
SGI® OpenGL Multipipe™ SDK
Programmer’s Guide

007-4527-003

Version 3.0.1

CONTRIBUTORS
Written by Ken Jones

Illustrated by Chrystie Danzer

Production by Karen Jacobson

Engineering contributions by Patrick Bouchaud, Davy Courvoisier, Stefan Eilemann, and Philippe Robert

COPYRIGHT
© 2002, 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part,without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement,
asspecified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement;
orsections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIX, OpenGL, and Reality Center are registered trademarks and GLX, Onyx4, Open Inventor,
the OpenGL logo, OpenGL Multipipe, OpenGL Shader, OpenGL Volumizer, UltimateVision, and VPro are trademarks of Silicon Graphics, Inc.,
in the United States and/or other countries worldwide.

HOLOBENCH and TANORAMA are registered trademarks of Helmut Tan. Motif and the X device are registered trademarks and Xinerama is
a trademark of The Open Group in the United States and other countries.

007-4527-003 iii

New Features in This Release

OpenGL Multipipe SDK 3.0.1 includes the following features:

• Formal support for Silicon Graphics Onyx4 UltimateVision visualization systems

• A new manual, SGI OpenGL Multipipe SDK Programmer’s Reference Pages

• Miscellaneous bugfixes

007-4527-003 v

Record of Revision

Version Description

001 October 2002

Original publication. Supports the 2.1 release of OpenGL Multipipe SDK.

002 June 2003
Revised to support the 3.0 release of OpenGL Multipipe SDK.

003 September 2003

Revised to support the 3.0.1 release of OpenGL Multipipe SDK.

007-4527-003 vii

Contents

Figures . xi

Tables . xiii

Audience . xv
Related Publications . xv

Obtaining Publications . xvi
Conventions . xvi

Reader Comments . xvii

1. Overview . 1

A Reality Center Facility . 1
What MPK Provides . 3

Run-Time Configurability 3
Run-Time Scalability . 4

Integrated Support for Scalable Graphics Hardware 4
Integrated Support for Stereo and Immersive Environments 4

Components of MPK . 5
Application Structure . 5

A Sample Configuration File . 6

2. The MPK Programming Model 9
MPK Naming Conventions . 9

MPK Data Structure Names 10
MPK Function Names . 10

MPK Attribute Names . 11

viii 007-4527-003

Contents

MPK Data Structures . 11

The MPK Configuration Hierarchy 12
The MPKConfig Data Structure 15

The MPKPipe Data Structure. 15
The MPKWindow Data Structure 16

The MPKChannel Data Structure 16
The MPKCompound Data Structure 16

The MPKEvent Data Structure 17
The MPKGlobal Data Structure 17

The MPKFrame and MPKImage Data Structures 17
The MPKArena Interface . 17

A Non-MPK Application Versus an MPK Application 18
A Simple MPK Application . 21

Creating and Initializing a Configuration 21
The Main Loop . 26

The Rendering Callbacks . 28
Event Processing . 33

A Graceful Exit. 37
Example Code . 39

3. Using Compounds . 51
Scalable Rendering . 51

Contents

007-4527-003 ix

Building Compounds . 52

Frame Decomposition . 54
Screen Decomposition 55

Database Decomposition 58
Eye Decomposition . 62

Temporal Decomposition 66
Frame Multiplexing . 66

Data Streaming . 72
Pixel-Based Decomposition 76

Full-Scene Antialiasing (FSAA) Decomposition 76
FSAA Compound Examples 76

Cull Decomposition . 78
Multilevel Decomposition 80

Stereo-Selective Compounds . 83
Automatic Load Balancing for Compounds 84

Dynamic and Static Load Balancing 84
Proper Environment for Automatic Load Balancing 85

How to Enable Automatic Load Balancing 86
Using a Split-Axis Method for Tiling 86

Choosing the Right Decomposition Mode 89
Compound-Specific Callbacks 90

Optimizing Frame Transport 90
Custom Assembly . 91

Traversing Compounds . 94

4. Culling . 97

Configuring . 97
Data Handling .100

5. Advanced MPK Programming105

Using an Alternate Parser .105
Creating Configurations without a Configuration File105

The Idle Callback .107
Controlling the Frame Rate .107

x 007-4527-003

Contents

Data Handling . 108

Application-Only Data 108
Static Shared Data . 109

Dynamic Shared Data . 109
Frame Data . 109

MPK and Xinerama . 109
Support for Xinerama-Aware Windows 110

Transparent Scalability for Xinerama Windows 111
Support for Xinerama Full-Window Overlapping 111

Hardware Compositing . 111
Advanced Compositing . 112

MPK and Other APIs . 116
OpenGL Volumizer 2 . 117

Execution Modes . 117
Rendering . 118

Scalability . 118
OpenGL Shader . 119

Open Inventor . 120
Motif . 120

Non-Thread-Safe Libraries 120

A. MPK Attributes . 123

MPK Attribute Names . 123
Managing Attributes . 124

MPKPipe Attributes . 125
MPKWindow Attributes . 127

MPKChannel Attributes . 131
MPKGlobal Attributes . 133

Index . 137

007-4527-003 xi

Figures

Figure 1-1 SGI Reality Center 2

Figure 1-2 MPK Application Structure 6
Figure 2-1 MPK Configuration Hierarchy 13

Figure 2-2 A Typical OpenGL Program 18
Figure 2-3 MPK Execution Framework 20

Figure 2-4 A Simplified mpkConfigFrame() Call 29
Figure 2-5 MPK_ORTHO_STILL and MPK_ORTHO_TRACKED Frusta 33

Figure 3-1 Source and Destination Channels 52
Figure 3-2 Screen Decomposition 55

Figure 3-3 The Execution of a 2D Compound 57
Figure 3-4 The Execution of a 2D ASYNC Compound 58

Figure 3-5 Database Decomposition 59
Figure 3-6 The Execution of a DB Compound 61

Figure 3-7 The Execution of a DB ASYNC Compound 62
Figure 3-8 Eye Decomposition. 63

Figure 3-9 The Execution of an EYE or HMD Compound 65
Figure 3-10 The Execution of an EYE or HMD ASYNC Compound 66

Figure 3-11 Frame Multiplexing Decomposition 67
Figure 3-12 The Execution of a DPLEX Compound 69

Figure 3-13 The Execution of a DPLEX ASYNC Compound 70
Figure 3-14 Two-Pipe Full-Scale DPLEX Compound 71

Figure 3-15 Data Streaming Decomposition 73
Figure 3-16 The Execution of a 3D Compound 75

Figure 3-17 4x FSAA Decomposition 77
Figure 3-18 Eye-DB Multilevel Decomposition 81

Figure 3-19 Dynamic Versus Static Load Balancing 85
Figure 3-20 2D Tiling Scheme with Four Regions and Horizontal Tiles . . . 87

xii 007-4527-003

Figures

Figure 3-21 2D Tiling Scheme with Four Regions and Vertical Tiles 88

Figure 3-22 A Detailed Window Update 92
Figure 3-23 MPKCompound Traversal 95

Figure 4-1 Compound Tree for a 2D Decomposition 98
Figure 4-2 Compound Tree for 2D Decomposition with Parallel Culling . . . 98

Figure 4-3 Compound Tree for 2D Decomposition and Multilevel Culling . . 99
Figure 4-4 Multiple Cull Threads for a Single Channel 100

Figure 5-1 A Frame and an Image within one Channel 114

007-4527-003 xiii

Tables

Table A-1 Attribute-Managing Functions for Individual Data Structures . .124

Table A-2 MPKPipe Attributes126
Table A-3 MPKWindow Attributes127

Table A-4 MPKChannel Attributes132
Table A-5 MPK Global Attributes134

007-4527-003 xv

About This Guide

This guide describes OpenGL Multipipe SDK (MPK), which is a software development
toolkit (SDK) that allows you to adapt your graphics applications to run in immersive
environments and to take advantage of the scalability provided by multiple pipes and
other scalable graphics hardware.

Audience

This guide targets application programmers. It describes how application programmers
can adapt OpenGL graphics applications to fit the MPK programming model. The
manual SGI OpenGL Multipipe SDK User’s Guide targets Reality Center administrators,
who configure graphics applications to run in multipipe environments.

Related Publications

The following books might be helpful:

• SGI OpenGL Multipipe SDK User’s Guide

• SGI OpenGL Multipipe SDK Programmer’s Reference Pages

• Neider, Jackie,Tom Davis, and Mason Woo, OpenGL Programming Guide. Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1993. A comprehensive guide to
learning OpenGL.

• Nye, Adrian, Volume One: Xlib Programming Manual. Sebastopol, California: O’Reilly
& Associates, Inc., 1991.

xvi 007-4527-003

About This Guide

Obtaining Publications

You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man <title> on a command line.

Conventions

The following conventions are used throughout this publication:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is
shown in nonbold, fixed-space font.)

function Functions are denoted in bold with following
parentheses.

manpage(x) Man page section identifiers appear in
parentheses after man page names.

About This Guide

007-4527-003 xvii

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library webpage:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, CA 94043-1351

SGI values your comments and will respond to them promptly.

007-4527-003 1

Chapter 1

1. Overview

This overview of OpenGL Multipipe SDK (MPK) consists of the following sections:

• “A Reality Center Facility”

• “What MPK Provides”

• “Components of MPK”

• “Application Structure”

• “A Sample Configuration File”

A Reality Center Facility

Throughout this document, we shall use the term Reality Center facility to convey the
following meaning: an SGI computer environment with extended visualization
capabilities. Note that this definition not only applies to the traditional three-pipe theater
(historically set up for flight simulation) but covers as well all kinds of immersive
environments (such as a Cave, TANORAMA POWERWALL, or TAN HOLOBENCH
facility) and also extends to encompass graphics clusters. Figure 1-1 on page 2 illustrates
an SGI Reality Center facility.

2 007-4527-003

1: Overview

Figure 1-1 SGI Reality Center

What MPK Provides

007-4527-003 3

What MPK Provides

As more and more graphics applications come into the virtual reality arena as a piece of
immersive solutions, application developers face new requirements. Not only do
developers need to take into account high frame rates and low latencies needed for
temporal realism, but also better image quality for visual realism. OpenGL applications
must improve their performances and must be able to run in increasingly complex
environments that include various input peripherals and projection systems. For
applications initially designed to run on a visual workstation in non-real time and with
keyboard-mouse input, new releases now need to be time-accurate and should be able to
integrate a moving frustum tied to head-tracking peripherals and several rendering
engines (graphics pipes) that provide multiple and wider fields of view. Because these
types of evolving environments have numerous parameters, the applications must be
sufficiently flexible and robust to accommodate their demands.

MPK is an application programming interface (API) designed to help software
developers meet the demands of these new immersive environments. This product
enables the application to take advantage of the scalability provided by additional pipes
and other scalable graphics hardware, as well as to support immersive environments.
MPK provides the following specific features:

• Run-time configurability

• Run-time scalability

• Integrated support for scalable graphics hardware

• Integrated support for stereo and immersive environments

Run-Time Configurability

MPK allows developers to create applications that run on multiple platforms ranging
from simple visual workstations to large and complex visualization environments, often
based on several pipes for parallel rendering purposes. It implements a design that
largely isolates the application from the graphics resources and the physical
environment. Providing run-time configurability, an application written in the MPK
programming model can run on a simple desktop platform or, without any modification
or recompilation, in highly complex visualization environments like an SGI Reality
Center facility.

4 007-4527-003

1: Overview

Run-Time Scalability

Graphics-intensive applications often require several pipes in order to achieve a desired
performance. Each pipe contributes to a part of the final rendering. This introduces the
need for a decomposition paradigm and the issue of how the rendering performance
scales with the number of pipes. Rendering in parallel requires the developer to manage
several graphic contexts and then to create tasks or threads, each managing their own
graphic context and sharing the scene to be rendered. MPK allows a multipipe
applications developer to avoid dealing with such parallel programming paradigms and
offers compound algorithms based on several decomposition types.

Integrated Support for Scalable Graphics Hardware

Scalable graphics hardware such as the SGI Scalable Graphics Compositor and the SGI
Video Digital Multiplexer (DPLEX) can perform some of the compositing functions that
MPK now provides in software. MPK supports such hardware as well as conventional
graphics hardware.

Integrated Support for Stereo and Immersive Environments

Along with its scalability features, MPK has integrated the ability to exploit the stereo
features of your application-display environment without recompilation. Having the
related display characteristics of your environment described in a configuration file, you
can specify at run time whether to run in stereo or mono.

In addition, MPK provides the application with the ability to support truly immersive
environments by using a simple programming interface: the application only needs to
provide real-world information about the position and orientation of the viewer. MPK
then transparently adapts its left- and right-eye frustum computations to the actual
user’s location.

The ease of configuring your application to accomodate different hardware resources
(graphics pipes and head-tracking devices) and different display areas makes MPK ideal
for use in immersive environments.

Components of MPK

007-4527-003 5

Components of MPK

MPK has two components:

• Application programming interface

Designed for the applications programmer to adapt OpenGL graphics applications
to fit the MPK programming model in order to support multipipe environments.

• Configuration file interface

Designed for Reality Center administrators to configure MPK graphics applications
to run in their environments. This ASCII file interface allows you to specify how the
framebuffer resources (pipes, windows, and channels) are mapped onto the
physical projection areas (walls) and the parallel decomposition schemes
(compounds) to be used by your applications.

MPK is available on IRIX through C language function calls. It is designed as a thin layer
on top of the operating system, X11, OpenGL, and GLX.

Application Structure

As an application will have to run in different configurations, MPK externalizes the
configuration management by implementing an ASCII file that is separate from the other
application code. The scene management and data workflow is separate from scene
rendering (management of the graphics resources). Figure 1-2 illustrates the structure of
an application based on MPK.

6 007-4527-003

1: Overview

Figure 1-2 MPK Application Structure

A Sample Configuration File

Example 1-1 shows a one-pipe, one-window configuration file that can be used in
conjunction with a MPK-structured program—for instance, volview, a scalable
volume-viewer application packaged as part of the OpenGL Volumizer 2 product.

Core application Graphics tasks

Database management
and

Data workflow

Scene rendering
and

Resource management

A Sample Configuration File

007-4527-003 7

Example 1-1 Sample Configuration File

global {
 MPK_WATTR_PLANES_ALPHA 1
 MPK_DEFAULT_EYE_OFFSET 0.01
}
config {
 name “Volview: 1-pipe”
 mode mono

 mono “/usr/gfx/setmon -n 1280x1024_76”
 stereo “/usr/gfx/setmon -n str_top”
 pipe {
 window {
 viewport [0, 0, 1.0, 1.0]
 channel {
 name “center”
 viewport [0., 0., 1., 1.]
 wall {
 bottom_left [-.5, -.5, -1]
 bottom_right [.5, -.5, -1]
 top_left [-.5, .5, -1]
 }
 }
 }
 }
}

007-4527-003 9

Chapter 2

2. The MPK Programming Model

This chapter describes the program structure and execution model of an OpenGL
Mulitipipe SDK (MPK) program and compares this model with that of a conventional
OpenGL program. It includes a walkthrough of a simple MPK application. This chapter
has the following sections:

• “MPK Naming Conventions”

• “MPK Data Structures”

• “A Non-MPK Application Versus an MPK Application”

• “A Simple MPK Application”

MPK Naming Conventions

In large part, MPK follows the OpenGL naming conventions for its programming
constructs. The primary MPK constructs are its data structures. Most of these data
structures correspond to the graphics elements you will manage:

• Configuration (usually abbreviated to “Config” in names)

• Pipe

• Window

• Channel

• Compound (a decomposition mode)

This section describes how the data structures are named as well as the naming
conventions for related functions and data constants.

10 007-4527-003

2: The MPK Programming Model

MPK Data Structure Names

MPK uses a composite form for its data structure names: the MPK prefix plus the data
structure type. MPK has the following user-accessible data structures:

• MPKConfig

• MPKPipe

• MPKWindow

• MPKChannel

• MPKCompound

• MPKEvent

• MPKFrame

• MPKGlobal (used to specify global default attributes)

• MPKImage

MPK Function Names

Generally, MPK function names have three parts:

1. mpk prefix

2. Data structure type

3. Action

The following are examples:

mpkWindowDelete()
mpkChannelApplyBuffer()
mpkCompoundGetRange()

There are special function names associated with MPKGlobal data structures. The section
“MPKGlobal Attributes” in Appendix A describes the naming of these functions.

MPK Data Structures

007-4527-003 11

MPK Attribute Names

Like MPK data structure names and function names, MPK attribute names are composite
names with an MPK prefix, but unlike the data structure and function names, attribute
names use the underscore character (_) to separate the parts and the attribute names use
all capital letters.

MPK attribute names have three or more parts, the first two of which are the following:

1. MPK prefix

2. Attribute type

CATTR Specifies a channel attribute.

PATTR Specifies a pipe attribute.

WATTR Specifies a window attribute.

DEFAULT Used only in the case of the stereo-related attribute
MPK_DEFAULT_EYE_OFFSET.

The remaining parts contain additional attribute descriptors. The following are examples
of attribute names:

MPK_CATTR_FAR
MPK_PATTR_STEREO_WIDTH
MPK_WATTR_HINTS_RGBA

MPK Data Structures

MPK encapsulates the graphics resources and rendering options in data structures. This
section describes the hierarchy and function of these data structures as well as the special
data structures MPKEvent, MPKFrame, MPKGlobal, and MPKImage and the interface
MPKArena. The following subsections comprise this section:

• “The MPK Configuration Hierarchy”

• “The MPKConfig Data Structure”

• “The MPKPipe Data Structure”

• “The MPKWindow Data Structure”

• “The MPKChannel Data Structure”

12 007-4527-003

2: The MPK Programming Model

• “The MPKCompound Data Structure”

• “The MPKEvent Data Structure”

• “The MPKGlobal Data Structure”

• “The MPKFrame and MPKImage Data Structures”

• “The MPKArena Interface”

The MPK Configuration Hierarchy

MPK uses a hierarchical tree to describe the configuration. The top-level data structure,
the MPKConfig data structure, holds children of type MPKPipe. The MPKPipe data
structure holds children of type MPKWindow, which hold children of type
MPKChannel. As such, you can take advantage of the attendant inheritance. For
instance, you can specify the screen dimensions at the MPKPipe level and they will be
inherited by the child windows and child channels. This inheritance is made possible
because MPK uses no absolute pixel dimensions but fractional viewport descriptions for
its window and channels.

Figure 2-1 illustrates one possible configuration using two pipes, two windows, and four
channels to render four different views. Example 2-1 illustrates the skeleton of the
corresponding configuration file, which can be read using mpkConfigLoad().

MPK Data Structures

007-4527-003 13

Figure 2-1 MPK Configuration Hierarchy

Reality Center
MPK Configuration

pipe
X-display
(stereo)

pipe
X-display
(stereo)

window
GLX drawing area

window
GLX drawing area

channel
GL viewport

Physical Layout

channel
GL viewport

Physical Layout

channel
GL viewport

Physical Layout

channel
GL viewport

Physical Layout

14 007-4527-003

2: The MPK Programming Model

Example 2-1 MPK Data Structures in a Configuration File

config {
 pipe {
 window {
 viewport [parameters1]
 channel {
 viewport [parameters2]
 .
 .
 .
 }
 channel {
 viewport [parameters3]
 .
 .
 .
 }
 }
 }
 pipe {
 window {
 viewport [parameters4]
 channel {
 viewport [parameters5]
 .
 .
 .
 }
 channel {
 viewport [parameters6]
 .
 .
 .
 }
 }
 }
}

MPK Data Structures

007-4527-003 15

Reading this configuration file, MPK determines the following:

• What physical pipes it must allocate

• What parallel tasks it must create

• How to synchronize the rendering tasks

• The final rendering framebuffer area

The following sections describe the function of each data structure.

The MPKConfig Data Structure

The MPKConfig data structure primarily describes the rendering resources of an MPK
application as a hierarchy of the following:

• Hardware rendering pipelines (MPKPipes)

• GLX software rendering threads (MPKWindows)

• OpenGL framebuffer rendering areas (MPKChannels)

It may also describe MPKCompounds, various parallelization schemes of the rendering
across channels in order to scale performances.

You can read the MPKConfig data structure from an ASCII file using mpkConfigLoad()
and launch the MPKConfig using mpkConfigInit(). Rendering threads are then
spawned and the MPKConfig initialization callbacks are invoked. These should in turn
specify the rendering callbacks that will be triggered by mpkConfigFrame().

The MPKPipe Data Structure

The MPKPipe data structure describes the rendering resources within an MPKConfig
that are assigned to a given hardware rendering pipe. The pipe itself is characterized by
the name of its corresponding X11 display as well as the expected mono and stereo
mechanisms (full-screen, quad-buffer, and so on) to be applied by its rendering threads
(MPKWindows).

You can specify the display sizes corresponding to the various stereo modes using
MPKGlobal attributes; otherwise, MPK uses the values returned by

16 007-4527-003

2: The MPK Programming Model

DisplayWidth(3X11) and DisplayHeight(3X11). Appendix A, “MPK Attributes”
describes the MPKGlobal attributes.

The MPKWindow Data Structure

An MPKWindow data structure corresponds to a single GLX unit. A GLX unit is a single
X window, pixel buffer (pbuffer), or X pixmap with its associated OpenGL visual and
context. Essential in the MPK programming model is that each MPKWindow spawns its
own rendering thread. MPK also supports nonthreaded windows, which are updated
sequentially from the application thread.

