pointer can be used by
applications to directly reference voxel data.

voTexture3D::getDataPtr() returns the same pointer but only after the brick has been
created.

An application can use this pointer as a destination for any application-specific, disk I/O
routines and thereby avoid allocation of additional buffer space, for example,

voBrickSetIterator aBrickSetIter(aBrickSet);
for(voBrick *brick; brick = aBrickSetIter();)

{
unsigned char *vdata = (unsigned char *)
voAppearanceActions::dataAlloc(brick);
myReadBrickIfl(fileName, vdata, xBrickOrigin, yBrickOrigin,

zBrickOrigin, xBrickSize, yBrickSize, zBrickSize);
}

myReadBrickIfl() is a utility function provided with the API that reads a a block of data
from (xBrickOrigin, yBrickOrigin, zBrickOrigin) to (xBrickOrigin+xBrickSize-1,
xBrickOrigin+xBrickSize-1, xBrickOrigin+xBrickSize-1) from a three dimensional TIFF file
using the Image Formal Library (IFL).

Loading Brick Data

145

Loading Brick Data

Applications need to load the voxel data into the texture memory before the volume that
is associated with this data can be drawn. For multi-brick volumes, each brick has to be
loaded in turn once per frame. However, for single-brick volumes it is enough to load the
voxel data once. Applications can keep track of such situations and use
voAppearanceActions::textureLoad() to explicitly transfer the voxel data from the host
to texture memory.

Once the volume is optimized with TEXTURE_OBJECTS as a parameter, the application
can use voAppearanceActions::textureBind(). This action uses the OpenGL Texture
Manager to determine if the requested brick data already resides in texture memory. If it
does, textureBind() does nothing; otherwise, textureLoad() is called, which downloads
the texture from host to texture memory.

static int voAppearanceActions::textureBind(voTexture3D* aTexture3D);

Using textureBind() instead of textureLoad() results in a significant performance boost
when the brick data is already in texture memory.

Applications must call textureBind() or textureLoad() before drawing any shapes.

Forcing Download of Texture Data

voAppearanceActions::textureLoad(), invoked as follows, forces a download of texture
data associated with a brick from the host memory into the texture memory regardless
of whether or not the texture is already resident in memory.

static int voAppearanceActions::textureLoad(voTexture3D* aTexture3D);

146

Chapter 7: Volumetric Appearance

Creating Custom Loaders

File I/O is not a part of the OpenGL Volumizer API. The sample applications in this
section illustrate how to read voxel data from three-dimensional TIFF files using the IFL
library, and from files that are stored as raw, two-dimensional images.

If your voxel data set is in a format that can be loaded by one of the demonstration
OpenGL Volumizer programs, you can use the utilities in this section to load your two-
or three-dimensional data set, as demonstrated in “Read Brick Data from Disk” on
page 40.

Loading Three-Dimensional Data

To load three-dimensional, TIFF files and to determine the size of the volumes they
contain, use the following two methods in InitAppearance.cxx:

int myGetVolumeSizesIfl(
char *fileName, int &xSize, int &ySize, int &zSize,
voExternalFormatType & diskDataFormat,
voDataType & dataType);

int myReadBrickIfl(char *fileName, void *data,
int xBrickOrigin, int yBrickOrigin, int zBrickOrigin,
int xBrickSize, int yBrickSize, int zBrickSize,
int xVolumeSize, int yVolumeSize, int zVolumeSize);

myGetVolumeSizesIfl() determines the volume sizes, format (for example, INTENSITY
or RGBA) and data type (for example, ubyte or float).

myReadBrickIfl() reads a brick of voxels with their origin at (xBrickOrigin, yBrickOrigin,
zBrickOrigin) and sizes (xBrickSize, yBrickSize, zBrickSize). See myBrickIO.cxx for the
complete source code.

Creating Custom Loaders

147

Loading Two-Dimensional Data

If your data is stored on disk as a sequence of 2D raw images, use the following method:

int myReadBrickRaw(char **fileNames, void *data,
int xBrickOrigin, int yBrickOrigin, int zBrickOrigin,
int xBrickSize, int yBrickSize, int zBrickSize,
int xVolumeSize, int yVolumeSize, int zVolumeSize,
int headeLength, int bytesPerVoxel);

By a “raw” image we understand a verbatim voxel stream in row-major order possibly
proceeded by a fixed size header.

The file information, header length, dimensions, format, and data types, should be
provided by the application, for example, read from the command line or read from the
proprietary header.

Unsupported File formats

Applications that prefer to perform their own file I/O must provide their own API
equivalents for myReadBrickIfl() or myReadBrickRaw() that read an arbitrary block of
voxels from (xBrickOrigin, yBrickOrigin, zBrickOrigin) to (xBrickOrigin+xBrickSize-1,
xBrickOrigin+xBrickSize-1, xBrickOrigin+xBrickSize-1) into a contiguous memory area.
should replace.

File Format Utilities

OpenGL Volumizer provides a variety of voxel manipulation utilities in the util directory.

