
A Common Ground for Virtual Humans: Using an Ontology in a Natural 
Language Oriented Virtual Human Architecture 

Arno Hartholt, Thomas Russ, David Traum, Eduard Hovy, Susan Robinson 
University of Southern California’s Institute for Creative Technologies & Information Sciences Institute 

Marina del Rey, CA 90292 
United States of America 

{hartholt, traum, robinson}@ict.usc.edu & {russ, hovy}@isi.edu 

Abstract 

When dealing with large, distributed systems that use state-of-the-art components, individual components are usually developed in 
parallel. As development continues, the decoupling invariably leads to a mismatch between how these components internally represent 
concepts and how they communicate these representations to other components: representations can get out of synch, contain localized 
errors, or become manageable only by a small group of experts for each module. In this paper, we describe the use of an ontology as part 
of a complex distributed virtual human architecture in order to enable better communication between modules while improving the 
overall flexibility needed to change or extend the system. We focus on the natural language understanding capabilities of this architecture 
and the relationship between language and concepts within the entire system in general and the ontology in particular. 

 
 

1. Introduction 
Designers of large heterogeneous systems (such as 
task-oriented communicating agents) have an 
uncomfortable choice to make regarding their knowledge 
representations: should they choose a uniform 
representation for all modules that enforces common 
understanding and re-use, or should they allow each 
module to use its own representation, tailored specifically 
for that module? Either alternative includes a set of 
difficult and perhaps insoluble problems. In the former 
case, using a single common representation, it may be very 
difficult to decide which representation to use, given the 
different demands of such diverse processes as planning, 
perception in a real or virtual world, and natural language 
dialogue, and especially since the ways in which they will 
be developed are not fully understood at the start. Should 
one choose an impoverished language for which one can 
guarantee fast algorithmic complexity (but that suffers 
from representational inadequacy), or a very rich language 
that has expressive capacity closer to that of natural 
language (but that requires each component to perform 
complex deconstruction of the representations)? On the 
other hand, if each module is free to choose its own 
notation, how does one convert the necessary elements 
from one representation to another? How does one insure 
that the overlap in capacities is sufficient and faithful 
translation to the degree required is even possible? 
In this paper, we suggest a middle ground is possible, in 
which a multi-phase project lifecycle can achieve the 
advantages of each approach while minimizing their 
disadvantages. In the early stages of the project, the best 
strategy is to allow each module designer to choose the 
representation language best suited for the state of the art 
in that area, while developing inter-process 
communication languages to bridge the gap, e.g. (Traum et 
al., 1996). As understanding of the relationships and 
requirements are better understood, one can bring the 
languages closer together. Finally, one needs appropriate 

tools both within each module and across modules to make 
modification and creation of new domains easier and 
possible without additional work by the designers of each 
module. 
Of course, this approach has a cost: one has to develop 
additional integrating representation resources and 
notation conversion tools. Central among these is an 
ontology that provides the standardized terminology and 
inter-term relationship constraints, plus code to convert 
this terminology to the component notation. We describe 
the ontology, representation, and different uses of data in 
this paper and provide our experience with the efforts and 
tradeoffs involved. 
We illustrate these points through our experiences with the 
Virtual Human Project at the University of Southern 
California (USC), which has built virtual agents for the 
Mission Rehearsal Exercise (MRE) (Rickel at al., 2001) 
and Stability And Support Operations – Simulation and 
Training (SASO-ST) (Swartout et al., 2006).  