The MPKChannel Data Structure

An MPKChannel data structure is essentially a view onto a scene and corresponds to a
single viewport inside its parent MPKWindow. See the man page glViewport(3G) for
information on viewports. In addition to the viewport description, an MPKChannel also
contains the modeling coordinates for the projection rectangle in the real world.

The MPKCompound Data Structure

To achieve greater application performance, the MPKCompound data structure is used
to describe a decomposition scheme as well as the recomposition by distributing the
rendering workload across several graphics pipes.

It is essentially a container for children of type MPKCompound, each associated with an
existing MPKChannel data structure. The rendering of the topmost MPKChannel in the
hierarchy will be parallelized among the child channels by one or more of the following
decomposition schemes:

• Portions of the destination viewport (mode 2D)

• Portions of the frame data (mode DB)

• Stereo eye pass (mode EYE or HMD)

• Pipelined rendering cycles (mode DPLEX or 3D)

• Image quality (mode FSAA, pixel-based)

• Parallelized culling and drawing (mode CULL)

MPK Data Structures

007-4527-003 17

Chapter 3, “Using Compounds” describes in detail the decomposition schemes.

The MPKEvent Data Structure

The MPKEvent data structure encapsulates an X11 event. It provides convenience
functions to decode the data in the corresponding XEvent. Note that the MPKEvent is
freed automatically by MPK. Hence, the pointer to an MPKEvent should not be stored
within the application.

The MPKGlobal Data Structure

The MPKGlobal data structure specifies MPK default attribute values. It handles general
default values—such as the execution mode, shared arena attributes, and the timer
signal—as well as default attributes for the MPKPipe, MPKWindow, and MPKChannel
data structures. These entities retrieve their default values during creation.

Appendix A, “MPK Attributes” describes the MPKGlobal attributes.

The MPKFrame and MPKImage Data Structures

The MPKFrame and MPKImage data structures provide access to the transported color,
depth, and stencil values during compound assembly. The section “Advanced
Compositing” in Chapter 5 explains this API.

The MPKArena Interface

MPK provides a simple memory allocation interface that enables applications to allocate
data regardless of their current execution mode. Any data that is shared between the
rendering threads and the application thread should be allocated using mpkMalloc() or
mpkRealloc().

Internally, MPK may use a shared arena (see the usinit(3P) man page) to allocate
memory. The default parameters of this arena can be changed using the MPKGlobal
interface.

18 007-4527-003

2: The MPK Programming Model

A Non-MPK Application Versus an MPK Application

The typical OpenGL application, as shown in Figure 2-2, is a single-threaded application
with a main rendering loop. Within that loop it updates the scene database, draws a new
frame, and processes user input. This application is constrained to single-window
output, as it is unable to scale the rendering across multiple pipes. In theory, it is still
possible to update several windows sequentially. However, this leads to no scalability
since the application is single-threaded with each update adding time to the total frame
time.

Figure 2-2 A Typical OpenGL Program

Pipe init

Window init

DB update

Window update

Channel update

Event processing

A Non-MPK Application Versus an MPK Application

007-4527-003 19

The evolution of an existing OpenGL application to a multithreaded, multipipe
implementation requires application changes that are independent of the framework
being used. The following steps describe the actions to be taken for this conversion:

1. Isolate scene graph manipulation and drawing.

This first step isolates the application’s rendering operation from its
data-manipulation operation. Then, multiple rendering operations can execute
concurrently on the application data in a manner that the rendering and
data-manipulation operations do not modify each other’s variables. As a result, the
rendering operation accesses the application data in a read-only mode and is
limited to feeding the graphics pipeline. This separation requires a re-evaluation of
the application’s data structures for the channel-specific component. Therefore, you
must consider the existing culling mechanisms. Although such mechanisms
comprise an interface layer between channels and their associated views, they are
typically specific to the application data or scene graph API. MPK ensures that its
programming model does not infringe on any possible culling implementation.

2. Centralize events and data processing.

Data access can be controlled by protecting thread-sensitive data (using a mutex or
locks) , by engineering an entire application around a central data server (APP), or
by integrating both of these methods. Although event processing is just one aspect
of this issue, it impacts the entire design process.

Introducing a thread-safe implementation, this approach reflects OpenGL’s “natural”
application framework.

20 007-4527-003

2: The MPK Programming Model

Figure 2-3 MPK Execution Framework

Once you complete the first two conversion steps, it is just a small step to use MPK as an
application framework. You only need to transpose the drawing-related functions into
their MPK counterparts. Figure 2-3 illustrates the MPK execution model.

The restructured application is now capable of parallel execution to scale its
performance, as described in the section “Run-Time Scalability” in Chapter 1. MPK takes
care of all the necessary synchronization.

Pipe init

Window init Window init

Window updateWindow update

Channel update Channel update

Event Processing

DB update

A Simple MPK Application

007-4527-003 21

A Simple MPK Application

This section describes the components of a very simple MPK program in the following
subsections:

• “Creating and Initializing a Configuration”

• “The Main Loop”

• “The Rendering Callbacks”

• “Event Processing”

• “A Graceful Exit”

• “Example Code”

All the code fragments used in the various subsections to explain the parts of an MPK
program are put together in the last subsection “Example Code” to compose an
executable example.

Creating and Initializing a Configuration

Example 2-2 shows the typical initialization sequence for a simple MPK program. Each
of the MPK calls are described after the example.

Example 2-2 A Simple MPK Initialization Sequence

MPKConfig *config;

mpkGlobalSetExecutionMode(MPK_EXECUTION_PTHREAD);

mpkInit();

// shared must be allocated after mpkInit().
shared = mpkMalloc(sizeof(Shared));
initSharedData(shared);

if (argc < 2)
 config = mpkConfigLoad(“../configs/1-window”);
else
 config = mpkConfigLoad(argv[1]);

if (config == NULL)

22 007-4527-003

2: The MPK Programming Model

{
 fprintf(stderr, “Can’t load config file.\n”);
 exit (0);
}

mpkConfigOutput(config, 0);

shared->stereo = (mpkConfigGetMode(config) == MPK_STEREO ? 1 : 0);

mpkConfigSetWindowInitCB(config,initWindow);
mpkConfigSetWindowExitCB(config,NULL);
mpkConfigSetChannelInitCB(config,initChannel);
mpkConfigSetDataFreeCB(config, freeFrameData);

mpkConfigInit(config, 0);

The function mpkGlobalSetExecutionMode() selects the threading model used by this
application. MPK supports pthread, sproc, or fork execution modes. Since the
execution mode has to be known before initialization, it is set before mpkInit(). The
default execution mode is pthread.

Calling mpkInit() initializes internal MPK data structures and the shared arena if
necessary. This call has to be the first MPK call in an application, except for the following:

• mpkGetString()

• mpkGlobalSetExecutionMode()

• mpkGlobalSetArenaAttribute()

• mpkGlobalSetArenaPath()

The shared arena is used to allocate shared memory in fork execution mode as well as
to create synchronization primitives in fork and sproc execution mode.

The next step for the application is to initialize its shared global data. Note that global
data should always be located in a block of memory allocated by mpkMalloc() or
mpkCalloc() to ensure the data is accessible by all threads. See “Data Handling” in
Chapter 5 for more details.

After MPK and the application is initialized, an MPKConfig data structure is created. In
this case, mpkConfigLoad() is used to read an ASCII configuration file into an
MPKConfig structure. This could be done by other means—for example, by constructing
an MPKConfig structure programmatically or by writing an alternate parser. See

A Simple MPK Application

007-4527-003 23

Chapter 5, “Advanced MPK Programming” for a description of the alternative
approaches. The function mpkConfigOutput() can be used to print the given
MPKConfig in a format compatible with mpkConfigLoad().

The stereo mode, as specified in the configuration file, is obtained using
mpkConfigGetMode(). This value is later needed during the main loop and in the event
callbacks.

Some MPKConfig callbacks have to be set in order to run this configuration properly.
These are the window initialization and channel initialization callbacks as well as the
data deallocation callback. The initialization callbacks are explained in the following
paragraphs. The purpose of the free-data callback is explained in the section “The Main
Loop” later in this chapter.

Finally, the configuration is initialized by calling mpkConfigInit(). For each data
structure in the configuration hierarchy, the MPKConfig initialization callback is
invoked.

From the application thread perspective, the initialization of the threaded windows
consists of simply launching the window thread. The first thing that is invoked from the
newly created window rendering thread is the MPKConfig’s window initialization
callback and the initialization callbacks for all channels of this window.

Nonthreaded windows are initialized from the application thread sequentially. All
threaded window and channel initialization callbacks are called from their respective
window threads. Therefore, the window initialization and channel initialization happen
in parallel. Any critical data access in the window or channel initialization callbacks has
to be protected using mutual exclusion.

The default window initialization callback is mpkWindowCreate(). Most applications
overwrite the default callback in order to do per-window initialization. Example 2-3
shows a simple window initialization callback.

24 007-4527-003

2: The MPK Programming Model

Example 2-3 Simple Window Initialization Callbacks

void initWindow(MPKWindow *w)
{
 // MPKWindow initialization

 mpkWindowSetDrawCB(w,MPK_WINDOW_DRAWCB_INIT_X,initWindowX);
 mpkWindowSetDrawCB(w,MPK_WINDOW_DRAWCB_INIT_GL,initWindowGL);
 mpkWindowSetDrawCB(w,MPK_WINDOW_DRAWCB_EXIT_X,exitWindowX);
 mpkWindowSetDrawCB(w,MPK_WINDOW_DRAWCB_EXIT_GL,exitWindowGL);

 mpkWindowSetEventCB(w,MPK_WINDOW_EVENTCB_MOUSE,windowMouse);
 mpkWindowSetEventCB(w,MPK_WINDOW_EVENTCB_BUTTON,windowMouse);
 mpkWindowSetEventCB(w,MPK_WINDOW_EVENTCB_EXIT,windowExit);
 mpkWindowSetEventCB(w,MPK_WINDOW_EVENTCB_KEYBOARD,windowKeyboard);
}

void initWindowX(MPKWindow *w)
{
 // X11 initialization
 mpkWindowCreate(w);
}

void initWindowGL(MPKWindow *w)
{
 // create ctx
 mpkWindowCreateContext(w);
 mpkWindowMakeCurrent(w);

 // GL initialization
 mpkWindowApplyViewport(w);

 glDepthFunc(GL_LEQUAL);
 glEnable(GL_DEPTH_TEST);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glLightfv(GL_LIGHT0, GL_POSITION, lightpos);

 glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
 glEnable(GL_COLOR_MATERIAL);

 glClearDepth(1.);
 glClearColor(0., 0., 0., 1.);

A Simple MPK Application

007-4527-003 25

 // clear both buffers
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 mpkWindowSwapBuffers(w);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}

For window initialization, there are three stages:

• MPKWindow initialization

• X window initialization

• OpenGL initialization

During the MPKWindow initialization, all necessary event callbacks are set. The event
callbacks are described in the later section “Event Processing”. The X initialization
creates the window. The function mpkWindowCreate() performs the following
operations:

mpkWindowOpenDisplay(window);

GLXFBConfig *fbconfig = mpkWindowChooseFBConfig(window, &n);
mpkWindowSetFBConfig(window, fbconfig[0]);

mpkWindowCreateDrawable(window);
mpkWindowMapDrawable(window);

The initGL() function creates an OpenGL context and initializes OpenGL.At the end of
the OpenGL initialization callback, both draw buffers are cleared in order to avoid visual
artifacts during the initial frames. The function mpkWindowSwapBuffers() should
always be used instead of glXSwapBuffers().

The channel initialization code, as shown in Example 2-4, is quite simple: it just sets this
channel’s clear and update draw callbacks. The purpose of these callbacks is explained
in the later section “The Rendering Callbacks”.

Example 2-4 A Sample Channel Initialization Callback

void initChannel(MPKChannel *c)
{
 mpkChannelSetDrawCB(c, MPK_CHANNEL_DRAWCB_CLEAR, clearChannel);
 mpkChannelSetDrawCB(c, MPK_CHANNEL_DRAWCB_UPDATE, updateChannel);
}

26 007-4527-003

2: The MPK Programming Model

The Main Loop

The main rendering loop, as shown in Example 2-5, performs two basic operations: it
updates the application’s database based on user input and draws a new frame in an
endless loop.

Example 2-5 The Main Rendering Loop

while (!shared->exit)
{
 // update DB
 incrementRotation(shared->rotation,
 shared->xangle,
 shared->yangle);

 shared->translation[0] += shared->dx;
 shared->translation[1] += shared->dy;
 shared->translation[2] += shared->dz;

 shared->dx = 0.;
 shared->dy = 0.;
 shared->dz = 0.;

 // new frame
 mpkConfigChangeMode(config, shared->stereo);
 framedata = newFrameData(shared);
 mpkConfigFrame(config, framedata);
}

The function mpkConfigChangeMode() changes the configuration stereo mode to the
passed mode. If the new mode is the same as the old, then the change is ignored.
Switching the stereo mode involves exiting and restarting the configuration if any of the
windows that will use quad-buffered stereo does not have a stereo-capable visual. For
that reason, if a configuration file uses quad-buffered stereo, the MPKGlobal attribute
MPK_WATTR_HINTS_STEREO should be set to 1 in the global section of the configuration
file.

Finally, a new frame is drawn by calling mpkConfigFrame(). MPK provides a transport
mechanism for frame data to render latency-correct frames. For certain decompositions,
as discussed in Chapter 3, “Using Compounds”, a channel draws an older frame than the
current one. For that reason, frame-specific data—for example, the current translation of
the scene—has to be managed through the MPK frame data mechanism. MPK keeps

A Simple MPK Application

007-4527-003 27

track of older frame data and always passes the appropriate frame data to the rendering
callbacks. In order to free old frame data, MPK calls the free-data callback for the
MPKConfig structure. The MPK internal data structures are latency-aware. For example,
a channel’s viewport in a rendering callback will be computed according to the current
latency.

Example 2-6 uses the functions newFrameData() and freeFrameData() to manage the
application’s frame data. A simple linked list is used to recycle old frame data structures,
in order to avoid subsequent mpkMalloc() and mpkFree() calls for each frame. To
generate a new frame data structure, newFrameData() gets a structure allocated using
mpkMalloc() and fills in frame-dependent data from the application’s database. In this
example, this is the translation and rotation of the scene. The free-data callback inserts
the old structure into a linked list to recycle it for new use by newFrameData().

Example 2-6 The Frame Data-Handling Functions

FrameData *newFrameData(Shared *shared)
{
 FrameData *framedata;
 if (frameDataBuffer == NULL)
 {
 framedata = (FrameData *) mpkMalloc(sizeof(FrameData));
 }
 else
 {
 framedata = frameDataBuffer;
 frameDataBuffer = framedata->next;
 }

 framedata->next = NULL;

 memcpy(framedata->translation, shared->translation,
 3*sizeof(float));
 memcpy(framedata->rotation, shared->rotation, 16*sizeof(float));

 return framedata;
}

void freeFrameData(MPKConfig *cfg, void *data)
{
 FrameData *framedata = (FrameData *)data;
 framedata->next = frameDataBuffer;
 frameDataBuffer = framedata;
}

28 007-4527-003

2: The MPK Programming Model

The Rendering Callbacks

This section explains what actually happens during a mpkConfigFrame() call: what
callbacks are invoked, their invocation order, and how the rendering threads are
synchronized. Figure 2-4, not taking compounds into account, shows a simplified
diagram of the execution.

A Simple MPK Application

007-4527-003 29

Figure 2-4 A Simplified mpkConfigFrame() Call

non-threaded
windows:

update window

clear and draw
all channels

idle callback

Event processing

swapbuffer
non-threaded

windows

unlock window threads

synchronize swapbuffers

update window

Channel 1 clear

Channel 1 draw

Channel n clear

Channel n draw

swapbuffer

update window

Channel 1 clear

Channel 1 draw

Channel n clear

Channel n draw

swapbuffer

synchronize frame done

30 007-4527-003

2: The MPK Programming Model

First, the function mpkConfigFrame() unlocks the rendering threads. This action
invokes the update-window draw callback and then calls the update callbacks for each
channel.

Usually, the application thread is idle while the window threads are drawing. Some
applications may perform an intermittent task during this time—for example, to pipeline
their culling— but the application must avoid modifying the data currently being used
by the rendering processes. The MPKConfig idle callback serves this purpose.

The abstraction of the rendering from the main application enables an MPK application
to transparently use stereo rendering. When running in stereo mode, MPK calls the
update callbacks twice for each channel: once for the left eye and once for the right eye.

The update-window draw callback is called once at the beginning of each frame.
Typically, this is the place to update the OpenGL context, for example, by creating new
texture objects. This callback is not used in the example code in this section.

MPK, in contrast to other multipipe programming models, separates the update of a
channel into two callbacks, clear and draw. The separation is necessary to do the
recomposition during compound processing, as explained in Chapter 3, “Using
Compounds”.

A simple clear callback is shown in Example 2-7.

Example 2-7 A Channel Clear Callback

 void clearChannel(MPKChannel *c, void *data)
 {
 mpkChannelApplyBuffer(c);
 mpkChannelApplyViewport(c);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 }

The purpose of the clear callback is to set up the current channel and clear its OpenGL
framebuffer as needed. The function mpkChannelApplyBuffer() sets the correct
OpenGL read and draw buffers (see the glReadBuffer(3G) and glDrawBuffer(3G)
man pages) according to the current stereo mode and eye pass.

The function mpkChannelApplyViewport() applies the current OpenGL viewport and
scissor area (see the glViewport(3G) and glScissor(3G) man pages). The channel’s

A Simple MPK Application

007-4527-003 31

pixel viewport is computed from the parent window’s pixel viewport (that is, its width
and height) and the channel’s fractional viewport using the following formula:

#define IRND(a) ((int)((a)+.5))

// compute first pixel position of the channel
channel.pvp[0] = IRND(channel.vp[0] * window.pvp[2]);
channel.pvp[1] = IRND(channel.vp[1] * window.pvp[3]);

// compute last pixel position of the channel
channel.pvp[2] = IRND((channel.vp[0]+channel.vp[2]) * window.pvp[2]);
channel.pvp[3] = IRND((channel.vp[1]+channel.vp[3]) * window.pvp[3]);

// compute channel’s dimension
channel.pvp[2] -= channel.pvp[0];
channel.pvp[3] -= channel.pvp[1];

This method honors positions over dimensions in order to ensure adjacency whenever
possible—for example, in a 1280x1024 window:

vp(1): [0. 0. 0.3333 1.] pvp(1): [0 0 427 1024]
vp(2): [0.3333 0. 0.3333 1.] pvp(2): [427 0 426 1024]

Note that in full-screen stereo mode (type rect) during the left eye pass, the value of the
MPKGlobal variable MPK_PATTR_STEREO_OFFSET will be added to
channel.pvp[1].

Example 2-8 shows a simple update-channel draw callback. The purpose of the draw
callback is to render a new frame based on the current frustum and frame data for this
channel.

Example 2-8 A Channel Draw Callback

void updateChannel(MPKChannel *c, void *data)
{
 FrameData *framedata = (FrameData *)data;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 mpkChannelApplyFrustum(c);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 mpkChannelApplyTransformation(c);

32 007-4527-003

2: The MPK Programming Model

 glTranslatef(framedata->translation[0],
 framedata->translation[1],
 framedata->translation[2]);

 glMultMatrixf(framedata->rotation);

 drawcube();
}

Since MPK manages the frustum, the draw callback should always use MPK functions to
set up the frustum. The function mpkChannelApplyFrustum() applies an OpenGL
frustum matrix for the passed MPKChannel with respect to the current eye pass, eye
position, and the channel’s physical layout specification. For orthographic views, MPK
provides the call mpkChannelApplyOrtho() as an alternative to
mpkChannelApplyFrustum(). MPK uses the mode MPK_ORTHO_STILL or
MPK_ORTHO_TRACKED to apply an OpenGL orthographic matrix. If the orthographic
mode is MPK_ORTHO_STILL, then mpkChannelApplyOrtho() simply uses the
half-width and half-height dimensions of the channel layout to produce the distances
used in glOrtho(). Otherwise, if orthographic mode is MPK_ORTHO_TRACKED, then
mpkChannelApplyOrtho() uses the current view direction (for example, from
mpkConfigSetHeadOrientation()) to produce consistent viewing across all channels in
the configuration. Figure 2-5 illustrates an example ofMPK_ORTHO_STILL (left side) and
MPK_ORTHO_TRACKED (right side). The argument zoom specifies two-dimensional
scaling on the X and Y screen coordinates.

A Simple MPK Application

007-4527-003 33

Figure 2-5 MPK_ORTHO_STILL and MPK_ORTHO_TRACKED Frusta

To position and orient the frustum specified by mpkChannelApplyFrustum() or
mpkChannelApplyOrtho(), the function mpkChannelApplyTransformation() applies
the necessary modeling transformation.

Once the frustum is set up correctly, the scene is positioned according to the rotation and
translation of the current frame data. The function drawcube() draws the database, a
colored cube.

Event Processing

MPK provides a flexible solution to process events. The event gathering and processing
is centralized in the application thread.

In order to receive events, each window has an input display, which is created during
mpkWindowOpenDisplay(). MPK uses XSelectInput() to request events on a given
window. The functions mpkConfigSelectInput(), mpkPipeSelectInput(), and
mpkWindowSelectInput() can be used to change the event mask for all windows in the
given hierarchy.

