
Technical Report UIUC-BI-AI-94-04, 1994 (submitted to the Journal of Artificial Intelligence)

1

A Decision-theoretic Approach to Adaptive Problem Solving

Jonathan Gratch and Gerald DeJong

Beckman Institute
University of Illinois

405 N. Mathews, Urbana, IL 61801

May 1994

Abstract
This article argues that it is desirable, and possible, to construct general problem solving techniques
that automatically adapt to the characteristics of a specific application. Adaptive problem solving
is a means of reconciling two seemingly contradictory needs. On the one hand, general purpose tech-
niques can ease much of the burden of developing a application and satisfy the oft argued need for
declarative and modular knowledge representation. On the other hand, general purpose approaches
are ill-suited to the specialized demands of individual applications. General approaches have proven
successful, only after a tedious cycle of manual experimentation and modification. Adaptive tech-
niques promise to reduce the burden of this modification process and, thereby, take a long step toward
reconciling the conflicting needs of generality and efficiency. A principal impediment to adaptive
techniques is the utility problem – the realization that learning strategies can degrade performance
under difficult to predict circumstances. We develop a formal characterization of the utility problem
and introduce COMPOSER, a statistically rigorous approach to this problem. COMPOSER has been
successfully applied to learning heuristics for planning and scheduling systems. This article includes
theoretical results and an extensive empirical evaluation of the approach on learning adaptations to
a domain-independent planner. The approach significantly outperforms several other proposed solu-
tions to the utility problem.

2

1 Introduction
There is a wide gulf between general approaches and effective approaches to problem solving. Practi-
cal success has come from custom techniques like expert systems, reactive planners [Miller92,
Schoppers92], or other application specific techniques that require extensive human investment to
complete. AI researchers have also developed domain-independent algorithms such as non-linear
planning and constraint satisfaction algorithms. Unfortunately, when general approaches show suc-
cess, it is usually only after extensive domain-specific adjustments. The resulting systems, while
derived from a general technique, bear more resemblance to the custom approaches.

Adaptive problem solving is a potential means for circumventing this generality/performance trade-
off in repetitive problem solving situations. A general algorithm might learn the idiosyncrasies of
a domain through its problem solving experiences and automatically transform itself into an effective
problem solver. In fact, machine learning techniques have successfully demonstrated this capacity
in limited contexts [Fikes71, Laird86, Minton88]. Nonetheless, adaptive problem solving is still far
from realization in any general sense.

The principal impediment to adaptive problem solving is characterizing when an automatically hy-
pothesized transformation actually results in improved problem solving performance. Steve Minton
introduced to machine learning the term utility problem to refer to this difficulty in insuring perform-
ance improvements [Minton88]. Minton originally discussed the problem in the context of improving
the average problem solving speed via search control heuristics called control rules. While there
has been considerable progress on this issue [Etzioni90b, Holder92, Lewins93, Minton88], the pro-
posed methods are often ad hoc, poorly understood, and can fail to improve performance, or worse,
actually degrade problem solving performance under certain circumstances.

In this article we introduce a more general characterization of the utility problem, formalized in the
terminology of decision theory. This characterization eliminates some deficiencies in the original
definition and generalizes the problem. We then present a general statistical technique that rigorously
addresses this more general version of the utility problem. We discuss the approach’s formal proper-
ties and empirically demonstrate its effectiveness over several alternative approaches.

1.1 LEARNING TO EXPLOIT PROBLEM DISTRIBUTION

Learning algorithms work by identifying and exploiting the constraints implicit in given application.
Researchers have identified two basic sources of information that learning algorithms can exploit:
constraints on the problem distribution and constraints on the domain structure. Distributional con-
straints relate to the pattern of problems as they arise in the intended application. Structural con-
straints refer to syntactic restrictions on the representation of the domain. Arguably it is the distribu-
tional constraints that are essential in producing an effective problem solver, as structural constraints
are rarely justified in principle but frequently sufficient with respect to the likely problem distribution.

3

Learning algorithms are especially apt at acquiring problem distribution information and exploiting
such information can lead to signification performance improvements. Even worst-case intractable
algorithms perform well under certain distributions. For example, Goldberg suggests that naturally
occurring satisfiability problems are frequently solved in O(n2) time [Goldberg82]. Recent work
has focused on characterizing these easy distributions [Cheeseman89, Mitchell92] or devising tech-
niques that can exploit specific distribution information when it is available [Borgida89]. Research
into self-organizing systems [Melhorn84 pp. 252–285] and dynamic optimization [Laird92] exploit
the fact that learning the expected distribution of tasks can allow the construction of a problem solver
with substantially better expected performance. For example, when linearly searching a list of records
for one with a particular name, ordering records by their likelihood of being queried (distribution
information) leads to substantial performance improvement.

Many structural constraints have been identified that a learning system could exploit for more effec-
tive inference. For example, general purpose problem solvers provide flexible representations that
can encode a variety of domains of discourse, but these cannot be reasoned with tractably
[Bylander92, Chapman87, Eorl92, Freuder82]. However, this full generality is often unnecessary
given the structure of a particular application. In contrast, there are a variety of effective problem
solving techniques that apply if a domain obeys certain structural restrictions. For example, Eorl,
Nau and Subrahmanian summarize complexity results for several specializations of STRIPS opera-
tors, some of which support worst-case polynomial planning [Eorl92]. Constraint satisfaction prob-
lems can be solved efficiently if the constraint graph is expressible as a tree [Dechter87, Freuder82].
Korf shows a domain supports efficient problem solving if it exhibits the property of serial decompos-
ability [Korf87]. Many integer programming programming problems can be efficiently solved in
practice by exploiting their structural properties [Fisher81].

In a sense, structural constraints arise from constraints on the distribution of tasks, thus highlighting
the importance of acquiring distributional information. Structural constraints are rarely justifiable
in principle as for almost any realistic problem solving task one can identify circumstances that re-
quire fully general reasoning mechanisms. However, often a domain engineer can identify a restricted
problem solving formalisms that work well for the tasks that arise in practice. In other cases the do-
main engineer might be forced to restrict the scope of the task distribution in order to ensure reasonable
performance. For example, in control theory, fundamentally non-linear problems are solved with
simple linear systems by ensuring that the process stays in almost-linear regions [Dean91 p. 40].
While outside the scope of this article, this later option raises an interesting issue that a truly general
learning system might require the ability suggest restrictions on the scope of the problem solver.

1.2 OVERVIEW

The structure of this article is as follows. In the next section we provide a formal characterization
of the utility problem as a problem of decision-theoretic inference. This introduces the notion of

4

expected utility as a metric of problem solving performance and casts the utility problem as a search
through a space of problem solving transformations for a problem solver with high expected utility.
Section 3 describes the COMPOSER algorithm, a probabilistic solution to the utility problem. COM-
POSER performs a probabilistic search through the transformation space and incorporates several
techniques to ensure the efficiency of this process. Section 4 describes an extensive evaluation of
the approach in the context of learning control rules for a domain-independent problem solver. The
experiments indicate that COMPOSER compares favorably with existing approaches to the utility
problem. Section 5 provides an average case analysis of the algorithm’s complexity. COMPOSER
is shown to be polynomial in the number of transformations considered and in the statistical confi-
dence required. Finally we discuss some limitations and conclusions.

2 A Formal Characterization of the Utility Problem
Before it is possible to construct a rigorous learning algorithm, one must explicitly characterize what
the learning system is attempting to achieve. In this section we introduce a formal characterization
of a general class of learning tasks. This formalism serves two purposes. First it makes precise and
explicit our intuitive and often unstated notions of what learning systems should do. Second, it pro-
vides a structure for formal analysis, enabling us to make definitive and precise statements.

New Problem Solver #1

New Problem Solver #3

New Problem Solver #2T2

T1
Initial
Problem
Solver

Figure 1: Learning serves to transform an initial problem solver into a transformed one.
To accomplish this the learner must choose one of a set of possible transformations.

T3

Abstractly, a learning algorithm operates on an initial problem solver, transforming it into a better
problem solver, where the improvement is assessed relative to an evaluation criterion and a pattern
of tasks associated with the intended application. This is illustrated in Figure 1 where a set of hypothe-
sized transformations defines a set of potential problem solvers. The learning system must decide
which among many hypothesized transformations to actually adopt. To make this statement concrete
we use decision theory as a common framework for characterizing this decision problem. Decision
theory provides a widely accepted framework for characterizing decision making under uncertainty
(see [Berger80]). Jon Doyle has persuasively argued for the merits of decision-theory as a standard
for evaluating artificial intelligence systems [Doyle90] and it has seen increasing acceptance, both
in artificial intelligence at large [Horvitz89, Russell89, Schwuttke92, Wellman92] and machine
learning in particular [Gratch92a, Greiner92a, Laird92, Subramanian92]. We will use decision
theory as a common framework for characterizing the utility problem.

5

2.1 EXPECTED UTILITY

Different learning decisions result in different transformed problem solvers. Decision theory relies
on the observation that preferences over these different outcomes can, under some natural assump-
tions, be characterized by a real-valued utility function. An outcome A is preferred to outcome B
iff the utility of A is greater than the utility of B.

