
IRIS FailSafe™ 2.0
Programmer’s Guide

Document Number 007-3900-001

IRIS FailSafe™ 2.0 Programmer’s Guide
Document Number 007-3900-001

CONTRIBUTORS

Written by Lori Johnson
Illustrated by Dany Galgani
Edited by Rick Thompson
Production by Linda Rae Sande
Engineering contributions by Michael Nishimoto, Bill Sparks, Paddy Sreenivasan,

Dan Stekloff, Rebecca Underwood, and Manish Verma
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1999, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in the Rights in Data clause at FAR 52.227-14 and/or in similar or successor
clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished
rights reserved under the Copyright Laws of the United States.
Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

IRIS, IRIX, and Silicon Graphics are registered trademarks and IRIS FailSafe and the
Silicon Graphics logo are trademarks of Silicon Graphics, Inc. INFORMIX is a
trademark of Informix Software, Inc. Netscape is a trademark of Netscape
Communications Corporation. NFS is a trademark of Sun Microsystems, Inc. Oracle
is a trademark of Oracle Corporation.

iii

Contents

List of Figures vii

List of Tables ix

About This Guide xi
Audience xi
Structure of This Document xi
Related Documentation xii
Conventions Used in This Guide xiii

1. Introduction to IRIS FailSafe Programming 1
IRIS FailSafe Concepts 1

Cluster Node (or Node) 1
Pool 1
Cluster 2
Node Membership 2
Process Membership 2
Resource 2
Resource Name 2
Resource Type 3
Resource Group 3
Resource Dependency List 4
Resource Type Dependency List 4
Failover 4
Failover Policy 5
Failover Domain 5
Failover Attribute 5
Failover Script 6
Action Scripts 6

iv

Contents

High-Availability Services that are Available for IRIS FailSafe 7
Appropriate Applications for High Availability 8
Overview of the Programming Steps 9
IRIS FailSafe System Software 10

Layers 10
Communication Paths 12
Components 15

2. Using the Script Library 19
Set Global Definitions 20
Check Arguments 22
Read an Input File 23
 Execute a Command 23
Write Status for a Resource 24
Get the Value for a Field 25
Get Resource Information 26
Print Exclusivity Check Messages 26

3. Writing the Action Scripts and Adding Monitoring Agents 29
Set of Action Scripts 29
Preparation 31

Is Monitoring Necessary? 32
Types of Monitoring 32
What are the Symptoms of Monitoring Failure? 33
How Often Should Monitoring Occur? 33
Examples of Testing for Monitoring Failure 33

Contents

v

Script Format 34
Header Information 35
 Set Local Variables 35
Read Resource Information 36
Exit Status 36
Basic Action 37
Set Global Variables 37
 Verify Arguments 38
Read Input File 38
Complete the Action 39

Steps in Writing a Script 39
Examples of Action Scripts 40

start Script 40
stop Script 42
probe Script 43
monitor Script 45
exclusive Script 47
restart Script 48

Monitoring Agents 49

4. Creating a Failover Policy 51
Contents of a Failover Policy 51

Failover Domain 51
Failover Attributes 52
Failover Script 53

Failover Script Interface 56
Example Failover Policies 57

N+1 Configuration 57
N+2 Configuration 59
N+M Configuration 60

vi

Contents

5. Defining a New Resource Type 63
Information You Must Gather 63
Using the GUI 66
Using cluster_mgr Interactively 66
Using cluster_mgr With a Script 71

6. Testing Scripts 73
General Testing and Debugging Techniques 73
Testing an Action Script 74
Special Testing Considerations for the monitoring Script 76

A. Migrating to IRIS FailSafe 2.0 77
Cautions 77
Resource Types 77
Reading Information 79
Parameter Parsing 79
Action Scripts 80

1.2 giveback / 2.0 stop 81
1.2 takeover / 2.0 start 82
1.2 monitor/ 2.0 monitor 83

Ordering Script Actions 84

Index 93

vii

List of Figures

Figure 1-1 Software Layers 11
Figure 1-2 Read/Write Actions to the Configuration Database 13
Figure 1-3 Other Message Paths 14
Figure 1-4 Communication Path for a Node that is Not in a Cluster 15
Figure 4-1 N+1 Configuration Concept 58
Figure 4-2 N+2 Configuration Concept 59
Figure 4-3 N+M Configuration Concept 60

ix

List of Tables

Table i IRIS FailSafe Release Notes xiii
Table 1-1 Example Resource Group 3
Table 1-2 Contents of /usr/cluster/bin 12
Table 1-3 Contents of /var/cluster/ha directory 16
Table 1-4 IRIS FailSafe Administrative Commands 17
Table 2-1 Global Environment Variables 20
Table 3-1 Successful Action Script Results 30
Table 3-2 Failure of an Action Script 31
Table 4-1 Required Failover Attributes (mutually exclusive) 52
Table 4-2 Optional Failover Attributes (mutually exclusive) 53
Table 5-1 Order Ranges 64
Table 5-2 Resource Type Order Numbers 64
Table A-1 Differences between IRIS FailSafe 1.2 and 2.0 Scripts 80

xi

About This Guide

This guide explains how to write the set of scripts that are required to turn an application
into a high-availability service in conjunction with IRIS FailSafe 2.0 software. It also tells
you how to create a new resource type and provides instructions for migrating script
information from Release 1.2 to Release 2.0.

This guide assumes that the IRIS FailSafe system has been configured as described in the
IRIS FailSafe 2.0 Administrator’s Guide.

This guide was prepared in conjunction with Release 2.0 of IRIS FailSafe.

Audience

This guide is written for system programmers who are developing scripts for the IRIS
FailSafe system. These scripts allow the failover of applications that are not handled by
the base and optional IRIS FailSafe products. These programmers must be familiar with
the operation and administration of nodes running IRIS FailSafe, with the applications
that are to be failed over, and with the IRIS FailSafe 2.0 Administrator’s Guide.

Structure of This Document

This guide contains the following chapters:

• Chapter 1, “Introduction to IRIS FailSafe Programming”

• Chapter 2, “Using the Script Library”

• Chapter 3, “Writing the Action Scripts and Adding Monitoring Agents”

• Chapter 4, “Creating a Failover Policy”

• Chapter 5, “Defining a New Resource Type”

xii

About This Guide

• Chapter 6, “Testing Scripts”

• Appendix A, “Migrating to IRIS FailSafe 2.0”

A glossary is also provided.

Related Documentation

Besides this guide, other documentation for the IRIS FailSafe system includes

• IRIS FailSafe 2.0 Administrator’s Guide

• IRIS FailSafe 2.0 INFORMIX Administrator’s Guide (IRIS FailSafe INFORMIX option)

• IRIS FailSafe 2.0 NFS Administrator’s Guide (IRIS FailSafe NFS option)

• IRIS FailSafe 2.0 Oracle Administrator’s Guide (IRIS FailSafe Oracle option)

• IRIS FailSafe 2.0 Netscape Server Administrator’s Guide (IRIS FailSafe Netscape Web
option)

The IRIS FailSafe reference pages are as follows:

• cbeutil(1M)

• cdbBackup(1M)

• cdbRestore(1M)

• cdbutil(1M)

• cluster_mgr(1M)

• failsafe(7M)

• fs2d(1M)

• ha_cilog(1M)

• ha_cmsd(1M)

• ha_exec2(1M)

• ha_fsd(1M)

• ha_gcd(1M)

• ha_ifd(1M)

About This Guide

xiii

• ha_ifdadmin(1M)

• ha_macconfig2(1M)

• ha_srmd(1M)

• ha_statd2(1M)

• haStatus(1M)

Release notes are included with each IRIS FailSafe product. The names of the release
notes are as follows:

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

Bold Function names literal command-line arguments (options/flags)

Bold fixed-width type

Commands and text that you are to type literally in response to shell and
command prompts

Italics New terms, manual/book titles, commands, variable command-line
arguments, filenames, and variables to be supplied by the user in
examples, code, and syntax statements

Fixed-width type

Code examples, error messages, prompts, and screen text

IRIX shell prompt for the superuser (root)

Table i IRIS FailSafe Release Notes

Release Note Product

failsafe2 IRIS 2.0 FailSafe

cluster_ha Cluster high availability services

cluster_admin Cluster administration services

cluster_control Cluster node control services

1

Chapter 1

1. Introduction to IRIS FailSafe Programming

IRIS FailSafe 2.0 provides high-availability services for a cluster that contains up to
8 nodes. High-availability services are monitored by the IRIS FailSafe software. You can
create additional high-availability services by using the instructions in this guide.

This chapter provides an introduction to IRIS FailSafe programming. The sections are as
follows:

• “IRIS FailSafe Concepts” on page 1

• “High-Availability Services that are Available for IRIS FailSafe” on page 7

• “Overview of the Programming Steps” on page 9

• “IRIS FailSafe System Software” on page 10

IRIS FailSafe Concepts

In order to use IRIS FailSafe, you must understand the following concepts.

Cluster Node (or Node)

A cluster node is a single IRIX image. Usually, a cluster node is an individual computer.
The term node is also used in this guide for brevity; this use of node does not have the
same meaning as a node in an Origin system.

Pool

A pool is the entire set of nodes involved with a group of clusters. The group of clusters
are usually close together and should always serve a common purpose. A replicated
database is stored on each node in the pool.

2

Chapter 1: Introduction to IRIS FailSafe Programming

Cluster

A cluster is a collection of one or more nodes coupled to each other by networks or other
similar interconnections. A cluster is identified by a simple name; this name must be
unique within the pool. A particular node may be a member of only one cluster. All
nodes in a cluster are also in the pool; however, all nodes in the pool are not necessarily
in the cluster.

Node Membership

A node membership is the list of nodes in a cluster on which IRIS FailSafe can allocate
resource groups.

Process Membership

A process membership is the list of process instances in a cluster that form a process group.
There can be multiple process groups per node.

Resource

A resource is a single physical or logical entity that provides a service to clients or other
resources. For example, a resource can be a single disk volume, a particular network
address, or an application such as a web server. A resource is generally available for use
over time on two or more nodes in a cluster, although it can be allocated to only one node
at any given time.

Resources are identified by a resource name and a resource type. One resource can be
dependent on one or more other resources; if so, it will not be able to start (that is, be
made available for use) unless the dependent resources are also started. Dependent
resources must be part of the same resource group and are identified in a resource
dependency list.

Resource Name

A resource name identifies a specific instance of a resource type. A resource name must be
unique for a given resource type.

IRIS FailSafe Concepts

3

Resource Type

A resource type is a particular class of resource. All of the resources in a particular resource
type can be handled in the same way for the purposes of failover. Every resource is an
instance of exactly one resource type.

A resource type is identified by a simple name; this name must be unique within the
cluster. A resource type can be defined for a specific node, or it can be defined for an
entire cluster. A resource type that is defined for a specific node overrides a clusterwide
resource type definition with the same name; this allows an individual node to override
global settings from a clusterwide resource type definition.

Like resources, a resource type can be dependent on one or more other resource types. If
such a dependency exists, at least one instance of each of the dependent resource types
must be defined. For example, a resource type named Netscape_web might have resource
type dependencies on resource types named IP_address and volume. If a resource named
web1 is defined with the Netscape_web resource type, then the resource group containing
web1 must also contain at least one resource of the type IP_address and one resource of the
type volume.

The IRIS FailSafe software includes many predefined resource types. If these types fit the
application you want to make into a high-availability service, you can reuse them. If none
fit, you can create additional resource types by using the instructions in this guide.

Resource Group

A resource group is a collection of interdependent resources. A resource group is identified
by a simple name; this name must be unique within a cluster. Table 1-1 shows an example
of the resources for a resource group named WebGroup.

Table 1-1 Example Resource Group

Resource Resource Type

vol1 volume

/fs1 filesystem

199.10.48.22 IP_address

web1 Netscape_web

4

Chapter 1: Introduction to IRIS FailSafe Programming

If any individual resource in a resource group becomes unavailable for its intended use,
then the entire resource group is considered unavailable. Therefore, a resource group is
the unit of failover for IRIS FailSafe.

Resource groups cannot overlap; that is, two resource groups cannot contain the same
resource.

For information about configuring resource groups, see the IRIS FailSafe 2.0
Administrator’s Guide.

Resource Dependency List

A resource dependency list is a list of resources upon which a resource depends. Each
resource instance must have resource dependencies that satisfy its resource type
dependencies before it can be added to a resource group.

Resource Type Dependency List

A resource type dependency list is a list of resource types upon which a resource type
depends. For example, the filesystem resource type depends upon the volume resource
type, and the Netscape_web resource type depends upon the filesystem and IP_address
resource types.

For example, suppose a file system instance /fs1 is mounted on volume /vol1. Before /fs1
can be added to a resource group, /fs1 must be defined to depend on /vol1. IRIS FailSafe
only knows that a file system instance must have one volume instance in its dependency
list. This requirement is inferred from the resource type dependency list.

Failover

A failover is the process of allocating a resource group (or application) to another node,
according to a failover policy. A failover may be triggered by the failure of a resource, a
change in the node membership (such as when a node fails or starts), or a manual request
by the administrator.

IRIS FailSafe Concepts

5

Failover Policy

A failover policy is the method used by IRIS FailSafe to determine the destination node of
a failover. A failover policy consists of the following:

• Failover domain

• Failover attributes

• Failover script

IRIS FailSafe uses the failover domain output from a failover script along with failover
attributes to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. A failover
policy name must be unique within the pool.

Failover Domain

A failover domain is the ordered list of nodes on which a given resource group can be
allocated. The nodes listed in the failover domain must be within the same cluster;
however, the failover domain does not have to include every node in the cluster.

The administrator defines the initial failover domain when creating a failover policy. This
list is transformed into a run-time failover domain by the failover script; IRIS FailSafe uses
the run-time failover domain along with failover attributes and the node membership to
determine the node on which a resource group should reside. IRIS FailSafe stores the
run-time failover domain and uses it as input to the next failover script invocation.
Depending on the run-time conditions and contents of the failover script, the initial and
run-time failover domains may be identical.

In general, IRIS FailSafe allocates a given resource group to the first node listed in the
run-time failover domain that is also in the node membership; the point at which this
allocation takes place is affected by the failover attributes.