34 007-4527-003

2: The MPK Programming Model

The event processing is done at the end of the frame by calling an event processing
callback. By default, this callback is set to mpkConfigHandleEvents(). The callback polls
for XEvents on all input displays and encapsulates the XEvents in MPKEvents. This
MPKEvent is then processed by the any-event callback of the matching window. The
default any-event callback, mpkWindowProcessEvent(), calls the other window event
callbacks based on the event type. The pseudo code for the default event processing in
mpkConfigHandleEvents() is shown in Example 2-9.

Example 2-9 Pseudo Code for mpkConfigHandleEvents()

foreach input display connection
 while XEvent pending
 receive XEvent
 find matching MPKWindow
 encapsulate XEvent in MPKEvent
 update MPKEventXData
 call window any-event callback
 | default:
 | mpkWindowProcessEvent
 | call exit, expose, configure, mouse, button or keyboard
 | event callback based on event type
 end while
end for

This architecture enables MPK to provide support for the various event processing
scenarios:

• Event-driven applications

An application that is event-driven redraws only when user input or other events
require a redraw. Usually, these applications set the configuration’s event callback
to NULL and process the events themselves by using mpkConfigNextEvent() and
mpkConfigCheckEvent(). This enables the application to issue a new
mpkConfigFrame() call whenever necessary. The example flip.eventDriven
shows such an application.

• Applications that are not event-driven

For some applications it is necessary to continously draw new frames, for example,
to display animations. MPK’s default event processing does not block for new
events; thus, it returns as soon as all pending events are processed. This leads
naturally to the desired behavior.

• No MPK event processing

A Simple MPK Application

007-4527-003 35

Some applications already have their own event processing model. By setting the
window’s input display to NULL during window initialization and setting the
configuration’s event callback to NULL, MPK event processing is disabled.

As cited in an earlier section, the MPKEvent data structure encapsulates an X11 event. It
provides convenience functions to decode the data in the corresponding XEvent. Note
that the MPKEvent is freed automatically by MPK. Hence, the pointer to an MPKEvent
should not be stored within the application.

The event callbacks of the example program in this section, as shown in Example 2-10,
provide some mouse interaction as well as the possibility to switch the stereo mode by
pressing s.

Example 2-10 Window Event Callbacks for Mouse, Keyboard, and Exit

void windowMouse(MPKWindow *w, MPKEvent *event)
{
 MPKEventXData *data = (MPKEventXData *) mpkEventGetData(event);

 if (data->button.left)
 {
 if (data->button.middle)
 {
 shared->dz += (float) data->mouse.dy/200.;
 }
 else
 {
 shared->dx += (float) data->mouse.dx/500.;
 shared->dy -= (float) data->mouse.dy/500.;
 }
 }
 else if (data->button.middle)
 {
 shared->xangle = (float) data->mouse.dy*.5;
 shared->yangle = (float) data->mouse.dx*.5;
 }
}

void windowExit(MPKWindow *w, MPKEvent *event)
{
 shared->exit = GL_TRUE;
}

void windowKeyboard(MPKWindow *w, MPKEvent *event)

36 007-4527-003

2: The MPK Programming Model

{
 MPKEventXData *data = (MPKEventXData *)mpkEventGetData(event);

 if (data->keyboard.state != MPK_PRESS)
 return;

 switch(data->keyboard.key)
 {
 case XK_S:
 case XK_s:
 shared->stereo = !shared->stereo;
 break;
 }
}

A Simple MPK Application

007-4527-003 37

A Graceful Exit

Eventually, application processing leaves the main loop. In the sample program in this
section, the exit-window callback, which is called whenever Esc is pressed, sets the exit
flag to true. This causes the main loop shown in Example 2-5 in section “The Main Loop”
to terminate.

Example 2-11 shows a simple exit sequence.

Example 2-11 A Simple Exit Sequence

//---------- restore MONO

mpkConfigSetWindowInitCB(config,NULL);
mpkConfigSetChannelInitCB(config,NULL);
mpkConfigChangeMode(config, MPK_MONO);

//---------- exit & delete config

mpkConfigExit(config);
mpkConfigDelete(config);

exitSharedData(shared);
mpkFree(shared);

mpkExit();

The first part of Example 2-11 restores the mono mode upon exiting. This may not be
desired for other applications, but in this case it is provided for convenience. The
initialization callbacks are set to NULL to avoid unnecessary window creation in case the
configuration is restarted.

The second part contains the actual cleanup. It exits the configuration; this action will
cause the exit callbacks, shown in Example 2-12, to be called in the reverse order of the
initialization callbacks.

In Example 2-11, nothing has to be done in order to exit the MPKWindow. Therefore, the
MPKConfig’s exit-window callback is set to NULL. The X exit callback calls
mpkWindowDestroy(), which performs the following operations:

mpkWindowDestroyDrawable(window);
mpkWindowDestroyFBConfig(window);

mpkWindowCloseDisplay(window);

38 007-4527-003

2: The MPK Programming Model

The OpenGL exit callback destroys the OpenGL context.

Example 2-12 The Exit Callbacks

//---
// exitWindowX
//---
void exitWindowX(MPKWindow *w)
{
 mpkWindowDestroy(w);
}

//---
// exitWindowGL
//---
void exitWindowGL(MPKWindow *w)
{
 // destroy ctx
 mpkWindowMakeCurrentNone(w);
 mpkWindowDestroyContext(w);
}

After mpkConfigExit() is called, all window threads are terminated. The MPKConfig
data structure and all of its children are freed by calling mpkConfigDelete(). Next,
before the final mpkExit(), the shared data is deinitialized and freed using mpkFree(),
the mpkMalloc() counterpart.

A Simple MPK Application

007-4527-003 39

Example Code

The source code in Example 2-13 is the full example for the simple MPK application
described part by part in the preceding subsections.

Example 2-13 A Simple MPK Application

/* compile using ‘cc -o example example.c -lm -lmpk -lGL -lpthread’ */

#include <mpk/mpk.h>

#include <X11/keysym.h>
#include <math.h>
#include <stdio.h>

#ifndef M_PI
#define M_PI 3.1415926535
#endif

#define DEG2RAD(a) ((a)*M_PI/180.)

typedef struct
{
 int stereo;
 int exit;

 float xangle, yangle,
 dx, dy, dz,
 translation[3],
 rotation[16];

} Shared;

typedef struct _FrameData
{
 float translation[3],
 rotation[16];

 struct _FrameData *next;

} FrameData;

Shared *shared;
FrameData *frameDataBuffer = NULL;
FrameData *newFrameData(Shared *shared);

40 007-4527-003

2: The MPK Programming Model

void freeFrameData(MPKConfig *, void *);

void initSharedData(Shared *shared);
void exitSharedData(Shared *shared);

void initWindow(MPKWindow *);
void initWindowX(MPKWindow *);
void initWindowGL(MPKWindow *);
void exitWindowX(MPKWindow *);
void exitWindowGL(MPKWindow *);

void initChannel(MPKChannel *c);
void clearChannel(MPKChannel *, void *);
void updateChannel(MPKChannel *, void *);

void windowMouse(MPKWindow *, MPKEvent *);
void windowExit(MPKWindow *, MPKEvent *);
void windowKeyboard(MPKWindow *, MPKEvent *);

void incrementRotation(float *, float, float);
void drawcube();

static float lightpos[] = { 0., 0., 1., 0. };

//---
// main
//---
main(int argc, char *argv[])
{
 MPKConfig *config;
 FrameData *framedata;

 mpkGlobalSetExecutionMode(MPK_EXECUTION_PTHREAD);

 mpkInit();

 // shared must be allocated after mpkInit().
 shared = mpkMalloc(sizeof(Shared));
 initSharedData(shared);

 if (argc < 2)
 config = mpkConfigLoad(“../configs/1-window”);
 else
 config = mpkConfigLoad(argv[1]);

A Simple MPK Application

007-4527-003 41

 if (config == NULL)
 {
 fprintf(stderr, “Can’t load config file.\n”);
 exit (0);
 }

 mpkConfigOutput(config, 0);

 shared->stereo = (mpkConfigGetMode(config)==MPK_STEREO ? 1 : 0);

 mpkConfigSetWindowInitCB(config,initWindow);
 mpkConfigSetWindowExitCB(config,NULL);
 mpkConfigSetChannelInitCB(config,initChannel);
 mpkConfigSetDataFreeCB(config, freeFrameData);

 mpkConfigInit(config, 0);

 while (!shared->exit)
 {
 // update DB
 incrementRotation(shared->rotation,
 shared->xangle,
 shared->yangle);

 shared->translation[0] += shared->dx;
 shared->translation[1] += shared->dy;
 shared->translation[2] += shared->dz;

 shared->dx = 0.;
 shared->dy = 0.;
 shared->dz = 0.;

 // new frame
 mpkConfigChangeMode(config, shared->stereo);
 framedata = newFrameData(shared);
 mpkConfigFrame(config, framedata);
 }

 //---------- restore MONO

 mpkConfigSetWindowInitCB(config,NULL);
 mpkConfigSetChannelInitCB(config,NULL);
 mpkConfigChangeMode(config, MPK_MONO);

 //---------- exit & delete config

42 007-4527-003

2: The MPK Programming Model

 mpkConfigExit(config);
 mpkConfigDelete(config);

 exitSharedData(shared);
 mpkFree(shared);

 mpkExit();
}

//---
// initSharedData
//---
void initSharedData(Shared *shared)
{
 int i, j;

 shared->exit = 0;
 shared->stereo = MPK_MONO;
 shared->yangle = 0.;
 shared->xangle = 0.;

 for (i=0; i<4; i++)
 for (j=0; j<4; j++)
 shared->rotation[4*i+j] = (i==j) ? 1. : 0.;

 shared->dx = 0.;
 shared->dy = 0.;
 shared->dz = 0.;
 shared->translation[0] = 0.;
 shared->translation[1] = 0.;
 shared->translation[2] = -2.;
}

//---
// exitSharedData
//---
void exitSharedData(Shared *shared)
{
 while (frameDataBuffer != NULL)
 {
 FrameData *framedata = frameDataBuffer;

 frameDataBuffer = framedata->next;

A Simple MPK Application

007-4527-003 43

 mpkFree(framedata);
 }
}

//---
// initWindow
//---
void initWindow(MPKWindow *w)
{
 mpkWindowSetDrawCB(w, MPK_WINDOW_DRAWCB_INIT_X, initWindowX);
 mpkWindowSetDrawCB(w, MPK_WINDOW_DRAWCB_INIT_GL, initWindowGL);
 mpkWindowSetDrawCB(w, MPK_WINDOW_DRAWCB_EXIT_X, exitWindowX);
 mpkWindowSetDrawCB(w, MPK_WINDOW_DRAWCB_EXIT_GL, exitWindowGL);

 mpkWindowSetEventCB(w,MPK_WINDOW_EVENTCB_MOUSE,windowMouse);
 mpkWindowSetEventCB(w,MPK_WINDOW_EVENTCB_BUTTON,windowMouse);
 mpkWindowSetEventCB(w,MPK_WINDOW_EVENTCB_EXIT,windowExit);
 mpkWindowSetEventCB(w,MPK_WINDOW_EVENTCB_KEYBOARD,windowKeyboard);
}

//---
// initWindowX
//---
void initWindowX(MPKWindow *w)
{
 mpkWindowCreate(w);
}

//---
// initWindowGL
//---
void initWindowGL(MPKWindow *w)
{
 // create ctx
 mpkWindowCreateContext(w);
 mpkWindowMakeCurrent(w);

 // GL initialization
 mpkWindowApplyViewport(w);

 glEnable(GL_DEPTH_TEST);
 glDepthFunc (GL_LESS);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);

44 007-4527-003

2: The MPK Programming Model

 glLightfv(GL_LIGHT0, GL_POSITION, lightpos);

 glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
 glEnable(GL_COLOR_MATERIAL);

 glClearDepth(1.);
 glClearColor(0., 0., 0., 1.);

 // clear both buffers
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 mpkWindowSwapBuffers(w);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}

//---
// exitWindowX
//---
void exitWindowX(MPKWindow *w)
{
 mpkWindowDestroy(w);
}

//---
// exitWindowGL
//---
void exitWindowGL(MPKWindow *w)
{
 // destroy ctx
 mpkWindowMakeCurrentNone(w);
 mpkWindowDestroyContext(w);
}

//---
// initChannel
//---
void initChannel(MPKChannel *c)
{
 mpkChannelSetDrawCB(c, MPK_CHANNEL_DRAWCB_CLEAR, clearChannel);
 mpkChannelSetDrawCB(c, MPK_CHANNEL_DRAWCB_UPDATE, updateChannel);
}

//---
// newFrameData
//---
FrameData *newFrameData(Shared *shared)

A Simple MPK Application

007-4527-003 45

{
 FrameData *framedata;
 if (frameDataBuffer == NULL)
 {
 framedata = (FrameData *) mpkMalloc(sizeof(FrameData));
 }
 else
 {
 framedata = frameDataBuffer;
 frameDataBuffer = framedata->next;
 }

 framedata->next = NULL;

 memcpy(framedata->translation,
 shared->translation, 3*sizeof(float));
 memcpy(framedata->rotation, shared->rotation, 16*sizeof(float));

 return framedata;
}

//---
// freeFrameData
//---
void freeFrameData(MPKConfig *cfg, void *data)
{
 FrameData *framedata = (FrameData *)data;

 framedata->next = frameDataBuffer;
 frameDataBuffer = framedata;
}

//---
// clearChannel
//---
void clearChannel(MPKChannel *c, void *data)
{
 mpkChannelApplyBuffer(c);
 mpkChannelApplyViewport(c);

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}

//---
// updateChannel

46 007-4527-003

2: The MPK Programming Model

//---
void updateChannel(MPKChannel *c, void *data)
{
 FrameData *framedata = (FrameData *)data;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 mpkChannelApplyFrustum(c);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 mpkChannelApplyTransformation(c);

 glTranslatef(framedata->translation[0],
 framedata->translation[1],
 framedata->translation[2]);

 glMultMatrixf(framedata->rotation);

 drawcube();
}

//---
// windowMouse
//---
void windowMouse(MPKWindow *w, MPKEvent *event)
{
 MPKEventXData *data = (MPKEventXData *) mpkEventGetData(event);

 if (data->button.left)
 {
 if (data->button.middle)
 {
 shared->dz += (float) data->mouse.dy/200.;
 }
 else
 {
 shared->dx += (float) data->mouse.dx/500.;
 shared->dy -= (float) data->mouse.dy/500.;
 }
 }
 else if (data->button.middle)
 {
 shared->xangle = (float) data->mouse.dy*.5;

A Simple MPK Application

007-4527-003 47

 shared->yangle = (float) data->mouse.dx*.5;
 }
}

//---
// windowExit
//---
void windowExit(MPKWindow *w, MPKEvent *event)
{
 shared->exit = GL_TRUE;
}

//---
// windowKeyboard
//---
void windowKeyboard(MPKWindow *w, MPKEvent *event)
{
 MPKEventXData *data = (MPKEventXData *)mpkEventGetData(event);

 if (data->keyboard.state != MPK_PRESS)
 return;

 switch(data->keyboard.key)
 {
 case XK_S:
 case XK_s:
 shared->stereo = !shared->stereo;
 break;
 }
}

//---
// incrementRotation
//---
static void xformColumn(float *m, int i, int j, int k,
 float cosX, float sinX,
 float cosY, float sinY)
{
 float aux = sinX*m[j] + cosX*m[k];
 float x = sinY*aux + cosY*m[i];
 float y = cosX*m[j] - sinX*m[k];
 float z = cosY*aux - sinY*m[i];
 m[i] = x;
 m[j] = y;
 m[k] = z;

48 007-4527-003

2: The MPK Programming Model

}

void incrementRotation(float *matrix, float xangle, float yangle)
{
 float cosX, sinX, cosY, sinY;

 cosX = cos(DEG2RAD(xangle));
 sinX = sin(DEG2RAD(xangle));
 cosY = cos(DEG2RAD(yangle));
 sinY = sin(DEG2RAD(yangle));
 xformColumn(matrix, 0, 1, 2, cosX, sinX, cosY, sinY);
 xformColumn(matrix, 4, 5, 6, cosX, sinX, cosY, sinY);
 xformColumn(matrix, 8, 9, 10, cosX, sinX, cosY, sinY);
}

//---
// drawcube
//---
#define CUBE_SIZE .25
void drawcube()
{
 glColor3f(0., 0., 1.);
 glNormal3f(0., 0., -1.);
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3f(-CUBE_SIZE,-CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(-CUBE_SIZE, CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(CUBE_SIZE,-CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(CUBE_SIZE, CUBE_SIZE,-CUBE_SIZE);
 glEnd();

 glColor3f(0., 1., 0.);
 glNormal3f(0., -1., 0.);
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3f(-CUBE_SIZE,-CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(-CUBE_SIZE,-CUBE_SIZE, CUBE_SIZE);
 glVertex3f(CUBE_SIZE,-CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(CUBE_SIZE,-CUBE_SIZE, CUBE_SIZE);
 glEnd();

 glColor3f(1., 1., 1.);
 glNormal3f(-1., 0., 0.);
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3f(-CUBE_SIZE,-CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(-CUBE_SIZE, CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(-CUBE_SIZE,-CUBE_SIZE, CUBE_SIZE);

A Simple MPK Application

007-4527-003 49

 glVertex3f(-CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
 glEnd();

 glColor3f(1., 0., 0.);
 glNormal3f(0., 1., 0.);
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3f(-CUBE_SIZE, CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(-CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
 glVertex3f(CUBE_SIZE, CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
 glEnd();

 glColor3f(1., 0., 1.);
 glNormal3f(1., 0., 0.);
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3f(CUBE_SIZE,-CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(CUBE_SIZE,-CUBE_SIZE, CUBE_SIZE);
 glVertex3f(CUBE_SIZE, CUBE_SIZE,-CUBE_SIZE);
 glVertex3f(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
 glEnd();

 glColor3f(1., 1., 0.);
 glNormal3f(0., 0., 1.);
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3f(-CUBE_SIZE,-CUBE_SIZE, CUBE_SIZE);
 glVertex3f(CUBE_SIZE,-CUBE_SIZE, CUBE_SIZE);
 glVertex3f(-CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
 glVertex3f(CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
 glEnd();
}

007-4527-003 51

Chapter 3

3. Using Compounds

This chapter describes how you can use compounds (or conversely, decomposition) to
scale the performance of your graphics application. Decomposition allows you to use
multiple pipes to render frames that would normally be rendered by a single pipe.

This chapter has the following sections:

• “Scalable Rendering”

• “Building Compounds”

• “Stereo-Selective Compounds”

• “Automatic Load Balancing for Compounds”

• “Choosing the Right Decomposition Mode”

• “Compound-Specific Callbacks”

• “Traversing Compounds”

Scalable Rendering

To achieve greater application performance, MPK allows you to decompose a global
rendering task into smaller tasks and to assign the smaller tasks to individual pipes. The
task division requires a decomposition scheme. In general, a decomposition scheme
sends a scene to render to each pipe, gets back rendered images from each pipe for
further composition, and then renders the final image. An exception is cull
decomposition, where the cull operation is parallelized with the draw operation.

Figure 3-1 illustrates the role of source and destination channels in scalable rendering.

52 007-4527-003

3: Using Compounds

Figure 3-1 Source and Destination Channels

Building Compounds

To build a compound, you must create a MPKCompound data structure. The manual
SGI OpenGL Multipipe SDK User’s Guide describes the syntax of the MPKCompound
data structures for your configuration file. This section describes how you build them
logically.

Generally, to create a compound, you need to do the following:

1. Choose a decomposition scheme, which divides the global rendering task into
smaller tasks.

2. Distribute the rendering of the smaller tasks to the source pipes for parallel
processing.

3. Designate a destination channel for the reassembly of the final, coherent image.

Compound

Destination channel

Source channel 0 draw Source channel 1 draw Source channel 2 draw

Source channel 0 read Source channel 1 read Source channel 2 read

Building Compounds

007-4527-003 53

The destination channel is usually one of the source channels. To achieve optimal
performances, you would usually have one channel per pipe.

This chapter focuses on the three tasks just cited. Optionally, you can also do the
following:

• Indicate whether your compound is used in only stereo or mono mode.

• Indicate controls for the pixel data transfers between the compound and its regions.

• Indicate whether to use scalable graphics hardware.

• Indicate whether to use automatic load balancing.

The section “Stereo-Selective Compounds” on page 83 describes how you control
whether your compound is used depending on the stereo mode of the application. For
more information on the first two optional tasks, see the
SGI OpenGL Multipipe SDK User’s Guide for the description of the mode and format
fields of the MPKCompound data structure. “Hardware Compositing” in Chapter 5
describes the integration of scalable graphics with MPK. The section “Automatic Load
Balancing for Compounds” on page 84 describes how MPK balances the rendering for
certain compound modes.

MPK provides several decomposition schemes and the following subsections describe
these schemes:

• “Frame Decomposition” on page 54

• “Temporal Decomposition” on page 66

• “Pixel-Based Decomposition” on page 76

• “Cull Decomposition” on page 78

• “Multilevel Decomposition” on page 80

54 007-4527-003

3: Using Compounds

Each decomposition mode improves performance or graphics quality, but the
performance gain depends on the application type and the nature of the performance
bottleneck. Four factors are important in choosing the decomposition scheme:

Factor Description

Load balancing For a given decomposition, each pipe should execute
roughly the same amount of work since the slowest pipe
dictates the overall performance. Unbalanced
decomposition can seriously affect the scalability.

