
A Common Ground for Virtual Humans: Using an Ontology in a Natural
Language Oriented Virtual Human Architecture

Arno Hartholt, Thomas Russ, David Traum, Eduard Hovy, Susan Robinson
University of Southern California’s Institute for Creative Technologies & Information Sciences Institute

Marina del Rey, CA 90292
United States of America

{hartholt, traum, robinson}@ict.usc.edu & {russ, hovy}@isi.edu

Abstract

When dealing with large, distributed systems that use state-of-the-art components, individual components are usually developed in
parallel. As development continues, the decoupling invariably leads to a mismatch between how these components internally represent
concepts and how they communicate these representations to other components: representations can get out of synch, contain localized
errors, or become manageable only by a small group of experts for each module. In this paper, we describe the use of an ontology as part
of a complex distributed virtual human architecture in order to enable better communication between modules while improving the
overall flexibility needed to change or extend the system. We focus on the natural language understanding capabilities of this architecture
and the relationship between language and concepts within the entire system in general and the ontology in particular.

1. Introduction
Designers of large heterogeneous systems (such as
task-oriented communicating agents) have an
uncomfortable choice to make regarding their knowledge
representations: should they choose a uniform
representation for all modules that enforces common
understanding and re-use, or should they allow each
module to use its own representation, tailored specifically
for that module? Either alternative includes a set of
difficult and perhaps insoluble problems. In the former
case, using a single common representation, it may be very
difficult to decide which representation to use, given the
different demands of such diverse processes as planning,
perception in a real or virtual world, and natural language
dialogue, and especially since the ways in which they will
be developed are not fully understood at the start. Should
one choose an impoverished language for which one can
guarantee fast algorithmic complexity (but that suffers
from representational inadequacy), or a very rich language
that has expressive capacity closer to that of natural
language (but that requires each component to perform
complex deconstruction of the representations)? On the
other hand, if each module is free to choose its own
notation, how does one convert the necessary elements
from one representation to another? How does one insure
that the overlap in capacities is sufficient and faithful
translation to the degree required is even possible?
In this paper, we suggest a middle ground is possible, in
which a multi-phase project lifecycle can achieve the
advantages of each approach while minimizing their
disadvantages. In the early stages of the project, the best
strategy is to allow each module designer to choose the
representation language best suited for the state of the art
in that area, while developing inter-process
communication languages to bridge the gap, e.g. (Traum et
al., 1996). As understanding of the relationships and
requirements are better understood, one can bring the
languages closer together. Finally, one needs appropriate

tools both within each module and across modules to make
modification and creation of new domains easier and
possible without additional work by the designers of each
module.
Of course, this approach has a cost: one has to develop
additional integrating representation resources and
notation conversion tools. Central among these is an
ontology that provides the standardized terminology and
inter-term relationship constraints, plus code to convert
this terminology to the component notation. We describe
the ontology, representation, and different uses of data in
this paper and provide our experience with the efforts and
tradeoffs involved.
We illustrate these points through our experiences with the
Virtual Human Project at the University of Southern
California (USC), which has built virtual agents for the
Mission Rehearsal Exercise (MRE) (Rickel at al., 2001)
and Stability And Support Operations – Simulation and
Training (SASO-ST) (Swartout et al., 2006).

2. The Virtual Human Project

2.1 Project Overview
The Virtual Humans Project, at USC’s Institute for
Creative Technologies (ICT) and Information Sciences
Institute (ISI), has the main goal of designing autonomous
agents that support face-to-face interaction with people in
many roles and in a variety of tasks. The agents must be
embedded in the virtual world and perceive events in that
world, as well as the actions of human participants. They
must represent aspects of the dynamic situation in
sufficient depth to plan contingencies, develop beliefs and
intentions, and form appropriate emotional reactions. They
must communicate with each other and with human
participants using multi-modal natural language
communication.
Our latest scenario, an extension of SASO-ST, includes
two virtual humans: a Spanish doctor and an Iraqi village
elder. Set in a small Iraqi town plagued by violence, the

human trainee takes on the role of an US Army captain
with orders to move the doctor’s clinic to a safer location
(Figure 1).
In the course of the interaction, the human trainee must
negotiate with the virtual characters, establishing trust and
satisfying the objections of the doctor and elder to moving
the clinic. The virtual humans evaluate the utterances
made by the trainee and each other, update their models of
the conversational states and models of each other, and
plan how to react and what to do next.