Converting Voxel Data to the TIFF Format

iflfrombin.cxx illustrates how to convert a raw image into a two-dimensional TIFF file (or
any other two dimensional image recognizable by IFL). The syntax is:

% iflfrombin hdrlen xsize ysize csize bpp infile outimage

hdrlen is the length of the image file’s header in bytes.

148

Chapter 7: Volumetric Appearance

xsize and ysize are file dimensions, csize is the number of channels (1 for INTENSITY, 4
for RGBA data).

bpp, the data type, is uchar, ubyte, or float.

infile and outimage are the input file and the TIFF file, respectively. The TIFF file should
have an extension of .tif by convention.

Merging a List of Two-Dimensional Files Into One Three-Dimensional File

A number of two-dimensional images representing a volume can be combined into a
single, three-dimensional TIFF file using the following command in iflto3Dtiff.cxx:

% iflto3Dtiff inFileName1 inFileName2... outFileName

Test Volumes

To facilitate a simple and repeatable testing environment, a utility for generating a
volumetric test pattern is provided in Volumizer/util/mkcubes.cxx. Invoking this program
with the following parameters produces a volume in a three-dimensional TIFF format:

mkcubes xVolumeSize yVolumeSize zVolumeSize cubeSize fileName.tif

The volume has dimensions specified on the command line and it contains a pattern of
small cubes of size, cubeSize, with intensity varying linearly from their centers to their
surface. For example, use:

mkcubes 256 256 256 128 out.tiff

to produce a 2563 volume filled with 8 cubes each having 128 voxels on the side.

149

Chapter 8

8. Customized Volume Drawing

Drawing a volume can be as simple as calling voGeometryActions::draw(). This method
renders polygons, called voIndexedFaceSets, each of which is a slice of a volume. The
slices are often planar, but they also can be arbitrary surfaces. Each of these slices, clipped
to volume and brick boundaries, can then be drawn.

Applications that choose to use unconventional array types or provide user-defined
per-vertex data have to implement their own draw method.

This chapter provides a procedure for implementing a custom draw method in the
following sections:

• “Customized Volume Drawing Procedure” on page 150

• “clip()” on page 152

• “Drawing Brick Set Collections” on page 154

150

Chapter 8: Customized Volume Drawing

Customized Volume Drawing Procedure

Use the following procedure to create a custom draw method. For each frame, your draw
method must perform the following tasks.

1. Polygonize a volume using voGeometryActions::sample().

This method slices a volume’s geometry with a plane to create a set of slices, as
shown in Figure 8-1.

Figure 8-1 Polygonization of a Single Tetrahedron.

sample() returns the vertices of all the polygon slices. The orientation of the planes
can be specified using one of the following flags:

• VIEWPORT_ALIGNED

• AXIS_ALIGNED

• SPHERICAL

voSamplingPlaneSet describes the set of planes and can be used to iterate through
them to draw the volume.

If you want the sampling surfaces not to be planar, you can implement your own,
application-specific voSamplingSurfaceSet. For more information, see “General
Clipping” on page 152.

Customized Volume Drawing Procedure

151

2. Once the sampling surfaces are clipped to volume’s geometry, the resulting
polygons need to be further clipped to brick boundaries to facilitate state sorting.
You clip polygons to brick boundaries using voGeometryActions::clip().

For more information about this method, see “clip()” on page 152.

3. Sort the bricks from back to front using voGeometryActions::voSortAction.

Given a brick set, voSortAction produces a sorted array of indices that can be
accessed in sorted order. For example, the following code will visit each brick in
visibility sorted order:

voSortAction aSortAction(aVolume->getCurrentBrickSet(),
modelMatrix, projMatrix);

 for(brickNo=0;brickNo<BrickCount;brickNo++) {
 int brickSortedNo = aSortAction[brickNo];

 voBrick *aBrick =
 aVolume->currentBrickSet->getBrick(brickSortedNo);

 ...
 }

4. Process bricks individually in a depth-sorted order. Load the current brick of texture
using voAppearanceActions::textureLoad() or
voAppearanceActions::textureBind().

5. Draw all the polygons with texture using the vertices returned from
voGeometryActions::clip().

6. Repeat steps four and five with each successive brick until the volume is fully
rendered.

Some applications, may want to compute the area of a voIndexedFaceSet after it
was projected onto the screen. This may be required for the sake of fill rate
computation, for example. If you need to determine the area of a face in the set, use
voGeometryActions:: findProjectedArea(). Please, note, that this is a rather heavy
weight routine and should be used only sparingly.

152

Chapter 8: Customized Volume Drawing

clip()

voGeometryActions::cpolygonize() calls voGeometryActions::clip(), defined as
follows, to clip a single polygon computed by voSampleAction() to brick boundaries,
specified by its lower-left and upper-right vertices:

static int clip (voVertexData* vertexData,
voInterleavedArrayType interleavedArrayFormat,
float lowerLeft[3], float upperRight[3], voIndexedFaceSet* cSet);

The arguments specify the coordinates of the polygon’s vertices and possibly other
per-vertex attributes. The input format is described by voVertexData in “Drawing Brick
Set Collections” on page 154. The clipped polygon ends up as a voIndexedFaceSet,
which then can be drawn using voGeometryActions::draw().