Under uncertainty a decision may not always results in the same outcome. In these circumstances
a decision is characterized by a set of outcomes and a probability distribution across this set. Decision
theory characterizes preferences over this set of outcomes by combining their individual utilities into
an expected utility of the set. This is the utility of all possible outcomes weighted by their probability
of occurrence. Under uncertainty, the correct decision maximizes expected utility.

For learning, the characteristics of the intended application determine what transformed problem
solvers are preferred. With decision theory we represent these preferences with a utility function,
allowing learning to be cast as the decision problem of choosing a transformation that increases ex-
pected utility. To accomplish mapping, however, we must assume the application obeys the following
two restrictions.

Fixed distribution Assumption: The pattern of tasks in the problem solving environment must be
characterizable as a random selection of tasks according to an unknown but fixed probability distribu-
tion over the domain of discourse. This restriction states that there is some probability of occurrence
associated with each task, that this probability is independent of what tasks we have already seen,
and that this probability does not change with time. This is a common simplification that applies
to a great many applications. However, it does impose limitations that we discuss in Section 6.

Expected-utility Assumption: The evaluation criterion must be expressed by a utility function.
This is a function from a problem solver and problem to a numeric value. The function must be chosen
such that problem solver A is preferred over problem solver B if and only if the expected utility of
A is greater than the expected utility of B. Decision theory posits the expected-utility hypothesis
that there exists such a utility function for any consistent set of preferences (see [DeGroot70] Chapter
7). The utility function must also be computable by the learning system. For example, if the applica-
tion requires an efficient problem solver, the utility function could be the CPU cost to solve a problem.
This can be computed by actually solving the problem (assuming they are all solvable) and measuring
the time. The expected utility of a problem solver would then be its average problem solving time
for the given fixed problem distribution.

It may not be immediately clear how to represent preferences in terms of a single utility measure.
For example in many real world situations, comparisons between actions are made on the basis of
several performance attributes. In planning problems we may care not only about how fast a plan
is created, but also about other attributes such as plan intelligibility, execution cost, and robustness.

(1)

6

A large literature in the decision sciences is devoted to how to translate these “multi-attribute” prob-
lems into a single utility function (see, for example, [Roy71]).

With the fixed distribution and expected-utility assumptions we can characterize the value of a prob-
lem solver by its expected utility. Formally, let PS denote a problem solver, D denote the set of possible
problems expressible in the domain, PrD(x) be the probability of occurrence for problem x∈D, and
U(PS, x) be the utility of PS on problem x. The expected utility of PS with respect to the distribution
D, written ED[U(PS)], is defined as:

ED[U(PS)] = D

U(PS, x) PrD(x)dx (D continuous)

x D
U(PS, x) PrD(x) (D discrete)

2.2 COMPOSITE TRANSFORMATIONS

Next we must formalize the effects of learning. A learning algorithm maps some initial problem
solver PSold into a new problem solver PSnew. We introduce the abstract notion of a composite trans-
formation to denote the structural changes performed to a problem solver in the course of learning.
A composite transformation is whatever is required to transform PSold into PSnew and it may be built
from several individual structural changes. For example, in the adaptive problem solving system
PRODIGY/EBL [Minton88] a composite transformation is built from a sequence of learned control
rules. A given learning algorithm has the potential to produce a variety of composite transformations
depending on the initial problem solver and the distribution of problems. This corresponds to the
notion of a hypothesis space in classification learning and we characterize it as a set of possible com-
posite transformation. Alternatively, this set can be thought of as the set of all problem solvers reach-
able by the learning algorithm. Note that this set will be quite large (possibly infinite) for a non-trivial
learning approach.

A composite transformation maps PSold into some PSnew. The value of this composite transformation
can be measured by the difference in expected utility between PSnew and PSold. This provides a metric
for assessing the performance of a learning algorithm. Given the set of composite transformations
that a learning algorithm could produce, it should choose one that increases expected utility.

2.3 OPTIMALITY VS. IMPROVEMENT

Expected utility defines a total preference ordering over a set of composite transformations associated
with a learning approach. The ideal learning algorithm would choose the composite transformation
in this set with the highest expected utility, thus producing the most preferred problem solver. Such
an algorithm can be considered optimal with respect to the set of composite transformations. One
might consider optimality as part of the requirement for solving the utility problem.

7

Unfortunately, optimality is an extremely expensive requirement for the type of learning problem
we would like to consider. For many machine learning algorithms it can be shown that it is computa-
tionally intractable to identify the optimal transformation. For example Greiner shows the inherent
difficulties when transformations are constructed from macro-operators [Greiner89]. Therefore we
have chosen not to insist on optimality and instead we adopt a weaker requirement for solving the
utility problem. In our analysis, when a learning algorithm adopts a composite transformation it must
increase expected utility, but it need not be the optimal choice.

2.4 UNKNOWN INFORMATION
For a given learning problem there is some true but unknown expected utility associated with each
possible transformed problem solver: both the utility of a transformed problem solver on any given
problem, and the probability distribution over the space of possible problems are typically unknown
in advance. A learning system can only estimate this information through training examples. For
example, a learning system might estimate the value of a transformation by solving some randomly
selected problems with the original and transformed problem solvers. Increasing the number of exam-
ples would result in a better estimate, but it will still differ from the true expected utility.

Unknown information means a learning algorithm cannot guarantee that a composite transformation
increases expected utility. There is always the possibility that a transformation is estimated to increase
expected utility when in fact it does not. Nevertheless, in defining the utility problem we would like
to explicitly quantify the chance that learning does not improve performance. Therefore we adopt
a probabilistic requirement. A solution to the utility problem is required to adopt a composite transfor-
mation only if has a high probability of improving expected utility, where this probability is pre-speci-
fied and may be arbitrarily close to one.

2.5 THE UTILITY PROBLEM
We now can define the utility problem using the constructs just introduced.

 DEFINITION 1: THE UTILITY PROBLEM.
Given: (1) an application described by a utility function, a set of problems, and access to problems
drawn according to a fixed probability distribution,
(2) an initial problem solver for this application, PSold,

(e) a set of candidate composite transformations, and (4) a confidence level.
Identify: a composite transformation such that, with the specified confidence, the expected utility
of the resulting problem solver, PSnew, is greater than or equal to expected utility of PSold.

This specification provides a clear criteria by which to judge a learning algorithm. We say a learning
algorithm solves the utility problem if it satisfies the requirements of this definition.

8

3 A Solution to the Utility Problem
The preceding framework not only defines the goal of a learning technique, it suggests a natural solu-
tion to the utility problem. The effectiveness of a transformation can be judged in terms of its expected
utility, which can be estimated to an arbitrary level of confidence using statistical procedures. Howev-
er there are many difficulties that must be resolved before this theoretical idea can be realized in an
efficient and practical algorithm. This section outlines our strategies for addressing these difficulties.
These strategies are realized in our COMPOSER algorithm which implements an efficient yet general
solution to the utility problem.

3.1 INCREMENTAL LEARNING
The most significant difficulty arises in how to efficiently investigate the vast set of possible compos-
ite transformations. Frequently there is some internal structure to transformations that can be ex-
ploited. In most learning techniques a composite transformation consists of many individual atomic
transformations (later we refer to atomic modifications simply as transformations). For example,
SOAR constructs a new problem solver from individual chunks [Laird86]. PRODIGY/EBL builds
a learned control strategy from individual control rules [Minton88]. Two different composite trans-
formations may share many of the same individual components.

Instead of making a global decision among all possible composite transformations, an incremental
learning system efficiently builds up a composite transformation by making many local decisions.
The composability problem is the name we give to the problem of identifying an effective composite
transformation given that it must be constructed from multiple atomic transformations. This is analo-
gous to planning problem. A planner does not solve a goal by searching through the set of all complete
plans. Rather it uses operators to make incremental progress. In COMPOSER we view atomic trans-
formations as learning operators. Just as individual planning operators can be flexibly combined
to solve a variety of goals, individual atomic transformations can be combined to address the particu-
lar combination of problem solving inefficiencies. In fact, most learning for planning techniques
can be viewed from this perspective, although they are not generally described in such terms.

3.1.1 Operationality Criteria: Independent Measures
The composability problem constrains the acceptable local measures of atomic transformation quali-
ty. A measure must ensure that locally beneficial transformations combine into a beneficial compos-
ite. One solution is to develop independent measures. These are local measures that assess the quality
of an atomic transformation independently of whatever other transformations appear, or will appear,
in the final composite transformation. Mitchell et. al.’s operationality criteria [Mitchell86] and Etzio-
ni’s non-recursive hypothesis [Etzioni90a] can be seen as attempts to provide such a measure.

Unfortunately, independent measures are in general not possible. Atomic transformations potentially
interact with each other in difficult to predict ways. Such interactions have long been recognized

9

as a source of difficulty in planning, but have been overlooked in learning, often with unfortunate
consequences. Simple syntactic independent measures like operational and the non-recursive hy-
pothesis, while useful heuristics, cannot provide even weak guarantees against detrimental results.