Figure 1: SASO-EN Scenario

2.2 Virtual Human Architecture
The Virtual Human Architecture includes a large set of
modules, which reason about knowledge in different ways.
Figure 2 shows a conceptual organization and information
flow for these modules. The task reasoner, emotion
module and Dialogue Manager are developed in SOAR
and TCL (Newell, 1990). Other modules are developed in
Java and C++. For a more in-depth discussion of the
general architecture and some of its application, see
(Kenny et al., 2007). Below we describe some of the
modules and the ways they use knowledge:
• An Automated Speech Recognizer (ASR), converting

vocalizations into words (Pellom, 2001). ASR needs
the words (spelling and pronunciations) that appear in
the domain, as well as their frequencies (Unigram,
bigrams, and trigrams).

• A Natural Language Understanding module (NLU),
converting unconstrained natural language
expressions to internal representations (Bhagat et al,
2005). Our statistical approach to NLU requires a
training corpus of paired utterance texts and semantic
representations from the domain (that we call a
Framebank).

• A task reasoner that can plan how to achieve goals and
reason about alternatives and utilities of various
actions (Traum et al, 2003b). The task reasoner
focuses on states (that can have utilities for different
agents) and tasks (that can have states as
preconditions and effects), as well as plans that
combine the two in causal networks.

• An emotion module that appraises the state of the
world in relation to beliefs and goals, resulting in
emotion and specific coping strategies (Gratch and
Marsella, 2004). The emotion model makes direct use
of the task model representations, as well as factors
such as temporal status, likelihood, controllability,
and changeability.

• A Dialogue Manager (DM), which relates the NLU
output to the context of previous conversation and
other internal state, including the task and emotion
models, updates the internal state, and plans new
communications (Traum et al 2003b, Traum 2003).
The dialogue manager uses both the task model
representations as well as more structured
abstractions of actions related to natural language.

• A Natural Language Generation module (NLG),
which converts internal communication goals to
output text (Traum et al 2003a, DeVault et al, to
appear). This uses detailed aspects of the dialogue
model as well as either lexical and grammar rules or a
framebank (or both).

• A text-to-speech synthesizer. We have used several
synthesizers, including Festival and rVoice. These
require domain words as input.

• A non-verbal behavior generator, which decides what
body movements should be performed in order to
convey the appropriate meaning of NLG output,
emotions, perception and conversational regulation.
(Lee & Marsella, 2006). This requires representations
from the dialogue, task, and emotion models, as well
as the NLG output and the body’s current position,
orientation, and behaviors. The generator outputs a
Behavioral Markup Language (BML) (Kopp et al,
2006).

• A behavior blending system, SmartBody, which takes
directives for motions and allocates resources
(Thiebaux et al, 2008). This requires BML input and
knowledge of the character’s attributes in the virtual
environment.

• The virtual environment, displaying the characters
and their surroundings. We currently use the Unreal
2.5 Engine as our renderer. It must track the visual
aspects of objects in the world and motion.

• The real environment, consisting of the trainee.
These modules communicate using a message passing
protocol that any module can subscribe to. Some modules
(e.g. ASR, NLU, NLG) are stateless, and transform their
input into an appropriate output. Other modules track and
update context and may send commands and requests to
other modules.

2.3 Representation Languages and Knowledge
Resources
As described above, there are many different types of
knowledge resources in the SASO system, which have to
be consistent in some ways, but also have different
requirements for the different modules.

Figure 2: Virtual Human Architecture

Authoring these resources and maintaining them as the
domain is changed and expanded can be a significant
undertaking. Part of the problem is that there are at least
three sources of content authoring:

1. General information on human cognition and
interaction, from psychological and AI theories.

2. Story-based information, devised by an author.
3. Language-based information, trying to make

sense of the things people say in these domains.
These sources can cause conflict, e.g., when the way
people talk about a domain does not match up with the
way the domain was formalized from the story. For
example, from the point of view of the task model, only
fully specified ‘move’ actions can take place, with a
source and destination specified. On the other hand, it is
easy to say in English, “move the clinic”, without
specifying these. It is thus a challenge to come up with a
meaningful representation for that phrase. E.g., should one
represent literally what was conveyed even if it doesn’t
make sense to the task reasoner? Should one augment the
task reasoner to handle such abstractions? Should one
“misrepresent” the utterance as the closest representation
that is in the task model? This same suite of choices is
presented many times in building the necessary domain
modules.
Moreover, there are different means for providing
knowledge to different components. Previously, they had
to be constructed independently, which was a source of

error and effort to maintain consistency. These included:
• SOAR productions that directly create objects and