General Clipping

An overloaded version of voAppearanceActions::clip() clips a polygon to a convex
polyhedron determined by set of positive half-spaces:

static int clip(voVertexData* vertexData, voInterleavedArrayType
interleavedArrayFormat,float* planes,int planeCount,
voIndexedFaceSet* cSet);

The convex polyhedron is specified by a set of positive half planes given by their
equations {A, B, C, D]. The input array specifies the coordinates of the polygon’s vertices
and possibly other per-vertex attributes. The input format is described by voVertexData.
The clipped polygon ends up as a voIndexedFaceSet.

This action allows applications to implement alternative ways of sampling and clipping.
For example, applications may want to implement a box volumetric primitive by directly
sampling a cube without tessellating it into tetrahedra. In this case, the default instance
of voAppearanceActions::sample() can be replaced with a call to clip().

Similarly, for primitives that are convex polyhedra (for example, tetrahedra) it is possible
to collapse sample() and clip() into a single routine. After all, “slicing” a tetrahedron with
a plane followed by clipping the resulting polygon to a box, is equivalent to clipping the
plane to the convex region determined by the ten positive half-planes defining the region
of intersection between the tetrahedron and the box.

clip()

153

Other Applications

clip() is a general purpose utility and may be used by applications to accomplish
general-purpose clipping to a clip box. (For more information about clip boxes, see “Clip
Boxes” on page 28.)

For example, it is common in many diagnostic applications to display an arbitrarily
oriented plane through the data set that may not necessarily coincide with the original
acquisition direction (this task is referred to as Multi-Planar Reformation (MPR). For
more information about MPR, see “Polygonizing Arbitrarily Oriented Cross Sections” on
page 118.

Similarly, in seismic data interpretation it is desired to visualize data along an arbitrarily
shaped surface (e.g., geological horizon). In both of these situations, the
planes/polygons need to be clipped to the brick boundaries so that the resulting
polygons can be texture mapped correctly.

Consider a situation where an MPR along a plane described by [A, B, C, D] is required.
One can, apply the sample() in order to clip the plane to each individual tetrahedron and
feed the results into clip() to clip them to each brick.

float planeEquation[4] = { A, B, C, D,};
float tetraVerts[4][3] = { ... }; // vertices of the tetrahedron
float brickLowerLeft[3] = { 0.5, 0.5, 0.5 };
float brickUpperRight[3] = { 254.5, 254.5, 254.5 };
voVertexData vData(4,valuesPerVertex); // intermediate polygon verts

sample(tetraVerts,planeEquation,&polygonVerts);
clip(&polygonVerts,brickLowerLeft, brickUpperRight, aFaceSet);

Given a brick, one should clip to the clip box rather than the brick boundary to avoid
seams:

voBrick *aBrick;

aBrick->getClipBrickSizes(brickLowerLeft, brickUpperRight);

Note: For applications that deal exclusively with canonical volumes, where the
geometry coincides with appearance, it is not necessary to clip to tetrahedra boundaries.
For example, the polygons that comprise the geological horizon can be fed directly to
clip().

154

Chapter 8: Customized Volume Drawing

Drawing Brick Set Collections

In a voBrickSetCollection, you want to draw the copy of the volume that has the least
sampling artifacts.

voGeometryActions::findClosestAxisIndex() identifies the orientation (XY, XZ, or YZ)
that minimizes sampling artifacts under some sampling modes. The result is generally
used in conjunction with the voBrickSetCollection to select the most suitable copy of a
volume for the current view:

voGeometryActions::findClosestAxisIndex(), defined as follows, returns a
voPlaneOrientation.

static voPlaneOrientation findClosestAxisIndex(
GLdouble modelMatrix[16], GLdouble projMatrix[16],
int samplingMode);

modelMatrix[] and projMatrix[] are the ModelView and Projection matrices that can be
easily obtained from OpenGL state:

glGetDoublev(GL_MODELVIEW_MATRIX, modelMatrix);
glGetDoublev(GL_PROJECTION_MATRIX, projMatrix);

samplingMode can have several values:

• voSamplingModeScope::VIEWPORT_ALIGNED, in which the planes are parallel
to the viewport, that is, they change with every view.

• voSamplingModeScope::AXIS_ALIGNED, in which the planes are aligned with
the axis that is most parallel to the line of sight.

The return value is one of the following:

enum voPlaneOrientation{
UNSPECIFIED,
XY,
XZ,
YZ,

};

The value is the axis that is most aligned parallel either to the line-of-sight vector or the
viewport, depending on samplingMode. For proper 3D volumes (i.e., none of the brick
dimensions is 1) the value of UNSPECIFIED is returned.

Drawing Brick Set Collections

155

Example Use of findClosestAxisIndex()

Example 8-1 shows how to use findClosestAxisIndex().