The ways in which interactions can arise are as varied as the space of learning techniques. We illustrate
the difficulty with interactions as they arise in one common learning for planning formalism. Consid-
er the problem of building a composite transformation where the atomic transformations are search
control rules, as in PRODIGY/EBL [Minton88]. Let utility be the time to solve a problem. Control
rules can reduce the time to solve a problem by eliminating search, but they introduce an evaluation
overhead: the control rule’s preconditions must be continually evaluated to see if a portion of the
search tree can be pruned. In isolation, a control rule increases utility if the search saved exceeds
this evaluation cost. Thus search time saved minus evaluation cost is a candidate for an independent
evaluation criterion. Unfortunately, control rules interact so that the improvement of multiple control
rules is not the sum of the improvements of the rules in isolation. For example, two control rules
may avoid the same search nodes. As there is no added benefit in ignoring an area twice, the utility
of the two together is not equivalent to the sum of their improvements in isolation. A more subtle
example involves a control rule that has different evaluation costs in different portions of search space.
A second control rule that removes portions of this search space may substantially change the average
evaluation cost of the first.

To make this quantitative, consider the interaction between the control rules illustrated in Figure 2.
This shows a hypothetical search space of fifteen nodes. Suppose r and s are two heuristics that prune
the nodes in sets R and S respectively. |R| is the number of nodes trimmed by r. |S| is similarly defined.
When used in isolation, r is checked six times (i.e. 15 – |R|). It successfully applies twice: at node
2 saving nodes 3–8 and at node 9 saving nodes 10–12. Heuristic s is checked eight times (i.e. 15
– |S|) and succeeds at node 1, saving nodes 9–15. Assume the average evaluation cost of r is Mr,
the average cost of s is Ms, and the average time to expand a node is g.

Figure 2: Example of interacting heuristics

111

2 9

3 6 10

4 5 7 8 11 12

13

14 15

R–S = nodes saved only by r
S–R = nodes saved only by s
R\S = nodes saved by both
 r and s

Mr = Average match cost of r
Ms = Average match cost of s
g = Average cost to expand a node

R

S

(2)

10

Let U(X, p) be the utility of a problem solver using the set of rules X on problem p. The interaction
between two rules on a problem is the amount to which their utilities are not additive:

Residue = U({r, s}, p) – [U({r}, p) + U({s}, p)] = |R–S|×Ms + |S–R|×Mr – |R∩S|×g

This residue is measures the interaction between atomic transformations. The transformations com-
bine synergistically if this value is positive, for example when one control rule reduces the match
cost of another. If negative, they engage in a harmful interaction, for example when there is large
overlap in the search they avoid. The key point is that two control rules with positive utility in isolation
can potentially combine to yield a strategy worse than neither. Such interactions would seem to pre-
clude effective independent criteria for determining the benefit of atomic transformations.

3.1.2 Incremental Utility: A Context-Sensitive Measure
While we cannot develop a general independent measure of atomic transformation quality, we can
develop a context-sensitive measure that accounts for the context of other atomic transformations
participating in the composite transformation. In particular, we can view a composite transformation
as a sequence of problem solvers: PSold, PS1, PS2, ..., PSnew, each with some expected utility. We
adopt a context-sensitive measure of utility that states how much a given atomic transformation im-
proves expected utility if appended to an existing sequence of transformations.

Let PS denote a problem solver and let PSτ = Apply(τ, PS) denote the problem solver that results
from applying an atomic transformation τ to PS. We define the incremental utility of τ to be the differ-
ence between the expected utility of PSτ and the expected utility of PS.1 We denote incremental utility
as ΔUD(τ|PS), meaning the conditional change in expected utility provided by transformation τ over
distribution D given problem solver PS. We can state this formally as:

UD(|PS) = ED[U(PS)] – ED[U(PS)] or equivalently:

UD(|PS) = D

U(PS , x) – U(PS, x) PrD(x)dx (D continuous)

x D
U(PS , x) – U(PS, x) PrD(x) (D discrete)

The change in expected utility provided by a composite transformation is equivalent to the sum of
the incremental utilities of the each transformation:

UD(0|PSold) + UD(1|PS 0
old) + UD(2|PS 0, 1

old) + . . .

The definition of incremental utility clarifies two important properties of transformations. First the
effect on utility that results from a transformation is dependent on the distribution D. Second, the
effect is conditional on the problem solver to which it is applied. In general the incremental utility
1. In other learning algorithms incremental utility is simply referred to as utility. We feel the additional terminology
helps to highlight the difference between the utility of a problem solver, which is of interested to the user, and the utility
of the a transformation which is only of interest to the learning algorithm.

11

of a transformation will vary unpredictably as we change either the distribution or the problem solver
to which it is applied. The conditional nature of incremental utility ensures that in general we cannot
identify a globally maximal composite transformation without considering a potentially explosive
number of conditional utility values.

3.2 COMPOSER

COMPOSER is a statistical approach that provably solves the utility problem as stated in Definition
1. Given a learning element that provides atomic transformations, COMPOSER incrementally con-
structs a composite transformation, guaranteeing (with as high confidence as required) an improve-
ment in expected utility. COMPOSER requires as input a transformable initial problem solver, a
learning element with certain, to be specified, characteristics, a utility function, and a source of train-
ing problems drawn randomly from the problem distribution. We first describe COMPOSER’s meth-
od for searching the set of composite transformations. We next define the constraints on the method
for proposing atomic transformations. Finally we describe how the system achieves its statistical
guarantee.

3.2.1 Overview

Because of the composability problem, it is typically intractable to determine the best sequence of
transformations. However, we want as great an improvement as possible. COMPOSER uses incre-
mental utility in conjunction with a greedy hill-climbing procedure to explore the set of possible com-
posite transformations. COMPOSER begins its search with the original problem solver and incre-
mentally adopts transformations that are estimated to possess positive incremental utility. Each new
transformation is assessed with respect to the problem solver that results from applying the previous
transformation. COMPOSER uses statistical methods to estimate incremental utility from training
examples drawn randomly according to the distribution of problems. This hill-climbing approach
successfully avoids the difficulty of negative interactions. One shortcoming is it cannot exploit posi-
tive interactions. Therefore solutions may be local optima.

3.2.2 Transformation Generator

COMPOSER requires a source of transformations for each step in the search. This is abstractly for-
malized as a function we call a transformation generator. This is a function TG : PS X 1, . . . , k

that maps a problem solver and an optional set of training examples into a set of candidate transforma-
tions. Each transformation in the set should map the problem solver into some new, possibly im-
proved, problem solver. For example, SOAR can be viewed as a transformation generator takes the
current problem solver and the single training problem that produced an impasse, and generates a
set of chunks. Oren Etzioni’s STATIC system [Etzioni90a] can be seen as a transformation generator
that takes the original problem solver and no training examples, and generates a set of control rules.

(3)

12

3.2.3 Statistical Inference
COMPOSER must estimate incremental utility from training data and assess the accuracy of these
estimates. There are several philosophical stances for reasoning about these statistical issues. The
computational learning community has favored worst-case statistical models (also called
non-parametric techniques). These are quite useful to make theoretical statements but are too ineffi-
cient for most practical uses. Parametric techniques are a more practical alternative. In these the
distribution of utility values is assumed to a function of some unknown parameters which must be
estimated from the data. Bayesian models are a popular parametric alternative to worst-case models
but they require the specification of prior knowledge about the probable performance of the alterna-
tive transformations. We prefer to avoid dependence on prior information, therefore we have adopted
so-called frequentist statistical models which have the efficiency of bayesian approaches without
the need for the specification of prior information.2 When we must balance between absolutely insur-
ing error does not exceed a bound and achieving reasonable efficiency, we err to the side of efficiency,
as long there are good arguments that the error bounds are not exceeded in practice. In a later section
we describe how to adjust this tradeoff when necessary.

COMPOSER must ensure that the overall error remains below some threshold δ. Formally:

Pr ED[U(PSnew)] < ED[U(PSold)]

To achieve this, COMPOSER must account for three sources of error. Each time COMPOSER identi-
fies a new transformation to adopt, it compares a set of estimates, one for each transformation consid-
ered at that step. First, there is some probability of error associated with each of these estimates.
Second, these individual errors combine into a somewhat larger probability of error for the overall
decision of what to adopt at a given step. Third, the final problem solver, PSnew, is produced as a
result of several steps, and the error across all of these steps must be accounted for as well.

We satisfy Definition 1 by bounding the first sense of error (the error of each individual incremental
utility estimate) in such a way that as they combine into the second and third sense, the overall error
remains below the total acceptable bound of δ. The bound for each estimate is specified by the func-
tion Bound(δ, |T|). This defines the acceptable error for an estimate as a function of the overall error,
the current step in the hill-climbing search, and the size of the set of transformations T at that step:3

Bound(, |T|) =
|T|

Given this definition it remains to construct a statistical procedure that estimates incremental utility
of a transformation to the specified error bound. This involves two issues. First we must determine

2. There is controversy between bayesians and frequentists as to which approach is more appropriate; in many cases
it can be shown that bayesian approaches with non-informative priors are equivalent to frequentist approaches. We
do not take a strong stand on this issue. One could easily replace our frequentist model with a bayesian one without
changing the principal theoretical contributions of this work.

13

how estimates are generated from training problems. Second we must decide how many training
problems are needed to attain sufficiently accurate estimates.