links as part of SOAR’s working memory
• TCL macros, that take in arbitrary argument structures

and create a set of SOAR productions
• NL frames, containing an action or state with added

linguistic information for both the NLU and NLG

3. Ontology

3.1 General
In order to address the problem of terminology consistency,
we developed a single terminology repository, the
Ontology. We gathered from all modules’ representations
the terms they employ and merged them into one
standardized list that forms the terms of the ontology. In
doing so we faced a complex task, not yet completed,
namely decomposing conceptually composite terms used
by some modules into their component terms and relations,
as required by others. In addition, to ensure that in the
future terms are related only in ways that all the various
modules can actually support, we defined inter-term
relationships, such as an inheritance hierarchy and
constraints on frames’ slot values.
In themselves, these are not innovative ideas. But the
range of tasks the ontology must support is rather larger
than most NLP-related projects have to deal with.

Environment

Natural
Language

Understanding

Natural
Language

Understanding

Speech
Recognition

Speech
Recognition

Non - Verbal
Behavior
Generator

Non - Verbal
Behavior
Generator

Smartbody
Procedural

Animation Planner

Smartbody
Procedural

Animation Planner

Speech
Generation

Speech
Generation

Natural
Language
Generation

Natural

Generation

Dialog and
Discourse

Management

Dialog and
Discourse

Management
Emotion
Model

Emotion
Model Task Planner Task Planner

Body and
Affective State
Management

Body and
Affective State
Management

Body

Mind

Real Environment

Vision
Recognition

Vision
Recognition

Vision
Understanding

Vision
Understanding

Visual Game Engine

Domain
Specific

Knowledge

Domain
Specific

Knowledge

Domain
Independent
Knowledge

Domain
Independent
Knowledge

World
State

Protocol

World
State

Protocol

Knowledge
Management

Intelligent Cognitive Agent

Environment

Natural
Language

Understanding

Natural
Language

Understanding

Speech
Recognition

Speech
Recognition

Non - Verbal
Behavior
Generator

Non - Verbal
Behavior
Generator

Smartbody
Procedural

Animation Planner

Smartbody
Procedural

Animation Planner

Speech
Generation

Speech
Generation

Natural
Language
Generation

Natural
Language
Generation

Dialog and
Discourse

Management

Dialog and
Discourse

Management
Emotion
Model

Emotion
Model Task Planner Task Planner

Body and
Affective State
Management

Body and
Affective State
Management

Body

Mind

Real Environment

Vision
Recognition

Vision
Recognition

Vision
Understanding

Vision
Understanding

Visual Game Engine

Domain
Specific

Knowledge

Domain
Specific

Knowledge

Domain
Independent
Knowledge

Domain
Independent
Knowledge

World
State

Protocol

World
State

Protocol

Knowledge
Management

Intelligent Cognitive Agent

Covering aspects as diverse as speech recognition and
synthesis, natural language understanding, generation and
dialogue management, body movement, task planning,
and emotion, we were faced with the need to handle a wide
spectrum of representational needs. Details of the various
aspects of the ontology are described in the next sections.
This work is not fully complete. At present, the principal
modules now directly using the ontology are the task
model and the NLU (while some other modules build on
these representations). We have been experimenting with
the ontology itself in order to find the most supportive and
flexible environment and notation.
At present, we have two iterations of our ontology and use
Stanford’s Protégé (Knublauch, 2004) to manage both.
Protégé supports two types of representation languages: a
frame-based representation (Protégé Frames) and the Web
Ontology Language (OWL) (McGuiness & van Harmelen
2004, Bechhofer et al 2004). For our first iteration, we
chose to use Protégé Frames, as this lay conceptually close
to the existing data sources and did not have the overhead
that OWL brings in. Our philosophy was to create an
ontology that did not require many modifications to the
existing system. This version gave us the benefit of
integrated data sources and created the necessary
experience needed to leverage all the benefits an ontology
can give.
The goal for the second version of our ontology was the
re-use of knowledge and the introduction of a more
principled ontology design. Instituting a principled design
of the ontology meant making changes to existing
representations of the system.
We switched the representation language to OWL to
automatically classify concepts and instances, and most
crucially because it allowed us to institute a hierarchical
structure of domain independent and domain dependent
concepts. This resulted in a three-level organization,
which will be discussed in the next section.
The OWL language allows a more flexible distribution of
assertions. Drawing on its semantic web roots, OWL
allows the addition of assertions to objects that are
imported, as well as those created in a particular level.
This is in contrast to Frames, where imported instances
cannot have any information changed. The greater
flexibility of OWL makes sharing of information easier,
since one can inherit partially specified instances (the
shared part) and then complete the customization at a more
detailed level.
One further consideration was the wider availability of
tools and ontology resources for OWL.