Scalability of scheme Scalability is the degree to which the performance grows
as the number of graphics resources increases. To
optimize performance, you only add resources to address
the source of the bottleneck. For example, adding more
geometry power to an application limited by pixel fill will
not improve performance.

Latency added Depending on the decomposition scheme, the frame
delay between a user input and the associated frame
output may be greater than one frame. Minimizing this
latency may be critical for some event-driven
applications.

Graphics I/O consumption A typical decomposition involves the reading and writing
of images from the source channels (contributing
channels) to a destination channel. This transfer might
stress the graphics I/O and memory capabilities of the
system.

Frame Decomposition

In frame decomposition, a frame or view is divided into regions, which are, in turn,
assigned to individual source pipes for rendering. Based on the following perspectives,
there are several approaches to dividing the frame into regions:

• Screen topology (screen decomposition)

• Scene graph primitives (database decomposition)

• Eye view (eye decomposition)

Each approach yields a different flavor of frame decomposition.

Building Compounds

007-4527-003 55

Screen Decomposition

In screen decomposition (also referred to as 2D decomposition), each pipe renders a part
of the screen area. Assembling side-to-side each image part constitutes the final
rendering. This type of decomposition is used when the intrinsic pixel fill or geometry
capacity of each pipe slows down the application. The scalability depends on the
balancing of the workloads. The model to display needs to be uniformly distributed
across the screen to accommodate a good balancing and, thus, scalability. The graphics
I/O is relatively low, because the traveling source images are small.

Figure 3-2 illustrates screen decomposition.

Figure 3-2 Screen Decomposition

Compound

56 007-4527-003

3: Using Compounds

Example 3-1 shows the configuration file specifications for the screen decomposition
illustrated in Figure 3-2.

Example 3-1 2D Compound in a Configuration File

compound {
 mode [2D]
 channel "destination"

The top left of "destination" image will be
rendered on "source0"...
 region {
 viewport [0., .5, .5, .5]
 channel "source0"
 }
The top right of "destination" image will be
rendered on "source1"...
 region {
 viewport [.5, .5, .5, .5]
 channel "source1"
 }
The bottom left of "destination" image will be
rendered on "source2"...
 region {
 viewport [0., 0., .5, .5]
 channel "source2"
 }
... while "destination" itself takes care of
the bottom right
 region {
 viewport [.5, 0., .5, .5]
 channel "destination"
 }
}

Figure 3-3 shows how the configuration in Example 3-1 executes.

Building Compounds

007-4527-003 57

Figure 3-3 The Execution of a 2D Compound

By adding the mode flag ASYNC, the frame rate can be improved because of the lower
consumption of graphics I/O, as shown in Figure 3-4. Note that the ASYNC configuration
has a latency of one.

read image #3 read image #4 read image #5

draw frame 1
fourth quarter

assemble image #3-5

clearclearclearclear

draw frame 1
first quarter

draw frame 1
second quarter

draw frame 1
third quarter

draw frame 0
first quarter

draw frame 0
second quarter

draw frame 0
third quarter

mpkConfigFrame

mpkConfigFrame
clear

"source0" "source1" "source2" "destination"

read image #0

mpkConfigFrame

clear clear

read image #1 read image #2

clear

draw frame 0
fourth quarter

assemble image #0-2

58 007-4527-003

3: Using Compounds

Figure 3-4 The Execution of a 2D ASYNC Compound

Database Decomposition

In database (DB) decomposition, the scene is rendered in parallel by dividing it among
the different graphics pipes. Each pipe renders its share of the scene to generate partial
images. These images are then composited by MPK to generate the final image in the
destination channel. During composition, the application can use depth testing and/or
alpha blending to achieve the desired effect. Database decomposition allows you to scale
both the geometry and the pixel fill performance of the system. For some applications,
such as volume rendering, it also scales the texture memory capacity of the system by the
number of pipes.

Figure 3-5 demonstrates the use of database decomposition in volume rendering. The
volume data is divided equally among the four pipes and the partial images are
composited on the destination channel. In this case, the destination channel (top left
portion of the figure) is also contributing to the rendering as a source channel.

read image #3 read image #4 read image #5

draw frame 0
bottom right

assemble image #0-2

clearclearclearclear

draw frame 1
top left

draw frame 1
top right

draw frame 1
bottom left

draw frame 0
top left

draw frame 0
top right

draw frame 0
bottom left

mpkConfigFrame

mpkConfigFrame
clear

"source0" "source1" "source2" "destination"

read image #0

mpkConfigFrame

clear clear

read image #1 read image #2

Building Compounds

007-4527-003 59

Figure 3-5 Database Decomposition

Example 3-2 shows the configuration file specifications for the database decomposition
illustrated in Figure 3-5.

60 007-4527-003

3: Using Compounds

Example 3-2 DB Compound in a Configuration File

compound {
 mode [DB]
 format [COLOR DEPTH]
 channel “channel”

 region {
 range [0., .25]
 channel “buffer0”
 }

 region {
 range [.25, .5]
 channel “buffer1”
 }

 region {
 range [.5, .75]
 channel “buffer3”
 }

 region {
 range [.75, 1.]
 channel “channel”
 }
}

Figure 3-6 shows how the confiuration in Example 3-2 executes.

Building Compounds

007-4527-003 61

Figure 3-6 The Execution of a DB Compound

In order to support this decomposition scheme, the application has to use therange field
to draw the correct part of the database in the MPKChannel’s update draw callback. The
range can be acquired using mpkChannelGetRange().

The default DB assembly uses the following pseudo code to assemble the frames using
Z-based recomposition:

if ASYNC flag is set
 draw depth buffer of first input frame
 draw color buffer of first input frame
end if

enable stencil test

for all remaining input frames
 enable depth test
 draw depth buffer and set stencil bit where depth-test passes
 disable depth test
 draw color buffer where stencil bit set
end for

read image #3 read image #4 read image #5

draw frame 1
fourth quarter

assemble image #3-5

clearclearclearclear

draw frame 1
first quarter

draw frame 1
second quarter

draw frame 1
third quarter

draw frame 0
first quarter

draw frame 0
second quarter

draw frame 0
third quarter

mpkConfigFrame

mpkConfigFrame
clear

"buffer0" "buffer1" "buffer2" "destination"

read image #0

mpkConfigFrame

clear clear

read image #1 read image #2

clear

draw frame 0
fourth quarter

assemble image #0-2

62 007-4527-003

3: Using Compounds

Some applications, such as volume rendering, may want to use a different recomposition
technique than MPK’s default procedure. The later section “Compound-Specific
Callbacks”explains how to use custom assemble-compound callbacks.

By adding the mode flag ASYNC, the frame rate can be improved because of the lower
consumption of graphics I/O, as shown in Figure 3-7. Note that the ASYNC configuration
has a latency of one.

Figure 3-7 The Execution of a DB ASYNC Compound

Eye Decomposition

Eye decomposition is well-suited for stereo or multiple-view rendering. Each pipe
renders a particular view (left, right, mono). The final rendering depends on the type of
display. As illustrated in Figure 3-8, if stereo is active, then each pipe view fills in the right
or left buffer of the final rendering. This provides good load balancing and scalability,
especially for stereo-view rendering, because the scene content remains similar during
run time.

An EYE compound has no frame latency, unless the mode qualifier ASYNC has been
specified and pixel transfer needs to occur, in which case the latency is 1.

read image #3 read image #4 read image #5

draw frame 0
fourth quarter

image #0-2

clearclearclearclear

draw frame 1
first quarter

draw frame 1
second quarter

draw frame 1
third quarter

draw frame 0
first quarter

draw frame 0
second quarter

draw frame 0
third quarter

mpkConfigFrame

mpkConfigFrame
clear

"buffer0" "buffer1" "buffer2" "destination"

read image #0

mpkConfigFrame

clear clear

read image #1 read image #2

Building Compounds

007-4527-003 63

The number of regions of an eye compound is not limited. If more than one region
correspond to the same eye view, MPK uses the first specified region (for this eye) as
source for the pixel transfer, if needed.

Figure 3-8 Eye Decomposition

Example 3-3 shows the configuration file specifications for the eye decomposition
illustrated in Figure 3-8.

Example 3-3 Eye Compound in a Configuration File

compound {
 mode [EYE STEREO]
 channel “channel”

 region {
 eye LEFT
 channel “buffer”
 }

 region {
 eye RIGHT
 channel “channel”
 }
}

Pipe 0

Pipe 1

Compound

Pipe 1 : Left and right buffers

64 007-4527-003

3: Using Compounds

Head-Mounted-Device (HMD) decomposition is very similar to that of eye
decomposition, except that the head position actually specifies a new origin for the
physical layout of the channels.

Example 3-4 shows a configuration file specification for an HMD decomposition:

Example 3-4 HMD Compound in a Configuration File

compound {
 mode [HMD]
 channel “destination”

 region {
 eye left
 channel “source::left”
 }

 region {
 eye right
 channel “source::right”
 }
}

If a destination channel is specified, then the frustum is inherited from the destination
channel’s wall or projection frustum specification; otherwise, the source channel’s
frustum specification will be used.

Figure 3-9 shows how the configurations for Example 3-3 and Example 3-4 execute.

Building Compounds

007-4527-003 65

Figure 3-9 The Execution of an EYE or HMD Compound

By adding the mode flag ASYNC, the frame rate can be improved because of the lower
consumption of graphics I/O, as shown in Figure 3-10. Note that the ASYNC
configuration has a latency of one.

mpkConfigFrame
"buffer" "channel"

mpkConfigFrame

clear

read image #0

draw frame 0
left eye

clear

read image #1

draw frame 1
left eye

mpkConfigFrame

clear

assemble image #1

draw frame 1
right eye

clear

assemble image #0

draw frame 0
right eye

66 007-4527-003

3: Using Compounds

Figure 3-10 The Execution of an EYE or HMD ASYNC Compound

Temporal Decomposition

In contrast to frame decomposition, where the focus of load balancing is on dividing the
frame into regions, temporal decomposition balances the workload by scheduling the
work on each pipe in sync with that of the other pipes to produce a steady stream of
rendered frames. The time scheduling rather than the frame division is the focus. There
are two types of temporal decomposition: frame multiplexing and data streaming. The
work done by each pipe largely distinguishes the two.

Frame Multiplexing

Frame multiplexing (also referred to as DPLEX decomposition) distributes entire frames
to the source pipes over time for parallel processing. The first pipe begins rendering
frame 1; a specified fraction of a frame later the second pipe begins rendering frame 2;
another fraction of a frame later the third pipe begins rendering frame 3; and so on for all
of the pipes.

Figure 3-11 illustrates frame multiplexing on a four-pipe system.

mpkConfigFrame
"buffer" "channel"

mpkConfigFrame

clear

read image #0

draw frame 0
left eye

clear

read image #1

draw frame 1
left eye

mpkConfigFrame

clear

assemble image #0

draw frame 0
right eye

Building Compounds

007-4527-003 67

Figure 3-11 Frame Multiplexing Decomposition

Frame multiplexing globally scales geometry and pixel fill performance, as the workload
balance between pipes is intrinsically maintained. This scheme has an increased
transport delay inherent to frame synchronization required across the pipes. It produces
a latency of (pipes – 1) frames—that is, there will be a (pipes – 1) frames delay between a
user input and the corresponding output frame.

Frame multiplexing can also be accelerated in hardware using the SGI Video Digital
Multiplexer (DPLEX), which connects pipes together with a bus, thereby avoiding the
image readbacks from the contributing pipes. The pipes are daisy-chained to achieve
reduced latency. For more details, see “Hardware Compositing” in Chapter 5.

Example 3-5 shows the configuration file specifications for the screen decomposition
illustrated in Figure 3-11.

Frame: N+1 N+6N+5N+4N+3N+2

dplex::1

dplex::0

dplex::2

channel

68 007-4527-003

3: Using Compounds

Example 3-5 DPLEX Compound in a Configuration File

compound {
 mode [DPLEX]
 channel “channel”

 region {
 channel “dplex::0”
 }

 region {
 channel “dplex::1”
 }

 region {
 channel “dplex::2”
 }
}

Figure 3-12 shows how the configuration in Example 3-5 executes.

Building Compounds

007-4527-003 69

Figure 3-12 The Execution of a DPLEX Compound

By adding the mode flag ASYNC, the frame rate can be improved because of the lower
consumption of graphics I/O, as shown in Figure 3-13. Note that the DPLEX ASYNC
configuration has a latency of pipes frames while the DPLEX configuration has a lency of
(pipes – 1) frames.

mpkConfigFrame

mpkConfigFrame
"dplex::0" "dplex::1" "dplex::2" "channel"

mpkConfigFrame

mpkConfigFrame

mpkConfigFrame

mpkConfigFrame

mpkConfigFrame

clear

clear

read image #0 clear

read image #1clear

assemble image #1

read image #2clear

assemble image #2

read image #3 clear

assemble image #3

draw frame 0

assemble image #0

draw frame 3

draw frame 1

draw frame 4

draw frame 2

70 007-4527-003

3: Using Compounds

Figure 3-13 The Execution of a DPLEX ASYNC Compound

You can achieve full scalability—that is, scale by the number of pipes rather than by
(pipes – 1)—using a DPLEX compound. To do so, you must specify the destination
channel as a source channel also. To support this feature, the application has to be
modified as explained in the following paragraph.

DPLEX operation implies that while one frame is being drawn, another one is copied and
displayed on the destination window. In full-scale DPLEX operation, one of the source
channels draws a frame while it has to simultaneously display another frame from a
different source channel. Drawing into a pbuffer enables this channel to draw its frame
into the pbuffer and to display the frame of another source channel in the X window at
the same time. MPK needs to know when the drawing into the pbuffer is interruptible in
order to composite into the normal source window. Therefore, the application should call
mpkChannelSyncDPlex() whenever possible to switch the OpenGL context from the
pbuffer to the X window—that is, outside of a glBegin() ... glEnd() sequence. Figure 3-14
shows this decomposition for a two-pipe full-scale DPLEX compound.

mpkConfigFrame

mpkConfigFrame
"dplex::0" "dplex::1" "dplex::2" "channel"

mpkConfigFrame

mpkConfigFrame

mpkConfigFrame

mpkConfigFrame

mpkConfigFrame

clear

clear
draw frame 0

read image #0

clear

read image #1

clear assemble image #0

read image #2

clear assemble image #1

read image #3

clear assemble image #2

draw frame 1

draw frame 3

draw frame 4

draw frame 2

Building Compounds

007-4527-003 71

Figure 3-14 Two-Pipe Full-Scale DPLEX Compound

Example 3-6 shows a configuration file structured for full scalability using the DPLEX
compound.

Frame: N+1 N+4N+3N+2

dplex::0

channel

channel X window X windowX windowX window

X window X window X window

PBuffer PBuffer

mpkChannelSyncDPlex()

72 007-4527-003

3: Using Compounds

Example 3-6 DPLEX Compound Structured for Full Scalability

compound {
 mode [DPLEX]
 channel “channel”

 region {
 channel “channel”
 }

 region {
 channel “buffer”
 }
}

Note: Full scalability using the DPLEX compound is supported only on InfiniteReality
graphics systems.

Data Streaming

Data streaming (also referred to as 3D decomposition) is similar to database
decomposition in that it allows the application to divide the scene among multiple pipes
and then composite the partial results to give the final rendering. But, in this case, the
composition is done using a series of successive compounds for each frame, as shown in
Figure 3-15. For frame N+1, channel stream::1 draws the first quarter of the database,
which is copied to channel stream::2 at the beginning of the next frame. During frame
N+2, channelstream::2draws the second quarter of the database on top while channel
stream::1 starts a new frame. At frame N+4, the destination channelchannel finishes
drawing the last quarter and displays the frame started three time steps ago.

Like DPLEX decomposition, this scheme also has a latency of (pipes – 1) frames—that is,
there will be a (pipes – 1) frames delay between a user input and the corresponding
output frame. As shown in Figure 3-15, this latency is due to successive compounds at
each frame. You must wait for (pipes – 1) frame computations before the final rendering
is displayed. Each compound needs to read only one source image. Consequently, this
keeps graphics I/O consumption low while performance scaling is achieved by
pipelining the rendering in parallel across the pipes.

Building Compounds

007-4527-003 73

Figure 3-15 Data Streaming Decomposition

As shown in Example 3-7, the configuration file specification for a data streaming
decomposition is similar to that for database decomposition.

Example 3-7 Data Streaming Compound (3D) in a Configuration File

compound {
 mode [3D]
 format [COLOR DEPTH]
 channel “channel”

 region {
 range [.0 .25]
 channel “stream::1”
 }

 region {
 range [.25 .5]
 channel “stream::2”
 }

 region {
 range [.5 .75]
 channel “stream::3”
 }

Frame: N+1 N+4N+3N+2

stream::3 channelstream::2stream::1

N+5

stream::1 stream::2 stream::3 channel

74 007-4527-003

3: Using Compounds

 region {
 range [.75 1.]
 channel “channel”
 }
}

In order to support this decomposition scheme, the application has to use therange field
to draw the correct part of the database in the MPKChannel’s update draw callback. The
range can be acquired using mpkChannelGetRange(). Some applications, such as
volume rendering, may want to use a different recomposition technique than MPK’s
default procedure. The later section “Compound-Specific Callbacks”explains how to use
custom assemble-compound callbacks.

Figure 3-16 shows how the configuration for Example 3-7 executes. Data streaming
compounds always assemble before drawing; therefore, the ASYNC flag is ignored.

Building Compounds

007-4527-003 75

Figure 3-16 The Execution of a 3D Compound

mpkConfigFrame

mpkConfigFrame
clear

"stream::1" "stream::2" "stream::3" "channel"

mpkConfigFrame

mpkConfigFrame

mpkConfigFrame

mpkConfigFrame

clear

clear

clear

clear

draw frame 0
first quarter

draw frame 1
first quarter

draw frame 3
first quarter

draw frame 2
first quarter

draw frame 4
first quarter

read image #0

read image #1

read image #3

read image #6

read image #10

assemble image #0

assemble image #1

assemble image #3

read image #2

read image #4

read image #7

draw frame 0
second quarter

draw frame 1
second quarter

clear

clear

draw frame 2
second quarter

assemble image #2

read image #5

draw frame 0
third quarter

clear

assemble image #4

read image #8

draw frame 1
third quarter

clear

assemble image #7

read image #12

draw frame 3
third quarter

clear

assemble image #6

read image #11

draw frame 3
second quarter

clear

assemble image #5

read image #9

draw frame 0
fourth quarter

clear

assemble image #8

read image #13

draw frame 1
fourth quarter

clear

76 007-4527-003

3: Using Compounds

Pixel-Based Decomposition

In pixel-based decomposition, a frame is rendered using a multipass approach where
single passes are assigned to individual source pipes for rendering. Assembling each
frame using accumulation techniques constitutes the final rendering. Accumulation of
the frames can be achieved using one of the following techniques:

• The SGI Scalable Graphics Compositor

• OpenGL accumulation

• OpenGL blending

In order to use OpenGL accumulation, you must use an appropriate visual; otherwise,
MPK uses blending.

Full-Scene Antialiasing (FSAA) Decomposition

MPK has implemented one scheme of pixel-based decomposition, a full-scene
antialiasing (FSAA) compound. Each pipe renders the full scene from a slightly different
viewpoint. The number of rendering passes of a FSAA compound is defined by its
number of sources. Furthermore, every channel can thereby be used multiple times. This
type of decomposition is used when the the resulting output quality has highest priority.
The scalability and final rendering quality depends on the number of available pipes.

FSAA Compound Examples

Example 3-8 shows an FSAA compound using the SGI Scalable Graphics Compositor:

Example 3-8 Four-Pipe 4x FSAA Compound Using the SGI Scalable Graphics Compositor

compound {
 mode [FSAA HW NOCOPY]
 channel “channel-0”

 # The number of sources defines the FSAA mode
 region {
 channel “channel-0”
 }
 region {
 channel “channel-1”
 }
 region {

Building Compounds

007-4527-003 77

 channel “channel-2”
 }
 region {
 channel “channel-3”
 }
}

Figure 3-17 illustrates the advantage of using a 4x FSAA solution.

Figure 3-17 4x FSAA Decomposition

Example 3-9 shows how to use the same channel multiple times as a source channel to
support multipass rendering in MPK on machines with only a few pipes.

without FSAA

4x FSAA

78 007-4527-003

3: Using Compounds

Example 3-9 Multiple Use of a Single Channel in FSAA Decompostion

compound {
 mode [FSAA]
 channel “channel”

 # The number of sources defines the FSAA mode
 region {
 channel “channel”
 }
 region {
 channel “channel”
 }
 region {
 channel “channel”
 }
 region {
 channel “channel”
 }
}

Cull Decomposition

Cull decomposition is different from the other decomposition modes in that it does not
decompose the rendering of a frame. Instead, it decomposes (parallels) the cull and draw
operations. Naturally, the use of this feature in the configuration file requires the
application also to support the cull decomposition mode (see Chapter 4, “Culling”).

In cull decomposition, the regions specify the operation to be executed by this region.
Example 3-10 shows a cull decomposition for a single channel.