2. The Virtual Human Project 

2.1 Project Overview 
The Virtual Humans Project, at USC’s Institute for 
Creative Technologies (ICT) and Information Sciences 
Institute (ISI), has the main goal of designing autonomous 
agents that support face-to-face interaction with people in 
many roles and in a variety of tasks. The agents must be 
embedded in the virtual world and perceive events in that 
world, as well as the actions of human participants. They 
must represent aspects of the dynamic situation in 
sufficient depth to plan contingencies, develop beliefs and 
intentions, and form appropriate emotional reactions. They 
must communicate with each other and with human 
participants using multi-modal natural language 
communication. 
Our latest scenario, an extension of SASO-ST, includes 
two virtual humans: a Spanish doctor and an Iraqi village 
elder. Set in a small Iraqi town plagued by violence, the 



human trainee takes on the role of an US Army captain 
with orders to move the doctor’s clinic to a safer location 
(Figure 1). 
In the course of the interaction, the human trainee must 
negotiate with the virtual characters, establishing trust and 
satisfying the objections of the doctor and elder to moving 
the clinic. The virtual humans evaluate the utterances 
made by the trainee and each other, update their models of 
the conversational states and models of each other, and 
plan how to react and what to do next. 
 

Figure 1: SASO-EN Scenario 

2.2 Virtual Human Architecture 
The Virtual Human Architecture includes a large set of 
modules, which reason about knowledge in different ways. 
Figure 2 shows a conceptual organization and information 
flow for these modules. The task reasoner, emotion 
module and Dialogue Manager are developed in SOAR 
and TCL (Newell, 1990). Other modules are developed in 
Java and C++. For a more in-depth discussion of the 
general architecture and some of its application, see 
(Kenny et al., 2007). Below we describe some of the 
modules and the ways they use knowledge: 
• An Automated Speech Recognizer (ASR), converting 

vocalizations into words (Pellom, 2001). ASR needs 
the words (spelling and pronunciations) that appear in 
the domain, as well as their frequencies (Unigram, 
bigrams, and trigrams).  

• A Natural Language Understanding module (NLU), 
converting unconstrained natural language 
expressions to internal representations (Bhagat et al, 
2005). Our statistical approach to NLU requires a 
training corpus of paired utterance texts and semantic 
representations from the domain (that we call a 
Framebank). 

• A task reasoner that can plan how to achieve goals and 
reason about alternatives and utilities of various 
actions (Traum et al, 2003b). The task reasoner 
focuses on states (that can have utilities for different 
agents) and tasks (that can have states as 
preconditions and effects), as well as plans that 
combine the two in causal networks. 

• An emotion module that appraises the state of the 
world in relation to beliefs and goals, resulting in 
emotion and specific coping strategies (Gratch and 
Marsella, 2004). The emotion model makes direct use 
of the task model representations, as well as factors 
such as temporal status, likelihood, controllability, 
and changeability. 

• A Dialogue Manager (DM), which relates the NLU 
output to the context of previous conversation and 
other internal state, including the task and emotion 
models, updates the internal state, and plans new 
communications (Traum et al 2003b, Traum 2003). 
The dialogue manager uses both the task model 
representations as well as more structured 
abstractions of actions related to natural language. 

• A Natural Language Generation module (NLG), 
which converts internal communication goals to 
output text (Traum et al 2003a, DeVault et al, to 
appear). This uses detailed aspects of the dialogue 
model as well as either lexical and grammar rules or a 
framebank (or both). 

• A text-to-speech synthesizer. We have used several 
synthesizers, including Festival and rVoice. These 
require domain words as input. 

• A non-verbal behavior generator, which decides what 
body movements should be performed in order to 
convey the appropriate meaning of NLG output, 
emotions, perception and conversational regulation. 
(Lee & Marsella, 2006). This requires representations 
from the dialogue, task, and emotion models, as well 
as the NLG output and the body’s current position, 
orientation, and behaviors. The generator outputs a 
Behavioral Markup Language (BML) (Kopp et al, 
2006). 

• A behavior blending system, SmartBody, which takes 
directives for motions and allocates resources 
(Thiebaux et al, 2008). This requires BML input and 
knowledge of the character’s attributes in the virtual 
environment. 

• The virtual environment, displaying the characters 
and their surroundings. We currently use the Unreal 
2.5 Engine as our renderer. It must track the visual 
aspects of objects in the world and motion. 

• The real environment, consisting of the trainee.  
These modules communicate using a message passing 
protocol that any module can subscribe to. Some modules 
(e.g. ASR, NLU, NLG) are stateless, and transform their 
input into an appropriate output. Other modules track and 
update context and may send commands and requests to 
other modules. 