3.2 Structure
Using the import mechanism of the OWL language, we
created a three-level organization of the knowledge. We
have a common, general-purpose world ontology. Most
classes, like ‘Person’ and ‘Action’, are defined here.
Inheriting the world ontology and adding more specialized
knowledge shared by multiple scenarios—locations, props,
characters and basic task structures—is the scenario
family level. This allows us easily to share certain

information over a set of closely-related scenarios. Finally,
at the lowest level, we have a scenario ontology that stores
scenario-specific information.
The world ontology is structured to provide a widely
applicable set of concepts that can be specialized and
instantiated at the scenario family and scenario specific
levels. The highest level of the ontology defines, for
example, entities such as military officers; specific entities
like our captain are then defined at the scenario family
level. The world level is expected to be useful across many
different scenario families.
In addition to the entities, instantiated actions and states
exist at the scenario family level in a basic form. These
instances are used by both the task model and the NLU
frames, which add module-specific information to them,
such as relations and linguistic information. This ensures
consistency between modules and enables re-use of
knowledge.
Consider a basic ‘move’ action, where our captain is
moving the clinic from the market to the downtown area.
We can define this as a set of slot / value pairs:

event move

agent captain-kirk

theme clinic

source market

destination downtown
Similarly, we can define the state ‘the clinic is downtown’
as follows:

object clinic

attribute location

value downtown
Currently, the world ontology contains 192 classes, 125
properties and 199 individuals. The scenario family level
has an additional 6 classes and 548 individuals. The
multi-party scenario level adds 5 classes and 88
individuals, along with additional relations between
individuals inherited from the family level.

3.3 Task Model
The purpose of the Task Model is to represent the tasks
(action plans), at both generic and specific (instantiated)
levels, of the agents. This naturally encompasses the
model each individual agent has of the world. The agent
model contains entities, a representation of the world state
with object:attribute:value triples, and task elements using
a STRIPS-like representation (Fikes & Nilson, 1971). The
task elements use states as their preconditions and effects.
In the OWL ontology, we introduced the notion of generic
actions that include descriptions of their precondition and
effects templates. This allows us to define basic, domain
independent preconditions and effects only once and let
the system instantiate that for each scenario.
For example, the generic ‘move’ action defines effects
such as adding “the theme is at the destination” that are
later instantiated for our scenario. This type of reasoning
goes beyond the standard OWL inference capabilities and
required the construction of our own template
interpretation code.
The different levels of ontology structure, combined with
the flexibility to choose where to assert knowledge can be

used to add some additional scenario effects of actions. As
noted above, generic preconditions and effects of actions
are defined at the world ontology level. Some additional
effects of more specialized movement can be attached at
the scenario family or scenario specific level. One
example of that is the way that particular instruments of a
movement action can affect the (perception of) the Spanish
doctor’s neutrality. If, for example, U.S. troops move the
clinic, that has a negative effect on the doctor’s
neutrality—which he doesn’t want to occur. If local
workers perform the move, then his neutrality is
maintained. This information is added at the scenario
family level, since it depends both on specifics of the
scenario family and on the existence of entities that are
defined at that level (the local workers and U.S. troops).
Although it is possible to make these specific assertions
manually, we have also been exploring ways to make these
effects flow from a causal model.
One innovative use of the OWL language is some initial
work on assigning additional properties to actions. For
example, we have a general definition for “actions that
reduce neutrality”. This is defined as an action taken by a
partisan party that benefits a neutral party. This allows us
to automatically infer the effects on neutrality of certain
actions in our domain, specifically, having the U.S. troops
move the clinic. We plan to use a library of such
meta-descriptions to include additional effects without the
need to assert them specifically.
In addition to preconditions and effects, authors can also
define concerns that agents might have for certain states to
be true or false. These concerns allow the emotion module
to calculate how an agent feels about the current state and /
or possible future states of the world.
Below are the examples we used in section 3.2, augmented
with the knowledge that is specific for the task model. For
the event, these are the preconditions and effects:

event move

agent captain-kirk

theme clinic

source market

destination downtown

pre: clinic-location-market

del: clinic-location-market

add: clinic-location-downtown

For the state, these are the belief and concern:
object clinic

attribute location

value downtown

belief false

concern {doctor-perez 10}

At the moment, our ontology contains 14 types of actions
and around 40 instantiated actions. These can use a total of
15 case roles (theme, source, etc.). States can be created
using 20 objects, 15 attributes and 25 values. There are a
total of around 40 non-generated states.