Example 8-1 findClosestAxisIndex() Example

if(aVolume->interpolationType == voInterpolationTypeScope::_2D)
aVolume->setCurrentBrickSet(

findClosestAxisIndex(
modelMatrix,projMatrix,
voSamplingModeScope::AXIS_ALIGNED));

draw()
// voGeometryActions::draw() can be applied to a voFaceSet to render
it into the // frame buffer:

void
draw(

voIndexedFaceSet *aFaceSet,
GLenum mode, // GL_LINE or GL_FILL
voInterleavedArrayType interleavedArrayFormat);

interleavedArrayFormat is one of the interleaved array types described for voVertexData
in “Read Brick Data from Disk” on page 40.

157

Appendix A

A. Volume Rendering Examples

A number of OpenGL Volumizer application examples are included in
/usr/share/Volumizer/demos/Volumizer. They include an extensive set of OpenGL, Open
Inventor, and IRIS Performer samples. In addition, a set of utilities for voxel data
manipulation is provided in /usr/share/Volumizer/util as described earlier.

It should be noted that all the examples were intended as an illustration of a specific
feature of the API and are thus kept rather simple. No full-featured viewer is provided
at this time.

OpenGL Examples

There are a number of examples provided here that illustrate the use of Volumizer in the
framework of an OpenGL application. They all share a common structure and much of
the source. For example, most of the examples share the same main() routine (to be found
in voglMain.cxx). This is done in order to emphasize the similarities and differences, to
facilitate code reuse, and to provide consistent user interface for all examples. The next
section discusses the common structural elements.

158

Appendix A: Volume Rendering Examples

All the programs define five functions: my_InitAppearance(), my_InitGeometry(),
my_InitGfx(), my_DrawVolume(), and my_Cleanup(). The contents of these functions
vary from application to application, but their purpose remains the same:

• my_InitAppearance() parses the command line arguments for input file name,
selects optimal parameters for representing voxel data, creates an instance of
voBrickSetCollection, reads and converts the data. It is called from main().

• my_InitGeometry() creates an instance of voIndexedTetraSet to represent the
region of interest of the volumetric object to be rendered. It also allocates
storage for transient geometry (voIndexedFaceSet) produced during the
polygonization stage. It is called from main().

• my_InitGfx() performs certain types of initialization and optimization on the
voxel data (e.g., creation of texture objects) that require the graphics context to
be present. This is also where the lookup tables get initialized. It is called once
the connection to the server is established (e.g., from the Expose callback).

• my_DrawVolume() is called for every frame to polygonize the volumetric
shape and draw the resulting geometry.

• my_Cleanup() is called once the application is done with the volume and wants
to reclaim the system resources (e.g., memory, texture objects, etc.).

For example, voglSimpleMain.cxx and voglSimpleVolume.cxx illustrate the above routines
in action in a minimalist fashion. This is the smallest self-contained example. However,
the resulting application, voglSimple, has very limited capabilities.

All the remaining examples share a substantial amount of code. In particular, they share
much of the implementation of the user interface. For example, dragging the left mouse
button causes all applications to rotate the scene around its center. Similarly, middle
mouse button will modify the current transfer function using the cursor position to
determine the center and width of a grayscale linear ramp (-lutFile on the command line
disables this feature, as described below).

All the applications, except as noted below, take a single command line argument, which
is the name of the 3D TIFF file containing the voxel data. Sample data sets in this format
are provided in Volumizer/data/volumes/. Look in Volumizer/data/volumes/*/README for
detailed format description. voglRaw takes as argument a list of file names of a sequence
of 2D images stored as raw voxel streams. A sample data set in this common format is
provided in Volumizer/data/volumes/*/raw.

OpenGL Examples

159

It is also possible to generate a simple 3D test pattern consisting of an array of cubes with
varying density. Volumizer/util/mkcubes was provided for this purpose. It creates output
in form of a 3D TIFF file. For example:

mkcubes 128 128 128 32

will create a volume 128 units on the side filled with a series of 8 cubes (each 32 units on
a side) of varying density.

All sample applications take the same set of command line options. These are:

• -2D -- render using 2D textures (default is 3D if supported)

• -3D -- render using 3D textures

• -color -- render in RGBA mode (default is monochrome)

• -dataRange %d %d --specify the dynamic range of your data

• -lut %d %d -- generate a grayscale linear ramp with center and width

• -lutFile %s -- read in the transfer function from a file

• -monochrome -- render in grayscale mode (saves memory and bandwidth)

• -tessellationSize %d -- for voglSpaceLeap the size of the adaptive subdivision

The options can come anywhere on the command line and can be abbreviated (ambiguity
resolved in lexicographic order, e.g., -lu expands to -lut not -lutFile). Individual
programs are discussed below. All programs are executed with the following command:

program volume.tif

unless indicated otherwise. Consult the README file in the demo directory for specific
instructions and options use.