Failover Attribute

A failover attribute is a string that affects the allocation of a resource group in a cluster. The
administrator must specify system attributes (such as Auto_Failback or
Controlled_Failback), and can optionally supply site-specific attributes.

6

Chapter 1: Introduction to IRIS FailSafe Programming

Failover Script

A failover script is a shell script that generates a run-time failover domain and returns it to
the IRIS FailSafe process. The IRIS FailSafe process applies the failover attributes and
then selects the first node in the returned failover domain that is also in the current node
membership.

The ordered failover script is provided with the IRIS FailSafe release. This script does not
change the order of the initial failover domain. If this script does not meet your needs, you
can create a new failover script using the information in this guide.

Action Scripts

The action scripts are the set of scripts that determine how a resource is started,
monitored, and stopped. There must be a set of action scripts specified for each resource
type.

The following is the complete set of action scripts that can be specified for each resource:

• probe, which verifies that the resource is configured on a server

• exclusive, which verifies that the resource is not already running

• start, which starts the resource

• stop, which stops the resource

• monitor, which monitors the resource

• restart, which restarts the resource on the same server after a monitoring failure
occurs

The IRIS FailSafe software includes action scripts for predefined resource types. If these
scripts fit the resource type that you want to make into a high-availability service, you
can reuse them by copying them and modifying them as needed. If none fits, you can
create additional action scripts by using the instructions in this guide.

High-Availability Services that are Available for IRIS FailSafe

7

High-Availability Services that are Available for IRIS FailSafe

The base IRIS FailSafe release includes the software required to make the following
high-availability services:

• IP addresses (the IP_address resource type)

• XLV logical volumes (the volume resource type)

• XFS file systems (the filesystem resource type)

• MAC addresses (the MAC_address resource type)

Optional software packages, known as plug-ins, are available to make additional
applications into high-availability services. For example:

• IRIS FailSafe Oracle

• IRIS FailSafe INFORMIX

• IRIS FailSafe Netscape Web

• IRIS FailSafe Mediabase

Note: IRIS FailSafe NFS is not part of the core IRIS FailSafe software, but it is
documented with the base release.

If you want to create new high-availability services, or change the functionality of the
provided failover scripts and action scripts by writing new scripts, you will use the
instructions in this guide. However, not all resources can be made into high-availability
services; see “Appropriate Applications for High Availability.”

8

Chapter 1: Introduction to IRIS FailSafe Programming

Appropriate Applications for High Availability

The characteristics of an application that can be made into high-availability service are
as follows:

• The application can be easily restarted and monitored.

It should be able to recover from failures as does most client/server software. The
failure could be a hardware failure, an operating system failure, or an application
failure. If a node crashed and reboots, client/server software should be able to
attach again automatically.

• The application must have a start and stop procedure.

When the resource group fails over, the resources that constitute the resource group
are stopped on one node and started on another node, according to the failover
script and action scripts.

• The application can be moved from one node to another after failures.

If the resource has failed, it must still be possible to run the resource stop procedure.
In addition, the resource must recover from the failed state when the resource start
procedure is executed in another node.

• The application does not depend on knowing the host name; that is, those resources
that can be configured to work with an IP address.

• Other resources on which the application depends can be made into
high-availability services. If they are not provided by IRIS FailSafe and its optional
products (see “High-Availability Services that are Available for IRIS FailSafe” on
page 7), you must make these resources highly available, using the information in
this guide.

Note: An application itself is not modified to make it into a high-availability service.

Overview of the Programming Steps

9

Overview of the Programming Steps

Note: If you do not want to write the scripts yourself, you can establish a contract with
the Silicon Graphics Professional Services group to create customized scripts. See:
http://www.sgi.com/services/index.html.

To turn an application into a high-availability service, follow these steps:

1. Configure and test the base IRIS FailSafe system as described in the IRIS FailSafe
Administrator’s Guide.

2. Understand the application and determine:

■ The configuration required for the application, such as user names,
permissions, volumes, and so on. For more information about configuration,
see the IRIS FailSafe Administrator’s Guide.

■ The other resources on which the resource depends. All interdependent
resources must be part of the same resource group. Additional resources may
also be included in the resource group.

■ The number of instances of the resource type. Each instance of a given resource
type is a separate resource.

■ The commands and arguments required to start, stop, and monitor the
resources.

■ The relationships between this resource and other high-availability services;
specifically, the order in which all high-availability services need to be started
and stopped.

3. Determine whether existing action scripts can be reused. If they cannot, write a new
set of action scripts, using existing scripts and the templates in
/var/cluster/ha/resource_types/template as a guide. See Chapter 3, “Writing the Action
Scripts and Adding Monitoring Agents.”

4. Determine whether the existing ordered failover script can be reused for the resource
group. If it cannot, write a new failover script. See Chapter 4, “Creating a Failover
Policy.”

5. Determine whether an existing resource type can be reused. If none applies, create a
new resource type or clone and modify an existing resource. See Chapter 5,
“Defining a New Resource Type.”

10

Chapter 1: Introduction to IRIS FailSafe Programming

6. Configure the following in the IRIS FailSafe database (for more information, see the
IRIS FailSafe Administrator’s Guide):

■ Resource group

■ Resource type

■ Failover policy

7. Test the action scripts and failover script. See Chapter 6, “Testing Scripts.”

Note: Do not modify the scripts included with the IRIS FailSafe product. New or
customized scripts must have different names from the files included with IRIS FailSafe.

IRIS FailSafe System Software

This section describes the software layers, communication paths, and database.

Layers

An IRIS FailSafe system has the following software layers:

• IRIS FailSafe plug-ins, which create high-availability services. Some plug-ins are
included with the IRIS FailSafe release, others are available for separate purchase. If
the application you want is not available, you can hire the Silicon Graphics
Professional Services group to develop the required software, or you can use this
guide to write the software yourself.

• IRIS FailSafe base, which includes the ability to define resource groups and failover
policies

• High-availability infrastructure, which lets you define clusters, resources, and
resource types (this consists of the cluster_ha installation package)

• Cluster software infrastructure, which lets you do the following:

– Perform node logging

– Administer the cluster

– Define nodes

The cluster software infrastructure consists of the cluster_admin and cluster_control
subsystems).

IRIS FailSafe System Software

11

Figure 1-1 shows a graphic representation of these layers.

Figure 1-1 Software Layers

IRIS FailSafe BaseHigh-Availability

Infrastructure
Cluster Software

Infrastructure

IR
IS

 F
a

ilS
a

fe
 N

F
S

IR
IS

 F
a

ilS
a

fe
 W

e
b

IR
IS

 F
a

ilS
a

fe
 I

N
F

O
R

M
IX

IR
IS

 F
a

ilS
a

fe
 O

ra
cl

e

IR
IS

 F
a

ilS
a

fe
 P

lu
g

-i
n

12

Chapter 1: Introduction to IRIS FailSafe Programming

Table 1-2 describes the layers, which are located in the /usr/cluster/bin directory.

Communication Paths

The following figures show communication paths in IRIS FailSafe.

Table 1-2 Contents of /usr/cluster/bin

Layer Subsystem Process Description

Plug-ins informix_rdbms

oracle_rdbms
ha_ifmx2 IRIS FailSafe database agents. Each database agent monitors

all instances of one type of database.

IRIS FailSafe Base failsafe2 ha_fsd IRIS FailSafe daemon. Provides basic component of the IRIS
FailSafe software.

High-availability
infrastructure

cluster_ha ha_cmsd Cluster membership daemon. Provides the list of nodes,
called node membership, available to the cluster.

ha_gcd Group membership daemon. Provides group membership
and reliable communication services in the presence of
failures to IRIS FailSafe processes.

cmond Start daemon. Starts all IRIS FailSafe daemons, and restarts
them on failures.

ha_srmd System resource manager daemon. Manages resources,
resource groups, and resource types. Executes action scripts
for resources.

ha_ifd Interface agent daemon. Monitors the local node’s network
interfaces.

Cluster software
infrastructure

cluster_admin cad Cluster administration daemon. Provides administration
services and manages the configuration database.

cluster_control crsd Node control daemon. Monitors the serial connection to other
nodes. Has the ability to reset other nodes.

IRIS FailSafe System Software

13

Figure 1-2 Read/Write Actions to the Configuration Database

Node 1

crsd crsdcad cad

ha_cmsd ha_cmsd

ha_gcd ha_gcd

ha_srmd ha_fsd ha_fsd ha_srmd

Configuration
database

Configuration
database

Node 2

Active processes Scripts/executables

Action
scripts

Action
scripts

ha_ifd ha_ifd

Configuration database
synchronization operations

14

Chapter 1: Introduction to IRIS FailSafe Programming

Figure 1-3 Other Message Paths

Node 1 Node 2

Active processes Scripts/executables

crsd crsdcad cad
CAD control operations

Reset communication

ha_cmsd ha_cmsd

Heartbeats/server
membership messages

ha_gcd ha_gcd

ha_srmd ha_fsd ha_fsd ha_srmd

Group membership/
communication messages

Reset
messages

Reset
messages

Reset requests

Action
scripts

Action
scripts

FP
scripts

ha_ifd
ha_ifmx2

ha_ifd
ha_ifmx2

Resource
group

operations

Resource
group
operations

FP
scripts

IRIS FailSafe System Software

15

Figure 1-4 shows the communication path for a node that is in the pool but not in a
cluster.

Figure 1-4 Communication Path for a Node that is Not in a Cluster

Components

The IRIS FailSafe database is a key component of IRIS FailSafe software. It contains all
information about the following:

• Resources

• Resource types

• Resource groups

• Failover policies

• Nodes

• Clusters

The cluster administration daemon (cad) maintains identical databases on each node in
the cluster.

CRSD CAD
Read/write
to database

Configuration
database

CAD of
other machines
in the pool

Communication
with other
CRSDs
in pool

16

Chapter 1: Introduction to IRIS FailSafe Programming

Table 1-3 shows the contents of the /var/cluster/ha directory.

Table 1-3 Contents of /var/cluster/ha directory

Directory or File Contents

comm/ Contains files that communicate between various daemons.

common_scripts/ Contains the script library (the common functions that may
be used in action scripts).

log/ Contains the logs of all scripts and daemons executed by
IRIS FailSafe. The outputs and errors from the commands
within the scripts are logged in the script_nodename file.

policies/ Contains the failover scripts used for resource groups.

resource_types/template Contains the template action scripts.

resource_types/rt Contains the action scripts for the rt resource type.

resource_types/rt/exclusive Verifies that the resource type is not already running.

resource_types/rt/monitor Monitors the resource type.

resource_types/rt/probe Verifies that the resource type is configured on the node.

resource_types/rt/restart Restarts the resource type on the same node on a monitoring
failure.

resource_types/rt/start Starts the resource type.

resource_types/rt/stop Stops the resource type.

IRIS FailSafe System Software

17

Table 1-4 shows the administrative commands available with IRIS FailSafe.

Table 1-4 IRIS FailSafe Administrative Commands

Command Purpose

ha_cilog Logs messages to the script_nodename log files

ha_exec2 Monitors a process (similar to the IRIX ps(1) command)

ha_filelock Locks a file

ha_fileunlock Unlocks a file

ha_ifdadmin Communicates with the ha_ifd network interface agent daemon

ha_http_ping2 Checks if a Netscape node is still running

ha_macconfig2 Displays or modifies MAC addresses

19

Chapter 2

2. Using the Script Library

The /var/cluster/ha/common_scripts/scriptlib file contains the library of environment
variables (beginning with uppercase HA_) and functions (beginning with lowercase ha_)
available for use in your action scripts.

Note: Do not change the contents of the scriptlib file.

This chapter describes functions that perform the following tasks, using samples from
the file:

• Set global definitions

• Check arguments

• Read an input file

• Execute a command

• Write status for a resource

• Get the value for a field

• Get resource information

• Print exclusivity check messages

20

Chapter 2: Using the Script Library

Set Global Definitions

The ha_set_global_defs() function sets the global definitions for the environment
variables shown in Table 2-1.

Table 2-1 Global Environment Variables

Variable Type Variable Name Default Description

Global
variable

HA_HOSTNAME `uname -n` The output of the uname command with
the -n option, which is the host name or
nodename. The nodename is the name by
which the system is known to
communications networks.

Command
location

HA_CMDSPATH /usr/cluster/bin Path to user commands.

HA_PRIVCMDSPATH /usr/sysadm/privbin Path to privileged commands (those that
can only be run by root).

HA_LOGCMD ha_cilog Command used to log into the IRIS
FailSafe logs.

HA_RESOURCEQUERYCMD resourceQuery Resource query command. This is an
internal command that is not meant for
direct use in scripts; use the
ha_get_info() function of scriptlib
instead.

HA_SCRIPTTMPDIR /tmp Location of the script temporary directory.

Database
location

HA_CDB /var/cluster/cdb/cdb.db Location of the IRIS FailSafe database.

Script log
variables

HA_SCRIPTGROUP script Log for the script group.

HA_SCRIPTSUBSYS script Log for the script subsystem.

Script log
levels

HA_NORMLVL 0 Normal level of script logs.

HA_DBGLVL 10 Debug level of script logs.

Set Global Definitions

21

Script logging
commands

HA_LOGQUERY_OUTPUT `${HA_PRIVCMDSPATH}/loggroupQuery _NUM_LOG_GROUPS=1 \

_LOG_GROUP_0=ha_script`

Determine the current logging level for
scripts.

HA_DBGLOG ha_dbglog Command used to log debug messages
from the scripts.

HA_CURRENT_LOGLEVEL `echo ${HA_LOGQUERY_OUTPUT} | /usr/bin/awk '{print $2}'`

Display the current log level. The default
will be 0 (no script logging) if the
loggroupQuery command fails or does
not find configuration information.

HA_LOG ha_log Command used to log the scripts.

Script error
values

HA_SUCCESS 0 Successful execution of the script. This
variable is used by the start, stop, restart,
monitor, and probe scripts.

HA_NOT_RUNNING 0 The script is not running. This variable is
used by exclusive scripts.

HA_INVAL_ARGS 1 An invalid argument was entered. This is
used by all scripts.