We can estimate incremental utility by randomly drawing problems according to the distribution D
and, for each transformation under consideration, averaging several observations of this value. Call
ΔUn(τ|PS) the estimated incremental utility from n data points. To gather the necessary data points,
COMPOSER must determine, given a current problem solver PS, a set of transformations, and a prob-
lem x, the difference in utility between the current and each of the transformed problem solvers: ∀τ∈T,

U(PSτ, x) – U(PS, x). Recall that, by definition, the utility of a problem solver on a problem is measur-
able by observing the behavior of the problem solver on the problem. Thus, given a set of m transfor-
mations, we can compute the necessary incremental utility values by solving the problem with PS
and then with PSτ1, PSτ2, ..., PSτm. Processing each training example involves m+1 problem solving
attempts. The complexity of processing an example is therefore tied to the complexity of each of
the m+1 problem solvers. We call this brute-force processing and is the default method used by COM-
POSER. We show in Appendix A that for many applications there are other more efficient methods
for obtaining these data points.

We can determine a suitable sample size by considering how the accuracy of estimates improves as
we increase the number of examples used in the computation. Specifically, COMPOSER must deter-
mine a sufficiently large sample size such that it can bound the probability that incremental utility
is estimated to be positive when in fact it is negative and vice versa. The estimates must be accurate
but we would like them to be based on as few examples as possible. COMPOSER relies on a sequential
statistical technique to determine how many examples are sufficient to make this inference
[Govindarajulu81]. Sequential procedures differ from the more common fixed-sample techniques
in that the number of examples is not determined in advance, but is a function of the observations.
Sequential procedures provide a test called a stopping rule that determines when sufficient examples
have been taken. An important advantage of sequential procedures is that the average number of
examples required is smaller than the number required by a fixed–sample technique.

We determine the sample size using a stopping rule proposed by Nádas [Nádas69]. The intuition
behind the stopping rule is quite simple. Given a sample of values and a confidence level α, we can
construct confidence intervals that contain, with probability 1 – α, the true incremental utility lies.
In other words, there is only probability α that the true incremental utility lies outside the confidence
interval. With more examples, the width of the interval tends to shrinks.4 The stopping rule deter-
mines how many examples are needed for the confidence interval to shrink to the point of being entire-

3. This definition embodies a compromise between bounding statistical error and example efficiency which works
well in practice. The rational behind the compromise is discussed in Appendix A, where we illustrate some other possi-
ble definitions.
4. The interval size is actually a random function of the data. It will tend to shrink with more examples, but not mono-
tonically. It will grow, temporarily, if an outlying data point is encountered.

(4)

14

ly above or below zero incremental utility. This is illustrated in Figure 3. When this occurs, we can
state, with probability 1 – α, that the transformation has positive (negative) incremental utility if the
estimate is positive (negative).

Po
sit

iv
e

U
til

ity

Figure 3: Sizing the confidence interval. We would like to take enough examples such
that the confidence interval lies entirely above or below the axis.

0

Training Examples

Estimate Confidence
Interval

5 10 15

After each example is processed the Nádas stopping rule is evaluated. Sampling should terminate
when the rule evaluates to true. When this occurs we can state that the given transformation will
speed-up (slow down) PS if its estimated incremental utility is positive (negative) with confidence
1–α. Examples are taken until the following equation holds:

 n n0 AND
S2

n(|PS)
Un(|PS) 2

n
Q()2

where n is the number of examples taken so far, Un(|PS) is the transformation’s average improve-
ment, S2

n(t|PS) is the observed variance in the transformation’s improvement, α is the acceptable error
in the estimate, n0 is a small finite integer indicating an initial sample size, and Q(α) is a parametric
function that models the discrepancy between the true and estimated incremental utility:

Q() := x where
x

1 2 e–0.5y2dy =
2

The function Q(n,a) makes the parametric statistical assumption that estimated incremental utility
is normally distributed about the true incremental utility. The reasonableness of this parametric model
is justified by an important theorem in statistics, the Central Limit Theorem [Hogg78 p. 192]. This
theorem states that regardless of the distribution of a random variable, the average of these values
will tend to be normally distributed about the true mean of the distribution.

The choice of initial sample size, n0, relates to the definition of Q(α) and is discussed in Appendix
A. By default we use a sample size of fifteen which has worked well in our empirical investigations.

15

3.2.4 The COMPOSER Algorithm

COMPOSER illustrated in Figure 4. After each problem solving attempt, COMPOSER updates its
statistics and evaluates the stopping rule for each candidate transformation. If stopping rules are satis-
fied for transformations with positive incremental utility (there may be more than one) COMPOSER
adopts the one with highest incremental utility, removes it from the candidate set, and discards the
statistics for the remaining candidates as these apply to the previous problem solver. If instead, stop-
ping rules are satisfied for transformations with negative incremental utility, these are eliminated
from further consideration (note that eliminating a candidate does not affect the current problem solv-
er, so the statistics associated with the remaining candidates are unaffected). This cycle repeats until
the training set is exhausted. Each time a transformation is adopted the expected utility of the resulting
problem solver is higher than its predecessor, giving COMPOSER an anytime behavior [Dean88].

[1] PS := PSold; T := TG(PS); i := 0; n := 0; α := Bound(δ, |T|);
[2] While more examples and T ≠ ∅ do

[4] ∀τ∈Τ: Get ΔUn(τ|PS)

–estimates := : n n0 and S2
n(|PS)

Un(|PS) 2 < n
Q() 2

T := T – –estimates : Un(|PS) < 0

If –estimates : Un(|PS) > 0 Then

PS = Apply(x –estimates : y –estimates Un(x|PS) > Un(y|PS) , PS)

T := TG(PS); i := i + 1; n := 0; α := Bound(δ, |Τ|)

[3] n := n + 1

/* Gather statistics and find transformations that have reached significance */

/* Discard trans. that decrease expeced utility */

/* Adopt τ that most increases expected utility */

Return: PS

Figure 4: The COMPOSER algorithm

[5]

[6]
[7]

[8]

[9]

Given: PSold, TG(⋅), δ

Defaults: Bound(, |T|) :=
|T|

Q() := x where
x

1 2 e–0.5y2dy =
2

/* Collect all trans. that */
/* have reached statistical */
/* significance. */

,

4 Utility Problem in the PRODIGY Problem Solver
This section describes one of two extensive evaluations we have performed with the COMPOSER
system. We describe an application of COMPOSER to learning search control strategies for the
PRODIGY planning system [Minton88]. PRODIGY is a well studied planning system that has served

16

as the basis for several learning investigations [Etzioni90b, Knoblock89, Minton88] and has attained
the status as a benchmark for learning systems. COMPOSER has also been successfully applied to
the problem of learning heuristic control strategies for a NASA scheduling domain, which is de-
scribed elsewhere [Gratch93].

A main goal of this evaluation is to contrast COMPOSER’s approach with several other methods
for addressing the utility problem, including methods developed explicitly for the PRODIGY system
as well as a more general statistical approach similar to COMPOSER. We would like to compare
the theoretical basis for these alternatives rather than implementation details. Therefore we take pains
to provide a fair comparison by minimizing the differences between the systems. Each method is
re-implemented within the context of the PRODIGY problem solving system and each method is
constrained to use the same source of learned transformations.

4.1 THE APPLICATION

This implementation is constructed within the PRODIGY 2.0 architecture which is available from
Carnegie Mellon University. PRODIGY is a general purpose means-ends problem solver based on
the STRIPS planner [Fikes71] with a few enhancements. Plans are identified by depth-first search.
Search proceeds by recursively applying four control decisions: (1) choosing a node to expand in
the current search space, (2) choosing an unachieved goal at that node, (3) choosing an operator that
possibly achieve with the goal, and (4) choosing a binding list for the operator. PRODIGY implements
a default control method for each of these decisions and these methods may be modified by the intro-
duction of heuristic knowledge called control rules. Control rules are described in Section 6.2.

4.1.1 Problem Distributions

We evaluate COMPOSER’s ability to identify effective modifications to PRODIGY on three differ-
ent domain theories. The STRIPS domain was reported in [Minton88]. It is a problem of a robot
moving boxes through interconnected rooms with lockable doors. The AB-WORLD domain was
reported in [Etzioni91]. It is a variant of the standard blocksworld domain, designed to highlight
deficiencies in Minton’s PRODIGY/EBL approach. The BIN-WORLD domain was introduced in
[Gratch91a] and was designed to highlight deficiencies in both PRODIGY/EBL and Etzioni’s STAT-
IC approach. This domain is a simple construction domain.

Problem distributions for the STRIPS domain and AB-WORLD domain are constructed with the
problem generators provided with PRODIGY 2.0. Following the methodology in [Minton88], the
set of problems were biased by filtering out problems that were judged too difficult or too easy; prob-
lems were excluded if the default PRODIGY control strategy required less than 1 CPU second or
more than 80 CPU seconds. Problems for the BIN-WORLD were generated in a distribution designed
to highlight deficiencies in PRODIGY/EBL and STATIC. This is described in Appendix B. A more
detailed description of the experiments appears in [Gratch93d].