Building Compounds

007-4527-003 79

Example 3-10 A Simple Cull Decomposition

config
{
 name “1-window”

 pipe
 {
 window
 {
 name “MPK: simple”
 viewport [0.25, 0.25, 0.5, 0.5]

 channel
 {
 name “channel”

 wall
 {
 bottom_left [-.5, -.4, -1]
 bottom_right [.5, -.4, -1]
 top_left [-.5, .4, -1]
 }
 }
 }
 window
 {
 attributes { hints { drawable none } }
 channel { name “cull” }
 }
 }

 compound
 {
 mode [CULL]
 channel “channel”

 region { cull channel “cull” }
 region { draw channel “channel” }
 }
}

80 007-4527-003

3: Using Compounds

In this example, the channel cull executes the culling concurrently with the draw
operation of channel channel. It is defined on a window that has no drawable, because
it is not used for any draw operation. You can add the ASYNC flag to force the cull region
to process data for the frame N, and the draw region to draw frame N–1. This introduces
an additional frame of latency, but potentially increases performance.

The region operation can be the value cull, draw, or cull-draw. The default
operation is cull-draw; that is, all source channels first execute the cull operation and
then the draw operation.

If multiple regions of a cull compound execute the same operation (cull or draw) for the
destination channel, they process the data in parallel and, therefore, may speed up the
operation if enough resources are available. As a feature of the MPK implementation, the
distribution of the cull and draw tasks is automatically load-balanced. For recomposition
of multiple draw or cull-draw regions, MPK uses by default the same algorithm that is
used for DB compounds.

Note: Since culling is application-specific, you must determine (perhaps, from your
application vendor) what MPK features and configurations are supported by your
application.

It is possible to further decompose the regions of a cull compound, as described in the
following section, “Multilevel Decomposition”

Multilevel Decomposition

MPK allows you to combine the various decomposition schemes to fix performance
bottlenecks that differ in nature. For example, a combined solution can use a database
and temporal decomposition scheme for optimizing performance (but it will have a
limiting transport delay) or can use an eye and database decomposition scheme for
stereo volume rendering.

Building Compounds

007-4527-003 81

Figure 3-18 shows a four-pipe solution using an eye and database decomposition
scheme.

Figure 3-18 Eye-DB Multilevel Decomposition

Example 3-11 shows the configuration file specifications for the multilevel
decomposition illustrated in Figure 3-18.

Eye

Framebuffer

Left Right

Left back Right backLeft front Right front

DB DB

82 007-4527-003

3: Using Compounds

Example 3-11 Multilevel Compound in a Configuration File

compound {
 mode [EYE]
 channel “right-front”

 region {
 eye LEFT
 compound {
 mode [DB]
 channel “left-front”

 region {
 range [0., .5]
 channel “left-back”
 }

 region {
 range [.5, 1.]
 channel “left-front”
 }
 }
 }

 region {
 eye RIGHT
 compound {
 mode [DB]
 channel “right-front”

 region {
 range [0., .5]
 channel “right-back”
 }

 region {
 range [.5, 1.]
 channel “right-front”
 }
 }
 }
}

Stereo-Selective Compounds

007-4527-003 83

Stereo-Selective Compounds

In many instances, it will be desirable to control which compounds will be used by the
application based on whether the application is running in stereo mode. MPK provides
a mode parameter for this purpose. For instance, if the application is to run in stereo
mode, you may want to use eye decomposition and when in mono mode, to use another
type of decomposition. Example 3-12 illustrates this conditional use of compounds.

Example 3-12 Stereo-Selective Compounds

compound {
 mode [EYE STEREO]
 channel “channel”

 region {
 eye LEFT
 channel “buffer”
 }
 region {
 eye RIGHT
 channel “channel”
 }
}

compound {
 mode [2D MONO]
 channel “channel”

 region {
 viewport [0., 0., 1., .5]
 channel “buffer”
 }

 region {
 viewport [0., .5, 1., .5]
 channel “channel”
 }
}

The MONO and STEREO flags allow you to specify different channel decompositions
depending on the current configuration mode. This is especially useful for eye
decomposition. In this example, when the destination channel is in stereo mode, MPK
uses the eye decomposition. When the destination channel is in mono mode, MPK uses
the 2D decomposition.

84 007-4527-003

3: Using Compounds

Automatic Load Balancing for Compounds

Achieving an ideal decomposition among the children of a compound can be difficult,
since the workload per child often changes on a per-frame basis. To address this problem,
MPK provides automatic load balancing for 2D, DB, and 3D compounds.

This section describes the following topics:

• “Dynamic and Static Load Balancing”

• “Proper Environment for Automatic Load Balancing”

• “How to Enable Automatic Load Balancing”

• “Using a Split-Axis Method for Tiling”

Dynamic and Static Load Balancing

Figure 3-19 contrasts dynamic and static load balancing for a 2D compound using
volview. Volume rendering is bound by fill rate; therefore, the load balancing can adjust
the compound’s region so that each pipe has approximately the same amount of volume
to rasterize. When using static tiling, one pipe may have to render the whole volume as
it is moved around. Since the slowest child dictates overall performance, the frame rate
is better, in this case, when using load balancing.

Automatic Load Balancing for Compounds

007-4527-003 85

Figure 3-19 Dynamic Versus Static Load Balancing

Proper Environment for Automatic Load Balancing

Using the rendering times for each child, MPK computes a new viewport or range each
frame. This approach needs the following conditions to work properly:

Condition Description

Low latency A new workload can only be computed after all children
have drawn. Therefore, the higher the latency, the higher
the difference will be between the frame which is used to
compute the new balance and the frame for which the
balance is computed. Logically, high latency is
counterproductive in achieving proper load balancing.

86 007-4527-003

3: Using Compounds

Frame consistency Since the new viewport or range is computed based on
the last finished frame but applied to the next frame, the
two frames should be similar. This is true for most
applications.

Scalable compound mode The chosen decomposition mode has to solve the
application’s bottleneck. For example, load balancing a
2D compound for a geometry-limited application will
fail, unless this application uses view-frustum culling.

Imbalance in decomposition If the decomposition is already well-balanced—for
example, for a DB compound—the static compound may
provide a better frame rate.

How to Enable Automatic Load Balancing

In the configuration file, you can use the ADAPTIVE mode flag for a compound to enable
load balancing. This mode flag can be used for 2D, DB, and 3D compounds. 2D
compounds will use tiles, while DB and 3D compounds will adapt the z-axis range to
decompose the rendering. The next section describes how you use a split-axis method to
determine tiling schemes and z-axis splits.

Note: If you do not provide a tiling scheme (or z-axis split) for ADAPTIVE mode, MPK
creates one.

Using a Split-Axis Method for Tiling

As the name implies, a split-axis method uses splits on the Cartesian coordinate axes to
determine tiling schemes (or z-axis range splits). As noted in the preceding section, the
tiling schemes are specific to 2D compounds and z-axis splits, to DB and 3D compounds.

You specify a split in the configuration file by using the split field of the compound
data structure. The SGI OpenGL Multipipe SDK User’s Guide describes the formal syntax
for the split field. This section provides several examples of how to use the field.
Example 3-13 shows a tiling scheme for a 2D compound with four regions (source
channels) defined.

Automatic Load Balancing for Compounds

007-4527-003 87

Example 3-13 2D Tiling Scheme with Four Regions and Horizontal Tiles

split “[[1 | 2] - [3 | 4]]”

Note the following syntax items and other restrictions:

• The split value is a string.

• MPK uses the following operators in the string to denote the axis-specific splits:

| Splits the x axis.

– Splits the y axis.

/ Splits the z axis.

The operators | and – can be used only with 2D compounds and /, only with DB
and 3D compounds.

• Integers represent the regions in the compound data structure in the order of
declaration. All regions declared in the compound must appear in the split string.

• A set of brackets must enclose a split, which can be nested in another split (as
shown in Example 3-13).

Figure 3-20 illustrates the tiling scheme specified in Example 3-13.

Figure 3-20 2D Tiling Scheme with Four Regions and Horizontal Tiles

y

x

1 2

3 4

88 007-4527-003

3: Using Compounds

Example 3-14 , like Example 3-13, shows a tiling scheme for a 2D compound with four
regions, but this time the primary split is on the x axis.

Example 3-14 2D Tiling Scheme with Four Regions and Vertical Tiles

split “[[1 – 2] | [3 – 4]]”

Figure 3-21 illustrates the tiling scheme specified in Example 3-14.

Figure 3-21 2D Tiling Scheme with Four Regions and Vertical Tiles

If you do not specify a split, MPK will automatically create one.

y

x

1

3

2

4

Choosing the Right Decomposition Mode

007-4527-003 89

Choosing the Right Decomposition Mode

There are no hard and fast rules for choosing the correct decomposition scheme, but the
following are some general guidelines to aid you in selecting a reasonable scheme for
your environment:

Mode Recommended Use

2D Use this scheme if your application is fill-limited.You can also scale
geometry performance and texture memory if your application is using
view-frustum culling techniques.

3D Use this scheme where you would normally use the DB scheme but
where you experience scalability problems caused by a graphics I/O
bottleneck on the destination pipe. For 3D decomposition, the graphics
I/O per pipe is constant when changing the number of contributing
pipes. Unlike the DB scheme, however, adding pipes to a 3D compound
increases latency.

DB Use this scheme when your application’s frame rendering can be
sequenced into equally consuming phases. This requires the application
to divide your scene into multiple components and then to composite
them correctly. Scalability here can be either on fill, geometry, or
graphics resources (texture) depending on the application.

FSAA Use this scheme if graphics quality is a primary concern.

EYE Use this scheme for stereo viewing.

DPLEX Use this scheme for general load balancing where the application
maintains a reasonably steady frame rate.

Note: With the DB, 3D, and full-scale DPLEX modes, the application must support the
feature.

These are very high-level guidelines that may very well overlap. As noted in the section
“Multilevel Decomposition” on page 80, you can combine the various decomposition
modes to fix different performance bottlenecks.

90 007-4527-003

3: Using Compounds

Compound-Specific Callbacks

This section describes how to customize the compound processing using the callbacks
provided by the MPKCompound data structure.

This section has the following subsections:

• “Optimizing Frame Transport”

• “Custom Assembly”

• “Traversing Compounds”

Optimizing Frame Transport

The adaptive readback interface enables the specification of a subviewport of a
compound’s input channel to be read back, transported, and assembled during
compound operations.

This subviewport usually corresponds to the portion of the channel that was drawn
during the last update-channel draw callback and, therefore, enables the optimization of
pixel transfers for this channel.

The default mpkCompoundReadOutputFrame() callback basically reads the full
channel’s viewport by using mpkChannelReadFrame() on the handle returned by
mpkCompoundGetOutputFrame(). A customized version of this callback, as shown in
Example 3-15, typically uses only the channel subportion transported by user data.

Example 3-15 A Custom Read-Output Compound Callback

void readOutputFrame(MPKCompound *compound)
 {
 MPKChannel *c;
 ChannelData *channelData;
 MPKFrame *frame;

 c = mpkCompoundGetChannel(compound);

 frame = mpkCompoundGetOutputFrame(compound);

 // get the effectively drawn region computed in updateChannel
 channelData = (ChannelData*)mpkChannelGetUserData(c);

Compound-Specific Callbacks

007-4527-003 91

 mpkChannelReadFrame(c, frame, channelData->region);
 }

The example flip.adaptiveRB computes the screen area covered by the scene in the
update-channel draw callback in order to optimize the frame transport using the
read-output callback. The read-output compound callback for the MPKConfig can be set
using mpkConfigSetCompoundReadOutputCB().

Custom Assembly

The purpose of the custom MPKCompound interface is to allow customization of the
MPKCompound pre- and post-assembly passes.

Upon the mpkConfigFrame() invocation, each MPKWindow thread traverses the
configuration’s compound tree[s] and updates each compound whose channel belongs
to the window. If the compound is a leaf node, then MPK invokes the user-specified clear
and update callbacks on the associated [source] channel. Otherwise, if the compound is
not a leaf node, then MPK assembles the frames output from the compound children into
its associated [destination] channel.

This traversal actually occurs in several passes. Figure 3-22 shows the update of one
window as in Figure 2-4 on page 29, but here Figure 3-22 shows the necessary callbacks
for compound processing. A complete update for one channel consists of the following
actions:

1. Invoke update clear callback if this channel is used as source.

2. Invoke pre-assemble callback if this channel is used as destination.

3. Invoke update draw callback if this channel is used as source.

4. Invoke post-assemble callback if this channel is used as destination.

92 007-4527-003

3: Using Compounds

Figure 3-22 A Detailed Window Update

unlock window threads

synchronize swapbuffers

synchronize frame done

update window

Channel 1 clear

Channel 1 preassemble

Channel 1 draw

Channel 1 postassemble

Channel n clear

Channel n preassemble

Channel n draw

Channel n postassemble

swapbuffer

Compound-Specific Callbacks

007-4527-003 93

Neither the pre- nor post-assemble callback is invoked if any of the following conditions
are true:

• The compound channel is NULL.

• The compound channel’s window is frozen.

• The compound latency is greater than current frame number (initial countdown).

A channel can be used as source and destination at the same time, it may even be used
more than once as a source channel. In that case, each callback may be invoked more than
once during a frame.

The default pre- and post-assemble callback perform the following tests in order to
determine if they should perform any assembly:

• The compound mode is not NOCOPY.

• The compound has input frames—that is, is a destination channel.

If one of these tests fail, they do not assemble. In addition,
mpkCompoundPreAssemble() tests that the ASYNC flag is set. Then the images output
from the source channels during last frame are assembled in the destination channel
prior to any rendering. Likewise, mpkCompoundPostAssemble() tests that the ASYNC
flag is not set. Then the images from the source channels are assembled in the destination
channel during the same frame as soon as they have been produced.

By overriding the default assemble callbacks, the application can customize the way
frames are assembled in the destination channel. This technique is used, for example, in
volume rendering, where the input frames are assembled in a fixed order using special
blending modes.

Note that if the compound channel is identical to its parent channel, then no output
frame is generated for this compound.

94 007-4527-003

3: Using Compounds

Traversing Compounds

The MPKCompound data structure is a container for children of MPKCompound, each
associated with an existing MPKChannel. The resulting MPKCompound tree can be
traversed using the following three functions:

Function Description

mpkCompoundTraverseAll() Traverses all children of the specified
MPKCompound, regardless of any state
information.

mpkCompoundTraverseActive() Traverses the active children of the passed
MPKCompound with respect to the current stereo
mode (see the previous section “Stereo-Selective
Compounds”).

mpkCompoundTraverseCurrent() Only traverses the active and current children of
the passed MPKCompound with respect to the
current stereo mode and current DPLEX cycle.

They provide a general mechanism for traversing a compound hierarchy in a
top-to-bottom, left-to-right order. Figure 3-23 shows the traversal for the
MPKCompound tree of the used in Example 3-11 in the previous section “Multilevel
Decomposition”.

Traversing Compounds

007-4527-003 95

Figure 3-23 MPKCompound Traversal

The traversal functions are using three types of callbacks during traversal:

Callback Type Description

Leaf callback function Applied only on the leaf nodes of the compound tree, that
is, on compounds without any children (in Figure 3-23,
compounds III, IV, VI, and VII).

Pre-callback functions Applied when traversing parent compounds
downwards. In Figure 3-23, they apply to the compounds
I, II, and V.

Post-callback functions Applied when traversing parent compounds upwards. In
Figure 3-23, they apply to the compounds I, II, and V.

The return values of these functions must be either MPK_TRAV_CONT,
MPK_TRAV_PRUNE, or MPK_TRAV_TERM to indicate that the traversal should continue,
skip this node, or terminate, respectively. The value MPK_TRAV_PRUNE is equivalent to
MPK_TRAV_CONT for the post-callback function.

MPKCompound I

mode EYE
channel "right-front"

MPKCompound V

mode DB
right eye

channel "right-front"

MPKCompound II

mode DB
left eye

channel "left-front"
pre callbackpost callback

pre callback post callback

leaf callbackleaf callback

MPKCompound III

range 0.0-0.5
channel "left-back"

MPKCompound IV

range 0.5-1.0
channel "left-front"

MPKCompound VI

range 0.0-0.5
channel "right-back"

MPKCompound VII

range 0.5-1.0
channel "right-front"

007-4527-003 97

Chapter 4

4. Culling

Chapter 2, “The MPK Programming Model”, describes a simple MPK program. This
chapter describes how MPK supports the implementation of culling.

The typical single-pipe application executes culling either in a separate thread or does
the culling on-the-fly while the database is rendered. In addition, multipipe applications
may execute culling on different levels within a compound tree. This makes possible a
number of culling configurations for a given rendering setup.

This chapter has the following two sections:

• “Configuring” on page 97 explains how the different culling schemes can be
specified using the config file format or the MPK API.

• “Data Handling” on page 100 describes how to unlock the full flexibility of MPK’s
culling infrastructure.

Configuring

Each compound in MPK has an operation mode which defines if it should execute draw,
cull, or cull and draw operations. If unspecified, this mode is inherited from the parent
or is cull-draw (cull and draw) for the topmost compound.

In order to update the 2D decomposition shown in Figure 4-1, MPK will invoke first the
update cull callback and then the update draw callback on the channels “buffer” and
“destination”.

Note: If culling should be disabled, the operation mode of the top-level compound
simply has to be set to draw, which will be inherited by all children.

98 007-4527-003

4: Culling

Figure 4-1 Compound Tree for a 2D Decomposition

Because the same channel executes the cull and draw operation, the execution of the
tasks is serialized. A cull compound can be used to parallel the cull and draw operation.
Note that channels used only for culling typically reside on a window having no
drawable; that is, the window attribute hint drawable is set to none. Using
parallelized culling for both source channels, Figure 4-2 shows the decomposition from
Figure 4-1.

Figure 4-2 Compound Tree for 2D Decomposition with Parallel Culling

Children of a cull compound decompose the cull and draw task. In the given example,
channel “cull1” executes the culling for channel “buffer”, which executes only the draw

Compound
channel "buffer"

viewport [0, 0, 0.5, 1]

Compound
channel "destination"

viewport [0.5, 0, 0.5, 1]

Compound
channel "destination"

mode 2D

Compound
channel "buffer"

mode CULL
viewport [0, 0, 0.5, 1]

Compound
channel "destination"

mode CULL
viewport [0.5, 0, 0.5, 1]

Compound
channel "destination"

mode 2D

Compound
cull

channel "cull1"

Compound
draw

channel "buffer"

Compound
cull

channel "cull2"

Compound
draw

channel "destination"

Configuring

007-4527-003 99

operation. The ASYNC flag can be used on cull compounds to execute the culling
asynchronously from the drawing. This introduces one additional frame of latency,
because the cull regions process frame N while the draw regions render frame N–1.

If the system has enough resources, it may be desirable to first cull the data for the
destination view and then redefine culling on each source channel. This can be done
using a cull compound to decompose the destination compound. Figure 4-3 shows the
tree for the 2D configuration.

Figure 4-3 Compound Tree for 2D Decomposition and Multilevel Culling

When this configuration is updated, channel “cull3” first culls the whole database, and
the result is culled again by channels “cull1” and “cull2” for the appropriate
sub-frustum.

The culling for a single channel can be decomposed across multiple cull threads by
specifying multiple cull regions using different channels, as shown in Figure 4-4.

Compound
cull

channel "cull 3"

Compound
cull-draw

channel "destination"
mode 2D

Compound
channel "destination"

mode CULL

Compound
channel "buffer"

mode CULL
viewport [0, 0, 0.5, 1]

Compound
channel "destination"

mode CULL
viewport [0.5, 0, 0.5, 1]

100 007-4527-003

4: Culling

Figure 4-4 Multiple Cull Threads for a Single Channel

When the data handling API (described in the next section) is used, MPK distributes the
data appropriately across the cull regions. Otherwise, it is the application’s responsibility
to do the correct data passing.

The cull compound can also be used to decompose the drawing across multiple draw
regions. The recomposition uses the same algorithm as for database decomposition.

Data Handling

MPK provides functions to facilitate data passing between the individual cull and draw
operations. You describe the frame from the application thread. To do so, decompose
mpkConfigFrame() into mpkConfigFrameBegin() and mpkConfigFrameEnd().
Between the latter two calls, describe the scene using mpkConfigFrameData(), as
outlined in Example 4-1.

Compound
channel "channel"

mode CULL

Compound
cull

channel "cull1"

Compound
cull

channel "cull3"

Compound
cull

channel "cull2"

Compound
draw

channel "channel"

Data Handling

007-4527-003 101

Example 4-1 Describing the Data Used for a Frame

while(!exit)
{
 // update database
 ...
 mpkConfigFrameBegin(config, framedata);

 // send database
 mpkConfigFrameData(config, data1);
 ...
 mpkConfigFrameData(config, dataN);

 mpkConfigFrameEnd(config)
}

MPK distributes this data to the topmost cull or draw processes in the configuration. You
can retrieve the data using mpkChannelNextData() and mpkChannelCheckData().
Cull callbacks can pass the visible data to further cull or draw callbacks using
mpkChannelPassData(), as outlined in Example 4-2.

Example 4-2 A Simple Cull Callback

void cullChannel(MPKChannel *channel, void *data)
{
 // get frustum to cull against
 float frustum[6], xfm[16];

 mpkChannelGetFrustum(channel, frustum, xfm);

 // apply application-specific view
 ...