HA_CMD_FAILED 2 A command called by the script has failed.
his variable is used by the start, stop,
restart, monitor, and probe scripts.

HA_RUNNING 2 The script is running. This variable is used
by exclusive scripts.

HA_NOTSUPPORTED 3 The specific action is not supported for
this resource type. This is used by all
scripts.

HA_NOCFGINFO 4 No configuration information was found.
This is used by all scripts.

Table 2-1 (continued) Global Environment Variables

Variable Type Variable Name Default Description

22

Chapter 2: Using the Script Library

Check Arguments

The ha_check_args() function checks the arguments specified for the script and sets the
$HA_INFILE and $HA_OUTFILE variables, which specify the input and output files,
respectively.

ha_check_args()
{

 ${HA_DBGLOG} "$HA_SCRIPTNAME called with $1 and $2"

 if [$# -ne 2]; then
 ${HA_LOG} "Incorrect number of arguments"
 return 1;
 fi

 if [! -r $1]; then
 ${HA_LOG} "file $1 is not readable or does not exist"
 return 1;
 fi

 if [! -s $1]; then
 ${HA_LOG} "file $1 is empty"
 return 1;
 fi

 HA_INFILE=$1
 HA_OUTFILE=$2

 return 0;
}

Read an Input File

23

Read an Input File

The ha_read_infile() function reads the $HA_INFILE input file into the
$HA_RES_NAMES variable, which specifies the list of resource names.

ha_read_infile()
{
 HA_RES_NAMES="";

 for HA_RESOURCE in `cat ${HA_INFILE}`
 do
 HA_TMP="${HA_RES_NAMES} ${HA_RESOURCE}";
 HA_RES_NAMES=${HA_TMP};
 done
}

 Execute a Command

The ha_execute_cmd() function executes the command specified by $HA_CMD. $1 is the
string to be logged. The function returns 1 on error and 0 on success. On errors, the
standard output and standard error of the command is redirected to the log file.

ha_execute_cmd()
{
 OUTFILE=${HA_SCRIPTTMPDIR}/script.$$

 ${HA_DBGLOG} $1

 eval ${HA_CMD} > ${OUTFILE} 2>&1;

 ha_exit_code=$?;

 if [$ha_exit_code -ne 0]; then
 ${HA_DBGLOG} `cat ${HA_SCRIPTTMPDIR}/script.$$`
 fi

 ${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";

 /sbin/rm ${OUTFILE}

 return $ha_exit_code;
}

24

Chapter 2: Using the Script Library

The ha_execute_cmd_ret() function is similar to ha_execute_cmd, except that it places
the command output in the location specified by $HA_CMD_OUTPUT.

ha_execute_cmd_ret()
{
 ${HA_DBGLOG} $1

 # REVISIT: Is it possible to redirect the output to a log
 HA_CMD_OUTPUT=`${HA_CMD}`;

 ha_exit_code=$?;

${HA_DBGLOG} "${HA_CMD} exited with status $ha_exit_code";

 return $ha_exit_code;
}

Write Status for a Resource

The ha_write_status_for_resource() function writes the status for a resource to the
$HA_OUTFILE output file. $1 is the resource name, and $2 is the resource status.

ha_write_status_for_resource()
{
 echo $1 $2 >> $HA_OUTFILE;
}

Similarly, the ha_write_status_for_all_resources() function writes the status for all
resources. $HA_RES_NAMES is the list of resource names.

ha_write_status_for_all_resources()
{
 for HA_RES in $HA_RES_NAMES
 do
 echo $HA_RES $1 >> $HA_OUTFILE;
 done
}

Get the Value for a Field

25

Get the Value for a Field

The ha_get_field() function obtains the field value from a string, where $1 is the string
and $2 is the field name. The string format is as follows:

name value name value . . .

ha_get_field()
{
 HA_STR=$1
 HA_FIELD_NAME=$2
 ha_found=0;

 for ha_i in $HA_STR
 do
 if [$ha_i = $HA_FIELD_NAME]; then
 ha_found=1;
 continue;
 fi
 if [$ha_found -eq 1]; then
 HA_FIELD_VALUE=$ha_i
 return 0;
 fi
 done

 return 1;
}

26

Chapter 2: Using the Script Library

Get Resource Information

The ha_get_info() function reads resource information. $1 is the resource type and $2 is
the resource name. Resource information is stored in the HA_STRING variable. All
query errors are ignored; the return value is always 0. If the resourceQuery command fails,
the HA_STRING is set to an invalid string, and future calls to ha_get_info() return errors.

ha_get_info()
{
 HA_STRING=`${HA_PRIVCMDSPATH}/${HA_RESOURCEQUERYCMD}
_CDB_DB=$HA_CDB \
 _RESOURCE=$2 _RESOURCE_TYPE=$1`
 if [$? -ne 0]; then
 ${HA_DBGLOG} "${HA_RESOURCEQUERYCMD} resource name $2 resource
type $1"
 ${HA_DBGLOG} "Failed with error ${HA_STRING}";
 fi

 return 0;
}

Print Exclusivity Check Messages

The ha_print_exclusive_status() function prints exclusivity check messages to the log
file. $1 is the resource name and $2 is the exit status.

ha_print_exclusive_status()
{
 if [$? -eq $HA_NOT_RUNNING]; then
 ${HA_LOG} "resource $1 exclusive status: NOT RUNNING"
 else
 ${HA_LOG} "resource $1 exclusive status: RUNNING"
 fi
}

Print Exclusivity Check Messages

27

The ha_print_exclusive_status_all_resources() function is similar, but it prints
exclusivity check messages for all resources. $HA_RES_NAMES is the list of resource
names.

ha_print_exclusive_status_all_resources()
{
 for HA_RES in $HA_RES_NAMES
 do
 ha_print_exclusive_status ${HA_RES} $1
 done
}

29

Chapter 3

3. Writing the Action Scripts and Adding Monitoring
Agents

This chapter provides information about writing the action scripts required to make an
application a high-availability service and how to add monitoring agents. It discusses the
following topics:

• Set of action scripts

• Preparation

• Script format

• Steps in writing a script

• Examples of action scripts

• Monitoring agents

Set of Action Scripts

The following set of action scripts can be provided for each resource:

• probe, which verifies that the resource is configured on a node

• exclusive, which verifies that the resource is not already running

• start, which starts the resource

• stop, which stops the resource

• monitor, which monitors the resource

• restart, which restarts the resource on the same node when a monitoring failure
occurs

30

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

Note: The start, stop, and exclusive scripts are required for every resource type. A monitor
script is also required, but if you wish it may contain only a return-success function. A
restart script is required if the restart mode is set to 1; however, this script may contain
only a return-success function. The probe script is optional.

Caution: Multiple instances of scripts may be executed at the same time.

Table 3-1 shows the state of a resource group after the successful execution of an action
script for every resource within a resource group. To view the state of a resource group,
use the IRIS FailSafe Cluster Manager Graphical User Interface or the cluster_mgr
command.

Table 3-1 Successful Action Script Results

Event Action Script Execute Resource Group State

Resource group is made online
on a node

start online

Resource group is made offline
on a node

stop offline

Online status of the resource
group

exclusive No effect

Normal monitoring of online
resource group

monitor online

Resource group monitoring
failure

restart online

Configuration verification probe No effect

Preparation

31

Table 3-2 shows the state of the resource group and the error state when an action script
fails.

Preparation

Before you can write the action scripts, you must do the following:

• Understand the scriptlib functions described in Chapter 2, “Using the Script
Library.”

• Familiarize yourself with the script templates provided in the following directory:

/var/cluster/ha/resource_types/template

• Familiarize yourself with the action scripts for other high-availability services in
/var/cluster/ha/resource_types that are similar to the scripts you wish to create.

• Understand how to do the following actions for your application:

– Verify that the resource is running

– Verify that the resource can be run

– Start the resource

– Stop the resource

– Check for the process

– Do a query and understand the expected response

– Check for file and directory existence (as needed)

Table 3-2 Failure of an Action Script

Failing Action Script Resource Group State Error State

exclusive No effect No effect

failover online monitoring failure

monitor online monitoring failure

probe No effect No effect

start online executable error

stop online executable error

32

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

• Determine whether or not a monitoring script is required. See “Is Monitoring
Necessary?” If it is not, a monitor script is still required, but it can contain only a
return-success function.

• Determine if a resource type must be added to the IRIS FailSafe database.

• Understand the vendor-supplied startup and shutdown procedures.

• Be aware of the configuration parameters for the application.

Is Monitoring Necessary?

In the following situations, you may not need to perform monitoring:

• Heartbeat monitoring is sufficient; that is, simply verifying that the node is alive
(provided automatically by IRIS FailSafe software) determines the health of the
highly available service.

• There is no process or resource that can be monitored. For example, the Silicon
Graphics Gauntlet Internet Firewall software performs IP filtering on firewall
nodes. Because the filtering is done in the kernel, there is no process or resource to
monitor.

• The resource on which the resource depends is already monitored. For example,
monitoring some client-node resources might best be done by monitoring the file
systems, volumes, and network interfaces they use. Because this is already done by
the IRIS FailSafe base software, additional monitoring is not required.

Caution: Beware that monitoring may be so expensive that it affects system
performance. In this case, monitoring should not be performed. Also, security issues may
make monitoring difficult.

Types of Monitoring

There are two types of monitoring that may be accomplished in a monitor script:

• Is the resource present?

• Is the resource responding?

You can define multiple levels of monitoring within the monitor script, and the
administrator can choose the desired level by configuring the IRIS FailSafe database.

Preparation

33

Ensure that the monitoring level chosen does not affect system performance. For more
information, see the IRIS FailSafe 2.0 Administrator’s Guide.

What are the Symptoms of Monitoring Failure?

Possible symptoms of failure include the following:

• The resource returns an error code.

• The resource returns the wrong result.

• The resource does not return quickly enough.

How Often Should Monitoring Occur?

You must determine the probe time and time-out values for the monitor script. The
time-out must be long enough to guarantee that occasional anomalies do not cause false
failovers.

You must also determine if the monitor test should execute multiple times so that a node
is not declared dead after a single failure. In general, testing more than once before
declaring failure is a good idea.

Examples of Testing for Monitoring Failure

The test should be simple and complete quickly, whether it succeeds or fails. Some
examples of tests are as follows:

• For a client-node resource that follows a protocol, the monitoring script can make a
simple request and verify that the proper response is received.

• For a web node, the monitoring script can request a home page, verify that the
connection was made, and ignore the resulting home page.

• For a database, a simple request such as querying a table can be made.

• For NFS, more complicated end-to-end monitoring is required. The test might
consist of mounting an exported file system, checking access to the file system with
a stat() system call to the root of the file system, and undoing the mount.

34

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

• For a resource that writes to a log file, check that the size of the log file is increasing
or use the grep command to check for a particular message.

• The following command can be used to determine quickly whether a process exists:

/sbin/killall -0 process_name

You can also use the ha_exec2 command to check if a process is running. The
ha_exec2 command differs from killall in that it performs a more exhaustive check on
the process name. (The ha_exec2 command is used in the Web, Oracle, and
INFORMIX scripts.) The command line is as follows:

/usr/cluster/bin/ha_exec2 -s 0 -t process_name

Note: Do not use the ps command to check on a particular process because its
execution can be too slow.

Script Format

Templates for the action scripts are provided in the following directory:

/var/cluster/ha/resource_types/template

The scripts have the same general format:

• Header information

• Set local variables

• Read resource information

• Exit status

• Perform the basic action of the script, which is the customized area you must
provide

• Set global variables

• Verify arguments

• Read input file

Note: Action “scripts” can be of any form -- such as Bourne shell script, perl script, or
C language program.

The following sections show an example from the NFS start script. The contents of these
examples may not match the released system.

Script Format

35

Header Information

The header information contains comments about the resource type, script type, and
resource configuration format. You must modify the code as needed.

Following is the header for the NFS start script:

#!/sbin/ksh

**
* *
* Copyright (C) 1998 Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
**

#ident "$Revision: 1.11 $"

Resource type: NFS
Start script NFS

#
Test resource configuration information is present in the database in
the following format
#
resource-type.NFS

 Set Local Variables

The set_local_variables() section of the script defines all of the variables that are local to
the script, such as temporary file names or database keys. All local variables should use
the LOCAL_ prefix. You must modify the code as needed.

36

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

Following is the set_local_variables() section from the NFS start script:

set_local_variables()
{
 LOCAL_TEST_KEY=NFS
}

#

Read Resource Information

The get_xxx_info() function, such as get_nfs_info(), reads the resource information from
the database. $1 is the test resource name. If the operation is successful, a value of 0 is
returned; if the operation fails, 1 is returned.

The information is returned in the HA_STRING variable. For more information about
HA_STRING, see Chapter 2, “Using the Script Library.”

Following is the get_nfs_info() section from the NFS start script

get_nfs_info ()
{
 ha_get_info ${LOCAL_TEST_KEY} $1
 if [$? -ne 0]; then
 return 1;
 else
 return 0;
 fi
}

Exit Status

In the exit_script() function, $1 contains the exit_status value. If cleanup actions are
required, such as the removal of temporary files that were created as part of the process,
place them before the exit line.

Following is the exit_script() section from the NFS start script

exit_script()
{
 exit $1;
}

Script Format

37

Note: If you call the exit_script function prior to normal termination, it should be
preceded by the ha_write_status_for_resource function and you should use the same
return code that is logged to the output file.

Basic Action

This area of the script is the portion you must customize. The templates provide a
minimal framework.

Following is the framework for the basic action from the start template:

 start_test()
 {
 # for all test resources passed as parameter
 for TEST in $HA_RES_NAMES
 do
 # HA_CMD="<command to start $TEST resource on the local machine>";
 # ha_execute_cmd "<string to describe the command being executed>";

 ha_write_status_for_resource $TEST $HA_SUCCESS;
 done
 }

Note: When testing the script, you will add the set -x line to this area to obtain debugging
information.

For examples of this area, see “Examples of Action Scripts” on page 40.

Set Global Variables

The following lines set all of the global and local variables and store the resource names
in $HA_RES_NAMES.