160

Appendix A: Volume Rendering Examples

voglBasic

voglBasic is a version of voglSimple extended to use a lookup table, parse the command
line arguments, and select different options. Typical invocations include:

voglBasic volume.tif
voglBasic volume.tif -2D
voglBasic volume.tif -color
voglBasic volume.tif -color -lutFile lookup.table

Sample lookup tables are provided in Volumizer/data/tables.

voglCache

voglCache replaces the contents of the basic my_DrawVolume() modifying it to use
transient geometry caching from frame to frame in order to amortize the cost of
polygonization. In addition, it uses a call to voGeometryAction::drawUtility() which is
a high level utility function that will try to draw the volumetric object efficiently. While
this utility simplifies the volume rendering code even further it has one drawback:
drawUtility() does not have precise semantics associated with it and may change in
future releases. Applications that rely on the specifics of the rendering process may want
to exercise more control by adopting the more explicit version provided by voglBasic.

voglRaw

This application provides functionality identical to that of voglCache. However, it accepts
input from a list of files of raw 2D images, instead of a single 3D tiff file. By a “raw” 2D
file, we mean a voxel stream in row-major order possibly proceeded with a fixed length
header. File names, image sizes, header length, and voxel data type are specified on the
command line:

voglRaw 0 256 256 128 ushort -dataRange 0 4095 -lut 135 155 vol*.ima

OpenGL Examples

161

voglSpaceLeap

All the previous examples use a single cube matching the voxel array in size as geometry.
voglSpaceLeap replaces the content of my_InitGeometry() to tessellate the volume into a
large number of small sub-cubes. The sub-cubes that are empty (outside of the data range
of interest) are discarded, and the adjacent non-empty sub-cubes are coalesced to reduce
the number of tetrahedra in the scene (each cube is still represented as 5 tetrahedra). The
size of the sub-cubes and the voxel range are specified on the command line:

voglSpaceLeap volume.tif -tess 8 40 255

The results are shown below.

voglMorph

All the previous examples specified the vertex data in V3F format, thus implicitly
assuming that the voxel and vertex coordinates be identical. voglMorph replaces the
contents of my_InitGeometry() to explicitly specify the voxel coordinates on per-vertex
basis. If the mapping between the vertex and voxel coordinates is not an identity, the
rendered volume appears warped. Consult the figures below.

Figure A-1 voglSpaceLeap: Space Leaping Example

162

Appendix A: Volume Rendering Examples

voglSphere

voglSphere replaces the content of my_InitGeometry() to define a spherical region of
interest. Extended volumetric primitives are used for that purpose.

Figure A-2 voglSphere: A Spherical Region of Interest

voglPick

voglPick illustrates Volumizer’s ability to pick individual voxels from within the volume.
Press the right mouse button to select the line of sight through the cursor. A signal
corresponding to the values of voxels along this line is drawn at the bottom of the screen.
See the figure below.

Figure A-3 voglPick: Voxel Picking Example

OpenGL Examples

163

voglShade

voglShade modifies the my_DrawVolume() routine to apply per voxel shading using the
tangent space method (Brian Cabral, SIGGRAPH97). Each slice is drawn twice using
slightly different texture coordinates to effectively compute the component of the
gradient along the light vector. Use the right mouse button to move the light vector
around.

voglUnstructured

voglUnstructured virtually eliminates my_InitAppearance() in order to render
unstructured grids: a tetrahedral tessellation with per-vertex colors but no texture
associated with it.

voglMirror

voglMirror illustrates multi-pass rendering of a heterogeneous scene containing both
surface and volume objects in order to accomplish special effects such as reflection and
refraction. The scene is rendered twice, once from the imaginary and again from the
actual eye position and the results are combined. Use the left mouse button to tilt the
scene and the middle button to move the sphere around.

Figure A-4 voglMirror: A Muti-pass Reflection Algorithm on a Heterogeneous Scene

164

Appendix A: Volume Rendering Examples

voglMPR1 and voglMPR2

These two programs illustrate drawing of Multi-Planar Reconstructions (MPRs) or cross
sectional images on stacks of 2D images. This code is useful for efficiently computing
oblique slices through volumes on machines that do not support 3D texture mapping
efficiently. voglMPR1 slices the volume with a plane, while voglMPR2 with a couple of
polygons.

Open Inventor Examples

A set of examples that use Open Inventor as the underlying software platform is also
provided. Their main purpose is to illustrate how to integrate the functionality provided
by Volumizer with the retained mode framework of Open Inventor. Note that this is not
an endorsement of Open Inventor as a viable development environment for new
applications; these examples are provided solely to illuminate Volumizer to existing and
past Open Inventor users.

OpenGL Volumizer operates in the immediate mode characteristic of OpenGL. In order
to take advantage of its volume rendering capabilities in an Open Inventor environment
we have to extend the core set of classes and traversal methods provided by Inventor.

In the simplest case, we have to implement two classes to represent a volumetric object:
one to represent geometry, the other, appearance. These are voivGeometry and
voivAppearance respectively. voivGeometry will be subclassed from soShape, and
voivAppearance from soNode, becoming a part of the current state. In addition, we will
also need voivAppearanceElement which will be derived from SoReplacedElement
and which will be used to get the volume appearance from the current state.

voivViewer is an application that uses these two classes to implement a simple volume
viewer. It is essentially identical to ivview (it is possible to build a shared library from the
objects provided and convince ivview to load them as well) capable of displaying
volumetric objects. voivViewer takes a single command line argument that is a file in an
Open Inventor format. Sample input files were provided in
/usr/share/Volumizer/data/Inventor. For example:

voivViewer Simple.IV

Open Inventor Examples

165

voivFreeFormDeform is another application that builds on the Open Inventor classes
previously described. It illustrates Volumizer’s ability to clip the volumetric model to
arbitrarily shaped surfaces and to accomplish free form deformations of volumes. In
order to grab on a vertex press ESCAPE key or click on the “arrow” button in the upper
part of the right panel on the viewer.