 // cull all data
 MPKFrameData *data;
 while((data = mpkChannelNextData(channel)) != NULL)
 {
 // test object[s] described in data against frustum
 ...

 if(isVisible)
 mpkChannelPassData(channel, data);
 }
}

102 007-4527-003

4: Culling

For culling implementations using a hierarchical approach, the function
mpkChannelPutData() is provided to enable better parallelization between multiple cull
threads. The function mpkChannelPutData() puts data back to the input queue used by
all cull regions of the same cull compound. A typical use is outlined in the pseudo code
in Example 4-3 , where the top-level bounding box is passed using
mpkConfigFrameData(). Without using mpkChannelPutData(), the whole database
would be processed by only one cull thread.

Example 4-3 Hierarchical Culling Using mpkChannelPutData()

void cullChannel(MPKChannel *channel, void *data)
{
 // get frustum to cull against
 float frustum[6], xfm[16];

 mpkChannelGetFrustum(channel, frustum, xfm);

 // apply application-specific view
 ...

 // cull all data
 MPKFrameData *data;
 while((data = mpkChannelNextData(channel)) != NULL)
 {
 // test object[s] described in data against frustum
 ...

 switch(visibility)
 {
 case FULLY_VISIBLE:
 mpkChannelPassData(channel, data);
 break;

 case PARTIALLY_VISIBLE:
 foreach child of data
 mpkChannelPutData(channel, child);
 break;
 }
 }
}

Data Handling

007-4527-003 103

Finally, you must modify the update draw callback to draw the data which is passed, not
the full database. In order to do so, again use mpkChannelCheckData() and
mpkChannelNextData(). Example 4-4 shows pseudo code for such a callback.

Example 4-4 An Update Draw Callback Using the Cull Queues

void updateChannel(MPKChannel *channel, void *data)
{
 // apply frustum, transformation, OpenGL state
 ...

 MPKFrameData *data;
 while((data = mpkChannelNextData(channel)) != NULL)
 {
 // draw object[s] described in data
 ...
 }
}

In order to deallocate the data passed to MPK using mpkConfigFrameData() or
mpkChannelPassData(), use the MPKConfig’s reference-data or dereference-data
callback, set by mpkConfigSetFrameDataRefCB() or
mpkConfigSetFrameDataUnrefCB().

MPK provides the following three global attributes to tune the performance of the
queues used to connect the various callbacks:

MPK_CONFIG_FRAME_CACHE_SIZE Defines the cache size for the MPKConfig’s
frame data queue, filled using
mpkConfigFrameData().

MPK_CHANNEL_PASS_CACHE_SIZE Defines the cache size for data passed using
mpkChannelPassData().

MPK_CHANNEL_PUT_CACHE_SIZE Defines the cache size for data passed using
mpkChannelPutData().

Set these attributes before calling mpkConfigInit(). For the frame data and cull data
queues, MPK uses caches to minimize locking between multiple consumers and
producers. These caches impose a certain granularity for processing items.

007-4527-003 105

Chapter 5

5. Advanced MPK Programming

This chapter describes the following advanced topics:

• “Using an Alternate Parser”

• “Creating Configurations without a Configuration File”

• “The Idle Callback”

• “Controlling the Frame Rate”

• “Data Handling”

• “MPK and Xinerama”

• “Hardware Compositing”

• “Advanced Compositing”

• “MPK and Other APIs”

Using an Alternate Parser

The MPK configuration file loader allows the specification of a preprocessor through the
use of the MPK_PARSER_CMD environment variable. The preprocessor command will be
invoked with the configuration file name as the first argument, and its output will be
parsed by the normal MPK loader. Therefore, the output of this preprocessor has to be an
MPK configuration file. For example, the C preprocessor can be used to put different
configurations in one ASCII file and to select one using the #define functionality.

Creating Configurations without a Configuration File

The MPK configuration file loader is using only MPK’s exposed C functional interface.
Therefore, it is possible to create configurations programmatically or even write an

106 007-4527-003

5: Advanced MPK Programming

alternate parser. The function in Example 5-1 creates a simple one-window
configuration.

Example 5-1 Creating a Configuration Programmatically

MPKConfig *createSimpleConfig(void)
{
 // new config
 MPKConfig *config = mpkConfigNew();
 mpkConfigSetName(config, “1-window”);

 // one pipe
 MPKPipe *p = mpkPipeNew();
 mpkConfigAddPipe(config, p);
 mpkPipeSetName(p, “pipe”);

 // one window with viewport [0.25, 0.25,0.5,0.5]
 MPKWindow *w = mpkWindowNew();
 mpkPipeAddWindow(p, w);
 mpkWindowSetName(w, “MPK: simple”);
 float vp[4] = { 0.25, 0.25, 0.5, 0.5 };
 mpkWindowSetViewport(w, vp);

 // one channel
 MPKChannel *c = mpkChannelNew();
 mpkWindowAddChannel(w, c);
 mpkChannelSetName(c, “channel”);
 vp[0]=0.0; vp[1]=0.0; vp[2]=1.0; vp[3]=1.0;
 mpkChannelSetViewport(c, vp);
 float bl[] = { -.5, -.5, -1},
 br[] = {.5, -.5, -1},
 tl[] = {-.5, .5, -1};
 mpkChannelSetWall(c, bl, br, tl);

 // mono and stereo monitor characteristics
 mpkPipeSetAttribute(p, MPK_PATTR_STEREO_TYPE, MPK_STEREO_RECT);
}

The Idle Callback

007-4527-003 107

The Idle Callback

As described in the section “The Rendering Callbacks” in Chapter 2, the idle callback can
be used to utilize the idle time in the application thread during the rendering of a frame.
The exact idle time depends on a number of conditions—for example, the decomposition
mode or the current viewpoint. The function mpkConfigIsIdle() can be used to optimize
the usage of this idle time, as shown in Example 5-2.

Example 5-2 A Simple Idle Callback

void configIdle(MPKConfig *config)
{
 while(mpkConfigIsIdle(config))
 {
 // do some processing
 }
}

Note that no data used in the rendering callbacks should be modified in the idle callback.

Controlling the Frame Rate

MPK currently supports two timers, MPK_TIMER_AUTO and MPK_TIMER_FRAME. By
default, only the MPK_TIMER_AUTO timer is enabled. Both timers can be enabled and
disabled using the functions mpkConfigTimerEnable() and
mpkConfigTimerDisable(). MPK timer values are always expressed in milliseconds.

The MPK_TIMER_AUTO timer is used for automatically load-balancing DPLEX
compounds. Its duration, determined by MPK, is based on the rendering time of the
DPLEX children and cannot be set by the application.

The MPK_TIMER_FRAME timer is used to control the execution time of a MPKConfig
frame. When the timer is enabled, mpkConfigTimerGetTime() returns the actual
duration of the last MPKConfig frame. The desired minimal duration for the subsequent
MPKConfig frames can be set using the function mpkConfigTimerSetTime().

MPK uses a POSIX timer to fire alarms. By default, the signal SIGALRM is used to deliver
this signal. The function mpkGlobalSetTimerSignal() may be used to change this signal.
When using pthread execution mode, the delivery of the timer signal has to be blocked

108 007-4527-003

5: Advanced MPK Programming

in all threads, except the application thread. Example 5-3 shows the code used by MPK
to block the timer signal in all internally created threads.

Example 5-3 Blocking the Timer Signal

// block timer signal in this thread
if(mpkGlobalGetExecutionMode() == MPK_EXECUTION_PTHREAD)
{
 int signal = mpkGlobalGetTimerSignal();
 sigset_t set;

 sigemptyset (&set);
 sigaddset(&set, signal);
 pthread_sigmask(SIG_BLOCK, &set, NULL);
}

Data Handling

MPK applications are multithreaded and may render several views and versions of the
same database due to the latency imposed by some decomposition modes. Given this
possibility, some types of application data have to be handled carefully. Within an MPK
application, there are typically the following types of data:

• Application-only data

• Static shared data

• Dynamic shared data

• Frame data

Application-Only Data

Application-only data is only used by the application thread. Therefore, no special
attention has to be paid when using this kind of data.

MPK and Xinerama

007-4527-003 109

Static Shared Data

Static shared data is initialized before calling mpkConfigInit() and is used afterward
only in a read-only fashion. Like application-only data, no special precautions have to be
taken.

Dynamic Shared Data

Dynamic shared data is data modified during run time. Therefore, it has to be allocated
using mpkMalloc() or mpkCalloc() to allocate the memory from a shared arena in fork
execution mode. If this data is accessed for reading and writing concurrently from
several threads, it has to be protected using a mutex.

Frame Data

Frame data is shared data that is characteristic to a specific frame. This can be the
viewpoint, the position of dynamic parts in the scene, or lighting characteristics. This
data, like dynamic shared data, has to be allocated using mpkMalloc() or mpkCalloc().
Frame data is passed from the application thread (the producer) to the rendering threads
(the consumers) through the use of mpkConfigFrame(). MPK stores past frame data and
passes it to the rendering callbacks according to the latency to be rendered by this
callback. When a frame data pointer is not needed anymore, it is passed to the
MPKConfig’s free-data callback to be freed by the application. Due to the nature of frame
data, mutual exclusion is not necessary. The application thread writes to frame data
before passing it to mpkConfigFrame(). After it is passed to MPK, the frame data is only
accessed by the rendering threads in a read-only fashion.

MPK and Xinerama

Xinerama is an X server extension that presents multiple physical screens managed by an
X server as a single logical screen to X client applications. Xinerama does not support this
abstraction for applications using OpenGL and GLX. A Xinerama-enabled X server will
execute all OpenGL and GLX calls on the first physical pipe.

SGI Xinerama is an enhanced version of Xinerama. SGI Xinerama provides the same
functionality but is optimized for use on SGI graphics systems. Subsequent references to
Xinerama will refer to SGI Xinerama.

110 007-4527-003

5: Advanced MPK Programming

In order to meet the various needs of different applications, MPK provides flexible
support for Xinerama-enabled X servers. MPK provides the following features to
integrate the Xinerama functionality:

• Support for Xinerama-aware windows

• Transparent scalability for Xinerama windows

• Support for Xinerama full-window overlapping

Support for Xinerama-Aware Windows

MPK allows the creation of Xinerama-aware windows. These windows can be
specifically created on one of the real pipes of the logical Xinerama screen. Thus, the
feature allows OpenGL rendering on this pipe while the system is still running a
Xinerama-enabled X server. Such windows are typically used for source channels
contributing to a compound.

The window attribute hint MPK_WATTR_HINTS_XINERAMA is used to determine if a
window should be created using the Xinerama extension or by bypassing the extension
on a Xinerama-enabled X server. If set to true, the default value, the window is created
using Xinerama. Otherwise, MPK bypasses Xinerama. This hint has no effect on X
servers having the Xinerama extension disabled.

The use of Xinerama-aware windows has some caveats with respect to window handling
and the X events that are received for these windows. The following two caveats are
noteworthy:

• Xinerama-aware windows bypass the window manager—that is, they are not
handled at all. The product OpenGL Multipipe supplies a customized version of
4Dwm, which can handle Xinerama-aware windows. See the start_ompwm(1) man
page for further details.

• Mouse events report their position with respect to the physical pipe as if no
Xinerama is used. In contrast, mouse events for Xinerama windows are reported
with respect to the logical pipe. Moving the mouse pointer over the window does
not necessarly give you the keyboard focus on that window; the keyboard events
may go to another window. Mouse events always go to the pointer-defined
window.

Hardware Compositing

007-4527-003 111

Transparent Scalability for Xinerama Windows

MPK transparently parallels the rendering for Xinerama windows across the pipes
virtualized by Xinerama.

In order to correctly handle the window, the MPKWindow, the X11 and the OpenGL
initialization and exit have to be separated. The MPKConfig’s window initialization
callback initializes the MPKWindow in which the X11 and OpenGL initialization
callbacks are set. Likewise, the MPKConfig’s exit-window callback does clean up the
MPKWindow, and the window X11 and OpenGL exit callbacks are responsible for
de-initializing X11 and OpenGL.

Support for Xinerama Full-Window Overlapping

MPK supports Xinerama full-window overlapping to provide transparent scalability
through the use of an SGI Scalable Graphics Compositor. When Xinerama is used to
overlap screen regions on an edge-blended display or compositor-based system, the
cursor will seem to disappear when it enters the overlapped or uncomposited regions of
the display.

By upgrading to IRIX 6.5.20 or later, you can use an X server feature that prevents the
cursor from disappearing in these cases. It causes additional cursor images (not real
cursors) to appear on all pipes contributing to the overlapped regions. To enable this
feature, add the –phantomcursors flag to the X server command line in the
/var/X11/xdm/Xservers file.

For more information about the –phantomcursors option, see the Xsgi(1) man page.

Hardware Compositing

MPK offers native support for compositing hardware. Eliminating the need for pixel
transfers and software recomposition, this specialized hardware performs the
recomposition part of an MPKCompound.

Currently, MPK provides support for DPLEX option boards and the SGI Scalable
Graphics Compositor. MPK handles the setup and control of the hardware by using the
GLX_SGIX_hyperpipe API (see the hyperpipe(3) man page). An application written

112 007-4527-003

5: Advanced MPK Programming

for MPK can immediatly take advantage of this hardware without having to take care of
the GLX_SGIX_hyperpipe extension.

The mode flag HW is used to enable the support for DPLEX, EYE, FSAA, and 2D
compounds. The mode flag NOCOPY has to be specified to disable the pixel transfer and
software recomposition.

Advanced Compositing

MPK provides two data structures to give access to the transported color, depth and
stencil values during compound assembly:

• MPKFrame
This data structure holds a list of the color, depth, and stencil MPKImages for one
compound child along with the region it covers in the destination channel.

• MPKImage
This data structure holds the pixel data along with information about the format,
size, and position of this image.

MPKFrames for compound children can be retrieved using the function
mpkCompoundGetAssemblyFrame() in the pre- and post-assemble callbacks (see the
section “Custom Assembly” on page 91).

Note: The function mpkFrameDelete() should not be called on MPKFrames acquired
using mpkCompoundGetAssemblyFrame(), since these are managed by MPK.

The format field of an MPKFrame indicates which images it contains. The region defines
the fractional viewport covered by this frame with respect to the destination channel.

The individual MPKImages for each MPKFrame can be retrieved using
mpkFrameNImages() and mpkFrameGetImage(). For assembly frames, each
MPKImage used has a buffer allocated, which holds the pixel data for this MPKImage.
The format and type specify the attributes of the pixel data, as described in the man page
glDrawPixels(3G). The size of the MPKImage defines the width and height of the pixel
data stored in the buffer. The offset specifies the pixel offset with respect to the region of
the parent MPKFrame or mpkChannelDrawImage(). If you change one parameter, you

Advanced Compositing

007-4527-003 113

must ensure that the other parameters (especially, the allocated buffer) are adjusted
accordingly.

The final pixel viewport for one MPKImage is computed as follows:

width = ChannelPixelViewport[2];
height = ChannelPixelViewport[3];

// compute frame’s pixel viewport
MPKImagePixelViewport[0] = MPKFrameRegion[0] * width;
MPKImagePixelViewport[1] = MPKFrameRegion[1] * height;

MPKImagePixelViewport[2] = (MPKFrameRegion[0]+MPKFrameRegion[2]) *
width;
MPKImagePixelViewport[3] = (MPKFrameRegion[1]+MPKFrameRegion[3]) *
height;

MPKImagePixelViewport[2] -= MPKImagePixelViewport[0];
MPKImagePixelViewport[3] -= MPKImagePixelViewport[1];

// clip to image size
if (MPKImagePixelViewport[2] > MPKImageSize[0])
 MPKImagePixelViewport[2] = MPKImageSize[0];
if (MPKImagePixelViewport[3] > MPKImageSize[1])
 MPKImagePixelViewport[3] = MPKImageSize[1];

// add image offset
MPKImagePixelViewport[0] += MPKImageOffset[0];
MPKImagePixelViewport[1] += MPKImageOffset[1];

Figure 5-1 illustrates a frame and an image within one channel.

114 007-4527-003

5: Advanced MPK Programming

Figure 5-1 A Frame and an Image within one Channel

One possible use of this interface is to do software-based composition, as described by
the following pseudo code:

void assembleCB(MPKCompound *compound, void *userData)
{
 //====================
 // tile assembly frames :
 //
 // assembly images may have different positions and sizes.
 // Therefore we need to extract tiles in which the number of
 // contributing images is constant. For this we simply sort
 // all input image boundaries into xDim[] and yDim[] vectors,
 // so that
 //
 // tile[i,j] = [xDim[i], xDim[i+1]-1] x [yDim[j], yDim[j+1]-1]

 for each assembly frame
 for each image (color, depth, stencil)

 compute image’s xStart, xEnd, yStart, yEnd

Channel

Frame

Image

Advanced Compositing

007-4527-003 115

 sorted-add xStart, xEnd to xDim vector
 sorted-add yStart, yEnd to yDim vector

 end for
 end for

 //====================
 // allocate output frame and image buffers :
 //
 // the output frame dimensions (ie. frame origin and images size)
 // corresponds to the bounding box of all tiles.
 // Note that we could also allocate a vector of output tiles, and
 // later perform tiled re-composition.
 // Note also that the image buffers must be initialized.

 allocate output frame
 set origin to xDim[0], yDim[0]

 allocate image buffers for output frame
 set output frame images to image buffers
 set size of output images to xDim[n]-xDim[0], yDim[m]-yDim[0]

 initialize image buffer values wrt depth, color, stencil

 //====================
 // compose output frame :
 //
 // loop over all tiles (boundaries), and
 //
 // 1. first setup a vector of flags that is indexed by frame#
 // and imageType. Each element of the vector indicates whether
 // the corresponding image contributes to the tile.
 //
 // 2. then we loop over all pixel coordinates within the tile
 // and compose each assembly frame’s pixel value, depending
 // on the flag for this frame and image type.

 for each tile (i, j)

 // flag image contributions for this tile

 for each assembly frame
 for each image (color, depth, stencil)

116 007-4527-003

5: Advanced MPK Programming

 compare xStart, yStart with tile boundaries
 set flag[frame#][imageType] accordingly

 end for
 end for

 if no image used in the tile
 continue
 end if

 // compose all contributing pixels

 for each x (xDim[i], ... xDim[i+1]-1)
 for each y (yDim[j], ... yDim[j+1]-1)

 for each assembly frame
 for each image (color, depth, stencil)

 if !flag[frame#][imageType]
 continue
 end if

 compose image.pixel(x, y) to output
 frame’s corresponding
 image.pixel(x-xDim[0], y-yDim[0])

 end for
 end for

 end for
 end for
}

MPK and Other APIs

This section describes items to consider when you use MPK in conjunction with the
following libraries:

• “OpenGL Volumizer 2”

• “OpenGL Shader”

MPK and Other APIs

007-4527-003 117

• “Open Inventor”

• “Motif”

• “Non-Thread-Safe Libraries”

OpenGL Volumizer 2

There are several topics to consider when using MPK with OpenGL Volumizer:

• “Execution Modes”

• “Rendering”

• “Scalability”

For sample code, see the volview application that ships with OpenGL Volumizer. The
application is a full volume-viewer application that uses OpenGL Multipipe SDK as the
underlying software layer to provide run-time configurability and scalability.

Execution Modes

MPK supports thepthread, fork, and sprocmultiprocess mechanisms. The following
table describes their use with OpenGL Volumizer:

Mode Prescribed Use with OpenGL Volumizer

pthread Works well with OpenGL Volumizer since OpenGL Volumizer is
thread-safe.

fork Works well with OpenGL Volumizer since OpenGL Volumizer is
thread-safe. Use the vzMemory class to ensure allocation of
OpenGL Volumizer objects from shared memory by using the code
shown in Example 5-4.

sproc Does not work with OpenGL Volumizer since OpenGL Volumizer links
against the pthread library.

Example 5-4 Using vzMemory to Allocate Objects from Shared Memory

// Set the allocation and deallocation callback functions
vzMemory::setMemoryManagementCallbacks(allocate, deallocate, NULL);

// The allocator callback function
void *allocate(size_t size, void *userData) {

118 007-4527-003

5: Advanced MPK Programming

 return mpkMalloc(size);
}

// The de-allocator callback function
void deallocate(void *pointer, void *userData) {
 mpkFree(pointer);
}

Rendering

Ensure that OpenGL Volumizer nodes are stored as part of the shared data for the
application. The data should not be replicated across multiple pipes unless there are
special needs since volume data tends to be quite big in practice. OpenGL Volumizer
render actions manage the graphics resources on a per-pipe basis—that is, they create
one render action per MPKWindow. Do not use multiple MPKWindows per MPKPipe
since this will lead to inefficient resource management and also force unnecessary
context switches. However, this practice might be okay for testing purposes on
single-pipe machines.

Scalability

The following notes are pertinent regarding scalability and stereo:

• 2D decomposition

Scales fill rate in a straightforward manner. If you can divide the volume data into
smaller bricks, you can use view-frustum culling to scale the texture memory size
also by moving these bricks in and out of the texture memory of the pipes.

• DB decomposition

Scales fill rate and texture memory size. Divide the volume data into multiple bricks
and render equal number of bricks on each of the pipes. You need to pre-modulate
the transfer function (lookup table) before rendering to compensate for the image
blending operation used to composite the results together.