38

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

Following is the set_global_variables() function from the NFS start script:

set_global_variables()
{
 HA_DIR=/var/cluster/ha
 COMMON_LIB=${HA_DIR}/common_scripts/scriptlib

 # Execute the common library file
 . $COMMON_LIB

 ha_set_global_defs;
}

 Verify Arguments

The ha_check_arg() function verifies the arguments and stores them in the $HA_INFILE
and $HA_OUTFILE variables. It returns 1 on error and 0 on success.

Following is the ha_check_arg () function from the NFS start script:

ha_check_args $*;

if [$? -ne 0]; then
 exit $HA_INVAL_ARGS;
fi

Read Input File

The ha_read_infile() function reads the input file and stores the resource names in the
$HA_RES_NAMES variable.

Following is the ha_read_infile() function from the NFS start script:

ha_read_infile;

Steps in Writing a Script

39

Complete the Action

Each action script ends with the following, which performs the action and writes the
output status to the $HA_OUTFILE:

action_resourcetype;

exit_script $HA_SUCCESS

Following is the completion from the NFS start script:

start_nfs;

exit_script $HA_SUCCESS;

Steps in Writing a Script

Caution: Multiple copies of actions scripts can execute at the same time. Therefore, all
temporary file names used by the scripts can be suffixed by PIDscript.$$ in order to make
them unique, or you can use the resource name because it must be unique to the cluster.

For each script, you must do the following:

• Get the required variables

• Check the variables

• Perform the action

• Check the action

Note: The start and stop scripts are required to be idempotent; that is, they have the
appearance of being run once but can in fact be run multiple times. For example, if
the start script is run for a resource that is already started, the script must not return
an error.

All action scripts must return the status to the /var/cluster/ha/log/script_nodename
file.

40

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

Examples of Action Scripts

The following sections use portions of the NFS scripts as examples.

Note: The examples in this guide may not exactly match the released system.

start Script

The NFS start script does the following:

1. Creates a resource-specific NFS status directory.

2. Exports the specified export-point with the specified export-options.

Following is a section from the NFS start script:

Start the resource on the local machine.
Return HA_SUCCESS if the resource has been successfully started on the local
machine and HA_CMD_FAILED otherwise.
#
start_nfs()
{
 # for all nfs resources passed as parameter
 for resource in ${HA_RES_NAMES}
 do
 NFSFILEDIR=${HA_SCRIPTTMPDIR}$resource
 HA_CMD="/sbin/mkdir -p $NFSFILEDIR";
 ha_execute_cmd "creating nfs status file directory";

 get_nfs_info $resource
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 ha_get_field "${HA_STRING}" export-point
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 export_pt="$HA_FIELD_VALUE"
 ha_get_field "${HA_STRING}" export-info

Examples of Action Scripts

41

 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 export_opts="$HA_FIELD_VALUE"

 # Make the script idempotent, check to see if the filesystem
 # is already exported, if so return success. Remember that we
 # might not have any export options.
 retstat=0;
 # Check to see if the filesystem is already exported
 # (without options)
 /usr/etc/exportfs | grep "$export_pt$" >/dev/null 2>&1
 retstat=$?
 if [$retstat -eq 1]; then
 # Check to see if the filesystem is already exported
 # with options.
 /usr/etc/exportfs | grep "$export_pt " | grep "$export_opts$"
>/dev/null
2>&1
 retstat=$?
 fi
 if [$retstat -eq 1]; then
 # Before we try and export the file system, make sure
 # it exists.
 HA_CMD="/sbin/grep $export_pt /etc/mtab > /dev/null 2>&1";
 ha_execute_cmd "check if the export-point exists";
 if [$? -eq 0]; then
 HA_CMD="/usr/etc/exportfs -i -o $export_opts $export_pt";
 ha_execute_cmd "export $export_pt directories to NFS clients";
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 else
 ha_write_status_for_resource ${resource} ${HA_SUCCESS};
 fi
 else
 ${HA_LOG} "Failed to find filesystem $export_pt"
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 fi
 else
 ha_write_status_for_resource ${resource} ${HA_SUCCESS};
 fi
 done
}

42

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

stop Script

The NFS stop script does the following:

1. Unexports the specified export-point.

2. Removes the NFS status directory.

Following is an example from the NFS stop script:

Stop the nfs resource on the local machine.
Return HA_SUCCESS if the resource has been successfully stopped on the local
machine and HA_CMD_FAILED otherwise.
#
stop_nfs()
{
 # for all nfs resources passed as parameter
 for resource in ${HA_RES_NAMES}
 do
 get_nfs_info $resource
 if [$? -ne 0]; then
 # NFS resource information not available.
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 ha_get_field "${HA_STRING}" export-point
 if [$? -ne 0]; then
 # NFS export-point not available.
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 export_pt="$HA_FIELD_VALUE"

 # Make the script idempotent, check to see if the filesystem
 # is already exported, if so return success. Remember that we
 # might not have any export options.
 retstat=0;
 # Check to see if the filesystem is already exported
 # (without options)
 /usr/etc/exportfs | grep "$export_pt$" >/dev/null 2>&1
 retstat=$?
 if [$retstat -eq 1]; then
 # Check to see if the filesystem is already exported
 # with options.

Examples of Action Scripts

43

 /usr/etc/exportfs | grep "$export_pt " | grep "$export_opts$"
>/dev/null
2>&1
 retstat=$?
 fi
 if [$retstat -eq 0]; then
 # Before we unexport the filesystem, check that it exists
 HA_CMD="/sbin/grep $export_pt /etc/mtab > /dev/null 2>&1";
 ha_execute_cmd "check if the export-point exists";
 if [$? -eq 0]; then
 HA_CMD="/usr/etc/exportfs -u $export_pt";
 ha_execute_cmd "unexport $export_pt directories to NFS clients";
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 else
 ha_write_status_for_resource ${resource} ${HA_SUCCESS};
 fi
 else
 ${HA_LOG} "filesystem $export_pt not found in export filesystem
list, unexporting anyway";
 HA_CMD="/usr/etc/exportfs -u $export_pt";
 ha_execute_cmd "unexport $export_pt directories to NFS clients";
 ha_write_status_for_resource ${resource} ${HA_SUCCESS};
 fi
 else
 ha_write_status_for_resource ${resource} ${HA_SUCCESS};
 fi
 # remove the monitor nfs status file
 NFSFILEDIR=${HA_SCRIPTTMPDIR}$resource
 HA_CMD="/sbin/rm -rf $NFSFILEDIR";
 ha_execute_cmd "removing nfs status file directory";
 done
}

probe Script

The NFS probe script does the following:

1. Verifies that the NFS daemons are running.

2. Verifies that the file system is present.

44

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

Following is an example from the NFS probe script:

Check if the nfs resource can be online on this node. Verify if the
database configuration is correct for the resource.
Return HA_SUCCESS if the resource can be online on the local node
and HA_CMD_FAILED otherwise.
#
probe_nfs()
{

 # for all nfs resources passed as parameter
 for resource in ${HA_RES_NAMES}
 do
 HA_CMD="/sbin/killall -0 nfsd"
 ha_execute_cmd "checking for nsfd processes"
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 exit_script $HA_CMD_FAILED;
 fi
 get_nfs_info $resource
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 ha_get_field "${HA_STRING}" filesystem
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 fs="$HA_FIELD_VALUE"
 # Check if the file system is present
 if [-b $fs]; then
 ha_write_status_for_resource ${resource} ${HA_SUCCESS};
 else
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 fi
 done
}

Examples of Action Scripts

45

monitor Script

The NFS monitor script does the following:

1. Verifies that the file system is mounted at the correct mount point.

2. Requests the status of the exported file system.

3. Checks the export-point.

4. Requests NFS statistics and (based on the results) make a Remote Procedure Call
(RPC) to NFS as needed.

Following is an example from the NFS monitor script:

Check if the nfs resource is allocated in the local node
This check must be light weight and less intrusive compared to
exclusive check. This check is done when the resource has been
allocated in the local node.
Return HA_SUCCESS if the resource is running in the local node
and HA_CMD_FAILED if the resource is not running in the local node
The list of the resources passed as input is in variable
$HA_RES_NAMES
#
monitor_nfs()
{
 for resource in ${HA_RES_NAMES}
 do
 get_nfs_info $resource
 if [$? -ne 0]; then
 # No resource information available.
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 ha_get_field "${HA_STRING}" export-point
 if [$? -ne 0]; then
 # NFS export-point not available available.
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 export_pt="$HA_FIELD_VALUE";
 ha_get_field "${HA_STRING}" filesystem
 if [$? -ne 0]; then
 # filesystem not available available.
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;

46

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

 fi
 fs="$HA_FIELD_VALUE";
 # Check to see if the filesystem is mounted
 HA_CMD="/sbin/mount | grep $fs | grep $export_pt >> /dev/null 2>&1"
 ha_execute_cmd "check to see if $export_pt is mounted on $fs"
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 exit_script $HA_CMD_FAILED;
 fi
 # stat the filesystem
 HA_CMD="/sbin/stat $export_pt";
 ha_execute_cmd "stat mount point $export_pt"
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 exit_script $HA_CMD_FAILED;
 fi

 # check the filesystem is exported
 EXPORTFS="${HA_SCRIPTTMPDIR}/exportfs.$$"
 /usr/etc/exportfs > $EXPORTFS 2>&1
 HA_CMD="awk '{print \$1}' $EXPORTFS | grep $export_pt"
 ha_execute_cmd " check the filesystem $export_pt is exported"
 if [$? -ne 0]; then
 ${HA_LOG} "failed to find $export_pt in exported filesystem list:-"
 ${HA_LOG} "`/sbin/cat ${EXPORTFS}`"
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 rm -f $EXPORTFS
 exit_script $HA_CMD_FAILED;
 fi
 rm -f $EXPORTFS
 # create a file to hold the nfs stats. This will will be
 # deleted in the stop script.
 NFSFILE=${HA_SCRIPTTMPDIR}$resource/.nfsstat
 NFS_STAT=`nfsstat -rs | tail -1 | awk '{print $1}'`
 if [! -f $NFSFILE]; then
 echo $NFS_STAT > $NFSFILE;
 if [$NFS_STAT -eq 0];then
 # do some rpcinfo's
 exec_rpcinfo;
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 exit_script $HA_CMD_FAILED;
 fi
 fi
 else

Examples of Action Scripts

47

 OLD_STAT=`/sbin/cat $NFSFILE`
 if [$NFS_STAT -gt $OLD_STAT]; then
 echo $NFS_STAT > $NFSFILE;
 else
 echo $NFS_STAT > $NFSFILE;
 exec_rpcinfo;
 if [$? -ne 0]; then
 ha_write_status_for_resource $resource ${HA_CMD_FAILED};
 exit_script $HA_CMD_FAILED;
 fi
 fi
 fi
 ha_write_status_for_resource $resource $HA_SUCCESS;
 done
}

exclusive Script

The NFS exclusive script determines whether the file system is already exported. The
check made by an exclusive script can be more expensive than a monitor check. IRIS
FailSafe uses this script to determine if resources are running on a node in the cluster, and
to thereby prevent starting resources on multiple nodes in the cluster.

 Following is an example from the NFS exclusive script:

Check if the nfs resource is running in the local node. This check can
more intrusive than the monitor check. This check is used to determine
if the resource has to be started on a machine in the cluster.
Return HA_NOT_RUNNING if the resource is not running in the local node
and HA_RUNNING if the resource is running in the local node
The list of nfs resources passed as input is in variable
$HA_RES_NAMES
#
exclusive_nfs()
{
 # for all resources passed as parameter
 for resource in ${HA_RES_NAMES}
 do
 get_nfs_info $resource
 if [$? -ne 0]; then
 # No resource information available
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;

48

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

 fi
 ha_get_field "${HA_STRING}" export-point
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED;
 fi
 export_pt="$HA_FIELD_VALUE";
 SMFILE=${HA_SCRIPTTMPDIR}/showmount.$$
 /etc/showmount -x >> ${SMFILE};
 HA_CMD="/sbin/grep $export_pt ${SMFILE} >> /dev/null 2>&1"
 ha_execute_cmd "checking for $export_pt exported directory"
 if [$? -eq 0];then
 ha_write_status_for_resource ${resource} ${HA_RUNNING};
 ha_print_exclusive_status ${resource} ${HA_RUNNING};
 else
 ha_write_status_for_resource ${resource} ${HA_NOT_RUNNING};
 ha_print_exclusive_status ${resource} ${HA_NOT_RUNNING};
 fi
 rm -f ${SMFILE}
 done
}

restart Script

The NFS restart script exports the specified export-point with the specified
export-options.

Following is an example from the restart script for NFS:

Restart nfs resource
Return HA_SUCCESS if nfs resource failed over successfully or
return HA_CMD_FAILED if nfs resource could not be failed over locally.
Return HA_NOT_SUPPORTED if local restart is not supported for nfs
resource type.
The list of nfs resources passed as input is in variable
$HA_RES_NAMES
#
restart_nfs()
{
 # for all nfs resources passed as parameter
 for resource in ${HA_RES_NAMES}
 do
 get_nfs_info $resource

Monitoring Agents

49

 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED
 fi
 ha_get_field "${HA_STRING}" export-point
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED
 fi
 export_pt="$HA_FIELD_VALUE"
 ha_get_field "${HA_STRING}" export-info
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_NOCFGINFO};
 exit_script $HA_CMD_FAILED
 fi
 export_opts="$HA_FIELD_VALUE"

 HA_CMD="/usr/etc/exportfs -i -o $export_opts $export_pt";
 ha_execute_cmd "export $export_pt directories to NFS clients";
 if [$? -ne 0]; then
 ha_write_status_for_resource ${resource} ${HA_CMD_FAILED};
 else
 ha_write_status_for_resource ${resource} ${HA_SUCCESS};
 fi
 done
}

Monitoring Agents

If any additional resource monitoring agent must be started/stopped when
activating/deactivating high-availability services on a node, information about that
agent should be added to the cmond configuration on that node. The cmond configuration
is located in the /var/cluster/cmon/process_groups directory. Information about every agent
should go into a different file. The name of the file is not relevant to the
activate/deactivate procedure.