3.4 Natural Language
The NL modules communicate with the Soar agent by
exchanging semantic information in a semantic frame,

which stores information that is linked to the underlying
actions, world state and entities. These frames are linked
with natural language utterances to form an utterance /
frame pair. These pairs are grouped per domain in separate
framebanks, one for each character. The framebank for the
trainee is used by the NLU; the framebanks for the virtual
humans are used by the NLG. At the moment, only the
NLU is fully integrated with the ontology. The NLG uses
the concepts that are defined in the ontology, but NLG
frames are produced by the dialogue manager. The latter
manipulates the task model using an internal
representation of concepts, rather than the ontology
directly, so there is still a possibility of a conceptual
mismatch if the representations in the ontology and
dialogue manager are out of synch. In future work the
dialogue manager will get all of its representations from
the ontology.
Before the introduction of the ontology, all NLU semantic
frames were created by hand. This allowed our linguists to
create semantically rich frames. The drawback is that this
richness is hard to support in the Dialogue Manager and
task model. Typos and other mistakes can lead to other
performance problems. It can also lead to lower
performance in the NLU if the frames are not internally
consistent.
In order to recreate the NLU framebank in the ontology,
we needed three different types of information: the natural
language utterance, formal information about the content
of the utterance and linguistic information.
For example, an urgent request from the captain such as “I
must move the clinic to the downtown area”, can be
represented in a semantic frame as follows:

mood declarative

sem.speechact.type statement

sem.modality.deontic must

sem.polarity positive

sem.type event

sem.event move

sem.agent captain-kirk

sem.theme clinic

sem.source market

sem.destination downtown
Note that the core semantics are derived from the basic
‘move’ action presented in section 3.2.
Our initial prototype for the multiparty domain has about
60 semantic NLU frames that are linked to around 250
utterances. We have yet to start formal subject testing,
which will produce a tenfold increase in the number of
utterances (our previous two-party domain has about 1000
utterances in the framebank).
Ideally, all of the words in an utterance would be part of a
lexicon in the ontology, tying the natural language directly
to the concepts we support. However, the current
implementation of the NLU is geared towards whole
utterances rather than individual words or phrases,
allowing us some short cuts in interpretation. All actions
have a word family associated with them, which
potentially allows for a variety of tenses. In addition, each
object ID is treated as a lexical item. Current plans include
more advanced NLU and NLG, which will make use of
more lexical information.

3.5 Exporting Representations
Naturally, simply incorporating an ontology into a
collection of disparate modules did not magically solve the
standardization problem. Since it was infeasible either to
rebuild the various modules from scratch or to recode them
to employ the standardized representation formalism, we
created a set of ‘exporter functions’ that converts each
representation statement—from a single attribute-value
pair all the way up to a scenario—into the internal notation
of most modules, and a set of ‘import functions’ to perform
the opposite conversion.
We have implemented these importer and exporter
functions as Protégé editor tabs. The use of meta-concepts
allows us to make changes to the ontology without the
need of rewriting our plugins.
Generating all of the output code from the central ontology
gives us the assurance that all of the system modules are
using consistent semantics for our application. Hence the
importer and exporter functions also provide some quality
control.

3.6 Reasoning
One of the benefits of using OWL is the availability of
classifiers, which can automatically maintain hierarchy
information based on the logical definitions of classes.
This allows one to have a multi-hierarchy of more abstract
and more specific classes maintained automatically. This
is helpful in the organization of the action hierarchy, since
one can have general move actions, and then specialize
them, say, to move actions that have “the clinic” as the
theme. Classifiers can maintain the class/sub-class
relationships as well as properly assigning instances to
their proper place in the hierarchy.
OWL defines several levels of expressive power, ranging
from Lite, through Description Logic (DL) and Full.
Certain reasoners, like concept classifiers only operate on
the DL level of the language. Parts of the ontology that are
expressed using the OWL Full language cannot be
automatically classified, because the standard OWL
reasoners require that one restrict the expressive power of
the OWL language to the OWL-DL subset. But certain of
our constructs are most naturally modeled using the
OWL-Full language. In particular, OWL-DL does not
allow one to specify properties as the values of other
object properties. This causes problems in the definition of
simple queries, since simple query is a semantic frame
with one of the case roles unspecified and designated as
the query. But representing that places the language into
OWL-Full, and prevents the classification of queries.