• 3D decomposition

Data streaming (3D decomposition) is not supported by OpenGL Volumizer since
the order in which the source channels are composited cannot be controlled in this
mode. However, true volume decomposition can be achieved using DB
decomposition, which enables the application to scale in texture memory by

MPK and Other APIs

007-4527-003 119

distributing the data across multiple pipes. This technique is illustrated in the
volview example.

• DPLEX decomposition

DPLEX rendering is supported by OpenGL Volumizer. Full-scale software
recomposition (that is, where the destination channel is also contributing actively in
the rendering) simply requires the application to set the OpenGL Volumizer slice
callback appropriately so that mpkChannelSyncDPlex() is invoked after every slice
in the rendering thread.

• Stereo

Stereo is implemented in a straight-forward fashion.

OpenGL Shader

OpenGL Shader integrates seamlessly with OpenGL Multipipe SDK to provide
enhanced control of an object’s appearance. Use the OpenGL Shader C++ API only when
working with MPK. Do not use islc or ipf2ogl in this context.

The main concern in using OpenGL Shader with MPK is the proper use of the
OpenGL Shader classes in the multithreaded environment provided by MPK:

• All islShader objects should always be maintained by the application. You can do
this before initializing MPK, for example.

• Create and compile all islAppearance objects from the application thread. Then use
one appearance object per window thread, because the shader matrix will be
updated while drawing. You can use islCopyAction() to create multiple copies of
an appearance object for this purpose.

• Compile the islAppearance objects beforehand using islCompileAction() and then
copy the compiled appearances.

• Remember to update the appearance copies after modifying the original appearance
during run time.

For more detailed information about the OpenGL Shader API, refer to the
OpenGL Shader documentation.

120 007-4527-003

5: Advanced MPK Programming

Open Inventor

The critical concern in using Open Inventor with MPK is thread safety. There are
currently two versions of Open Inventor, each differing in terms of thread safety:

• Open Inventor from SGI

Open Inventor from SGI is not thread-safe. Therefore, applications using this
version must use fork execution mode. The example flip.iv uses one Open
Inventor scene graph and renderer per window process. This restricts the example
to render static scenes but proper event handling could update the scene on each
window thread to allow dynamically changing scenery.

• Open Inventor from TGS

Starting with version 3.0, Open Inventor from TGS is thread-safe. This feature
allows the rendering of the same scene graph by multiple threads concurrently. One
renderer per window thread can then be used to render the scene graph, which may
be transported through frame data, if necessary.

Motif

A Motif application is event-driven. Motif has an event loop, from which user-defined
callbacks are called. A WorkProc, which is called whenever the application is idle, may be
used to achieve a non-event-driven behavior. Instead of having a main loop, such as that
in Example 2-13 on page 39, the application transfers this responsibility to Motif by
calling XtAppMainLoop(). Therefore, a new MPKConfigFrame is either triggered
directly from the event callbacks or from a WorkProc specified by the function
XtAppAddWorkProc(). See the XtAppAddWorkProc(3Xt) man page for more details.

Non-Thread-Safe Libraries

Often libraries and functions that are not thread-safe are used during rendering. The
ideal solution, if feasible, is to rework this software to be thread-safe. If that is not
possible, the library has to be used in a way that prevents concurrent access of shared
data. The following are possibile solutions:

• If the functionality is used sparsely, a global lock around all calls to the library may
be used. Note that this lock prevents the window threads to use the library
concurrently and may lead quickly to scalability problems. Additionally, any

MPK and Other APIs

007-4527-003 121

software that uses the OpenGL context to store certain information—for example,
display lists—cannot be used using this approach.

• Depending on the task, it is often the best solution to initialize and use one instance
of the given library per window. If the library is using global variables to store
certain state information, this approach requires the fork execution mode to
separate the address spaces between the window processes.

007-4527-003 123

Appendix A

A. MPK Attributes

MPK uses attributes to specify certain properties for pipes, windows, and channels. In
general, you can specify these attribute values in the following places:

• Individual data structures

• The MPKGlobal data structure (defaults only)

• The configuration file

The SGI OpenGL Multipipe User’s Guide describes how you specify the attributes in the
configuration file. This appendix describes the attributes and how you specify them in
the individual data structures and in the special MPKGlobal data structure. The
following sections are included:

• “MPK Attribute Names”

• “Managing Attributes”

• “MPKPipe Attributes”

• “MPKWindow Attributes”

• “MPKChannel Attributes”

• “MPKGlobal Attributes”

MPK Attribute Names

As described in the section “MPK Naming Conventions” in Chapter 2, MPK attribute
names have three or more parts, the first two of which are the following:

1. MPK prefix

2. Attribute type

CATTR Specifies a channel attribute.

PATTR Specifies a pipe attribute.

124 007-4527-003

A: MPK Attributes

WATTR Specifies a window attribute.

DEFAULT Used only in the case of the stereo-related attribute
MPK_DEFAULT_EYE_OFFSET.

The remaining parts contain additional attribute descriptors. The following are examples
of attribute names:

MPK_CATTR_FAR
MPK_PATTR_STEREO_WIDTH
MPK_WATTR_HINTS_RGBA

Managing Attributes

As cited in the introduction, you can programmatically manage the attributes in the
individual data structures or in the MPKGlobal data structure. This section describes
how you manage the attributes in the individual data structures, and the later section
“MPKGlobal Attributes” describes how you do so from the MPKGlobal data structure.

The individual data structures of interest are the MPKChannel, MPKPipe, and
MPKWindow data structures. The management of channel attributes is covered in the
later section “MPKGlobal Attributes”.

MPK provides the functions shown in Table A-1 to manage attributes in the
MPKChannel, MPKPipe, and MPKWindow data structures.

Table A-1 Attribute-Managing Functions for Individual Data Structures

Function Description

mpkChannelSetAttribute()
mpkPipeSetAttribute()
mpkWindowSetAttribute()

Sets the specified attribute.

mpkChannelUnsetAttribute()
mpkPipeUnsetAttribute()
mpkWindowUnsetAttribute()

Unsets the specified attribute. No value is assigned to that
variable. The special enum value MPK_PATTR_ALL or
MPK_WATTR_ALL can be used to unset all attributes of the
respective data structure.

MPKPipe Attributes

007-4527-003 125

To set the attributes of a MPKChannel, MPKPipe, or MPKWindow data structure to their
default values, MPK calls the function mpkChannelResetAttribute(channel,
MPK_CATTR_ALL), mpkPipeResetAttribute(pipe, MPK_PATTR_ALL) or
mpkWindowResetAttribute(window, MPK_WATTR_ALL) upon creation of the data
structure.

MPKPipe Attributes

Table A-2 describes the MPKPipe attributes.

mpkChannelResetAttribute()
mpkPipeResetAttribute()
mpkWindowResetAttribute()

Sets the attribute to the default value obtained from the
MPKGlobal structure. If the default value is
MPK_UNDEFINED, the attribute is unset. The special enum
value MPK_CATTR_ALL, MPK_PATTR_ALL, or
MPK_WATTR_ALL can be used to unset all attributes of the
respective data structure.

mpkChannelTestAttribute()
mpkPipeTestAttribute()
mpkWindowTestAttribute()

Returns 1 if the attribute is set and 0 if unset.

mpkChannelGetAttribute()
mpkPipeGetAttribute()
mpkWindowGetAttribute()

Gets the value of the specified attribute if set and returns
1. If the value is not set, the function returns 0.

Table A-1 Attribute-Managing Functions for Individual Data Structures (continued)

Function Description

126 007-4527-003

A: MPK Attributes

Table A-2 MPKPipe Attributes

Attribute Name Valid Values Description

MPK_PATTR_MONO_HEIGHT int Specifies the height of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for mono mode instead of that
returned by the X11
DisplayHeight() function.

If no value is set, 492 is used for
MPK_STEREO_RECT,
MPK_STEREO_BOT, and
MPK_STEREO_TOP.

MPK_PATTR_MONO_WIDTH int Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for mono mode instead of that
returned bythe X11DisplayWidth()
function.

MPK_PATTR_STEREO_HEIGHT int Specifies the height of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for stereo mode instead of that
returned by the X11
DisplayHeight() function.

MPK_PATTR_STEREO_OFFSET int Specifies the offset of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for rect and bottom stereo modes.
The default value is 532.

MPKWindow Attributes

007-4527-003 127

MPKWindow Attributes

Table A-3 describes the MPKWindow attributes.

MPK_PATTR_STEREO_TYPE MPK_STEREO_USER
MPK_STEREO_QUAD

MPK_STEREO_RECT

MPK_STEREO_TOP

MPK_STEREO_BOT

Specifies one of the following stereo
types: none, user, quad, rect, top,
or bottom.

MPK_PATTR_STEREO_WIDTH int Specifies the width of the display to be
used by the function
mpkWindowUpdatePixelViewport()
for stereo mode instead of that
returned bythe X11DisplayWidth()
function.

Table A-3 MPKWindow Attributes

Attribute Name Valid Values Description

MPK_WATTR_HINTS_CAVEAT MPK_GLX_SLOW
MPK_GLX_NOCAVEAT
MPK_GLX_NON_CONFORMANT

Specifies the caveats associated with the
window framebuffer configuration.

MPK_WATTR_HINTS_DECORATION boolean Specifies whether the window should
have window manager decorations.

MPK_WATTR_HINTS_DIRECT boolean Specifies whether the window GLX
context should be direct.

Table A-2 MPKPipe Attributes (continued)

Attribute Name Valid Values Description

128 007-4527-003

A: MPK Attributes

MPK_WATTR_HINTS_DOUBLEBUFFER boolean Specifies whether the window
framebuffer configuration should be
double-buffered. Note that setting this
attribute on a window will affect the
behavior of the function
mpkWindowSwapBuffers().

The default is 1.

MPK_WATTR_HINTS_DRAWABLE MPK_GLX_WINDOW
MPK_GLX_PBUFFER
MPK_GLX_PIXMAP
MPK_GLX_NONE

Specifies the window drawable type. For
MPK_GLX_NONE, MPK executes no draw
operation.

MPK_WATTR_HINTS_LARGEST boolean Specifies the MPKWindow pbuffer
characteristics. This attribute will be
ignored by windows for which the
DRAWABLE hint is not set to
MPK_GLX_PBUFFER.

MPK_WATTR_HINTS_PRESERVED boolean Specifies the MPKWindow pbuffer
characteristics. This attribute will be
ignored by windows for which the
DRAWABLE hint is not set to
MPK_GLX_PBUFFER.

MPK_WATTR_HINTS_RGBA boolean Specifies whether RGBA visuals are used.
If the hint is not set, a color-index visual
is used.

The default is 1.

MPK_WATTR_HINTS_STEREO boolean Specifies whether the window
framebuffer configuration should
support quad-buffer stereo.

MPK_WATTR_HINTS_THREAD boolean Specifies whether the window should be
made a separate thread from the
application.

MPK_WATTR_HINTS_TRANSPARENT boolean Specifies whether the window
framebuffer configuration should be
transparent.

Table A-3 MPKWindow Attributes (continued)

Attribute Name Valid Values Description

MPKWindow Attributes

007-4527-003 129

MPK_WATTR_HINTS_VISUAL MPK_GLX_TRUE_COLOR
MPK_GLX_PSEUDO_COLOR
MPK_GLX_DIRECT_COLOR
MPK_GLX_STATIC_COLOR
MPK_GLX_GRAYSCALE
MPK_GLX_STATIC_GRAY

Specifies the window visual type.

MPK_WATTR_HINTS_X_RENDERABLE boolean Specifies whether only framebuffer
configuration that have associated X
visuals (and can be used to render to
windows and/or GLX pixmaps) should
be considered.

MPK_WATTR_HINTS_XINERAMA boolean Determines if a window should be
created using Xinerama (if enabled).
Setting it to 1 causes the window to be
created using Xinerama and setting it to0
causes a Xinerama-aware window to be
created. The default value is 1 if the
XINERAMA_AWARE environment variable
is not set. If XINERAMA_AWARE is set, the
default value is the opposite value of
XINERAMA_AWARE.

MPK_WATTR_PLANES_ACCUM_ALPHA int Specifies the minimum number of
accumulation alpha bitplanes. This
attribute is ignored if the RGBA hint of the
window is not set.

MPK_WATTR_PLANES_ACCUM_BLUE int Specifies the minimum number of
accumulation blue bitplanes. This
attribute is ignored if the RGBA hint of the
window is not set.

MPK_WATTR_PLANES_ACCUM_GREEN int Specifies the minimum number of
accumulation green bitplanes. This
attribute is ignored if the RGBA hint of the
window is not set.

Table A-3 MPKWindow Attributes (continued)

Attribute Name Valid Values Description

130 007-4527-003

A: MPK Attributes

MPK_WATTR_PLANES_ACCUM_RED int Specifies the minimum number of
accumulation red bitplanes. This
attribute is ignored if the RGBA hint of the
window is not set.

MPK_WATTR_PLANES_ALPHA int Specifies the minimum number of alpha
bitplanes. This attribute is ignored if the
RGBA hint of the window is not set.

The default is 0.

MPK_WATTR_PLANES_AUX int Specifies the number of auxiliary buffers.

MPK_WATTR_PLANES_BLUE int Specifies the minimum number of blue
bitplanes. This attribute is ignored if the
RGBA hint of the window is not set.

The default is 1.

MPK_WATTR_PLANES_COLOR int Specifies the minimum color-index buffer
size. This attribute is ignored if the RGBA
hint of the window is set to 1.

MPK_WATTR_PLANES_DEPTH int Specifies the minimum size of the depth
buffer.

The default is 1.

MPK_WATTR_PLANES_GREEN int Specifies the minimum number of green
bitplanes. This attribute is ignored if the
RGBA hint of the window is not set.

The default is 1.

MPK_WATTR_PLANES_LEVEL int Specifies the window buffer level.

The default is 0.

MPK_WATTR_PLANES_RED int Specifies the minimum number of red
bitplanes. This attribute is ignored if the
RGBA hint of the window is not set.

The default is 1.

MPK_WATTR_PLANES_SAMPLES int Specifies the minimum number of
samples required in the multi-sample
buffer.

Table A-3 MPKWindow Attributes (continued)

Attribute Name Valid Values Description

MPKChannel Attributes

007-4527-003 131

MPKChannel Attributes

The MPKChannel attributes MPK_CATTR_NEAR and MPK_CATTR_FAR, described in
“MPKGlobal Attributes” on page 133, are set using the function
mpkChannelSetNearFar() . The remaining MPKChannel attributes, described in
Table A-4, are set using the functions described in Table A-1 on page 124.

MPK_WATTR_PLANES_STENCIL int Specifies the minimum size of the stencil
buffer.

MPK_WATTR_TRANSPARENT_ALPHA int Specifies the alpha component of the
window transparent color. This attribute
is ignored if the RGBA hint of the window
is not set or if the TRANSPARENT hint of
the window is not set.

MPK_WATTR_TRANSPARENT_GREEN int Specifies the green component of the
window transparent color. This attribute
is ignored if the RGBA hint of the window
is not set or if the TRANSPARENT hint of
the window is not set.

MPK_WATTR_TRANSPARENT_BLUE int Specifies the blue component of the
window transparent color. This attribute
is ignored if the RGBA hint of the window
is not set or if the TRANSPARENT hint of
the window is not set.

MPK_WATTR_TRANSPARENT_INDEX int Specifies the window transparent index.
This attribute is ignored if the RGBA hint
of the window is set or if the
TRANSPARENT hint of the window is not
set.

MPK_WATTR_TRANSPARENT_RED int Specifies the red component of the
window transparent color. This attribute
is ignored if the RGBA hint of the window
is not set or if the TRANSPARENT hint of
the window is not set.

Table A-3 MPKWindow Attributes (continued)

Attribute Name Valid Values Description

132 007-4527-003

A: MPK Attributes

Table A-4 MPKChannel Attributes

Attribute Name Valid Values Description

MPK_CATTR_READ_COLOR_FORMAT Any GL format enum Defines the default color
format to be used by this
channel when reading color
images. The default value is
GL_RGB. See the
glReadPixelsman page for
a list of supported values.

MPK_CATTR_READ_COLOR_TYPE Any GL type enum Defines the default color type
to be used by this channel
when reading color images.
The default value is
GL_UNSIGNED_BYTE. See the
glReadPixelsman page for
a list of supported values.

MPK_CATTR_READ_DEPTH_FORMAT Any GL format enum Defines the default depth
format to be used by this
channel when reading color
images. The default value is
GL_DEPTH_COMPONENT24_
SGIX on VPro, else
GL_DEPTH_COMPONENT. See
theglReadPixelsman page
for a list of supported values.

MPK_CATTR_READ_DEPTH_TYPE Any GL type enum Defines the default depth type
to be used by this channel
when reading color images.
The default value is
GL_UNSIGNED_INT on VPro,
else GL_FLOAT. See the
glReadPixelsman page for
a list of supported values.

MPKGlobal Attributes

007-4527-003 133

MPKGlobal Attributes

The MPKGlobal data structure allows you to specify attribute defaults for pipes,
windows, and channels. Some attributes—for example, the default eye offset—can only
be specified at the MPKGlobal data structure level.

MPK provides MPKGlobal functions to manage the attributes for the various data
structures. The function names have the following five parts:

1. The mpkGlobal prefix

2. The operation Set or Get

3. The data structure type (Pipe, Window, or Channel)

4. The word Attribute

5. A suffix to determine the data type of the attribute

The following are examples:

void mpkGlobalSetPipeAttributei(int pattr, int val);

float mpkGlobalGetChannelAttributef(int cattr);

MPK_CATTR_READ_STENCIL_FORMAT Any GL format enum Defines the default stencil
format to be used by this
channel when reading color
images. The default value is
GL_STENCIL_INDEX. See the
glReadPixelsman page for
a list of supported values.

MPK_CATTR_READ_STENCIL_TYPE Any GL type enum Defines the default stencil
type to be used by this channel
when reading color images.
The default value is
GL_UNSIGNED_BYTE. See the
glReadPixelsman page for
a list of supported values.

Table A-4 MPKChannel Attributes (continued)

Attribute Name Valid Values Description

134 007-4527-003

A: MPK Attributes

Accessing an unset variable will either return MPK_UNDEFINED or the default value of
this variable.

Table A-5 describes the MPKGlobal attributes not included in the prior sections
“MPKPipe Attributes” and “MPKWindow Attributes”.

Table A-5 MPK Global Attributes

Attribute Name Valid Values Description

MPK_CATTR_FAR float Specifies the default far distance of the
channel. This value is preempted by the
function mpkChannelSetNearFar(). The
default is 100.

MPK_CATTR_NEAR float Specifies the default near distance of the
channel. This value is preempted by the
function mpkChannelSetNearFar().

MPK_CHANNEL_AUTO_ACTIVATE boolean Specifies whether channels that are not
referenced by a compound should be
automatically activated by
mpkConfigInit(). If this hint is not set,
only channels used in a compound are
updated during mpkConfigFrame(). The
default is 1.

MPK_CHANNEL_PASS_CACHE_SIZE int Specifies the cache size for the frame data
queues used for culling. This attribute
affects the granularity and performance
of the data processing for data passed
using mpkChannelPassData(). The
default value is 50.

MPK_CHANNEL_PUT_CACHE_SIZE int Specifies the cache size for the cull data
queues. This attribute affects the
granularity and performance of the data
processing for data passed using
mpkChannelPutData(). The default
value is 10.

MPKGlobal Attributes

007-4527-003 135

MPK_CONFIG_FRAME_CACHE_SIZE int Specifies the cache size for the
MPKConfig’s frame data queue used for
culling. This attribute affects the
granularity and performance of the data
processing for data passed using
mpkConfigFrameData(). The default
value is 100.

MPK_DEFAULT_EYE_OFFSET float Specifies the default value of the eye
offset used by the frustum computations
for the channel. The function mpkInit()
sets this value to 0.035.

MPK_DEFAULT_RUNON_POLICY enum Specifies the default run-on policy for
those window threads that are not
explicitly bound to a particular processor.
Setting the value to auto causes MPK to
bind the first n window threads to the n
processors on the node for the respective
pipe. If the value is set to free, the
operating system decides on what
processor to execute the thread. The
default is free.

MPK_XINERAMA boolean Controls window-intialization
performance. This variable can be set to 0
if all windows are created using
Xinerama, which is the default behavior.
Setting it to 0 improves
window-initialization performance, but
causes problems when creating
Xinerama-aware windows. The default is
1.

Table A-5 MPK Global Attributes (continued)

Attribute Name Valid Values Description

007-4527-003 137

Index

Numbers

2D decomposition, 16, 55, 118
3D decomposition, 16, 72, 118

A

accumulation techniques, 76
attributes

default values, 17
global, 133
managing, 124
MPKChannel, 131
MPKPipe, 125
MPKWindow, 127
naming conventions, 11, 123
overview, 123

B

blending, 76

C

callbacks
channel initialization, 23, 25, 37
clear-channel draw callback, 30
compound assembly, 62, 74
compound post-assembly, 91, 93, 112
compound pre-assembly, 91, 93

compound pre-assemby, 112
compound traversal functions, 95
compound-specific, 90
data allocation, 117
data deallocation, 23, 117
draw-channel, 30
event, 25, 34, 35, 120
exit-window, 37
free-data, 23, 27, 109
MPKConfig idle callback, 30, 107
MPKConfig initialization, 15
OpenGL initialization, 25
read-output compound callback, 90, 91
rendering, 15, 25, 27, 28, 107, 109
slice, 119
update-channel draw callback, 31, 32, 61, 90, 91
update-window draw callback, 30
user-defined, 120
window initialization, 23, 24, 25, 37

Cave facility, 1
channel callbacks

clear, 30
clear-channel draw callback, 25
draw, 30
initialization, 23, 25
update-channel draw callback, 25, 31, 32, 61, 74,

90, 91
commands

fork, 117, 121
pthread, 117
sproc, 117

compositors (See Scalable Graphics Compositor.)