50

Chapter 3: Writing the Action Scripts and Adding Monitoring Agents

For example, the /var/cluster/cmon/process_groups/ip_addresses file contains information
about the ha_ifd process that monitors network interfaces. It contains the following:

TYPE = cluster_agent
PROCS = ha_ifd
ACTIONS = start stop restart attach detach
AUTOACTION = attach

If you create a new monitoring agent, you must also a create a corresponding file in the
/var/cluster/cmon/process_groups directory that contains similar information about the
new agent. To do this, you can copy the ip_addresses file and modify the PROCS line so
that it lists the procss(es) that constitute your new agent. These processes must be located
in the /usr/cluster/bin directory. You should not modify the other configuration lines
(TYPE, ACTIONS, and AUTOACTION).

Suppose you need to add a new agent called newagent that consists of processes ha_x and
ha_y. The configuration information for this agent will be located in the
/var/cluster/cmon/process_groups/newagent file, which will contain the following:

TYPE = cluster_agent
PROCS = ha_x ha_y
ACTIONS = start stop restart attach detach
AUTOACTION = attach

In this case, the high-availability software will expect two executables
(/usr/cluster/bin/ha_x and /usr/cluster/bin/ha_y) to be present.

51

Chapter 4

4. Creating a Failover Policy

This chapter tells you how to create a failover policy.

Contents of a Failover Policy

A failover policy is the method by which a resource group is failed over from one node to
another. A failover policy consists of the following:

• Failover domain

• Failover attributes

• Failover script

IRIS FailSafe uses the failover domain output from a failover script along with failover
attributes to determine on which node a resource group should reside.

The administrator must configure a failover policy for each resource group. The name of
the failover policy must be unique within the pool.

Failover Domain

A failover domain is the ordered list of nodes on which a given resource group can be
allocated. The nodes listed in the failover domain must be within the same cluster;
however, the failover domain does not have to include every node in the cluster. For
example, if you have a cluster of nodes named venus, mercury, and pluto, you could
configure the following initial failover domains for resource groups RG1 and RG2:

• mercury, venus, pluto for RG1

• pluto, mercury for RG2

52

Chapter 4: Creating a Failover Policy

The administrator defines the initial failover domain when configuring a failover policy.
The initial failover domain is used when a cluster is first booted. The ordered list
specified by the initial failover domain is transformed into a run-time failover domain by
the failover script. With each failure, the failover script takes the current run-time failover
domain and potentially modifies it; the initial failover domain is never used again.
Depending on the run-time conditions and contents of the failover script, the initial and
run-time failover domains may be identical.

IRIS FailSafe stores the run-time failover domain and uses it as input to the next failover
script invocation.

Failover Attributes

A failover attribute is a value that is passed to the failover script and used by IRIS FailSafe
for the purpose of modifying the run-time failover domain used for a specific resource
group. There are required and optional failover attributes, and you can also specify your
own strings as attributes.

Table 4-1 shows the required failover attributes.

Table 4-1 Required Failover Attributes (mutually exclusive)

Name Description

Auto_Failback Specifies that the resource group will be run on the first available node in
the run-time failover domain.

If the first node fails, the next available node will be used; when the first
node reboots, the resource group will return to it.

This attribute is best used when some type of load balancing is required.

You must specify either this attribute or the Controlled_Failback attribute.

Controlled_Failback Specifies that the resource group will be run on the first available node in
the run-time failover domain, and will remain running on that node until
it fails.

If the first node fails, the next available node will be used; the resource
group will remain on this new node even after the first node reboots.

This attribute is best used when client/server applications have
expensive recovery mechanisms, such as databases or any application
that uses tcp to communicate.

You must specify either this attribute or the Auto_Failback attribute.

Contents of a Failover Policy

53

When defining a failover policy, you can choose one of the recovery attributes shown in
Table 4-2. The recovery attribute determines the node on which a resource group will be
allocated when its state changes to online and a member of the group is already allocated
(such as when volumes are present).

Failover Script

A failover script generates the run-time failover domain and returns it to the IRIS FailSafe
process. The IRIS FailSafe process applies the failover attributes and then selects the first
node in the returned failover domain that is also in the current node membership.

Note: The run-time of the failover script must be capped to a system-definable
maximum. Hence, any external calls must be guaranteed to return quickly. If the failover
script takes too long to return, IRIS FailSafe will kill the script process and use the
previous run-time failover domain.

Failover scripts are stored in the /var/clusters/ha/policies directory.

The ordered failover script is provided with the IRIS FailSafe release. The ordered script
never changes the initial domain; when using this script, the initial and run-time
domains are equivalent. The script reads six lines from the input file and in case of errors
logs the input parameters and/or the error to the script log.

Table 4-2 Optional Failover Attributes (mutually exclusive)

Name Description

Auto_Recovery Specifies that the failover policy will be used to allocate the resource
group.

This attribute is optional and is mutually exclusive with the
InPlace_Recovery attribute. If you specify neither of these attributes, IRIS
FailSafe will use this attribute by default if you have specified the
Auto_Failback attribute.

InPlace_Recovery Specifies that the resource group will be allocated on the node that
already contains part of the resource group.

This attribute is optional and is mutually exclusive with the
Auto_Recovery attribute. If you specify neither of these attributes, IRIS
FailSafe will use this attribute by default if you have specified the
Controlled_Failback attribute.

54

Chapter 4: Creating a Failover Policy

The following example shows the contents of the ordered failover script.

#!/sbin/ksh
#
$1 - input file
$2 - output file
#
line 1 input file - version
line 2 input file - name
line 3 input file - owner field
line 4 input file - attributes
line 5 input file - node membership
line 6 input file - application failure domain

DIR=/usr/cluster/bin
LOG=${DIR}/ha_cilog
FILE=/var/cluster/ha/policies/ordered

input=$1
output=$2
cat ${input} | read version
head -2 ${input} | tail -1 | read name
head -3 ${input} | tail -1 | read attr
head -3 ${input} | tail -1 | read owner
head -4 ${input} | tail -1 | read attr
head -5 ${input} | tail -1 | read mem1 mem2 mem3 mem4 mem5 mem6 mem7 mem8
head -6 ${input} | tail -1 | read afd1 afd2 afd3 afd4 afd5 afd6 afd7 afd8

mem="("$mem1")"" ""("$mem2")"" ""("$mem3")"" ""("$mem4")"" ""("$mem5")""
""("$mem6")"" ""("$mem7")"" ""("$mem8")"

afd="("$afd1")"" ""("$afd2")"" ""("$afd3")"" ""("$afd4")"" ""("$afd5")""
""("$afd6")"" ""("$afd7")"" ""("$afd8")"

${LOG} -l 11 "${FILE}:" ‘/bin/cat ${input}‘

if ["${version}" -ne 1] ; then
 echo ERROR: ${FILE}: Different version no.;
 exit 1;
elif [-z "${name}"]; then
 echo "ERROR: ${FILE}: Failover script not defined";
 exit 1;

Contents of a Failover Policy

55

elif [-z "${attr}"]; then
 echo "ERROR: ${FILE}: Failback attribute not defined";
 exit 1;
elif [-z "${mem1}"]; then
 echo "ERROR: ${FILE}: No node memberships defined";
 exit 1;
elif [-z "${afd1}"]; then
 echo "ERROR: ${FILE}: No failover domains defined";
 exit 1;
fi

found=0
for i in $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8; do
 for j in $mem1 $mem2 $mem3 $mem4 $mem5 $mem6 $mem7 $mem8; do
 if ["X${j}" = "X${i}"]; then
 found=1;
 break;
 fi
 done
done

if [${found} -eq 0]; then
 ${LOG} -l 1 "ERROR: ${FILE}: Policy script failed"
 ${LOG} -l 1 "ERROR: ${FILE}: " ‘/bin/cat ${input}‘
 ${LOG} -l 1 "ERROR: ${FILE}: Nodes defined in membership donot match the
ones in failure domain"
 ${LOG} -l 1 "ERROR: ${FILE}: Parameters read from input file: version =
$version, name = $name, owner = $owner, attribute = $attr, nodes = $mem, afd
=$afd"
 exit 1;
fi

if [${found} -eq 1]; then
 rm -f ${output}
 echo $afd1 $afd2 $afd3 $afd4 $afd5 $afd6 $afd7 $afd8 > ${output}
 exit 0
fi
exit 1

56

Chapter 4: Creating a Failover Policy

If the ordered script does not meet your needs, you can create a new failover script and
place it in the /var/clusters/ha/policies directory. You can then configure the IRIS FailSafe
database to use your new failover script for the required resource groups.

Note: The IRIS FailSafe release also includes the round_robin failover script. However,
this script is for demonstration purposes only and is unlikely to be useful in a production
environment.

Failover Script Interface

The following is passed to the failover script:

function(version, name, owner, attributes, membership, domain)

version IRIS FailSafe version. The IRIS FailSafe 2.0 release uses version number
1.

name Name of the failover script (used for error validations and logging
purposes).

owner Logical name of the node that has the resource group allocated.

attributes Failover attributes (Auto_Failback or Controlled_Failback must be
included)

membership List of the nodes that are currently available.

domain Ordered list of nodes used at the last failover. (At the first failover, the
initial failover domain is used.)

The failover script returns the newly generated run-time failover domain to IRIS FailSafe,
which then chooses the node on which the resource group should be allocated by
applying the failover attributes and node membership to the run-time failover domain.

Example Failover Policies

57

Example Failover Policies

There are two general types of configuration:

• N nodes that can potentially failover their applications to any of the other nodes in
the cluster. N is an integer from 1 through 8.

• N primary nodes that can failover to M backup nodes. The sum of N and M is an
integer from 2 through 8. For example, you could have 3 primary nodes and
1 backup node.

This section shows examples of failover policies for the following types of configuration,
where N can be an integer from 2 through 8:

• N primary nodes and one backup node (N+1)

• N primary nodes and two backup nodes (N+2)

• N primary nodes and M backup nodes (N+M)

Note: The diagrams in the following sections illustrate the configuration concepts
discussed here, but they do not address all required or supported elements, such as reset
hubs. For configuration details, see the IRIS FailSafe 2.0 Installation and Maintenance
Instructions.

N+1 Configuration

Figure 4-1 shows a specific instance of an N+1 configuration in which there are three
primary nodes and one backup node. (This is also known as a star configuration.) The
disks shown could each be disk farms.

58

Chapter 4: Creating a Failover Policy

Figure 4-1 N+1 Configuration Concept

You could configure the following failover policies for load balancing:

• Failover policy for RG1:

– Initial failover domain = A, D

– Failover attribute = AutoFailback

– Failover script = ordered

• Failover policy for RG2:

– Initial failover domain = B, D

– Failover attribute = AutoFailback

– Failover script = ordered

• Failover policy for RG3:

– Initial failover domain = C, D

– Failover attribute = AutoFailback

– Failover script = ordered

A

B

C

D

Prim
ary nodes

Backup node
Disks

Example Failover Policies

59

If node A fails, RG1 will fail over to node D. As soon as node A reboots, RG1 will be
moved back to node A.

If you change the failover attribute to ControlledFailback for RG1 and node A fails, RG1
will fail over to node D and will remain running on node D even if node A reboots.

N+2 Configuration

Figure 4-2 shows a specific instance of an N+2 configuration in which there are four
primary nodes and two backup nodes. The disks shown could each be disk farms.

Figure 4-2 N+2 Configuration Concept

You could configure the following failover policy for a database resource groups RG7
and RG8:

• Failover policy for RG7:

– Initial failover domain = A, E, F

– Failover attribute = ControlledFailback

– Failover script = ordered

Prim
ary

nodes

Backup

nodes

Disks

A

B

C

D

E

F

60

Chapter 4: Creating a Failover Policy

• Failover policy for RG8:

– Initial failover domain = B, F, E

– Failover attribute = AutoFailback

– Failover script = ordered

If node A fails, RG7 will fail over to node E. If node E also fails, RG7 will fail over to node
F. If A is rebooted, RG7 will remain on node F.

If node B fails, RG8 will fail over to node F. If B is rebooted, RG8 will return to node B.

N+M Configuration

Figure 4-3 shows a specific instance of an N+M configuration in which there are four
primary nodes and each can serve as a backup node. The disk shown could be a disk
farm.

Figure 4-3 N+M Configuration Concept

A

B

C

D

Example Failover Policies

61

You could configure the following failover policy for a database resource groups RG5
and RG6:

• Failover policy for RG5:

– Initial failover domain = A, B, C, D

– Failover attribute = ControlledFailback

– Failover script = ordered

• Failover policy for RG6:

– Initial failover domain = C, A, D

– Failover attribute = ControlledFailback

– Failover script = ordered

If node C fails, RG6 will fail over to node A. When node C reboots, RG6 will remain
running on node A. If node A then fails, RG6 will return to node C and RG5 will move
to node B. If node B then fails, RG5 moves to node C.

63

Chapter 5

5. Defining a New Resource Type

This section tells you how to define a new resource type.

Information You Must Gather

To define a new resource type, you must have the following information:

• Name of the resource type.

• Name of the cluster to which the resource type will apply.

• If the resource type is to be restricted to a specific node, you must know the node
name.

• Order of performing the action scripts for resources of this type in relation to
resources of other types:

– Resources are started in the increasing order of this value

– Resources are stopped in the decreasing order of this value

Ensure that the number you choose for a new resource type permits the resource
types on which it depends to be started before it is started, or stopped before it is
stopped, as appropriate.

64

Chapter 5: Defining a New Resource Type

Table 5-1 shows the conventions used for order ranges. The values available for
customer use are 201-400 and 701-999.

Table 5-2 shows the order numbers of the resource types provided with the release.

Table 5-1 Order Ranges

Range Reservation

1-100 SGI-provided basic system resource types, such as MAC_address

101-200 SGI-provided system plug-ins that can be started before IP_address

201-400 User-defined resource types that can be started before IP_address

401-500 SGI-provided basic system resource types, such as IP_address

501-700 SGI-provided system plug-ins that must be started after IP_address

701-999 User-defined resource types that must be started after IP_address

Table 5-2 Resource Type Order Numbers

OrderNumber Resource Type

10 MAC_address

20 volume

30 filesystem

201 NFS

401 IP_address

411 statd

501 Netscape_web

511 Oracle_DB

521 INFORMIX_DB

Information You Must Gather

65

• Restart mode, which can be one of the following values:

– 0 = Do not restart on monitoring failures

– 1 = Restart a fixed number of times

• Number of local restarts (when restart mode is 1).