17

4.1.2 Expected Utility

We follow the established PRODIGY methodology of measuring problem solving performance by
the cumulative time in CPU seconds to solve a set of problems (e.g. [Etzioni91, Minton88]). Under
the decision-theoretic interpretation of the evaluation criterion, this is captured as a utility function
based on the time required to solve a problem. In particular, we let the utility of the problem solver
over a problem be the negative of the CPU time required to solve it. Maximizing expected utility
therefore translates into decreasing the average time to required to solve a problem.

4.2 TRANSFORMATION GENERATOR

Minton introduced a technique for generating atomic modifications to the PRODIGY control strate-
gy. The approach uses explanation-based learning (EBL) [DeJong86, Mitchell86] to construct atom-
ic control rules based on traces of problem solving behavior and a theory of the problem solver. Sets
of control rules can be associated with any of the four control points. The control rules are condition–
action statements which alter the way PRODIGY explores the space of possible plans. By default,
the planner entertains all operators which unify with an unachieved goal and explores these alterna-
tives depth–first. Control rules change the search by discarding or reordering some alternatives.
Figure 5 illustrates a control rule learned by the EBL method in the blocksworld domain. The block-
sworld has several operators for clearing a block. RULE–1 asserts that in situations where the block
is not held, only consider the UNSTACK operator.

IF current–node is ?n
 current–goal at ?n is (CLEAR ?x)

(NOT (HOLDING ?x)) is true at ?n
THEN choose operator UNSTACK

Figure 5: An example control rule

RULE–1:

Not all control rules increase the efficiency of planning. Control rules avoid search in the plan space,
however they introduce the cost of matching their preconditions. A rule is harmful when the precondi-
tion evaluation cost exceeds the savings. Furthermore, control rules interact in subtle ways. Without
a criterion for choosing among possible rule sets, the learning algorithm quickly degrades perform-
ance. Minton introduced a heuristic empirical procedure for addressing the utility problem in this
context. This procedure attempts to account for the distributional nature of the incremental utility
of individual control rules. Minton calls the overall approach of EBL learning and heuristic utility
analysis PRODIGY/EBL. Unfortunately, while it performs quite well on some domains, PRODIGY/
EBL has since been shown to have undesirable properties. Oren Etzioni illustrated how seemingly
innocuous changes to a domain theory result in degraded problem solving performance [Etzioni90b].
We showed that this behavior is due to the utility procedure’s inability to correctly estimate distribu-
tion information and to handle the composability problem (see [Gratch91]). COMPOSER’s statisti-

18

cally sound utility estimation procedure corrects these problems and should result in a more effective
learning algorithm.

For this evaluation the EBL technique serves as the transformation generator. The EBL component
requires training problems to be solved with PRODIGY using some control strategy (in this case
a control strategy is a set of control rules). The component analyzes a trace of each solution attempt,
and conjectures new control rules. Each of these control rules is an atomic transformation to the
current search control strategy. In Minton’s system, all control points are given equal importance
so our implementation contains no independence or dominance relations between control points.

4.3 COMPOSER IMPLEMENTATION DETAILS

We used COMPOSER to construct a adaptive problem solver for the three applications. We call the
resulting implementation COMPOSER/PRODIGY. PRODIGY with no control rules acts as the ini-
tial problem solver. Minton’s EBL learning element acts as the transformation generator.5 Thus,
COMPOSER/PRODIGY takes the problem solver with the empty set of control rules as PSold and
produces a PSnew by incrementally adding control rules with positive incremental utility.

Several properties of this application allowed us to tailor COMPOSER to achieve greater statistical
efficiency. We exploited a property of control rules to more efficiently gather incremental utility
data points. The implementation extracts incremental utility values for all candidate control rules
with an unobtrusive procedure of using the trace of a single solution attempt. To accomplish this,
we modified the PRODIGY planner to distinguish between adopted and candidate control rules.
Adopted control rules are those which have been shown to have positive incremental utility, added
into the control strategy of the PRODIGY planner, and therefore effect PRODIGY’s behavior. Candi-
date rules are those that have been proposed by the EBL technique, but not yet validated. When solv-
ing a problem, candidate rules are checked, their precondition cost and the search paths they would
eliminate are recorded, but the search paths are not actually eliminated. After a problem is solved,
the annotated trace can be analyzed to identify those search paths which would have been eliminated
by candidate control rules. The time spent exploring these avoidable paths indicates the savings which
would be provided by the rule. This savings is compared with the recorded precondition match cost,
and the difference is reported as the incremental utility of the control rule for that problem.6

5. The EBL unit produces two control rule types: rejection rules and preference rules. Minton has noted that prefer-
ence rules seem to be less effective. We have verified that PRODIGY/EBL actually produces strategies with higher
utility if it is prevented from producing preference rules [Gratch91]. We disabled the learning of preference rules in
this implementation because it enabled a more efficient means of gathering incremental utility data points.
6. Appendix A describes how for some applications the Bound function can be modified to improve the efficiency
of utility analysis. For this implementation we used Equations 6 and 7 of the appendix to define a variant of the default
Bound., As stated in Section A.1.1, this allows transformations to be added to Τ at any time in the utility analysis. Due
to the relatively low variable of control rules we used an initial sample size of three.

19

4.4 EVALUATION
We evaluated COMPOSER/PRODIGY’s performance against four other proposed criteria for ad-
dressing the utility problem: the heuristic utility analysis of PRODIGY/EBL [Minton88], the non-re-
cursive hypothesis of STATIC [Etzioni90a], a hybrid of PRODIGY/EBL and STATIC suggested by
Etzioni [Etzioni90a] to overcome limitations of the two systems, and PALO [Greiner92a], a statistical
approach similar to COMPOSER but based on a more conservative statistical model. Before discuss-
ing the experiments we review these techniques. For the evaluations we tried to minimize differences
between the systems that are not theoretically motivated. All systems are implemented within the
PRODIGY problem solving framework and are constrained to use the same transformation generator.

4.4.1 PRODIGY/EBL’S Utility Analysis
This is the approach developed by Minton for use in PRODIGY/EBL. The technique adopts transfor-
mations with a heuristic utility analysis. As control rules are proposed they are added to the current
control strategy. The savings afforded by each rule is estimated from a single example (the example
problem from which the rule was learned) and this value is credited to the rule each time it applies.
Match cost is measured directly from problem traces and averaged across multiple training examples.
If the cumulative cost exceeds the cumulative savings, the rule is removed from the current control
strategy. The issue of interactions among transformations is not addressed as estimates are gathered
as if there were no interactions.

4.4.2 STATIC’s Nonrecursive Hypothesis
STATIC utilizes a control rule selection criterion based on Etzioni’s structural theory of utility. The
criterion is grounded in the nonrecursive hypothesis. This states that “EBL is effective when it is
able to curtail search via nonrecursive explanations” [Etzioni90a p. 6]. The hypothesis admits several
interpretations. The strongest interpretation is that transformations have positive incremental utility,
regardless of problem distribution, if they are generated from nonrecursive explanations of planning
behavior (i.e. no predicate in a subgoal is derived using another instantiation of the same predicate).
A weaker reading is that a composite strategy will improve expected utility if it is constructed from
non-recursive elements (admitting that some transformations will have negative incremental utility,
but a set of non-recursive transformations will improve performance). The issue of interactions be-
tween transformations is also not addressed. STATIC applies this criterion to control rules but the
issue is important in macro–operators as well [Letovsky90, Subramanian90].

STATIC out-performs PRODIGY/EBL’s on several domains. The nonrecursive hypothesis is cited
as a principal reason for this success [Etzioni90b]7. This claim is difficult to evaluate as these algo-
rithms use different vocabularies to construct their control rules. We wish to focus on the effectiveness
of the non-recursive hypothesis, and therefore must remove the complicating factor of a different
7. Etzioni and Minton have subsequently suggested that some of the success of STATIC is due to the fact that its global
analysis allows for more concise rules [Etzioni92].

20

rule generator. To achieve this goal we constructed the NONREC algorithm, a re-implementation
of STATIC’s nonrecursive hypothesis within the PRODIGY/EBL framework. NONREC replaces
PRODIGY/EBL’s empirical utility analysis with a syntactic criterion which only adopts nonrecursive
control rules. This acts as a filter, only allowing PRODIGY/EBL to generate non-recursive rules.

4.4.3 A Composite Algorithm
Etzioni suggests that the strengths of STATIC and PRODIGY/EBL can be combined into a single
approach [Etzioni90a]. He proposed a hybrid algorithm which embodies several advancements in-
cluding a two layered utility criterion. The nonrecursive hypothesis acts as an initial filter, but the
remaining nonrecursive control rules are subject to utility analysis and may be later discarded.

We implemented the NONREC–UA algorithm to test this hybrid criterion. As control rules are pro-
posed by PRODIGY/EBL’s learning module, they are first filtered on the basis of the nonrecursive
hypothesis. The remaining rules undergo utility analysis as in PRODIGY/EBL.

4.4.4 PALO’S Chernoff Bounds
Greiner and Cohen have proposed an approach similar to COMPOSER’s [Greiner92b]. The Probably
Approximately Locally Optimal (PALO) approach also adopts a hill–climbing technique and evalu-
ates transformations by a statistical method. PALO differs in its stopping rule and and that it incorpo-
rates a criterion for when to stop learning. PALO terminates learning when it has (with high probabili-
ty) identified a near–local maximum in the transformation space. Our evaluation focuses on the
different stopping rule which is based on Chernoff bounds.