In the first mode of operation, voivViewer takes as input the same input file as voivViewer
(i.e., V3F vertex format):

voivFreeFormDeform Simple.IV

Figure A-5 Clipping Volumes to Arbitrary Surfaces

Grab one of the vertices outlining the volume’s geometry (drawn as a yellow wireframe)
and drag it around. If you move the vertex towards the center, the surfaces of the
distorted geometry will act as clipping planes as shown above.

In the second example, the input volume uses T3F_V3F per-vertex data:

voivFreeFormDeform UniformT3F.IV

166

Appendix A: Volume Rendering Examples

Dragging a vertex will cause the volume to morph:

Figure A-6 Free-form Deformation of Volumes

IRIS Performer Example

A sample implementation of a Performer volume node is also provided. The executable
takes a single command line argument that is the path to a 3D TIFF file containing the
voxel data.

perfvol volume.tif

Use the left, middle, and right mouse buttons to translate, rotate, and scale the model
respectively.

167

Glossary

brick

is a set of voxels that is small enough to be cached by underlying hardware, generally
texture memory.

brick set

is composed of one or more adjacent bricks.

brick set collection

is one or more brick sets for applications and platforms that require several copies of the
same volume with possibly different memory layouts, for example, XY, XZ, and YZ
stacks of slices.

caching

maintains objects in anticipation for future reuse; transient geometry can be cached from
frame to frame in order to amortize polygonization cost.

clip box

is an abstract construct associated with overlapping bricks. If two bricks overlap, all
geometry, for example, sampling surfaces, has to be clipped to each brick’s clip box to
avoid seaming.

data type

is voxel’s numeric representation, for example, unsigned byte, or float.

external format

is an application side voxel format, for example, INTENSITY.

faces

are polygons resulting from polygonization. Each face is a slice of a volume and may
consist of a number of polygons.

168

Glossary

internal format

is a voxel format internal to the graphics adaptor, for example, INTENSITY8_EXT.

model (or shape)

is a combination of geometry and appearance attributes; for example a triangle with
per-vertex color, or a tetrahedron with 3D textures mapped on it; it is the graphical object
that appears in the scene.

multi-planar reformation

is a cross section through a volume

native (or disk) format

is a format of the voxels as they are store on the disk, for example, INTENSITY.

polygonization

is the process of slicing a volumetric geometry along with a family of surfaces. The result
is a set of polygons, each with a different texture. These polygons are used to display the
volume and can be passed to other rendering toolkits, such as IRIS Performer.

ray casting

In this approach, a ray is traversed from the viewer’s eye trough each drawable pixel
with colors and opacities accumulated along the way. Can proceed in ray-order or
sampling-distance order.

slicing

is a process of sampling of a solid model with a family of surfaces in order to polygonize
it. Sampling-distance order ray casting.

tessellation

subdividing a shape into primitives. For example, a concave polygon can be tessellated
into triangles, a solid torus into tetrahedra.

transient geometry

is face sets resulting from polygonizations; these are often discarded after each frame.

volume

is a pair of geometry and appearance defining a volumetric model.

Glossary

169

volume roaming

displaying an interactively manipulated volume of interest that is substantially smaller
than the whole volume.

volumetric (or solid) model

is defined as the combination of geometry (for example, a sphere) and appearance (for
example, the voxels representing your data) to represent a solid (i.e., not hollow) object.

volumetric primitive

is a building block used in modeling of solid shapes. For example: tetrahedron, prism,
pyramid, hexahedron, cylinder, cone, sphere; primitives are used to build more complex
shapes, for example, sub-parts of a volume, region of interest, or a deformable grid.

voxel coordinates

is a reference frame for specifying per-vertex properties, for example, T3F_V3F T3F
refers to voxel reference frame. Voxel coordinates map piecewise linearly onto the
per-brick texture coordinates.

voxel

is a value in a three-dimensional array.

171

Symbols

_SAMPLE_OVER_OBJECT, 79
_SAMPLING_AXIS_ALIGNED, 79

Numbers

2D and 3D mixing, 114
2D to 3D, changing, 148

A

allocate, voxel data, 144
allocate memory, 40, 72
API, 3
API, common classes, 33
API, functional categories, 94
API, hierarchy, 93
appearance, 12, 70, 84, 129
appendPoly(), 107
application, template, 34
array, 104
axis, find closest, 155
AXIS_ALIGNED, 53, 154

B

bilinear, 71, 74
blending function, 57
book, structure, xiv
boundFaceCount(), 76
brick, 25
brick, collection, 72
brick, coordinates, 138
brick, count, 74
brick, deleting, 82
brick, determine number of, 74
brick, interleave, 44
brick, load, 40
brick, loading, 151
brick, optimize, 44
brick, overlap, 27
brick, scale, 42
brick, size restrictions, 29
brick, sorting, 151
brick set, 25, 143
brick set collection, 26, 39, 143
button input, 88