• Location of the executable script. This is always /var/cluster/ha/resource_types/rtname,
where rtname is the resource type name.

• Monitoring interval, which is the time period (in milliseconds) between successive
executions of the monitor action script; this is only valid for the monitor action script.

• Starting time for monitoring. When the resource group is made online in a cluster
node, IRIS FailSafe will start monitoring the resources after the specified time
period (in milliseconds).

• Action scripts to be defined for this resource type. You must specify scripts for start,
stop, exclusive, and monitor, although the monitor script may contain only a
return-success function if you wish. If you specify 1 for the restart mode, you must
specify a restart script. The probe script is optional.

• Type-specific attributes to be defined for this resource type. The action scripts use
this information to start, stop, and monitor a resource of this resource type. For
example, NFS requires the following resource keys:

– export-point, which takes a value that defines the export disk name. This name is
used as input to the exportfs (1M) command. For example:

export-point = /this_disk

– export-info, which takes a value that defines the export options for the file
system. These options are used in the exportfs(1M) command. For example:

export-info = rw,wsync,anon=root

– filesystem, which takes a value that defines the raw file system. This name is
used as input to the mount(1M) command. For example:

filesystem = /dev/xlv/xlv_object

66

Chapter 5: Defining a New Resource Type

Using the GUI

To define a new resource type using the FailSafe Manager graphical user interface (GUI),
use the following task:

Resources & Resource Types => Define a Resource Type

The GUI will prompt you for required and optional information. Online help is provided
for each item. You will need to know the following information:

• Name of the new resource type

• Start/stop order for resources of this type

• Maximum duration for the execution of the start, stop, monitor, exclusive, restart
(optional), and probe (optional) scripts.

You must also provide the time interval between the start of a resource and the start
of monitor checking, and the interval between subsequent monitor checks.

If you choose to use the restart script, you must also decide how many restart
attempts will be allowed.

• Type-specific attributes.

To define the dependencies for a given type use the following task:

Add/Remove Dependencies for a Resource Type

Using cluster_mgr Interactively

The following steps show the use of cluster_mgr interactively to define a resource type
called test_rt.

1. Log in as root.

2. Execute the cluster_mgr command using the -p option to prompt you for
information (the command name can be abbreviated to cmgr):

/usr/cluster/bin/cluster_mgr -p
Welcome to IRIS FailSafe Cluster Manager Command-Line Interface

cmgr>

Using cluster_mgr Interactively

67

3. Use the set subcommand to specify the default cluster used for cluster_mgr
operations. In this example, we use a cluster named test:

cmgr> set cluster test

Note: If you prefer, you can specify the cluster name as needed with each
subcommand.

4. Use the define resource_type subcommand. By default, the resource type will apply
across the cluster; if you wish to limit the resource type to a specific node, enter the
node name when prompted. If you wish to enable restart mode, enter 1 when
prompted.

Note: The following example only shows the prompts and answers for two action
scripts (start and stop) for a new resource type named test_rt.

cmgr> define resource_type test_rt

(Enter "cancel" at any time to abort)

Node[optional]?
Order ? 300
Restart Mode ? (0)

DEFINE RESOURCE TYPE OPTIONS

 1) Add Action Script.
 2) Remove Action Script.
 3) Add Type Specific Attribute.
 4) Remove Type Specific Attribute.
 5) Add Dependency.
 6) Remove Dependency.
 7) Show Current Information.
 8) Cancel. (Aborts command)
 9) Done. (Exits and runs command)

Enter option:1

No current resource type actions

Action name ? start
Executable Time? 40000
Monitoring Interval? 0

68

Chapter 5: Defining a New Resource Type

Start Monitoring Time? 0

 1) Add Action Script.
 2) Remove Action Script.
 3) Add Type Specific Attribute.
 4) Remove Type Specific Attribute.
 5) Add Dependency.
 6) Remove Dependency.
 7) Show Current Information.
 8) Cancel. (Aborts command)
 9) Done. (Exits and runs command)

Enter option:1

Current resource type actions:
 Action - 1: start

Action name stop
Executable Time? 40000
Monitoring Interval? 0
Start Monitoring Time? 0

 1) Add Action Script.
 2) Remove Action Script.
 3) Add Type Specific Attribute.
 4) Remove Type Specific Attribute.
 5) Add Dependency.
 6) Remove Dependency.
 7) Show Current Information.
 8) Cancel. (Aborts command)
 9) Done. (Exits and runs command)

Enter option:3

No current type specific attributes

Type Specific Attribute ? integer-att
Datatype ? integer
Default value[optional] ? 33

Using cluster_mgr Interactively

69

 1) Add Action Script.
 2) Remove Action Script.
 3) Add Type Specific Attribute.
 4) Remove Type Specific Attribute.
 5) Add Dependency.
 6) Remove Dependency.
 7) Show Current Information.
 8) Cancel. (Aborts command)
 9) Done. (Exits and runs command)

Enter option:3

Current type specific attributes:
 Type Specific Attribute - 1: export-point

Type Specific Attribute ? string-att
Datatype ? string
Default value[optional] ? rw

 1) Add Action Script.
 2) Remove Action Script.
 3) Add Type Specific Attribute.
 4) Remove Type Specific Attribute.
 5) Add Dependency.
 6) Remove Dependency.
 7) Show Current Information.
 8) Cancel. (Aborts command)
 9) Done. (Exits and runs command)

Enter option:5

No current resource type dependencies

Dependency name ? filesystem

 1) Add Action Script.
 2) Remove Action Script.
 3) Add Type Specific Attribute.
 4) Remove Type Specific Attribute.
 5) Add Dependency.
 6) Remove Dependency.
 7) Show Current Information.
 8) Cancel. (Aborts command)
 9) Done. (Exits and runs command)

70

Chapter 5: Defining a New Resource Type

Enter option:7

Current resource type actions:
 Action - 1: start
 Action - 2: stop

Current type specific attributes:
 Type Specific Attribute - 1: integer-att
 Type Specific Attribute - 2: string-att

No current resource type dependencies

Resource dependencies to be added:
 Resource dependency - 1: filesystem

 1) Add Action Script.
 2) Remove Action Script.
 3) Add Type Specific Attribute.
 4) Remove Type Specific Attribute.
 5) Add Dependency.
 6) Remove Dependency.
 7) Show Current Information.
 8) Cancel. (Aborts command)
 9) Done. (Exits and runs command)

Enter option:9
Successfully defined resource_type test_rt

cmgr> show resource_types

NFS
template
Netscape_web
test_rt
statd
Oracle_DB
MAC_address
IP_address
INFORMIX_DB
filesystem
volume

cmgr> exit
#

Using cluster_mgr With a Script

71

Using cluster_mgr With a Script

You can write a script that contains all of the information required to define a resource
type and supply it to cluster_mgr by using the -f option:

cluster_mgr -f scriptname

Or, you could include the following as the first line of the script and then execute the
script itself:

#!/usr/cluster/bin/cluster_mgr -f

A template script for creating a new resource type is located in
/var/cluster/cmgr-templates/cmgr-create-resource_type.

Each line of the script must be a valid cluster_mgr line, similar to a here document.
Because cluster_mgr will run through commands as if entered interactively, you must
include done and quit lines to finish a multi-level command and exit out of cluster_mgr.

Note: If you concatenate information from multiple template scripts to prepare your
cluster configuration, you must remove the quit at the end of each template script, except
for the final quit. A cluster_mgr script must have only one quit line.

For example, you could use the following script to define the same test_rt resource type
defined interactively in the previous section:

test_rt.script: Script to define the "test_rt" resource type

set cluster test
define resource_type test_rt
set order to 300
set restart_mode to 0
add action start
set exec_time to 40000
set monitor_interval to 0
set monitor_time to 0
done
add action stop
set exec_time to 40000
set monitor_interval to 0
set monitor_time to 0
done
add type_attribute integer-att
set data_type to integer
set default_value to 33

72

Chapter 5: Defining a New Resource Type

done
add type_attribute string-att
set data_type to string
set default_value to rw
done
add dependency filesystem
done
quit

When you execute the cluster_mgr -f command line with this script, you will see the
following output:

/usr/cluster/bin/cluster_mgr -f test_rt.script
Successfully defined resource_type test_rt

#

To verify that the resource type was defined, enter the following:

/usr/cluster/bin/cluster_mgr -c "show resource_types in cluster test"

NFS
template
Netscape_web
test_rt
statd
Oracle_DB
MAC_address
IP_address
INFORMIX_DB
filesystem
volume

73

Chapter 6

6. Testing Scripts

This chapter describes how to test action scripts without running IRIS FailSafe. It also
provides tips on how to debug problems that you may encounter.

Note: Parameters are passed to the action scripts as both input files and output files. Each
line of the input file contains the resource name; the output file contains the resource
name and the script exit status.

General Testing and Debugging Techniques

Some general testing and debugging techniques you can use during testing are as
follows:

• To get debugging information, adding the following line to each of your scripts in
the main function of the script:

set -x

• To check that an application is running on a node, you may be able to use a
command provided by the application. For example, the IRIS FailSafe INFORMIX
option uses the INFORMIX command onstat.

• Another way to check that an application is running on a node, is to enter this
command on that node:

ps -ef | grep application

application is the name (or a portion of the name) of the executable for the
application.

• To show the status of a resource, use the following cluster_mgr command:

cmgr> set cluster cname
cmgr> show status of resource rname of resource_type rtype

74

Chapter 6: Testing Scripts

• To show the status of a node, use the following cluster_mgr command:

cmgr> show status of node nodename

• To show the status of a resource group, use the following cluster_mgr command:

cmgr> show status of resource_group rgname in cluster cname

Testing an Action Script

To test an action script, do the following:

1. Create an input file, such as /tmp/input, that contains expected resource names. For
example, to create a file that contains the resource named disk1, do the following:

echo "/disk1" > /tmp/input

2. Execute the action script using the input file, as follows:

start /tmp/input /tmp/output

The output file will contain one of the following return values for the start, stop, probe,
monitor, and restart scripts:

HA_SUCCESS=0
HA_INVAL_ARGS=1
HA_CMD_FAILED=2
HA_NOTSUPPORTED=3
HA_NOCFGINFO=4

The output file will contain one of the following return values for the exclusive script:

HA_NOT_RUNNING=0
HA_RUNNING=2

Note: If you call the exit_script function prior to normal termination, it should be
preceded by the ha_write_status_for_resource function and you should use the same
return code that is logged to the output file.

Suppose you have a resource named /disk1 and the following files:

• The syntax for the input file is: <resourcename>

• The syntax for the output file is: <resourcename> <status>

Testing an Action Script

75

The following example shows:

• The exit status of the action script is 2

• The exit status of the resource is 2

Note: The use of anonymous indicates that the script was run manually. When the script
is run by IRIS FailSafe, the full path to the script name is displayed.

echo "/disk1" > /tmp/ipfile
./monitor /tmp/ipfile /tmp/opfile
echo $?
2
cat /tmp/opfile
/disk1 2
tail /var/cluster/ha/log/script_heb1
Tue Aug 25 11:32:57.437 <anonymous script 23787:0 Unknown:0> ./monitor:
./monitor called with /tmp/ipfile and /tmp/opfile
Tue Aug 25 11:32:58.118 <anonymous script 24556:0 Unknown:0> ./monitor:
check to see if /disk1 is mounted on /disk1
Tue Aug 25 11:32:58.433 <anonymous script 23811:0 Unknown:0> ./monitor:
/sbin/mount | grep /disk1 | grep /disk1 >> /dev/null 2>&1 exited with
status 0
Tue Aug 25 11:32:58.665 <anonymous script 24124:0 Unknown:0> ./monitor:
stat mount point /disk1
Tue Aug 25 11:32:58.969 <anonymous script 23525:0 Unknown:0> ./monitor:
/sbin/stat /disk1 exited with status 0
Tue Aug 25 11:32:59.258 <anonymous script 24431:0 Unknown:0> ./monitor:
check the filesystem /disk1 is exported
Tue Aug 25 11:32:59.610 <anonymous script 6982:0 Unknown:0> ./monitor:
Tue Aug 25 11:32:59.917 <anonymous script 24040:0 Unknown:0> ./monitor:
awk ’{print \$1}’ /var/cluster/ha/tmp/exportfs.23762 | grep /disk1 exited
with status 1
Tue Aug 25 11:33:00.131 <anonymous script 24418:0 Unknown:0> ./monitor:
echo failed to find /disk1 in exported filesystem list:-
Tue Aug 25 11:33:00.340 <anonymous script 24236:0 Unknown:0> ./monitor:
echo /disk2

For additional information about a script’s processing, see the
/var/cluster/ha/log/script_nodename, where nodename is the name of the node.

76

Chapter 6: Testing Scripts

Special Testing Considerations for the monitoring Script

The monitor script tests the liveliness of applications and resources. The best way to test
it is to induce a failure, run the script, and check if this failure is detected by the script;
then repeat the process for another failure.

Use this checklist for testing a monitor script:

• Verify that the script detects failure of the application successfully.

• Verify that the script always exits with a return value.

• Verify that the script does not contain commands that can hang (such as using DNS
for name resolution) or those that continue forever, such as ping.

• Verify that the script completes before the time-out value specified in the
configuration file.

• Verify that the script’s return codes are correct.

During testing, measure the time it takes for a script to complete and adjust the
monitoring times in your script accordingly. To get a good estimate of the time required
for the script to execute, run it under different system load conditions.

77

Appendix A

A. Migrating to IRIS FailSafe 2.0

This chapter provides guidelines for migrating your IRIS FailSafe 1.2 resources and
monitor script information to IRIS FailSafe 2.0 action scripts. It assumes you are already
familiar with the migration information provided in the IRIS FailSafe 2.0 Administrator’s
Guide.

Cautions

Multiple instances of action scripts may be executed at the same time.

The software for IRIS FailSafe 2.0 and IRIS FailSafe 1.2 can coexist in the same node.
However, IRIS FailSafe 2.0 and IRIS FailSafe 1.2 cannot run at the same time.