Chernoff bounds provide a much more conservative model of the discrepancy between a the sample
mean and true mean of a distribution. As a result, PALO provides stronger bounds on statistical error
at the cost of more examples. This means that if the user specifies an error level of δ, the true error
level will never exceed δ, and may in fact be much lower.8 Our PALO–RI algorithm evaluates this
approach. Like COMPOSER, PALO–RI uses a candidate set of rules. In this case the size of the
set is fixed before learning begins. A candidate is adopted when the following stopping rule holds:

n

i=1

Xr,i > Λr 2n ln Cs2 2 (3)

where Xr,i is the incremental utility of rule r on problem i, C is the maximum size of the candidate
set, s is one plus the number of rules in the current control strategy, and Λr is a is the maximal per
problem ΔUTILITY of rule r. The parameter C is the size of the candidate set. PALO-RI uses the
same method as COMPOSER/PRODIGY to obtain incremental utility statistics. We discuss the set-
ting of the system’s various parameters in the next section.

8. In addition to the conservative stopping rule, PALO adopts the conservative definition of Bound that follows from
adopting Equations 5 and 9.

21

4.4.5 Experimental Procedure

We investigated the STRIPS domain from [Minton88], the AB-WORLD domain from [Etzioni90a]
for which PRODIGY/EBL produced harmful strategies, and the BIN-WORLD domain from
[Gratch91b] which yielded detrimental results for both STATIC’s and PRODIGY/EBL’s learning
criteria. Results are summarized in Figure 6. In each domain the algorithms were trained on 100
training examples drawn randomly from a fixed distribution. The problem distributions were con-
structed using the random problem generator provided with the PRODIGY architecture. The current
control strategy was saved after every twenty training examples.9 The independent measure for the
experiments is the number of training examples and the dependent measure is the execution time
in CPU seconds over 100 test problems drawn from the same distribution. This process was repeated
eight times, using different but identically distributed training and test sets and all results are averaged
over these trials. Figure 6 illustrates the results along with the average number of rules learned by
the algorithm, the number of seconds required to process the 100 training examples, and the number
of seconds required to generate solutions for the 100 test problems.

COMPOSER and PALO–RI require an error parameter δ which is set at 10% for the experimental
runs. PALO–RI’s behavior is strongly influenced by parameters whose optimal values are difficult
to assess. We tried to assign values close to optimal given the information available to us.10

During the evaluation, it was apparent that PALO–RI would not adopt any transformations within
the 100 training examples. We tried to give the algorithm enough examples to reach quiescence but
this proved too expensive. The problem is twofold –– first, too many training examples were required;
secondly, and as a consequence of the first problem, the candidate set grew large since harmful rules
were not discarded as quickly as in COMPOSER/PRODIGY. This increased the cost to solve each
training example. To collect statistics on PALO–RI we only performed one instead of eight learning
trials. Furthermore, we terminated PALO–RI after the first transformation was adopted or 10,000
examples, whichever came first.

4.5 ANALYSIS

The results illustrate several interesting features. The implementation developed with COMPOSER
exceeded the performance of all other approaches in every domain. The learned strategies yielded
higher expected utility and were more succinct (contained fewer control rules). In AB-WORLD and
STRIPS, COMPOSER/PRODIGY identified beneficial control strategies. In BIN-WORLD the al-
gorithm did not adopt any transformations. In fact, it does not appear that any control rule improves

9. PRODIGY/EBL’s utility analysis requires an additional settling phase after training. Each control strategy produced
by PRODIGY/EBL and NONREC+UA received a settling phase of 20 problems following the methodology outlined
in [Minton88].
10. C was fixed based on the size of the candidate list observed in practice. In the best case a rule can save the entire
cost of solving a problem, so for each domain, lambda for each rule was set at the maximum problem solving cost ob-
served in practice. AB–WORLD – C=30 lambda=15; STRIPS – C=20, lambda=100; BIN–WORLD – C=5, lambda=150.

22

0

700

1400

2100

2800

3500

4200

4900

5600

6300

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100

AB–WORLD

STRIPS
BIN–WORLD

of training examples # of training examples # of training examples

Figure 6: Results for the PRODIGY application. Learning curves show perform-
ance as a function of the number of training examples.

COMPOSER/PRODIGY

PRODIGY/EBL

NONREC

NONREC+UA

PALO–RI

Rules
Added

Train
Time

Test
Time

No Learning

1 4 0

11

17

9

20

25

10

2

4

2

210

266

311

462

247

182

2323

382

622

2021

614

1223

346

346

6020

6305

6110

346

1667

1253

1253

1259

104,387

4133

3775

4012

3821

41,370

3425

6383

6710

6359

–––

ALGORITHM

AB–WORLD STRIPS BIN–WORLD

10,000+

1182

6069

––––––––– –––––––––

Rules
Added

Train
Time

Test
Time

Rules
Added

Train
Time

Test
Time

AB–WORLD

STRIPS

BIN–WORLD

Train
Time

Test
Time

Train
Exmpls

0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100

Performance
after first

rule adopted

Av
er

ag
e S

ol
ut

io
n

Ti
m

e

Av
er

ag
e S

ol
ut

io
n

Ti
m

e

Av
er

ag
e S

ol
ut

io
n

Ti
m

e

(C
PU

 se
co

nd
s p

er
 p

ro
bl

em
)

performance in this domain. It should be stressed that all algorithms use the same transformation
generator. Therefore the results represent differences in approaches to the utility problem rather than
in the vocabulary of transformations.

We expected COMPOSER/PRODIGY to have higher learning times than PRODIGY/EBL or NON-
REC due to its more rigorous in their assessment of incremental utility. Surprisingly, the learning
times were not much higher than the non-statistical approaches and COMPOSER/PRODIGY actual-
ly learned more quickly on BIN-WORLD where it quickly discarded a control rule with high match

23

cost which PRODIGY/EBL, NONREC, and NONREC+UA retained. As expected, PALO–RI’s
learning times were significantly higher than the other systems.

The results cast doubts on the efficacy of the nonrecursive hypothesis. NONREC yielded the worst
performance on all domains. Even in conjunction with utility analysis the results were mixed ––
benefit on the AB-WORLD, slightly worse than utility analysis alone in STRIPS, and worse than
no–learning in BIN-WORLD. A post–hoc analysis of control strategies indicated that the best rules
were nonrecursive, but many nonrecursive rules were also detrimental. In BIN-WORLD, non-recur-
sive rules produced substantial performance degradation. Thus it appears that nonrecursiveness may
be an important property but is insufficient to ensure performance improvements. These results are
interesting since Etzioni reports that STATIC outperforms PRODIGY/EBL and No Learning in AB-
WORLD. The nonrecursive hypothesis cannot completely account for this difference. We attribute
the remaining difference to the fact that STATIC and NONREC entertain somewhat different sets
of control rules. In our experiments we constrained NONREC to use the rule vocabulary which was
available to PRODIGY/EBL while in Etzioni’s experiments STATIC entertained a somewhat differ-
ent space of rules. This conjecture was recently supported by Minton and Etzioni [Etzioni92].

Finally, although PALO–RI did not improve performance within the 100 training examples, if given
sufficient examples it would likely out-perform all other approaches. With extended examples it
did exceed COMPOSER/PRODIGY’s performance in AB-WORLD. This is because under PALO’s
more conservative criteria, the transformation with the highest incremental utility will tend to have
the smallest stopping time. Instead, with COMPOSER both incremental utility and the variance of
utility values determine when a transformation has reached significance – COMPOSER tends to rec-
ognize low variance transformations more quickly. Unfortunately the cost of PALO’s performance
improvement is very high, both in terms of examples and learning time. Thus, while COMPOSER
may identify somewhat less beneficial strategies, it achieves much faster convergence.

5 Complexity Results
We now turn to a computational analysis of the COMPOSER algorithm. Many of the algorithm’s
characteristics will be, of course, domain specific. However there are some general results we can
state that elucidate properties of the algorithm. Given our emphasis on the practical aspects of the
algorithm, our analysis will not consider worst-case behavior. Rather, we provide average-case com-
plexity results for the algorithm for both sample complexity, the number of examples required to make
a statistical inference, and run-time complexity of the algorithm.

We focus on the number of examples and the amount of work required to perform a single step in
the hill-climbing search as the total number of examples used by the algorithm, the number of hill-
climbing steps, and therefore the run-time complexity are determined by how many examples the
user provides and properties of the transformation generator. This number depends on domain specif-

24

ic factors, but these can be related to complexity in meaningful ways. For example, the amount of
work required at a hill-climbing step depends on the number of candidate transformations at that step,
but we can specify the exact function relationship between work and the number of transformations.
With such knowledge, a user of COMPOSER can assess how best to organize the transformation
generator for a specific learning problem.

5.1 PROPERTIES OF THE NÁDAS STOPPING RULE

The properties of COMPOSER follow from the properties of its method for statistical inference.
Therefore, we first consider the characteristics of the Nádas stopping rule. Given some transforma-
tion, τ, and an error level α, this stopping rule determines sufficient examples to show that the incre-
mental utility of τ is positive (negative) with probability 1–α. The characteristics of this stopping
rule have been proven by Author Nádas in [Nádas69]. The proofs are technical but we will restate
the results and give an intuitive explanation of why they hold.