2.3 Representation Languages and Knowledge 
Resources 
As described above, there are many different types of 
knowledge resources in the SASO system, which have to 
be consistent in some ways, but also have different 
requirements for the different modules. 

 



 
Figure 2: Virtual Human Architecture 

 
Authoring these resources and maintaining them as the 
domain is changed and expanded can be a significant 
undertaking. Part of the problem is that there are at least 
three sources of content authoring: 

1. General information on human cognition and 
interaction, from psychological and AI theories. 

2. Story-based information, devised by an author. 
3. Language-based information, trying to make 

sense of the things people say in these domains. 
These sources can cause conflict, e.g., when the way 
people talk about a domain does not match up with the 
way the domain was formalized from the story. For 
example, from the point of view of the task model, only 
fully specified ‘move’ actions can take place, with a 
source and destination specified. On the other hand, it is 
easy to say in English, “move the clinic”, without 
specifying these. It is thus a challenge to come up with a 
meaningful representation for that phrase. E.g., should one 
represent literally what was conveyed even if it doesn’t 
make sense to the task reasoner? Should one augment the 
task reasoner to handle such abstractions? Should one 
“misrepresent” the utterance as the closest representation 
that is in the task model? This same suite of choices is 
presented many times in building the necessary domain 
modules. 
Moreover, there are different means for providing 
knowledge to different components. Previously, they had 
to be constructed independently, which was a source of 

error and effort to maintain consistency. These included: 
• SOAR productions that directly create objects and 

links as part of SOAR’s working memory 
• TCL macros, that take in arbitrary argument structures 

and create a set of SOAR productions 
• NL frames, containing an action or state with added 

linguistic information for both the NLU and NLG  

3. Ontology 

3.1 General 
In order to address the problem of terminology consistency, 
we developed a single terminology repository, the 
Ontology. We gathered from all modules’ representations 
the terms they employ and merged them into one 
standardized list that forms the terms of the ontology. In 
doing so we faced a complex task, not yet completed, 
namely decomposing conceptually composite terms used 
by some modules into their component terms and relations, 
as required by others. In addition, to ensure that in the 
future terms are related only in ways that all the various 
modules can actually support, we defined inter-term 
relationships, such as an inheritance hierarchy and 
constraints on frames’ slot values.  
In themselves, these are not innovative ideas. But the 
range of tasks the ontology must support is rather larger 
than most NLP-related projects have to deal with. 
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Covering aspects as diverse as speech recognition and 
synthesis, natural language understanding, generation and 
dialogue management, body movement, task planning, 
and emotion, we were faced with the need to handle a wide 
spectrum of representational needs. Details of the various 
aspects of the ontology are described in the next sections.  
This work is not fully complete. At present, the principal 
modules now directly using the ontology are the task 
model and the NLU (while some other modules build on 
these representations). We have been experimenting with 
the ontology itself in order to find the most supportive and 
flexible environment and notation.  
At present, we have two iterations of our ontology and use 
Stanford’s Protégé (Knublauch, 2004) to manage both. 
Protégé supports two types of representation languages: a 
frame-based representation (Protégé Frames) and the Web 
Ontology Language (OWL) (McGuiness & van Harmelen 
2004, Bechhofer et al 2004). For our first iteration, we 
chose to use Protégé Frames, as this lay conceptually close 
to the existing data sources and did not have the overhead 
that OWL brings in. Our philosophy was to create an 
ontology that did not require many modifications to the 
existing system. This version gave us the benefit of 
integrated data sources and created the necessary 
experience needed to leverage all the benefits an ontology 
can give.  
The goal for the second version of our ontology was the 
re-use of knowledge and the introduction of a more 
principled ontology design. Instituting a principled design 
of the ontology meant making changes to existing 
representations of the system. 
We switched the representation language to OWL to 
automatically classify concepts and instances, and most 
crucially because it allowed us to institute a hierarchical 
structure of domain independent and domain dependent 
concepts. This resulted in a three-level organization, 
which will be discussed in the next section. 
The OWL language allows a more flexible distribution of 
assertions. Drawing on its semantic web roots, OWL 
allows the addition of assertions to objects that are 
imported, as well as those created in a particular level. 
This is in contrast to Frames, where imported instances 
cannot have any information changed. The greater 
flexibility of OWL makes sharing of information easier, 
since one can inherit partially specified instances (the 
shared part) and then complete the customization at a more 
detailed level. 
One further consideration was the wider availability of 
tools and ontology resources for OWL.  