There are no configuration checksum verification in scripts.

Resource Types

In 2.0, the ha.conf configuration file has been replaced by the configuration database. The
configuration database is automatically copied to all nodes in the pool. See the IRIS
FailSafe 2.0 Administrator’s Guide for information about configuring a 2.0 system.

If you require new resource types, you will create them using either the IRIS FailSafe
Cluster Manager GUI (graphical user interface) or the cluster_mgr command. See
Chapter 5, “Defining a New Resource Type.”

You may be able to reuse the following monitoring information from the 1.2 ha.conf file
with regard to 2.0 resource types:

• start-monitor-time

• lmon-probe-time

• lmon-timeout

78

Appendix A: Migrating to IRIS FailSafe 2.0

Note: All IRIS FailSafe 2.0 time-outs are in milliseconds.

The following examples show information (in bold) that is used in the 1.2 ha.conf file and
reused when creating a new resource type in 2.0.

Suppose a portion of the 1.2 ha.conf file had this:

action apache
{
 local-monitor = /var/ha/actions/ha_apache_lmon
}

action-timer apache
{
 start-monitor-time = 120
 lmon-probe-time = 120
 lmon-timeout = 60
}

You would reuse the information when creating a resource type in 2.0, as follows:

cmgr> create resource_type apache in cluster apache-cluster
Enter commands, when finished enter either "done", "cancel", "check"
Resource Type Name [apache]? apache
Cluster? apache-cluster
Node? node1
Order [0]? 500
Restart Mode [0]?0
Restart Count [0]?0
Number of Actions [0]? 4
Action? start
Executable? /var/cluster/ha/resource_types/apache/start
Executable Time? 20000
Monitoring Interval? 0
Start Monitoring Time? 0
Action? stop
Executable? /var/cluster/ha/resource_types/apache/stop
Executable Time? 20000
Monitoring Interval? 0
Start Monitoring Time? 0
Action? monitor
Executable? /var/cluster/ha/resource_types/apache/monitor
Executable Time? 60000
Monitoring Interval? 120000
Start Monitoring Time? 120000

Reading Information

79

Action? exclusive
Executable? /var/cluster/ha/resource_types/apache/exclusive
Executable Time? 60000
Monitoring Interval? 0
Start Monitoring Time? 0?0
Number of Resource Keys [0]? 1
Name of resource key? search-string
Datatype? string
Default Key? httpd
Enter dependency commands,when finished enter either "done" or "cancel"

resource_type apache? add type IP_address
resource_type apache? done

Reading Information

In 2.0, configuration information is read using the ha_get_info() and ha_get_field() shell
functions. These functions are equivalent to the 1.2 ha_cfginfo command.

In 2.0, all common functions and variables are kept in
/var/cluster/ha/common_scripts/scriptlib file. This file is equivalent to the 1.2
/var/ha/actions/common.vars file.

For more information, see Chapter 2, “Using the Script Library.”

Parameter Parsing

In 2.0, action script parameters are passed in a file and information is also returned in a
file. The script takes a list of resource names as parameters.

80

Appendix A: Migrating to IRIS FailSafe 2.0

Action Scripts

Table A-1 summarizes the differences in scripts between the releases.

In 2.0, the action scripts are installed as /var/cluster/ha/Resource_Type_Name/Action_Name
directory, where Resource_Type_Name is the name of the resource type (such as NFS) and
Action_Name is the name of the action script (such as start).

Templates of the action scripts (start, stop, probe, monitor, exclusive, restart) are provided in
the /var/cluster/ha/resource_types/template directory. For more information about action
scripts, see Chapter 3, “Writing the Action Scripts and Adding Monitoring Agents.”

The following sections provide example portions of 1.2 scripts and their 2.0 equivalents:

• giveback and stop

• takeover and start

• monitor and monitor

Note: There are no 1.2 equivalents for the 2.0 probe, exclusive, and restart scripts.

In the following examples, only the relevant portions of the scripts are shown. Areas in
common between 1.2 and 2.0 are in bold.

Table A-1 Differences between IRIS FailSafe 1.2 and 2.0 Scripts

IRIS FailSafe 1.2 IRIS FailSafe 2.0

giveaway, giveback stop

takeover, takeback start

check monitor

(no equivalent) exclusive, probe, restart

Action Scripts

81

1.2 giveback / 2.0 stop

For example, suppose you had the following in the giveback script in 1.2:

giveback()
{
 for i in `$CFG_INFO ${T_APACHE}`
 do
 SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_BACKUP}"
 BACKUP=`$SEARCH`
 if [$? -eq 1]; then
 ${LOGGER} "$0: Trouble finding backup-node for apache ($SEARCH)"
 exit $INCORRECT_CONF_FILE;
 fi
 # If I am the backup
 if [${BACKUP} = ${HOST}]; then

${LOGGER} "$0: Stopping apache for backup server."
 killall -9 /apache-fs/usr/local/apache_1.2.0/src/httpd
 if [$? -ne "0"]; then
 ${LOGGER} "$0: halt of apache on backup server failed."
 fi
 fi

 exit $SUCCESS
 done
}

In 2.0, you would have the following in the stop script:

stop_apache()
{
 for server in $HA_RES_NAMES
 do
 ${HA_DBGLOG} "Stopping apache server $server"

killall -9 /apache-fs/usr/local/apache_1.2.0/src/httpd
 if [$? -ne "0"]; then
 ${HA_LOG} "halt of apache server $server failed."
 ha_write_status_for_resource $server $HA_CMD_FAILED;
 else
 ${HA_DBGLOG} "halt of apache server $server successful"
 ha_write_status_for_resource $server $HA_SUCCESS;
 fi
 done
}

82

Appendix A: Migrating to IRIS FailSafe 2.0

1.2 takeover / 2.0 start

For example, suppose you had the following in the takeover script in 1.2:

takeover()
{
 for i in `$CFG_INFO ${T_APACHE}`
 do
 SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_BACKUP}"
 BACKUP=`$SEARCH`
 if [$? -eq 1]; then
 ${LOGGER} "$0: Trouble finding backup-node for apache ($SEARCH)"
 exit $INCORRECT_CONF_FILE;
 fi
 # If I am the backup
 if [${BACKUP} = ${HOST}]; then
 ${LOGGER} "$0: Starting apache for backup server."

/apache-fs/usr/local/apache_1.2.0/src/httpd -d \
/apache-fs/usr/local/apache_1.2.0
 if [$? -ne "0"]; then
 ${LOGGER} "$0: start of apache on backup server failed."
 exit $FAILED
 fi
 fi
 exit $SUCCESS
 done

}

Action Scripts

83

In 2.0, you would have the following in the start script:

start_apache()
{
 for server in $HA_RES_NAMES
 do
 ${HA_DBGLOG} "Starting apache server $server"

/apache-fs/usr/local/apache_1.2.0/src/httpd -d \
/apache-fs/usr/local/apache_1.2.0
 if [$? -ne "0"]; then
 ${HA_LOG} "start of apache server $server failed."
 ha_write_status_for_resource $server $HA_CMD_FAILED;
 else
 ${HA_DBGLOG} "start of apache server $server successful"
 ha_write_status_for_resource $server $HA_SUCCESS;
 fi
 done
}

1.2 monitor/ 2.0 monitor

For example, suppose you had the following in the monitor script in 1.2:

monitor()
{

 # Read the search string entry
 for i in `$CFG_INFO ${T_APACHE}`
 do
 SEARCH="$CFG_INFO ${T_APACHE}${CFG_SEP}${i}${CFG_SEP}${T_SEARCH_STR}"
 SEARCH_STR=`$SEARCH`
 ${SEARCH_STR:=httpd};
 done

EXEC="${KILLALL} -0 ${SEARCH_STR}";
 execute_cmd "check if apache server processes are running"

}

84

Appendix A: Migrating to IRIS FailSafe 2.0

In 2.0, you would have the following in the monitor script:

monitor_apache()
{
 for server in $HA_RES_NAMES
 do
 get_apache_info $server
 if [$? -eq 0]; then
 APACHE_FIELDS=${HA_STRING
 ha_get_field "${APACHE_FIELDS}" search-string;
 if [$? -eq 0]; then
 SEARCH_STR=${HA_FIELD_VALUE};
 fi
 fi
 ${SEARCH_STR:=httpd};

HA_CMD=${KILLALL} -0 ${SEARCH_STR}";
 ha_execute_cmd "check if server $server processes are running"
 if [$? -ne 0]; then
 ${HA_LOG} "monitor of apache server $server failed."
 ha_write_status_for_resource $server $HA_CMD_FAILED;
 else
 ${HA_DBGLOG} "monitor of apache server $server successful"
 ha_write_status_for_resource $server $HA_SUCCESS;
 fi
 done
}

Ordering Script Actions

In 2.0, each resource type has a start/stop order, which is a nonnegative integer. In a
resource group, the start/stop orders of the component resource types determine the
order in which the resources will be started when IRIS FailSafe brings the group online
and will be stopped when IRIS FailSafe takes the group offline. The group’s resources are
started in increasing order, and stopped in decreasing order.

Note: Resources of the same type are started and stopped in indeterminate order.

For example, if resource type volume has order 10 and resource type filesystem has order
20, then when IRIS FailSafe brings a resource group online, all volume resources in the
group will be started before all file system resources in the group.

There is no need to create software links similar to those used in 1.2.

85

Glossary

action scripts

The set of scripts that determine how a resource is started, monitored, and stopped.
There must be a set of action scripts specified for each resource type. The possible set of
action scripts is: probe, exclusive, start, stop, monitor, and restart.

cluster

A collection of one or more cluster nodes coupled to each other by networks or other
similar interconnections. A cluster is identified by a simple name; this name must be
unique within the pool. A particular node may be a member of only one cluster.

cluster administrator

The person responsible for managing and maintaining an IRIS FailSafe cluster.

cluster configuration database

Contains configuration information about all resources, resource types, resource groups,
failover policies, nodes, and clusters.

cluster node

A single IRIX image. Usually, a cluster node is an individual computer. The term node is
also used in this guide for brevity; this use of node does not have the same meaning as a
node in an Origin system.

control messages

Messages that cluster software sends between the cluster nodes to request operations on
or distribute information about cluster nodes and resource groups. IRIS FailSafe sends
control messages for the purpose of ensuring nodes and groups remain highly available.
Control messages and heartbeat messages are sent through a node’s network interfaces
that have been attached to a control network. A node can be attached to multiple control
networks.
A node’s control networks should not be set to accept control messages if the node is not
a dedicated IRIS FailSafe node. Otherwise, end users who run non-IRIS FailSafe jobs on
the machine can have their jobs killed unexpectedly when IRIS FailSafe resets the node.

86

Glossary

control network

The network that connects nodes through their network interfaces (typically Ethernet)
such that IRIS FailSafe can maintain a cluster’s high availability by sending heartbeat
messages and control messages through the network to the attached nodes. IRIS FailSafe
uses the highest priority network interface on the control network; it uses a network
interface with lower priority when all higher-priority network interfaces on the control
network fail.
A node must have at least one control network interface for heartbeat messages and one
for control messages (both heartbeat and control messages can be configured to use the
same interface). A node can have no more than eight control network interfaces.

dependency list

See resource dependency or resource type dependency.

failover

The process of allocating a resource group to another node, according to a failover policy. A
failover may be triggered by the failure of a resource, a change in the node membership
(such as when a node fails or starts), or a manual request by the administrator.

failover attribute

A string that affects the allocation of a resource group in a cluster. The administrator
must specify system-defined attributes (such as Auto_Failback or Controlled_Failback),
and can optionally supply site-specific attributes.

failover domain

The ordered list of nodes on which a particular resource group can be allocated. The nodes
listed in the failover domain must be within the same cluster; however, the failover
domain does not have to include every node in the cluster.The administrator defines the
initial failover domain when creating a failover policy. This list is transformed into the
run-time failover domain by the failover script; the run-time failover domain is what is
actually used to select the failover node. IRIS FailSafe stores the run-time failover domain
and uses it as input to the next failover script invocation. The initial and run-time failover
domains may be identical, depending upon the contents of the failover script. In general,
IRIS FailSafe allocates a given resource group to the first node listed in the run-time
failover domain that is also in the node membership; the point at which this allocation
takes place is affected by the failover attributes.

Glossary

87

failover policy

The method used by IRIS FailSafe to determine the destination node of a failover. A
failover policy consists of a failover domain, failover attributes, and a failover script. A
failover policy name must be unique within the pool.

failover script

A failover policy component that generates a run-time failover domain and returns it to the
IRIS FailSafe process. The IRIS FailSafe process applies the failover attributes and then
selects the first node in the returned failover domain that is also in the current node
membership.

heartbeat messages

Messages that cluster software sends between the nodes that indicate a node is up and
running. Heartbeat messages and control messages are sent through a node’s network
interfaces that have been attached to a control network. A node can be attached to
multiple control networks.

heartbeat interval

Interval between heartbeat messages. The node timeout value must be at least 10 times
the heartbeat interval for proper IRIS FailSafe operation (otherwise false failovers may
be triggered). The higher the number of heartbeats (smaller heartbeat interval), the
greater the potential for slowing down the network. Conversely, the fewer the number of
heartbeats (larger heartbeat interval), the greater the potential for reducing availability
of resources.

initial failover domain

The ordered list of nodes, defined by the administrator when a failover policy is first
created, that is used the first time a cluster is booted.The ordered list specified by the
initial failover domain is transformed into a run-time failover domain by the failover script;
the run-time failover domain is used along with failover attributes to determine the node
on which a resource group should reside. With each failure, the failover script takes the
current run-time failover domain and potentially modifies it; the initial failover domain
is never used again. Depending on the run-time conditions and contents of the failover
script, the initial and run-time failover domains may be identical. See also run-time
failover domain.