4. Related Work
There is an interesting disconnect between ontology
construction at the large scale and actual usage in complex
computational systems. Large-scale term taxonomies such
as WordNet (Fellbaum et al., 1998) simply do not provide
the amount of information that our modules need. Even
slightly smaller and more semantically oriented ontologies,
such as Mikrokosmos (Onyshkevych and Nirenberg, 1995)
and FrameNet (Ruppenhofer et al., 2006) base their
semantics purely on linguistic principles. While very

useful for generic NLP, and for us for NLU and NLG, they
do not provide enough information to support the more
detailed reasoning required, in our case, by task and action
planning, body movement, etc. Our ontology, in contrast,
has to contain more information about speech acts and
intentional connotations of words, and hence is more
focused on the particular domain, thereby being anchored
to a semantic representation that the agents understand.
Our ontology is also linked to a concrete model of objects
in the simulated world, rather than being more generally
connected to real-world items.
This fact has led us to develop our ontology through a
process of organic growth, starting with more
lexically-oriented term taxonomies such as WordNet then
adding information as required by the various models.
Thus, in many cases, the task and agent models drive
ontology development, but their additions are not
considered complete until the NL-related information
required both to parse and to generate with those terms is
also added. The result is a set of representation terms and
interrelations that include a richly diverse set of
information of quite different kinds, supporting reasoning
in various spheres of human activity.
This model of organic growth has the disadvantage that it
is never complete; we may at any time encounter a term
that the system does not yet know. But it has the advantage
that development of our system is more tractable and the
precise semantics of the agent model is captured. It has the
drawback that expansion of the domain also requires us to
construct the semantic models rather than use existing
sources. But even with existing sources, we would have to
ground the semantics in our agent’s world model, which is
a considerable amount of work.
Our use of generic action templates is similar to the
Parameterized Action Representation (Badler et al., 1998;
Bindiganavale et al., 2000). The Parameterized Action
Representation is used as a means of communication
between users and the agents. Our underlying
representation is tied to a different agent control system,
and the contents of the templates are filled in by
instantiation from the ontology rather than user input.
The Smartkom Project (Wahlster, 2006) is inspirational in
its use of an ontology to solve a number of natural
language processing issues for a system including a virtual
character and several simple command tasks. Yet we do
not know of any other multi-component model of human
activity comparable to the Virtual Human Project with
which to compare our experience.

5. Conclusions and Future Work
The current ontology gives us several benefits. First, it
assures that the knowledge used by the task model and
NLU are synchronized, because they share the basic
representation. Second, it forces the author to strictly
follow the rules of what constitutes a valid semantic frame,
because we can constrain the model to follow our
specification. Third, it allows users to reuse knowledge, by
combining existing individuals. Fourth, it provides a safer
mechanism for changing data, because knowledge is
referenced, rather than copied. And finally, it provides a

common user interface for all author related tasks.
There are also drawbacks, though, which we hope to
address in subsequent versions. Using OWL and Protégé
introduces an extra learning curve for new developers in
our project, which is especially an issue for non-computer
scientists. In addition, although it allows for easier and
safer change in some ways by changing certain assertions,
we see that changes that include naming conventions
require a lot more effort than a simple replace-all would in
a text file. Lastly, even though Protégé offers a rich
graphical user interface, this interface is not geared
towards the authoring tasks our system requires.
Especially for new users, it can be hard to find existing
knowledge. The creation of new authoring tools on top of
Protégé is something we have high on our priority list.
One attractive feature of using an ontology as a central
repository is the potential ease of extension of the system.
Whenever needed, we could draw additional terms and
relations, as well as additional Upper Model terms, from
the Omega ontology (Philpot et al., 2005), for example. By
incorporating them into the appropriate points of the
ontology, and making sure that ancillary data is provided
(such as lexical items to support NLU and NLG or speech
training to support ASR), the other modules of the system
can employ the new terms almost directly.
Our decision to use OWL as the representation language
has provided us with both benefits as well as limitations.
The main benefits are the provision of classification
services and the ability to attach assertions to inherited
individuals. It has some limitations which have also
proven to be problematic. The desire to include properties
as values pushed us into OWL-Full and restricted the
usefulness of the classification reasoners. There are some
workarounds for this, but they make the representation
more cumbersome. A second major feature that proves
troublesome is the monotonic nature of the inheritance of
imported information. The ability to import other
ontologies is crucial to supporting reuse of information.
But all such inheritance is monotonic—in other words,
new information can be added, but none of the existing
information can be retracted or overridden. This makes it
imperative that one make sure that all assertions are made
at the proper level in the inheritance structure. If assertions
are added at too low a level, then no sharing takes place. If
made too high up, then the information cannot be removed,
which can limit the ability to share knowledge and settings.
It is difficult, even for experienced users, to decide where
new knowledge should be created.
The monotonic requirement also makes it impossible to
have actual default values, since any such value could not
be removed. We are able to avoid that problem through the
use of meta-annotations that associate default values not
with the individuals, but instead attach them to the
properties themselves. These meta-annotations are then
interpreted by our own reasoning code and the exporters to
give us the effect of default values.
Finally, there is currently no standard query language for
OWL, although progress is being made there as well
(SQWRL 2008).