3.2 Structure  
Using the import mechanism of the OWL language, we 
created a three-level organization of the knowledge. We 
have a common, general-purpose world ontology. Most 
classes, like ‘Person’ and ‘Action’, are defined here. 
Inheriting the world ontology and adding more specialized 
knowledge shared by multiple scenarios—locations, props, 
characters and basic task structures—is the scenario 
family level. This allows us easily to share certain 

information over a set of closely-related scenarios.  Finally, 
at the lowest level, we have a scenario ontology that stores 
scenario-specific information.  
The world ontology is structured to provide a widely 
applicable set of concepts that can be specialized and 
instantiated at the scenario family and scenario specific 
levels. The highest level of the ontology defines, for 
example, entities such as military officers; specific entities 
like our captain are then defined at the scenario family 
level. The world level is expected to be useful across many 
different scenario families. 
In addition to the entities, instantiated actions and states 
exist at the scenario family level in a basic form. These 
instances are used by both the task model and the NLU 
frames, which add module-specific information to them, 
such as relations and linguistic information. This ensures 
consistency between modules and enables re-use of 
knowledge. 
Consider a basic ‘move’ action, where our captain is 
moving the clinic from the market to the downtown area. 
We can define this as a set of slot / value pairs: 

event move 

agent captain-kirk 

theme clinic 

source market 

destination downtown 
Similarly, we can define the state ‘the clinic is downtown’ 
as follows: 

object clinic 

attribute location 

value downtown 
Currently, the world ontology contains 192 classes, 125 
properties and 199 individuals. The scenario family level 
has an additional 6 classes and 548 individuals. The 
multi-party scenario level adds 5 classes and 88 
individuals, along with additional relations between 
individuals inherited from the family level. 

3.3 Task Model 
The purpose of the Task Model is to represent the tasks 
(action plans), at both generic and specific (instantiated) 
levels, of the agents. This naturally encompasses the 
model each individual agent has of the world. The agent 
model contains entities, a representation of the world state 
with object:attribute:value triples, and task elements using 
a STRIPS-like representation (Fikes & Nilson, 1971). The 
task elements use states as their preconditions and effects. 
In the OWL ontology, we introduced the notion of generic 
actions that include descriptions of their precondition and 
effects templates. This allows us to define basic, domain 
independent preconditions and effects only once and let 
the system instantiate that for each scenario.  
For example, the generic ‘move’ action defines effects 
such as adding “the theme is at the destination” that are 
later instantiated for our scenario. This type of reasoning 
goes beyond the standard OWL inference capabilities and 
required the construction of our own template 
interpretation code.  
The different levels of ontology structure, combined with 
the flexibility to choose where to assert knowledge can be 



used to add some additional scenario effects of actions. As 
noted above, generic preconditions and effects of actions 
are defined at the world ontology level. Some additional 
effects of more specialized movement can be attached at 
the scenario family or scenario specific level. One 
example of that is the way that particular instruments of a 
movement action can affect the (perception of) the Spanish 
doctor’s neutrality. If, for example, U.S. troops move the 
clinic, that has a negative effect on the doctor’s 
neutrality—which he doesn’t want to occur. If local 
workers perform the move, then his neutrality is 
maintained. This information is added at the scenario 
family level, since it depends both on specifics of the 
scenario family and on the existence of entities that are 
defined at that level (the local workers and U.S. troops). 
Although it is possible to make these specific assertions 
manually, we have also been exploring ways to make these 
effects flow from a causal model. 
One innovative use of the OWL language is some initial 
work on assigning additional properties to actions. For 
example, we have a general definition for “actions that 
reduce neutrality”. This is defined as an action taken by a 
partisan party that benefits a neutral party. This allows us 
to automatically infer the effects on neutrality of certain 
actions in our domain, specifically, having the U.S. troops 
move the clinic. We plan to use a library of such 
meta-descriptions to include additional effects without the 
need to assert them specifically. 
In addition to preconditions and effects, authors can also 
define concerns that agents might have for certain states to 
be true or false. These concerns allow the emotion module 
to calculate how an agent feels about the current state and / 
or possible future states of the world. 
Below are the examples we used in section 3.2, augmented 
with the knowledge that is specific for the task model. For 
the event, these are the preconditions and effects:  