COMPOSER take examples until the following inequality holds (Equation 4):

 n n0 AND
S2

n

Un
2

n
Q()2

where n is the number of examples taken so far, Un is the transformation’s average improvement,
S2

n is the observed variance in the transformation’s improvement, α is the acceptable error in the esti-
mate, n0 is a small finite integer indicating an initial sample size, and Q(α) is the function that models
the discrepancy between the true and estimated incremental utility:

Q () = x such that
x

1 2 e–0.5y2dy =
2

For a given sequence of training examples the stopping rule will be satisfied after some number of
examples, called the stopping time. For this sequence of examples, call the stopping time ST1. A
second, different sequence of training would yield a different stopping time, ST2. The complexity
of the stopping rule is characterized by the expected value of the stopping time: E[ST]. This is the
average sample complexity of the stopping rule. From the results of Nádas we can derive the follow-
ing relationship for the expected stopping time.

25

Theorem 1: Let ST be the stopping time associated with the Nádas stopping rule for a given transfor-
mation. Let α be the requested error level, σ2 be the actual variance of the distribution associated
with the transformation and µ be the actual incremental utility. Then:

1) For small 1/α the expected stopping time is governed by the following relationship:

E ST
2

2 2 2

2) For large 1/α the expected stopping time is governed by the following relationship:

E ST ln(1)
2

2

This result states that the stopping time is determined by the error level parameter,which is under
control of the user, and two fixed but unknown constants, σ2 and µ, which are properties of the infer-
ence problem. The average stopping time associated with a particular transformation is bounded
by a quadratic in 1/α (or to log of 1/α for large 1/α), linearly with the variance of the transformation
and quadratically with the inverse of its mean. This makes intuitive sense: the greater the required
confidence, the more difficult it is to bound the mean, the greater the variance in incremental utility
values, the more difficult it is to bound its mean, and the closer the incremental utility is to zero, the
more difficult it is to show that the transformation is better (worse) than the default strategy.

Proof: While the theorem is too technical to describe here, it is easy to show why a result like Theorem
1 should hold. The Central Limit Theorem states that the normalized difference between the true
incremental utility and the sample incremental utility should be normally distributed. Using this ob-
servation it is easy to compute a confidence interval around the mean, given a sample of n observa-
tions. Any introductory statistics book shows (with a suitable mapping of notations) that:

Pr Un – Q() S2
n

n
Un + Q() S2

n

n
= 1 –

or in other words, with probability 1–α, the true incremental utility of a transformation lies within

the interval Un Q() S2
n n . The Nádas stopping rule is designed to take examples until the size

of this confidence interval is twice the size of the unknown mean, µ. Formally:

Q() S2
n

n
=

26

Solving this relationship for n we get the following relationship:

n = Q()2 S2
n
2

This shows that n is the number of examples that will produce a confidence interval of the appropriate
size. Or stated differently, n should be the stopping time, which is the result of Theorem 1.

It then remains to show how Q(α) grows as a function of 1/α. The property that Q(α) is bounded
by a linear function is easily proven using a result known as Markov’s inequality. More precisely,

this shows Q() 2 1 . For large 1/α, Q(α) converges to about ln(1) . This can be obtained
using the asymptotic expansion of the standard normal distribution. Both derivations are given in
[Gratch93d].

5.2 SAMPLE COMPLEXITY

The sample complexity is the number of examples required to perform statistical inference. COM-
POSER takes some number of examples at each step of the hill-climbing search. As stated, there
is no way to bound the number of steps COMPOSER will take as this is a function of the particular
transformation space associated with an application. However we can characterize the expected num-
ber of examples taken at a each step in the hill-climbing search in terms of several parameters.

Within a particular hill-climbing step there is some set of transformations T. Recall that α is the allow-
able statistical error associated with an incremental utility estimate for each transformation in T. The
value α is a bound on the probability that a transformation with negative incremental utility is per-
ceived positive or vice versa. Let the value β be the allowable error at a step. This is a bound on
the probability that a transformation with negative incremental is adopted at this step. The error α
is related to β by the Bound function and by default, α = β/|T|.

As validation proceeds within the step, COMPOSER consumes training examples, dynamically com-
puting estimates for transformations in T. Eventually, either 1) all transformations are shown to have
negative incremental utility and are discarded or 2) some transformation with positive incremental
utility is identified and adopted. Sample complexity is the number of examples required before one
of these events occurs. The following theorem describes the relationship that governs the sample
complexity.

27

Theorem 2: Let ST* be the stopping time associated with a step in COMPOSER’s hill-climbing
search under the default settings (Equations 5 and 7), where β is the acceptable error level and Τ is
the set of transformations at that step. Then:

1) For small |Τ|/β the expected sample complexity is bounded by a polynomial in T and 1/β:

E[ST*] c
|T|

2

2) For large |Τ|/β the expected stopping time is governed by:

E[ST*] c ln |T|

where c is a constant whose value depends on the expected incremental utility and variance in incre-
mental utility values for the transformations in T.

Proof: This follows directly from Theorem 1 and the default definition of α = β/|T|. The constant
c is the expected value of 2

i
2
i where i is last transformation adopted/rejected at a step.

Thus, the expected number of examples required at a step grows at most quadratically in the number
of transformations at that step and grows at most quadratically in 1/δ. This means, all other things
being equal, there will be an increase in the expected number of examples required at a step as we
increase the number of candidates. Similarly, the sample complexity will increase polynomially as
we require greater statistical confidence.

5.3 RUN-TIME COMPLEXITY

The expected run time of the algorithm depends on the number of examples used by the algorithm
and the cost to process each example which may not be possible to bound in advance. Therefore,
we provide results for the complexity of performing a single step. Under the brute-force method
for gathering incremental utility statistics, the algorithm actually tries out each transformed problem
solver in T over each example, so the cost of processing is tied to the complexity of the problem solver.

28

Theorem 3: Let R be a bound on the cost of solving a problem. Using the default settings for COM-
POSER:

1) For small |T|/β the expected run time complexity is:

O R
|T|3

2

2) For large |T|/β the expected run time complexity is:

O R · |T| · ln |T|

Proof: Where |Τ|/β is small, from Theorem 2 the number of samples required at a step is:

O
|T|2

2

Using the default means for gathering incremental utility statistics requires solving each sample |T|
+ 1 times. Each solution attempt can cost at most R leading to a maximum cost of R|T| to process
each example. The analogous argument holds for large |T|/β.

Therefore, expected cost of a hill-climbing step grows linearly in R, at most quadratically in the re-
quired confidence, 1/δ, and at most cubically in the the number of transformations at that step, T.

5.4 DISCUSSION

Theorem 1 has some interesting consequence for the COMPOSER’s performance. A step will termi-
nate when COMPOSER identifies a transformation with positive incremental utility or when it ex-
hausts the set of possible transformations. If there are many transformations with positive incremental
utility, COMPOSER will adopt the one that required the fewest examples. Theorem 1 states that
the transformation requiring the fewest examples is not necessarily the one with the highest incremen-
tal utility, but rather the one with the highest ratio between its variance and the square of its incremental
utility. Thus, COMPOSER does not necessarily perform steepest-ascent hill-climbing.

The case where every transformation in T has negative incremental utility points to a potential prob-
lem. When this occurs the step will not end until all transformations have been rejected. The last
transformation to be rejected is expected to be the one with the maximum ratio of its variance to the
square of its incremental utility. As the incremental utility of this transformation tends to zero, its

29

sample complexity increases dramatically. A problem occurs if the transformation has zero incre-
mental utility. While this may be unlikely, if such a case arises, it is not clear if the step will even
terminate. The algorithm will simply exhaust all of its training examples with out making any im-
provements in expected utility. Depending on the transformation generator associated with the appli-
cation, under such circumstances it might make sense to terminate the step early and proceed to a
different step in the hill-climbing search. We discuss this possibility in Chapter 6.

6 Limitations and Future Work
COMPOSER provides a probabilistic solution to the utility problem and has demonstrated its practi-
cality in the PRODIGY application and in two other implementations reported elsewhere [Gratch93b,
Gratch93c]. These successes are encouraging, however it is important to realize that COMPOSER
embodies many design commitments that restrict its generality. In this chapter we discuss these limi-
tation and possible extensions to the approach. We first characterize some conditions on when COM-
POSER will lead to successful results. We then consider limitations and extensions to three key as-
pects of the utility problem: organizing the search through the space of modifications, estimating
utility of transformations, and gathering statistics. COMPOSER embodies a particular set of commit-
ments for each of these aspects and thus can be seen as one point in a large space of possible commit-
ments (see also [Gratch92b]).

6.1 APPLICABILITY CONDITIONS
COMPOSER embodies numerous restrictions in achieving the goal of efficient learning. As a result,
the technique will not apply well to every situation. We can summarize four basic conditions that,
if satisfied by an application, should lead to successful results.