At present, not all Virtual Human modules have been
integrated with the central ontology. We are busy
integrating some, such as NLG, and plan to integrate more,
most notably SmartBody. This involves extending the
knowledge base with concepts from the virtual
environment and the development of a rich lexicon. The
ultimate goal is to tie together all the information that
different modules use about a single concept.
Including an ontology and suitable knowledge entry and
representation import/expert functions into an existing
system can be seen as a step on our Virtual Human’s
maturation process from research pilot system to prototype
to, eventually, a production-level system. In this task we
face the challenge of determining the optimal tradeoff
point between system simplification and complexity. In
USC’s Virtual Human Project, the ontology and associated
framework provide a rich context for investigating this
challenge.

6. Acknowledgements
We would like to thank the entire Virtual Humans Project
group at USC, ICT and ISI, which allow us to work on
these exciting issues.
This work was sponsored by the U.S. Army Research,
Development, and Engineering Command (RDECOM),
and the content does not necessarily reflect the position or
the policy of the Government, and no official endorsement
should be inferred.

7. References
Badler, N., R. Bindiganavale, J. Bourne, M. Palmer, J. Shi,

and W. Schuler. 1998. A Parameterized Action
Representation for Virtual Human Agents. Proceedings
of the Workshop on Embodied Conversational
Characters. Lake Tahoe, CA.

Bechhofer S., F. van Harmelen, J. Hendler, I. Horrocks, D.
L. McGuinness, P. F. Patel-Schneider and L. A. Stein.
2004. OWL Web Ontology Language: Reference, W3C
Recommendation. http://www.w3.org/TR/owl-ref/

Bhagat, E., A. Leuski, and E.H. Hovy. 2005. Statistical
shallow semantic parsing despite little training data.
Proceedings of the 9th International Workshop on
Parsing Technologies (ACL/SIGPARSE'05).
Vancouver, B.C.

Bindiganavale, R., W. Schuler, J. Allbeck, N. Badler, A.
Joshi, and M. Palmer. 2000. Dynamically Altering
Agent Behaviors using Natural Language Instructions.
Proceedings of Autonomous Agents Conference 2000,
pp. 293–300.

Chercheur, J.L. 1994. Case-Based Reasoning. San Mateo,
CA: Morgan Kaufman Publishers.

Castor, A. and L.E. Pollux. 1992. The use of user
modelling to guide inference and learning. Applied
Intelligence, 2(1), pp. 37–53.

DeVault, D., D. Traum, and R. Artstien, “Making
Grammar-Based Generation Easier to Deploy in
Dialogue Systems”, to appear.

Fellbaum, C. (ed.) 1998. WordNet: An Electronic
LexicalDatabase. Cambridge, MA: MIT Press.

Fikes, R., and N. Nilsson. 1971. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence, 2:189-208.

Grandchercheur, L.B. 1983. Vers une modélisation
cognitive de l'être et du néant. In S.G. Paris, G.M. Olson,

and H.W. Stevenson (eds.), Fondement des Sciences

Cognitives. Hillsdale, NJ: Lawrence Erlbaum Associates,
pp. 6–38.

Gratch, J., J. Rickel, E. André, N. Badler, J. Cassell, and
E. Petajan. 2002. Creating Interactive Virtual Humans:
Some Assembly Required. IEEE Intelligent Systems,
July/August, PP. 54–63.

Gratch, J. and S. Marsella. 2004. A domain independent
framework for modeling emotion. Journal of
Cognitive Systems Research 5(4): 269–306.

Kenny, P., A. Hartholt, J. Gratch, W.R. Swartout, D.
Traum, S. Mareslla, and D. Piepol. 2007. Building
Interactive Virtual Humans for Training
Environments. Proceedings of the
Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC).