88

Glossary

key/value attribute

A set of information that must be defined for a particular resource type. For example, for
the resource type filesystem, one key/value pair might be mount_point=/fs1 where
mount_point is the key and fs1 is the value specific to the particular resource being
defined. Depending on the value, you specify either a string or integer data type. In the
previous example, you would specify string as the data type for the value fs1.

log configuration

A log configuration has two parts: a log level and a log file, both associated with a log group.
The cluster administrator can customize the location and amount of log output, and can
specify a log configuration for all nodes or for only one node. For example, the crsd log
group can be configured to log detailed level-10 messages to the
/var/cluster/ha/log/crsd-foo log only on the node foo, and to write only minimal level-1
messages to the crsd log on all other nodes.

log file

A file containing IRIS FailSafe notifications for a particular log group. A log file is part of
the log configuration for a log group. By default, log files reside in the /var/cluster/ha/log
directory, but the cluster administrator can customize this. Note: IRIS FailSafe logs both
normal operations and critical errors to /var/adm/SYSLOG, as well as to individual logs
for specific log groups.

log group

A set of one or more IRIS FailSafe processes that use the same log configuration. A log
group usually corresponds to one IRIS FailSafe daemon, such as gcd.

log level

A number controlling the number of log messages that IRIS FailSafe will write into an
associated log group’s log file. A log level is part of the log configuration for a log group.

node

See cluster node

node ID

A 16-bit positive integer that uniquely defines a cluster node. During node definition,
IRIS FailSafe will assign a node ID if one has not been assigned by the cluster
administrator. Once assigned, the node ID cannot be modified.

Glossary

89

node membership

The list of nodes in a cluster on which IRIS FailSafe can allocate resource groups.

node timeout

If no heartbeat is received from a node in this period of time, the node is considered to be
dead. The node timeout value must be at least 10 times the heartbeat interval for proper
IRIS FailSafe operation (otherwise false failovers may be triggered).

notification command

The command used to notify the cluster administrator of changes or failures in the
cluster, nodes, and resource groups. The command must exist on every node in the
cluster.

offline resource group

A resource group that is not highly available in the cluster. To put a resource group in
offline state, IRIS FailSafe stops the group (if needed) and stops monitoring the group.
An offline resource group can be running on a node, yet not under IRIS FailSafe control.
If the cluster administrator specifies the detach only option while taking the group offline,
then IRIS FailSafe will not stop the group but will stop monitoring the group.

online resource group

A resource group that is highly available in the cluster. When IRIS FailSafe detects a
failure that degrades the resource group availability, it moves the resource group to
another node in the cluster. To put a resource group in online state, IRIS FailSafe starts
the group (if needed) and begins monitoring the group. If the cluster administrator
specifies the attach only option while bringing the group online, then IRIS FailSafe will
not start the group but will begin monitoring the group.

owner host

A system that can control an IRIS FailSafe node remotely, such as power-cycling the
node. Serial cables must physically connect the two systems through the node’s system
controller port. At run time, the owner host must be defined as a node in the IRIS FailSafe
pool.

owner TTY name

The device file name of the terminal port (TTY) on the owner host to which the system
controller serial cable is connected. The other end of the cable connects to the IRIS
FailSafe node with the system controller port, so the node can be controlled remotely by
the owner host.

90

Glossary

pool

The entire set of nodes involved with a group of clusters. The group of clusters are
usually close together and should always serve a common purpose. A replicated
database is stored on each node in the pool.

port password

The password for the system controller port, usually set once in firmware or by setting
jumper wires. (This is not the same as the node’s root password.)

powerfail mode

When powerfail mode is turned on, IRIS FailSafe tracks the response from a node’s
system controller as it makes reset requests to a cluster node. When these requests fail to
reset the node successfully, IRIS FailSafe uses heuristics to try to estimate whether the
machine has been powered down. If the heuristic algorithm returns with success, IRIS
FailSafe assumes the remote machine has been reset successfully. When powerfail mode
is turned off, the heuristics are not used and IRIS FailSafe may not be able to detect node
power failures.

process membership

A list of process instances in a cluster that form a process group. There can multiple
process groups per node.

resource

A single physical or logical entity that provides a service to clients or other resources. For
example, a resource can be a single disk volume, a particular network address, or an
application such as a web server. A resource is generally available for use over time on
two or more nodes in a cluster, although it can be allocated to only one node at any given
time. Resources are identified by a resource name and a resource type. Dependent resources
must be part of the same resource group and are identified in a resource dependency list.

resource dependency

The condition in which a resource requires the existence of other resources.

resource group

A collection of resources. A resource group is identified by a simple name; this name
must be unique within a cluster. Resource groups cannot overlap; that is, two resource
groups cannot contain the same resource. All interdependent resources must be part of
the same resource group. If any individual resource in a resource group becomes
unavailable for its intended use, then the entire resource group is considered
unavailable. Therefore, a resource group is the unit of failover for IRIS FailSafe.

Glossary

91

resource keys

Variables that define a resource of a given resource type. The action scripts use this
information to start, stop, and monitor a resource of this resource type.

resource name

The simple name that identifies a specific instance of a resource type. A resource name
must be unique within a given resource type.

resource type

A particular class of resource. All of the resources in a particular resource type can be
handled in the same way for the purposes of failover. Every resource is an instance of
exactly one resource type. A resource type is identified by a simple name; this name must
be unique within a cluster. A resource type can be defined for a specific node or for an
entire cluster. A resource type that is defined for a node overrides a cluster-wide resource
type definition with the same name; this allows an individual node to override global
settings from a cluster-wide resource type definition.

resource type dependency

A set of resource types upon which a resource type depends. For example, the filesystem
resource type depends upon the volume resource type, and the Netscape_web resource
type depends upon the filesystem and IP_address resource types.

run-time failover domain

The ordered set of nodes on which the resource group can execute upon failures, as
modified by the failover script. The run-time failover domain is used along with failover
attributes to determine the node on which a resource group should reside. See also initial
failover domain.

start/stop order

Each resource type has a start/stop order, which is a nonnegative integer. In a resource
group, the start/stop orders of the resource types determine the order in which the
resources will be started when IRIS FailSafe brings the group online and will be stopped
when IRIS FailSafe takes the group offline. The group’s resources are started in
increasing order, and stopped in decreasing order; resources of the same type are started
and stopped in indeterminate order. For example, if resource type volume has order 10
and resource type filesystem has order 20, then when IRIS FailSafe brings a resource group
online, all volume resources in the group will be started before all file system resources
in the group.

92

Glossary

system controller port

A port sitting on a node that provides a way to power-cycle the node remotely. Enabling
or disabling a system controller port in the cluster configuration database (CDB) tells
IRIS FailSafe whether it can perform operations on the system controller port. (When the
port is enabled, serial cables must attach the port to another node, the owner host.)
System controller port information is optional for a node in the pool, but is required if the
node will be added to a cluster; otherwise resources running on that node never will be
highly available.

tie-breaker node

A node identified as a tie-breaker for IRIS FailSafe to use in the process of computing
node membership for the cluster, when exactly half the nodes in the cluster are up and
can communicate with each other. If a tie-breaker node is not specified, IRIS FailSafe will
use the node with the lowest node ID in the cluster as the tie-breaker node.

type-specific attribute

Required information used to define a resource of a particular resource type. For
example, for a resource of type filesystem, you must enter attributes for the resource’s
volume name (where the file system is located) and specify options for how to mount the
file system (for example, as readable and writable).

93

Index

A

action scripts, 6
examples, 40
failure of, 31
format

basic action, 37
completion, 39
exit status, 36
header, 35
overview, 34
read input file, 38
read resource information, 35, 36
set global variables, 37
set local variables, 35
verify arguments, 38

monitoring
frequence, 33
necessity of, 32
testing examples, 33
types, 32

optional, 30
preparation for writing scripts, 31
required, 30
resource types provided, 31
set of scripts, 29
successful execution results, 30
templates, 31
testing, 74
writing steps, 39

administration daemon, 15
administrative commands, 17

agents, 49
application failover domain, 5
appropriate applications for high-availability, 8
attributes, 52
Auto_Failback failover attribute, 52
Auto_Recovery failover attribute, 53

B

base, 10

C

cad process, 12
check arguments, 22
check script replacement, 80
checksum verification, 77
cluster, 2
cluster_admin subsystem, 10, 12
cluster_control subsystem, 10, 12
cluster_ha subsystem, 10, 12
cluster_mgr command, 66
cluster administration daemon, 15
cluster node, 1
cmgr command, 66
cmond process

configuration, 49
description, 12

94

Index

command execution function, 23
command path, 20
commands, 17
common.vars file, 79
communicate with the network interface agent

daemon, 17
communication paths, 12
components, 15
concepts, 1
configurations

N+1, 57
N+2, 59
N+M, 60

Controlled_Failback failover attribute, 52
crsd process, 12

D

database location, 20
debugging information in action scripts, 73
debug script messages, 21
dependency list, 4
documentation, related, xii
domain, 5, 51

E

environment variables, 20
exclusive script

definition, 29
example, 47

execute a command, 23
exit_script() function, 36, 74
exit_status value, 36
exit status in action scripts, 36

F

failover, 4
failover attributes, 5, 52
failover domain, 5, 51
failover policy, 5

contents, 51
examples

N+1, 57
N+2, 59
N+M, 60

failover attributes, 52
failover domain, 51
failover script, 53
failover script interface, 56

failover script
description, 6, 53
interface, 56

failsafe2 subsystem, 12
field value, 25
file locking and unlocking, 17
filesystem resource type, 7

G

get_xxx_info() function, 36
giveaway/giveback script replacement, 80
global definition setting, 20
global variables, 37

H

HA_CDB environment variable, 20
ha_check_arg() function, 38
ha_check_args() function, 22
ha_cilog command, 17

95

Index

HA_CMD_FAILED environment variable, 21
HA_CMDSPATH environment variable, 20
ha_cmsd process, 12
HA_CURRENT_LOGLEVEL environment variable,

21
HA_DBGLVL environment variable, 20
HA_DBLOG environment variable, 21
ha_execute_cmd() function, 23
ha_execute_cmd_ret() function, 24
ha_filelock command, 17
ha_fileunlock command, 17
ha_fsd process, 12
ha_gcd process, 12
ha_get_field() function, 25
ha_get_info() function, 26
HA_HOSTNAME environment variable, 20
ha_http_ping2 command, 17
ha_ifdadmin command, 17
ha_ifd process, 12
ha_ifmx2 process, 12
HA_INVAL_ARGS environment variable, 21
HA_LOGCMD environment variable, 20
HA_LOG environment variable, 21
HA_LOGQUERY_OUTPUT environment variable,

21
ha_macconfig2 command, 17
HA_NOCFGINFO environment variable, 21
HA_NORMLVL environment variable, 20
HA_NOT_RUNNING environment variable, 21
HA_NOTSUPPORTED environment variable, 21
ha_print_exclusive_status() function, 26
ha_print_exclusive_status_all_resources() function,

27
HA_PRIVCMDSPATH environment variable, 20
ha_read_infile() function, 23, 38

HA_RESOURCEQUERYCMD environment
variable, 20

HA_RUNNING environment variable, 21
HA_SCRIPTGROUP environment variable, 20
HA_SCRIPTSUBSYS environment variable, 20
HA_SCRIPTTMPDIR environment variable, 20
ha_srmd process, 12
HA_SUCCESS environment variable, 21
ha_sybs2 process, 12
ha_write_status_for_all_resources() function, 24
ha_write_status_for_resource() function, 24
ha_write_status_for_resource function, 37
ha.conf configuration file, 77
high-availability

infrastructure, 10
services, 7

hostname, 20

I

informix_rdbms subsystem, 12
infrastructure, 10
initial failover domain, 52
InPlace_Recovery failover attribute, 53
input file, 23
IP address high-availability service, 7

L

layers, 10
lock a file, 17
log messages, 17
logs, 20

96

Index

M

MAC_address resource type, 7
MAC address high-availability service, 7
MAC address modification and display, 17
membership, 2
message logging, 17
message paths diagram, 14
migrating to 2.0

action scripts, 80
cautions, 77
ordering actions, 84
reading information, 79
resource types, 77

monitoring
agents, 49
failure, 33
frequence, 33
necessity of, 32
processes, 17
script testing, 76
testing examples, 33
types, 32

monitor script
definition, 29
example, 45

N

Netscape node check, 17
node, 1
node membership, 2
nodename output, 20
node not in a cluster diagram, 15
node status, 74

O

oracle_rdbms subsystem, 12
ordered failover script, 53
order ranges for resource types, 64
overview of the programming steps, 9

P

path to user commands, 20
PIDscript.$$ suffix, 39
plug-ins, 7, 10
pool, 1
print exclusivity check messages, 26
privileged command path, 20
probe script

definition, 29
example, 43

process
membership, 2
monitoring, 17

programming steps overview, 9

R

read an input file, 23
read/write actions to the configuration database

diagram, 13
resource

definition, 2
dependency list, 4
name, 2
query command, 20

resource group
definition, 3
states, 30

97

Index

resource information
obtaining, 26
read into an action script, 36

resource type
cluster_mgr use, 66
dependency list, 4
description, 3
GUI use, 66
information required to define a new resource

type, 63
order ranges, 64
provided with IRIS FailSafe, 7
restart mode, 65
script templates, 71
script use, 71

restart mode, 65
restart script

definition, 29
example, 48

root command path, 20
round_robin failover script, 56
run-time failover domain, 52

S

script group log, 20
scriptlib file, 19
script library, 19
scripts. See action scripts or failover script
script testing

action scripts, 74
monitoring script considerations, 76
techniques, 73

set_global_variables() function, 38
set_local_variables() section of an action script, 35
start script

definition, 29
example, 40

status of a node, 74
stop script

definition, 29
example, 42

system software
communication paths, 12
components, 15
layers, 10

T

takeover/takeback script replacement, 80
templates

action scripts, 31
resource type script definition, 71

testing scripts. See script testing, 73

U

uname command, 20
unlock a file, 17
upgrading. See migrating to 2.0, 77
user command path, 20

V

value for a field, 25
/var/cluster/cmgr-templates/cmgr-create-resource_type

directory, 71
/var/cluster/cmon/process_groups directory, 49
/var/cluster/ha/resource_types directory, 65
/var/clusters/ha/policies directory directory, 53
/var/ha/actions/common.vars file, 79
volume resource type, 7

98

Index

W

write status for a resource, 24

X

XFS file system high-availability service, 7
XLV logical volume high-availability service, 7

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3900-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