C

callback, 92
camera, 127

Index

172

Index

classes, description of, 96
classes, Volumizer, 94
clean up, 65
clip(), 152
clip()., 151
clip box, 27, 28
clip planes, 151
clip texture, 137
collection, brick set, 26
color, 59
conventions, xvi
convert data, 43
converting 2D to 3D, 148
coordinates, 84, 102
coordinates, brick, 138
count, brick, 74
cracking, 25
cube, 45

D

data, convert, 43
data, delete, 40
data, multiple copies, 44
data, optimize, 44
data, scale, 42
data, scaling, 134
dataAlloc(), 40, 72, 144
dataConvert(), 43, 134
data file, handles large, 5
data format, 131
dataFree(), 40, 65, 82
dataScaleRange(), 42, 134
data structures, 102
data types, 130

deallocate, 65
deallocate, face set, 108
debugging, 64
declarations, 36
deformation, 14
delete, 40, 65
destructor, for face sets, 108
disk, load from, 40
display, 91
documentation, xv
draw, 50
draw(), 78, 81, 115, 149
draw, customized, 149
drawing outline of brick, 142

E

error, number, 63, 64
error, string, 63
error handler, 63
errors, handling, 63
external format, 132
eye position, 127

F

face, 49
faces, 47
face set, 107
face set, deallocate, 108
file format utilities, 147
file name of a volume, 71
findCameraPosition(), 127
findClosestAxisIndex(), 154, 155
findClosestAxisIndex()), 78

173

Index

findProjectedArea(), 151
findViewDirection(), 127
format, convert, 42
format, external, 132
format, internal, 133
format, optimal, 133
format, table, 59
format, utilities, 147
format, voxels, 70
free data, 40
freeing data, 65

G

geometry, 12, 70, 84, 101
geometry, create, 75
geometry, defining, 45
geometry, delete, 81
geometry, drawing, 50
geometry, roaming, 124
geometry, storage, 47
getBestParameters(), 37, 62, 71, 142
getBrickCount(), 74
getCurrentBrickSet(), 79
getDataPtr(), 144
getErrorNumber(), 63
getErrorString(), 63
getInterpolationType(), 79
GL_MODELVIEW_MATRIX, 78
GL_PROJECTION_MATRIX, 78
GL_TEXTURE_COLOR_TABLE_SGI, 60
glBlendFunc(), 122
glwSimpleMain.cxx, 83
graphics intialization, 85
graphics state, 57

H

header files, 36
hexahedra, 25
higher-level, primitives, 18
higher level primitives, 113

I

iflto3Dtiff, 148
includes, 69
index, 47
indices, 104
interate, face sets, 108
interleave, advantages, 135
interleave, manually, 136
interleave bricks, 44
intermix 2D and 3D, 31
internal format, 133
interpolation, 71, 74
interpolationType, 57
intialize internal data structures, 86
Inventor, 6
IRIS Performer, 6, 31
iterate, 72

K

keyboard input, 88

L

load brick, 40
loaders, custom, 146
lookup, post, 60

174

Index

lookup, pre, 60
lookup table, 59
low-level, 6

M

main(), 91
memory, 72
memory, allocation, 40
memory, deallocating, 65
memory, texture, 117
mixing 2D and 3D, 114
model, hierarchical, 15
modelMatrix, 51
modelview, 78
MPR, 121, 153
multi-pipe, 7
Multi-planar Reformatting, 121
multiple copies, 44
multiple copies of data, 44
myGetVolumeSizesIfl(), 146
myReadBrickIfl(), 40, 144, 146

N

nextPrimitive(), 105
nextVertex(), 105
NO_ERROR, 63

O

OBJECT, 55
opacity, 21, 59
opaque, 120

opaque geometry, 78
OpenGL, 6, 8
OpenGL Optimizer, 6, 31
OpenGL Volumizer, 3
Open Inventor, 6
optimal format, 133
optimize, 44, 77
optimize, brick size, 71
optimize, brick sizes, 142
Optimizer, 6, 31
orientation, 154
orthographic projection, 20
outline of brick, brick, outline, 142
overlap, 27
overlapping, 117
overlapping volumes, 116
overview, of Volumizer, 4

P

PARC, 16
Performer, 6, 31
per-part appearance, appearance, per part, 15
perspective projection, 20
pick(), 126
picking, 125
platform support, 6
polygon, 30
polygon, append, 107
polygonization, 30
polygonize(), 50, 79, 118
polygonizeMPR(), 121
polygons, 115, 118
post-interpolation lookup, 60
pre-allocated array, 104, 107

175

Index

pre-interpolation lookup, 60
primitive, complex, 25
primitive, higher level, 18
primitive, tetrahedron, 17
primitives, 10
primitives, higher level, 113
programming algorithm, 35
programming template, 33, 35
projection matrix, 78
projMatrix, 51