Knublauch, H., R.W. Fergerson, N.F. Noy, and M.A.
Musen. 2004. The Protégé OWL Plugin: An Open
Development Environment for Semantic Web
Applications. Proceedings of the Third International
Semantic Web Conference. Hiroshima, Japan.

Kopp, S., Krenn, B., Marsella, S., Marshall, A.,
Pelachaud, C., Pirker, H., Thorisson, K., Vilhjalmsson,
H. "Towards a Common Framework for Multimodal
Generation: The Behavior Markup Language". 6th
International Conference on Intelligent Virtual Agents
(Marina del Rey, CA, August 21-23 2006).

Lee, J. and S. Marsella. 2006. Nonverbal Behavior
Generator for Embodied Conversational Agents.
Proceedings of the 6th International Conference on
Intelligent Virtual Agents, pp 243–255, Marina del
Rey, CA.

McGuinness, D., F. van Harmelen, eds. 2004. OWL Web
Ontology Language Overview, W3C
Recommendation,
http://www.w3.org/TR/owl-features/

Martin, L.E. 1990. Knowledge Extraction. Proceedings
of the Twelfth Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Lawrence Erlbaum
Associates, pp. 252–262.

Newell, A. (1990) Unified Theories of Cognition.
Cambridge, MA: Harvard.

Onyshkevych, B. and S. Nirenburg. 1995. A Lexicon for
Knowledge-Based MT. Machine Translation 10(1–2):
5–57.

Bryan Pellom, "SONIC: The University of Colorado
Continuous Speech Recognizer", University of
Colorado, tech report #TR-CSLR-2001-01, Boulder,
Colorado, March, 2001

Philpot, A., E.H. Hovy, and P. Pantel. 2005. The Omega
Ontology. Proceedings of the ONTOLEX Workshop at
the International Conference on Natural Language
Processing (IJCNLP). Jeju Island, Korea. October
2005.

Rickel, J., J. Gratch, R. Hill, S. Marsella, and W.R.
Swartout. 2001. Steve Goes to Bosnia: Towards a
New Generation of Virtual Humans for Interactive
Experiences. AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment. Stanford
University, CA.

Ruppenhofer, J., M. Ellsworth, M.R.L. Petruck, C.R.
Johnson, and J. Scheffszyk. 2006. FrameNet II:
Extended Theory and Practice, version 1.3. Berkeley
FrameNet Project, University of California, Berkeley,
CA.

SQWRL: Semantic Query-enhanced Web Rule
Language. 2008. Website
http://protege.cim3.net/cgi-bin/wiki.pl?SQWRL.

Swartout, W.R., J. Gratch, R. Hill, E.H. Hovy, S.
Marsella, J. Rickel, and D. Traum. 2006. Toward
Virtual Humans. AI Magazine 27(1).

Swartout, W.R. 2006. Virtual Humans, Proceedings of
the Twenty-First National Conference on Artificial
Intelligence (AAAI-06) (senior paper). Boston, MA.

Thiebaux, M., A. Marshall, S. Marsella, M. Kallmann.
2008. SmartBody: Behavior Realization for
Embodied Conversational Agents. Proc. 7th
International Conference on Autonomous Agents and
Multiagent Systems. (to appear).

Traum, D. , L. Schubert, M. Poesio, N. Martin, M. Light,
C. Hwang, P. Heeman, G. Ferguson and J. Allen. 1996.
Knowledge Representation in the TRAINS-93
Conversation System, in International Journal of
Expert Systems 9(1):173-223.

Traum, D. 2003. Semantics and Pragmatics of Questions
and Answers for Dialogue Agents in proceedings of
the International Workshop on Computational
Semantics, pp 380-394.

Traum, D. , M. Fleischman, and E. Hovy. 2003. NL
Generation for Virtual Humans in a Complex Social
Environment in Papers from the AAAI spring
symposium on Natural Language Generation in
Spoken and Written Dialogue, pp. 151-158.

Traum, D., J. Rickel, J. Gratch, and S. Marsella. 2003.
Negotiation over Tasks in Hybrid Human-Agent
Teams for Simulation-Based Training, in proceedings
of the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems,
Melbourne, Australia, pp. 441-448.

Wahlsterm W (Ed.), SmartKom: Foundations of
Multimodal Dialogue Systems”, Springer, 2006.

Zavatta, A. 1992. Un Générateur d'Insultes s'intégrant
dans un Système de Dialogue Humain-Machine.
Doctoral Thesis, Informatics. Université Paris-sud,
Centre d'Orsay.