138 007-4527-003

Index

compound traversal functions, 94
compounds (See decomposition.)
compound-specific callbacks, 90

assembly, 62, 74
post-assembly, 91, 93, 112
pre-assembly, 91, 93, 112
read-output, 90, 91
traversal functions, 95

configuration file
alternate parser, 105
hierarchy of data structures, 14
programmatic alternatives, 105
sample, 6

cull decomposition, 16, 51, 78
culling, 97-103

D

data handling
allocation callbacks, 117
application-only data, 108
culling, 100
deallocation callback, 23, 117
design, 19
dynamic shared data, 109
frame data, 16, 26, 27, 31, 33, 109, 120
free-data callback, 23, 27, 109
shared global data, 22
static shared data, 109

data streaming (3D) decomposition, 16, 72, 118
data structures

configuration file entries, 14
general description, 11
hierarchy, 12
MPKChannel, 16
MPKCompound, 16, 52
MPKConfig, 15
MPKEvent, 17, 34, 35
MPKFrame, 17, 112

MPKGlobal, 17
MPKImage, 17, 112
MPKPipe, 15
MPKWindow, 16
naming conventions, 10

database (DB) decomposition, 16, 58, 118
DB decomposition, 16, 58, 118
decomposition

building compounds, 52
cull decomposition, 51, 78
frame decomposition, 54

database (DB), 16, 58, 118
eye, 16, 62
head-mounted-device (HMD), 16, 64
screen (2D), 16, 55, 118

guidelines for choosing mode, 89
list of schemes, 53
multilevel decomposition, 80
overview, 4, 16, 51
pixel-based decomposition (FSAA), 16, 76
temporal decomposition, 66

data streaming (3D), 16, 72, 118
frame multiplexing (DPLEX), 16, 66, 119

decompostion
cull decomposition, 16

destination channels, 51
DisplayHeight() function, 16, 126
DisplayWidth() function, 16, 126, 127
DPLEX (See Video Digital Multiplexer.)
DPLEX decomposition, 16, 66, 119
drawcube() function, 33

E

event callbacks, 25, 34, 35, 120
event processing, 19, 33

007-4527-003 139

Index

example code
flip.iv, Open Inventor scene graph, 120
simple MPK application, 39
volview, OpenGL Volumizer 2 application, 6, 117

eye decomposition, 16, 62

F

flip.iv, Open Inventor scene graph, 120
fork command, 117, 121
frame data, 16, 26, 27, 31, 33, 109, 120
frame decomposition, 54
frame multiplexing (DPLEX) decomposition, 16, 66,

119
frame rate management, 107
frame transport, optimizing, 90
freeFrameData() function, 27
frustum management, 32
FSAA (See full-scene antialiasing.)
full-scene antialiasing (FSAA), 16, 76
functions

compound traversal functions, 94
DisplayHeight(), 16, 126
DisplayWidth(), 16, 126, 127
drawcube(), 33
freeFrameData(), 27
glDrawBuffer(), 30
glOrtho(), 32
glReadBuffer(), 30
glScissor(), 30
glViewport(), 16, 30
glXSwapBuffers(), 25
initGL(), 25
mpkCalloc(), 22, 109
mpkChannelApplyBuffer(), 30
mpkChannelApplyFrustum(), 32, 33
mpkChannelApplyOrtho(), 32, 33
mpkChannelApplyTransformation(), 33

mpkChannelApplyViewport(), 30
mpkChannelCheckData(), 101, 103
mpkChannelDrawImage(), 112
mpkChannelGetAttribute(), 125
mpkChannelGetRange(), 61
mpkChannelNextData(), 101, 103
mpkChannelPassData(), 101, 103, 134
mpkChannelPutData(), 102, 103, 134
mpkChannelReadFrame(), 90
mpkChannelResetAttribute(), 125
mpkChannelSetAttribute(), 124
mpkChannelSetNearFar(), 131, 134
mpkChannelSyncDPlex(), 70, 119
mpkChannelTestAttribute(), 125
mpkChannelUnsetAttribute(), 124
mpkCompoundGetAssemblyFrame(), 112
mpkCompoundGetOutputFrame(), 90
mpkCompoundPostAssemble(), 93
mpkCompoundPreAssemble(), 93
mpkCompoundReadOutputFrame(), 90
mpkCompoundTraverseActive(), 94
mpkCompoundTraverseAll(), 94
mpkCompoundTraverseCurrent(), 94
mpkConfigChangeMode(), 26
mpkConfigCheckEvent(), 34
mpkConfigDelete(), 38
mpkConfigExit(), 38
mpkConfigFrame(), 15, 26, 28, 34, 91, 100, 109, 134
mpkConfigFrameBegin(), 100
mpkConfigFrameData(), 100, 102, 103, 135
mpkConfigFrameEnd(), 100
mpkConfigGetMode(), 23
mpkConfigHandleEvents(), 34
mpkConfigInit(), 15, 23, 109, 134
mpkConfigIsIdle(), 107
mpkConfigLoad(), 12, 15, 22
mpkConfigNextEvent(), 34
mpkConfigOutput(), 23
mpkConfigSelectInput(), 33
mpkConfigSetCompoundReadOutputCB(), 91
mpkConfigSetFrameDataRefCB(), 103

140 007-4527-003

Index

mpkConfigSetFrameDataUnrefCB(), 103
mpkConfigSetHeadOrientation(), 32
mpkConfigTimerDisable(), 107
mpkConfigTimerEnable(), 107
mpkConfigTimerGetTime(), 107
mpkConfigTimerSetTime(), 107
mpkExit(), 38
mpkFrameDelete(), 112
mpkFrameGetImage(), 112
mpkFrameNImages(), 112
mpkFree(), 27, 38
mpkGetString(), 22
MPKGlobal functions, 133
mpkGlobalSetArenaAttribute(), 22
mpkGlobalSetArenaPath(), 22
mpkGlobalSetExecutionMode(), 22
mpkGlobalSetTimerSignal(), 107
mpkInit(), 22, 135
mpkMalloc(), 17, 22, 27, 38, 109
mpkPipeGetAttribute(), 125
mpkPipeResetAttribute(), 125
mpkPipeSelectInput(), 33
mpkPipeSetAttribute(), 124
mpkPipeTestAttribute(), 125
mpkPipeUnsetAttribute(), 124
mpkRealloc(), 17
mpkSwapBuffers(), 128
mpkWindowCreate(), 23, 25
mpkWindowDestroy(), 37
mpkWindowGetAttribute(), 125
mpkWindowOpenDisplay(), 33
mpkWindowProcessEvent(), 34
mpkWindowResetAttribute(), 125
mpkWindowSelectInput(), 33
mpkWindowSetAttribute(), 124
mpkWindowSwapBuffers(), 25
mpkWindowTestAttribute(), 125
mpkWindowUnsetAttribute(), 124
mpkWindowUpdatePixelViewport(), 126, 127
naming conventions, 10, 133
newFrameData(), 27

usinit(), 17
XSelectInput(), 33
XtAppAddWorkProc(), 120
XtAppMainLoop(), 120

G

glDrawBuffer() function, 30
global attributes, 133

MPK_CHANNEL_PASS_CACHE_SIZE, 103, 134
MPK_CHANNEL_PUT_CACHE_SIZE, 103, 134
MPK_CONFIG_FRAME_CACHE_SIZE, 103, 135

glOrtho() function, 32
glReadBuffer() function, 30
glScissor() function, 30
glViewport() function, 16, 30
GLX_SGIX_hyperpipe extension, 112
glXSwapBuffers() function, 25

H

hardware compositing, 111
head-mounted-device (HMD) decomposition, 16, 64
HMD (See head-mounted-device (HMD)

decomposition.)
hyperpipe extension, 112

I

idle-time management, 30, 107
immersive environments (See projection systems.)
InfiniteReality graphics systems, 72
initGL() function, 25

007-4527-003 141

Index

L

latency, 54
load balancing

auto load balancing, 53, 84
general, 54

locks, 19

M

memory allocation, 17
Motif API, 120
MPK_CATTR_FAR global attribute, 134
MPK_CATTR_NEAR global attribute, 134
MPK_CATTR_READ_COLOR_FORMAT global

attribute, 132
MPK_CATTR_READ_COLOR_TYPE global

attribute, 132
MPK_CATTR_READ_DEPTH_FORMAT global

attribute, 132
MPK_CATTR_READ_DEPTH_TYPE global

attribute, 132
MPK_CATTR_READ_STENCIL_FORMAT global

attribute, 133
MPK_CATTR_READ_STENCIL_TYPE global

attribute, 133
MPK_CHANNEL_AUTO_ACTIVATE global

attribute, 134
MPK_CHANNEL_PASS_CACHE_SIZE global

attribute, 103, 134
MPK_CHANNEL_PUT_CACHE_SIZE global

attribute, 103, 134
MPK_CONFIG_FRAME_CACHE_SIZE global

attribute, 103, 135
MPK_DEFAULT_EYE_OFFSET global attribute, 135
MPK_DEFAULT_RUNON_POLICY global attribute,

135
MPK_PATTR_MONO_HEIGHT global attribute, 126

MPK_PATTR_MONO_WIDTH global attribute, 126
MPK_PATTR_STEREO_HEIGHT global attribute,

126
MPK_PATTR_STEREO_OFFSET global attribute,

126
MPK_PATTR_STEREO_TYPE global attribute, 127
MPK_PATTR_STEREO_WIDTH global attribute, 127
MPK_WATTR_HINTS_CAVEAT global attribute,

127
MPK_WATTR_HINTS_DECORATION global

attribute, 127
MPK_WATTR_HINTS_DIRECT global attribute, 127
MPK_WATTR_HINTS_DOUBLEBUFFER global

attribute, 128
MPK_WATTR_HINTS_DRAWABLE global attribute,

128
MPK_WATTR_HINTS_LARGEST global attribute,

128
MPK_WATTR_HINTS_PRESERVED globalattribute,

128
MPK_WATTR_HINTS_RGBA global attribute, 128
MPK_WATTR_HINTS_STEREO global attribute, 128
MPK_WATTR_HINTS_THREAD global attribute,

128
MPK_WATTR_HINTS_TRANSPARENT global

attribute, 128
MPK_WATTR_HINTS_VISUAL global attribute, 129
MPK_WATTR_HINTS_X_RENDERABLE global

attribute, 129
MPK_WATTR_HINTS_XINERAMA global attribute,

129
MPK_WATTR_PLANES_ACCUM_ALPHA global

attribute, 129
MPK_WATTR_PLANES_ACCUM_BLUE global

attribute, 129
MPK_WATTR_PLANES_ACCUM_GREEN global

attribute, 129

142 007-4527-003

Index

MPK_WATTR_PLANES_ACCUM_RED global
attribute, 130

MPK_WATTR_PLANES_ALPHA global attribute,
130

MPK_WATTR_PLANES_AUX global attribute, 130
MPK_WATTR_PLANES_BLUE global attribute, 130
MPK_WATTR_PLANES_COLOR global attribute,

130
MPK_WATTR_PLANES_DEPTH global attribute,

130
MPK_WATTR_PLANES_GREEN global attribute,

130
MPK_WATTR_PLANES_LEVEL global attribute,

130
MPK_WATTR_PLANES_RED global attribute, 130
MPK_WATTR_PLANES_SAMPLES global attribute,

130
MPK_WATTR_PLANES_STENCIL global attribute,

131
MPK_WATTR_TRANSPARENT_BLUE global

attribute, 131
MPK_WATTR_TRANSPARENT_GREEN global

attribute, 131
MPK_WATTR_TRANSPARENT_RED global

attribute, 131
MPK_XINERAMA global attribute, 135
MPKArena interface, 17
mpkCalloc() function, 22, 109
MPKChannel data structures

attributes, 131
general description, 16

mpkChannelApplyBuffer() function, 30
mpkChannelApplyFrustum() function, 32, 33
mpkChannelApplyOrtho() function, 32, 33
mpkChannelApplyTransformation() function, 33
mpkChannelApplyViewport() function, 30
mpkChannelCheckData() function, 101, 103

mpkChannelDrawImage() function, 112
mpkChannelGetAttribute() function, 125
mpkChannelGetRange() function, 61
mpkChannelNextData() function, 101, 103
mpkChannelPassData() function, 101, 103, 134
mpkChannelPutData() function, 102, 103, 134
mpkChannelReadFrame() function, 90
mpkChannelResetAttribute() function, 125
mpkChannelSetAttribute() function, 124
mpkChannelSetNearFar() function, 131, 134
mpkChannelSyncDPlex() function, 70, 119
mpkChannelTestAttribute() function, 125
mpkChannelUnsetAttribute() function, 124
MPKCompound data structures

building, 52
custom processing, 90
general description, 16

mpkCompoundGetAssemblyFrame() function, 112
mpkCompoundGetOutputFrame() function, 90
mpkCompoundPostAssemble() function, 93
mpkCompoundPreAssemble() function, 93
mpkCompoundReadOutputFrame() function, 90
mpkCompoundTraverseActive() function, 94
mpkCompoundTraverseAll() function, 94
mpkCompoundTraverseCurrent() function, 94
MPKConfig callbacks

idle, 30, 107
initialization, 15

MPKConfig data structure
creating and initializing, 22
general description, 15

mpkConfigChangeMode() function, 26
mpkConfigCheckEvent() function, 34
mpkConfigDelete() function, 38
mpkConfigExit() function, 38
mpkConfigFrame() function, 15, 26, 28, 34, 91, 100,

109, 134

007-4527-003 143

Index

mpkConfigFrameBegin() function, 100
mpkConfigFrameData() function, 100, 102, 103, 135
mpkConfigFrameEnd() function, 100
mpkConfigGetMode() function, 23
mpkConfigHandleEvents() function, 34
mpkConfigInit() function, 15, 23, 109, 134
mpkConfigIsIdle() function, 107
mpkConfigLoad() function, 12, 15, 22
mpkConfigNextEvent() function, 34
mpkConfigOutput() function, 23
mpkConfigSelectInput() function, 33
mpkConfigSetCompoundReadOutputCB() function,

91
mpkConfigSetFrameDataRefCB() function, 103
mpkConfigSetFrameDataUnrefCB() function, 103
mpkConfigSetHeadOrientation() function, 32
mpkConfigTimerDisable() function, 107
mpkConfigTimerEnable() function, 107
mpkConfigTimerGetTime() function, 107
mpkConfigTimerSetTime() function, 107
MPKEvent data structures, 17, 34, 35
mpkExit() function, 38
MPKFrame data structures, 17, 112
mpkFrameDelete() function, 112
mpkFrameGetImage() function, 112
mpkFrameNImages() function, 112
mpkFree() function, 27, 38
mpkGetString() function, 22
MPKGlobal data structure, 17, 133
MPKGlobal functions, 133
mpkGlobalSetArenaAttribute() function, 22
mpkGlobalSetArenaPath() function, 22
mpkGlobalSetExecutionMode() function, 22
mpkGlobalSetTimerSignal() function, 107
MPKImage data structures, 17, 112

mpkInit() function, 22, 135
mpkMalloc() function, 17, 22, 27, 38, 109
MPKPipe data structures

attributes, 125
general description, 15

mpkPipeGetAttribute() function, 125
mpkPipeResetAttribute() function, 125
mpkPipeSelectInput() function, 33
mpkPipeSetAttribute() function, 124
mpkPipeTestAttribute() function, 125
mpkPipeUnsetAttribute() function, 124
mpkRealloc() function, 17
MPKWindow data structures

attributes, 127
general description, 16
initialization, 25

mpkWindowCreate() function, 23, 25
mpkWindowDestroy() function, 37
mpkWindowGetAttribute() function, 125
mpkWindowOpenDisplay() function, 33
mpkWindowProcessEvent() function, 34
mpkWindowResetAttribute() function, 125
mpkWindowSelectInput() function, 33
mpkWindowSetAttribute() function, 124
mpkWindowSwapBuffers() function, 25, 128
mpkWindowTestAttribute() function, 125
mpkWindowUnsetAttribute() function, 124
mpkWindowUpdatePixelViewport() function, 126,

127
multilevel decomposition, 80
multipass rendering, 76
multiprocess mechanisms (See thread safety.)
mutexes, 19, 109

144 007-4527-003

Index

N

naming conventions
attributes, 11, 123
data structures, 10
functions, 10
general, 9

newFrameData() function, 27

O

Open Inventor API, 120
OpenGL initialization, 25
OpenGL Shader API, 119
OpenGL Volumizer 2 API, 117

P

parallel processing, 51
parsers, configuration file, 105
pixel-based decomposition, 16
pixel-based decomposition (FSAA), 76
preprocessors, configuration file, 105
processor assignment, 135
product components, 5
programming models

MPK execution model, 20
OpenGL application, 18

projection systems
Cave facility, 1
SGI Reality Center facility, 1
TAN HOLOBENCH facility, 1
TANORAMA POWERWALL facility, 1

pthread command, 117

R

Reality Center facility, 1
rendering callbacks, 15, 25, 27, 28, 107, 109
run-on policy, 135
run-time configurability, 3

S

scalability
definition, 54
full-scalability feature, 70
general support, 4
MPK implementation, 51

Scalable Graphics Compositor, 4, 76, 111
screen (2D) decomposition, 16, 55, 118
SGI Reality Center facility, 1
slice callback, 119
source channels, 51
split-axis method for tiling, 86
sproc command, 117
stereo

conditional use of, 83
general support, 4
use with OpenGL Volumizer, 119

T

TAN HOLOBENCH facility, 1
TANORAMA POWERWALL facility, 1
temporal decomposition, 66
thread safety, 19, 117, 120
timers, 107

007-4527-003 145

Index

U

usinit() function, 17

V

Video Digital Multiplexer (DPLEX), 4, 67, 111
visualization facilities (See projection systems.)
volview, OpenGL Volumizer 2 application, 6, 117

W

window callbacks
exit, 37
initialization, 23, 24, 25, 37
update-window draw callback, 30

workload balance (See load balancing.)
WorkProc, Motif construct, 120

X

Xinerama, X server extension, 109, 129, 135
XSelectInput() function, 33
XtAppAddWorkProc() function, 120
XtAppMainLoop() function, 120

	Record of Revision
	Figures
	Tables
	About This Guide
	Audience
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	Overview
	A Reality Center Facility
	What MPK Provides
	Run-Time Configurability
	Run-Time Scalability
	Integrated Support for Scalable Graphics Hardware
	Integrated Support for Stereo and Immersive Environments

	Components of MPK
	Application Structure
	A Sample Configuration File

	The MPK Programming Model
	MPK Naming Conventions
	MPK Data Structure Names
	MPK Function Names
	MPK Attribute Names

	MPK Data Structures
	The MPK Configuration Hierarchy
	The MPKConfig Data Structure
	The MPKPipe Data Structure
	The MPKWindow Data Structure
	The MPKChannel Data Structure
	The MPKCompound Data Structure
	The MPKEvent Data Structure
	The MPKGlobal Data Structure
	The MPKFrame and MPKImage Data Structures
	The MPKArena Interface

	A Non-MPK Application Versus an MPK Application
	A Simple MPK Application
	Creating and Initializing a Configuration
	The Main Loop
	The Rendering Callbacks
	Event Processing
	A Graceful Exit
	Example Code

	Using Compounds
	Scalable Rendering
	Building Compounds
	Frame Decomposition
	Screen Decomposition
	Database Decomposition
	Eye Decomposition

	Temporal Decomposition
	Frame Multiplexing
	Data Streaming

	Pixel-Based Decomposition
	Full-Scene Antialiasing (FSAA) Decomposition
	FSAA Compound Examples

	Cull Decomposition
	Multilevel Decomposition

	Stereo-Selective Compounds
	Automatic Load Balancing for Compounds
	Dynamic and Static Load Balancing
	Proper Environment for Automatic Load Balancing
	How to Enable Automatic Load Balancing
	Using a Split-Axis Method for Tiling

	Choosing the Right Decomposition Mode
	Compound-Specific Callbacks
	Optimizing Frame Transport
	Custom Assembly

	Traversing Compounds

	Culling
	Configuring
	Data Handling

	Advanced MPK Programming
	Using an Alternate Parser
	Creating Configurations without a Configuration File
	The Idle Callback
	Controlling the Frame Rate
	Data Handling
	Application-Only Data
	Static Shared Data
	Dynamic Shared Data
	Frame Data

	MPK and Xinerama
	Support for Xinerama-Aware Windows
	Transparent Scalability for Xinerama Windows
	Support for Xinerama Full-Window Overlapping

	Hardware Compositing
	Advanced Compositing
	MPK and Other APIs
	OpenGL Volumizer 2
	Execution Modes
	Rendering
	Scalability

	OpenGL Shader
	Open Inventor
	Motif
	Non-Thread-Safe Libraries

	MPK Attributes
	MPK Attribute Names
	Managing Attributes
	MPKPipe Attributes
	MPKWindow Attributes
	MPKChannel Attributes
	MPKGlobal Attributes

	Index