R

ray casting, 20
ray order, 22
ray-order, 20
read brick data, 40
reference frame, 138
rendering, slicing, 20
renderingMode, 37
RGBA, 59
RGBA8_EXT, 59
roaming, 124

S

sample(), 150, 153
sampling, 56
sampling mode, 52
sampling plane, 81
sampling-surface order, 20
scale, voxel values, 42
scale data, 42, 134
selecting, 125
setBrickSizes(), 141

setDebugLevel(), 64
setErrorHandler(), 63
setErrorNumber(), 64
shading, 21, 122
shape, 12
shape, drawn, 50
shear warp, 20
Silicon Graphics APIs, 8
size, 70, 73
size, brick, 141
size, bricks, 29
size, optimal, 142
slicing, 20
sort bricks, 151
sorting, 56
space leaping, 16
SPHERICAL, 53
splatting, 20
state, 56, 57
storage, for transient geometry, 47
storage, free, 65
storage, freeing, 82
surface-only models, 11

T

table, format, 59
tagged voxels, 137
template, 33, 35
template, application, 34
tesselation, minimal, 23
tessellation, fine, 16
tetrahedra, 45
tetrahedra, indexed, 109
tetrahedron, as primitive, 17

176

Index

tetraset, indexed, 47
texgen, 57
texgen(), 80
texgenDisable(), 81
texgenEnable(), 140
texgenSetEquation(), 81, 140
texture, 70, 78, 80
texture, memory, 81
texture, stack of 2D, 119
TEXTURE_OBJECTS, 136
textureBind(), 145
textureDisable(), 78, 81
textureEnable(), 57, 80
textureInterleave(), 136
textureLoad(), 145, 151
textureMakeMatrix(), 141
texture mapping, 119
texture memory, 117
texture objects, 136
texture paging, 30
TIFF files, 146
T-junction, 24
toolkits, 31
trackball, 88
transient storage, 76
translucent, 115
transpose, 41, 44, 74
traversal of geometries, 105
triangle, as primitive, 17
trilinear, 71
two-dimensional v. Volumizer, 9

U

user-defined data, 102
user-supplied data, data, user-supplied, 48

V

vertex, 104
vertex, data order, 103
vertex coordinates, 75
vertex parameters, 102
VIEW_VOLUME, 54
viewing frustum, 22
viewpoint, 127
VIEWPORT_ALIGNED, 52, 54, 154
VO_SAMPLING_AXIS_ALIGNED, 115
voAppearanceActions, 40, 57, 72, 96
voBrick, 96, 130
voBrickSet, 96
voBrickSetCollection, 39, 70, 75, 84, 96, 143
voBrickSetCollection, drawing, 154
voBrickSetCollectionIterator, 72, 96
voBrickSetIterator, 96
voBrickSets, 143
voCache, 98
voDataType, 38, 70, 130
voDataTypeScope, 38
voError, 63, 98
voErrorType, 63
voExternalFormatType, 39, 70, 132
voFaceSet, 106
voFaceSets, 51, 115
voGeometryActions, 97
VOI, 14
VOI, arbitrary shape, 111
voIndexedFaceSet, 48, 49, 50, 77, 97, 105, 106, 107
voIndexedFaceSetIterator, 97, 105, 108
voIndexedFaceSetPtr, 77
voIndexedSet, 97, 105
voIndexedSetIterator, 97, 105

177

Index

voIndexedTetraSet, 45, 47, 75, 84, 97, 105, 109
voIndices, 97, 104
voInitAppearance, 70
voInterleavedArrayFormat, 126
voInternalFormatType, 38, 70, 133
voInterpolationType, 57, 71
voInterpolationTypeScope, 44, 78, 96
voLookupTable, 59, 98
voLookupTablePost, 98
voLookupTablePre, 98
volume, defining, 45
volume, deformation, 14
volume, drawing, 149
volume, multiple, 116
volume, properties, 11
volume, roaming, 124
volume, slicing, 20, 22
volumeMakeTransposed, 74
volumeMakeTransposed(), 41, 44
Volume of Interest, 124
volume of interest, 14
volumeOptimize(), 44, 77
Volumizer, 3
Volumizer, v. 2D APIs, 9
voOptimizeVolumeTypeScope, 96
voPartialBrickTypeScope, 96
voPlaneOrientation, 154
voPlaneOrientationScope, 97
voRenderingMode, 71
voRenderingModeScope, 98

voSamplingMode, 52
voSamplingModeScope, 154
voSamplingPlaneSet, 97, 150
voSamplingSpaceScope, 56
voSamplingSurfaceSet, 97
voSortAction, 98, 151
voTexture3D, 96, 130
voTextureLookupPost(), 60
voTextureLookupPre(), 60
voutIndexedHexaSet, 113
voutPerfMeter, 98
voutTimer, 98
voVertexData, 48, 97, 102, 104
voxel, coordinates, 140
voxel, delete, 40
voxel, scale values, 42
voxel, tagged, 137
voxel data. storage, 40
voxel values, 137

X

xfmVox2TexCoords(), 80, 139
X window, 92

Z

Z-buffer, 122
Z-buffering, 115

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3720-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