event move 

agent captain-kirk 

theme clinic 

source market 

destination downtown 

pre: clinic-location-market 

del: clinic-location-market 

add: clinic-location-downtown 

For the state, these are the belief and concern: 
object clinic 

attribute location 

value downtown 

belief false 

concern {doctor-perez 10} 

At the moment, our ontology contains 14 types of actions 
and around 40 instantiated actions. These can use a total of 
15 case roles (theme, source, etc.). States can be created 
using 20 objects, 15 attributes and 25 values. There are a 
total of around 40 non-generated states.  

3.4 Natural Language 
The NL modules communicate with the Soar agent by 
exchanging semantic information in a semantic frame, 

which stores information that is linked to the underlying 
actions, world state and entities. These frames are linked 
with natural language utterances to form an utterance / 
frame pair. These pairs are grouped per domain in separate 
framebanks, one for each character. The framebank for the 
trainee is used by the NLU; the framebanks for the virtual 
humans are used by the NLG. At the moment, only the 
NLU is fully integrated with the ontology. The NLG uses 
the concepts that are defined in the ontology, but NLG 
frames are produced by the dialogue manager. The latter 
manipulates the task model using an internal 
representation of concepts, rather than the ontology 
directly, so there is still a possibility of a conceptual 
mismatch if the representations in the ontology and 
dialogue manager are out of synch. In future work the 
dialogue manager will get all of its representations from 
the ontology. 
Before the introduction of the ontology, all NLU semantic 
frames were created by hand. This allowed our linguists to 
create semantically rich frames. The drawback is that this 
richness is hard to support in the Dialogue Manager and 
task model. Typos and other mistakes can lead to other 
performance problems. It can also lead to lower 
performance in the NLU if the frames are not internally 
consistent.  
In order to recreate the NLU framebank in the ontology, 
we needed three different types of information: the natural 
language utterance, formal information about the content 
of the utterance and linguistic information. 
For example, an urgent request from the captain such as “I 
must move the clinic to the downtown area”, can be 
represented in a semantic frame as follows: 

mood declarative 

sem.speechact.type statement 

sem.modality.deontic must 

sem.polarity positive 

sem.type event 

sem.event move 

sem.agent captain-kirk 

sem.theme clinic 

sem.source market 

sem.destination downtown 
Note that the core semantics are derived from the basic 
‘move’ action presented in section 3.2. 
Our initial prototype for the multiparty domain has about 
60 semantic NLU frames that are linked to around 250 
utterances. We have yet to start formal subject testing, 
which will produce a tenfold increase in the number of 
utterances (our previous two-party domain has about 1000 
utterances in the framebank). 
Ideally, all of the words in an utterance would be part of a 
lexicon in the ontology, tying the natural language directly 
to the concepts we support. However, the current 
implementation of the NLU is geared towards whole 
utterances rather than individual words or phrases, 
allowing us some short cuts in interpretation. All actions 
have a word family associated with them, which 
potentially allows for a variety of tenses. In addition, each 
object ID is treated as a lexical item. Current plans include 
more advanced NLU and NLG, which will make use of 
more lexical information. 



3.5 Exporting Representations  
Naturally, simply incorporating an ontology into a 
collection of disparate modules did not magically solve the 
standardization problem. Since it was infeasible either to 
rebuild the various modules from scratch or to recode them 
to employ the standardized representation formalism, we 
created a set of ‘exporter functions’ that converts each 
representation statement—from a single attribute-value 
pair all the way up to a scenario—into the internal notation 
of most modules, and a set of ‘import functions’ to perform 
the opposite conversion. 
We have implemented these importer and exporter 
functions as Protégé editor tabs. The use of meta-concepts 
allows us to make changes to the ontology without the 
need of rewriting our plugins.  
Generating all of the output code from the central ontology 
gives us the assurance that all of the system modules are 
using consistent semantics for our application. Hence the 
importer and exporter functions also provide some quality 
control.  

3.6 Reasoning 
One of the benefits of using OWL is the availability of 
classifiers, which can automatically maintain hierarchy 
information based on the logical definitions of classes. 
This allows one to have a multi-hierarchy of more abstract 
and more specific classes maintained automatically. This 
is helpful in the organization of the action hierarchy, since 
one can have general move actions, and then specialize 
them, say, to move actions that have “the clinic” as the 
theme. Classifiers can maintain the class/sub-class 
relationships as well as properly assigning instances to 
their proper place in the hierarchy. 
OWL defines several levels of expressive power, ranging 
from Lite, through Description Logic (DL) and Full. 
Certain reasoners, like concept classifiers only operate on 
the DL level of the language. Parts of the ontology that are 
expressed using the OWL Full language cannot be 
automatically classified, because the standard OWL 
reasoners require that one restrict the expressive power of 
the OWL language to the OWL-DL subset. But certain of 
our constructs are most naturally modeled using the 
OWL-Full language. In particular, OWL-DL does not 
allow one to specify properties as the values of other 
object properties. This causes problems in the definition of 
simple queries, since simple query is a semantic frame 
with one of the case roles unspecified and designated as 
the query. But representing that places the language into 
OWL-Full, and prevents the classification of queries. 

4. Related Work 
There is an interesting disconnect between ontology 
construction at the large scale and actual usage in complex 
computational systems. Large-scale term taxonomies such 
as WordNet (Fellbaum et al., 1998) simply do not provide 
the amount of information that our modules need. Even 
slightly smaller and more semantically oriented ontologies, 
such as Mikrokosmos (Onyshkevych and Nirenberg, 1995) 
and FrameNet (Ruppenhofer et al., 2006) base their 
semantics purely on linguistic principles. While very 

useful for generic NLP, and for us for NLU and NLG, they 
do not provide enough information to support the more 
detailed reasoning required, in our case, by task and action 
planning, body movement, etc. Our ontology, in contrast, 
has to contain more information about speech acts and 
intentional connotations of words, and hence is more 
focused on the particular domain, thereby being anchored 
to a semantic representation that the agents understand. 
Our ontology is also linked to a concrete model of objects 
in the simulated world, rather than being more generally 
connected to real-world items.  
This fact has led us to develop our ontology through a 
process of organic growth, starting with more 
lexically-oriented term taxonomies such as WordNet then 
adding information as required by the various models. 
Thus, in many cases, the task and agent models drive 
ontology development, but their additions are not 
considered complete until the NL-related information 
required both to parse and to generate with those terms is 
also added. The result is a set of representation terms and 
interrelations that include a richly diverse set of 
information of quite different kinds, supporting reasoning 
in various spheres of human activity.  
This model of organic growth has the disadvantage that it 
is never complete; we may at any time encounter a term 
that the system does not yet know. But it has the advantage 
that development of our system is more tractable and the 
precise semantics of the agent model is captured. It has the 
drawback that expansion of the domain also requires us to 
construct the semantic models rather than use existing 
sources. But even with existing sources, we would have to 
ground the semantics in our agent’s world model, which is 
a considerable amount of work. 
Our use of generic action templates is similar to the 
Parameterized Action Representation (Badler et al., 1998; 
Bindiganavale et al., 2000). The Parameterized Action 
Representation is used as a means of communication 
between users and the agents. Our underlying 
representation is tied to a different agent control system, 
and the contents of the templates are filled in by 
instantiation from the ontology rather than user input. 
The Smartkom Project (Wahlster, 2006) is inspirational in 
its use of an ontology to solve a number of natural 
language processing issues for a system including a virtual 
character and several simple command tasks. Yet we do 
not know of any other multi-component model of human 
activity comparable to the Virtual Human Project with 
which to compare our experience.  

5. Conclusions and Future Work 
The current ontology gives us several benefits. First, it 
assures that the knowledge used by the task model and 
NLU are synchronized, because they share the basic 
representation. Second, it forces the author to strictly 
follow the rules of what constitutes a valid semantic frame, 
because we can constrain the model to follow our 
specification. Third, it allows users to reuse knowledge, by 
combining existing individuals. Fourth, it provides a safer 
mechanism for changing data, because knowledge is 
referenced, rather than copied. And finally, it provides a 



common user interface for all author related tasks.  
There are also drawbacks, though, which we hope to 
address in subsequent versions. Using OWL and Protégé 
introduces an extra learning curve for new developers in 
our project, which is especially an issue for non-computer 
scientists. In addition, although it allows for easier and 
safer change in some ways by changing certain assertions, 
we see that changes that include naming conventions 
require a lot more effort than a simple replace-all would in 
a text file. Lastly, even though Protégé offers a rich 
graphical user interface, this interface is not geared 
towards the authoring tasks our system requires. 
Especially for new users, it can be hard to find existing 
knowledge. The creation of new authoring tools on top of 
Protégé is something we have high on our priority list.  
One attractive feature of using an ontology as a central 
repository is the potential ease of extension of the system. 
Whenever needed, we could draw additional terms and 
relations, as well as additional Upper Model terms, from 
the Omega ontology (Philpot et al., 2005), for example. By 
incorporating them into the appropriate points of the 
ontology, and making sure that ancillary data is provided 
(such as lexical items to support NLU and NLG or speech 
training to support ASR), the other modules of the system 
can employ the new terms almost directly. 
Our decision to use OWL as the representation language 
has provided us with both benefits as well as limitations. 
The main benefits are the provision of classification 
services and the ability to attach assertions to inherited 
individuals. It has some limitations which have also 
proven to be problematic. The desire to include properties 
as values pushed us into OWL-Full and restricted the 
usefulness of the classification reasoners. There are some 
workarounds for this, but they make the representation 
more cumbersome. A second major feature that proves 
troublesome is the monotonic nature of the inheritance of 
imported information. The ability to import other 
ontologies is crucial to supporting reuse of information. 
But all such inheritance is monotonic—in other words, 
new information can be added, but none of the existing 
information can be retracted or overridden. This makes it 
imperative that one make sure that all assertions are made 
at the proper level in the inheritance structure. If assertions 
are added at too low a level, then no sharing takes place. If 
made too high up, then the information cannot be removed, 
which can limit the ability to share knowledge and settings. 
It is difficult, even for experienced users, to decide where 
new knowledge should be created.   
The monotonic requirement also makes it impossible to 
have actual default values, since any such value could not 
be removed. We are able to avoid that problem through the 
use of meta-annotations that associate default values not 
with the individuals, but instead attach them to the 
properties themselves. These meta-annotations are then 
interpreted by our own reasoning code and the exporters to 
give us the effect of default values. 
Finally, there is currently no standard query language for 
OWL, although progress is being made there as well 
(SQWRL 2008). 

At present, not all Virtual Human modules have been 
integrated with the central ontology. We are busy 
integrating some, such as NLG, and plan to integrate more, 
most notably SmartBody. This involves extending the 
knowledge base with concepts from the virtual 
environment and the development of a rich lexicon. The 
ultimate goal is to tie together all the information that 
different modules use about a single concept.  
Including an ontology and suitable knowledge entry and 
representation import/expert functions into an existing 
system can be seen as a step on our Virtual Human’s 
maturation process from research pilot system to prototype 
to, eventually, a production-level system. In this task we 
face the challenge of determining the optimal tradeoff 
point between system simplification and complexity. In 
USC’s Virtual Human Project, the ontology and associated 
framework provide a rich context for investigating this 
challenge.   
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