1. Well Structured Transformation Space

A modified problem solver is constructed by composing some body of atomic modifications. In gen-
eral, the space of possible composite modifications will be so large as to make exhaustive search
intractable. COMPOSER requires a transformation generator that structures this space into a se-
quence search steps, with relatively few transformations at each step.

Clearly, COMPOSER’s performance is tied to the transformations it is given. If COMPOSER is to
be effective, there must exist good methods for the control points that make up a strategy. Because
of the nature of hill-climbing, even if a good strategy exists, there is no guarantee that COMPOSER
will find it. One may have to consider carefully how to organize the transformation space.

2. Availability of Representative Training Problems

COMPOSER’s statistical approach assumes that the pattern of tasks can be represented by a fixed
problem distribution. To estimate this distribution, the algorithm must be provided with a relatively
large body of training problems that are representative of this distribution.

30

A problem arises when the distribution cycles through a set of different patterns, or if the pattern shifts
slowly over time. Shifts in the distribution, cyclic or otherwise, violate the fixed distribution assump-
tion. However there are approaches for partially overcoming these difficulties. With cyclic patterns,
it may suffice to average over the cycle. One can draw problems throughout the extent of the cycle
and then randomly shuffle them. Training on this shuffled distribution will result in a problem solver
that does not take advantage of the shifts, but it will improve average performance. With slowly shift-
ing distributions one can take windows of problems, train on then, and periodically re-train the prob-
lem solver as the distribution shifts. Tracking and taking advantage of predicted shifts is an important
area of future research.

3. Low Problem Solving Cost

By default, COMPOSER extracts incremental utility statistics by solving each training example using
various transformations. This is only feasible if problems can be solved with a sufficiently low cost
in resources. This is perhaps the strongest limitation of the technique. It is not feasible to use COM-
POSER to improve, for example, an average-case exponential-time problem solver. The technique
is quite appropriate, however, if the problem solver is initially tractable, but highly inefficient. Poten-
tial ways of relaxing this reliance on problem solving are discussed below.

4. Domain Regularity

The motivation behind learning is that there is application-specific information to exploit. There
must be restrictions in the domain of discourse or regularity in the pattern of tasks, such that a special-
ized problem solver can outperform a general purpose technique.

6.2 ORGANIZING SEARCH
A key complication is how to successfully navigate through the vast space of possible composite
modifications. COMPOSER’s hill-climbing restriction attempts to ensure efficient search. In many
ways this restrictions is too strong. When there are strong interactions between transformations,
COMPOSER may find poor local-maxima, or not find any solutions at all. In other ways the restric-
tion is too weak. It says nothing about how many transformations will be considered at each step.

It is vitally important to focus the search on the most promising alternatives first. COMPOSER fol-
lows a generate and test paradigm. Performance can be improved by making generation as intelligent
as possible. PRODIGY’s learning component achieves some measure of intelligent generation
through its EBL component. This carefully analyzes each problem solving trace for search inefficien-
cies and only proposes transformations that address observed deficiencies. Where applicable, heuris-
tics like Etzioni’s non-recursive hypothesis can help filter out unpromising transformations.

An interesting issue arises when transformations are continuous rather than discrete, for instance,
when the problem solver has a real-valued parameter the influences its behavior. As an example,
consider A* search where heuristic distance is a linear combination of two attributes. Changing the

31

coefficients in the combination will change the heuristic measure, and presumably the behavior of
the search. Such a learning problem is not well suited to COMPOSER’s hill-climbing. To encode
it, one would have to discretize the combination into several distinct values, and treat each as a distinct
transformation. A better approach would be to attempt to approximate the functional relationship,
and set the parameter accordingly. This suggest a much different control structure than simple hill-
climbing search. Future work will consider such alternatives.

Finally, we are investigating how to apply notions from work on bounded rationality to help control
the search [Doyle90, Horvitz89]. COMPOSER is directed towards identifying transformations with
high incremental utility. The utility function determines the value of transformations, and thus the
direction of this search. The efficiency of search is ensured by imposing some restrictive bias on
how exploration proceeds. The actual search behavior of the algorithm arises from the interaction
of the utility function and these biases. We would like to develop a more principled method for charac-
terizing the value of investigating transformations which directly relates their incremental utility and
the cost to achieve this improvement. For some results in this area see [Gratch93a, Gratch94].

6.3 ESTIMATING INCREMENTAL UTILITY
The search through the transformation space relies on the ability to accurately estimate the incremen-
tal utility of alternative transformations. This is made difficult by the distributional nature of incre-
mental utility. Typically the exact shape of the distribution, or even its general form are unavailable
and must be estimated by applying training data to some statistical model. While the number of exam-
ples required to form these estimates grows only as the log of the required confidence, reducing this
cost is a significant practical concern. Another chief limitation is that the accuracy of estimates is
ultimately tied to the appropriateness of the statistical model. In the case of COMPOSER, appropri-
ateness is tied to an initial sample size parameter which may have to be adjusted for a particular do-
main. Reliance on such parameters is unfortunate, but the only obvious statistical alternative seems
to be to use weak-method statistical models, like chernoff bounds, which result in substantially higher
sample complexities. An important area of future work is the investigation of alternative stopping
rules which lie between the Nádas technique and chernoff bounds.

One inefficiency in how COMPOSER gathers statistics is that it treats each transformation as an inde-
pendent entity, even though there is often a relationship between transformations that would allow
a more efficient use of information. As an extreme example, if two identical transformations are
provided to COMPOSER, the algorithm will maintain twice the statistics necessary. Sometimes
it may be possible to develop a single statistical model from which one can derive the incremental
utility of multiple transformations. This is the approach taken by [Subramanian92] and [Laird92].
While not always possible, this is an important area of future research.

Several statistical methods can be applied to further improve the efficiency of the estimation process.
For example, currently a transformation is eliminated only if significantly worse than the default con-

32

trol strategy. However, given that other transformations may be better than the default, transforma-
tions could be more quickly eliminated if they are compared with the most promising transformation
rather than the default control strategy. We investigate this and other extensions to COMPOSER
in [Chien94]. Similar strategies for improving the statistical inference appear in [Maron94,
Moore94].

Heuristics and prior information can replace or augment statistical estimates. Syntactic measures
like the operationality criteria of Mitchell, Keller, and Kedar-Cabelli [Mitchell86] can be seen as
approximate binary measures of incremental utility. Unfortunately, syntactic measures have difficul-
ty capturing the distributional nature of incremental utility. Instead, we are investigating the use of
such measures as a bias on the estimation process. For example, COMPOSER could be modified
to require less statistical confidence when transformations satisfy certain syntactic measures of util-
ity, thereby allowing estimates to be based on fewer examples. In a related issue, we observed in
the PRODIGY application that many of the same control rules considered in one hill-climbing step
are also considered in subsequent hill-climbing steps. Currently COMPOSER discards all informa-
tion across steps as each step is conditional on a different control strategy. However, information
gained from a previous step may be useful as a bias on future estimation.

6.4 GATHERING STATISTICS
The need for efficient search and estimation arises from the fact that it can be quite expensive to gather
incremental utility statistics. The default method requires solving problems to obtain incremental
utility values. COMPOSER is limited to cases where it is feasible to solve problems with the original
and intermediate problem solvers. While this dependance on problem solving is a serious limitation,
in some applications it can be overcome or mitigated. For example, in the PRODIGY domain we
were able to take advantage of properties of the transformations to process examples more efficiently.
This example is just one instance of a general observations that that some transformation vocabularies
may be easier to implement within the COMPOSER framework than others. Perhaps the issue can
be resolved by identifying hybrid statistical/analytic means to estimate utility values.

An important area of future work is the possibility of basing incremental utility estimates on weaker
and cheaper-to-obtain information. For example, Greiner and Jurisica [Greiner92a] propose one
method for evaluating several transformations from a single solution attempt by maintaining upper
and lower bounds on the utility of the novel search paths. Other authors have suggested that it may
be possible to gain useful information about currently intractable problems by first learning from
simpler problems (e.g. [Natarajan89]) or by observing a teacher (e.g. [Tadepalli91]).

7 Conclusion
This article has argued that it is desirable, and possible, to construct general problem solving tech-
niques that automatically adapt to the characteristics of a specific application. Adaptive problem

33

solving is a means of reconciling two seemingly contradictory needs. On the one hand, general pur-
pose techniques can ease much of the burden of developing a application and satisfy the oft argued
need for declarative and modular knowledge representation. On the other hand, general purpose ap-
proaches are ill-suited to the specialized demands of individual applications. General approaches
have proven successful, only after a tedious cycle of manual experimentation and modification.
Adaptive techniques promise to reduce the burden of this modification process and, thereby, take
a long step toward reconciling the conflicting needs of generality and efficiency.

In this article we have developed a formal characterization of the utility problem which connects
work on adaptive problem solving to the rich field of decision theory. This has been a fertile connec-
tion, giving rise to COMPOSER. COMPOSER is a statistically rigorous algorithm built upon the
decision-theoretic foundation. It transforms a general problem solving technique into one specialized
to a specific application. COMPOSER is still a heuristic approach, but by casting it within a statistical-
ly sound framework we are able to clearly articulate the assumptions which underly the technique
and predict their consequences. Most importantly, since these assumptions are stated explicitly, they
can be subjected to empirical investigations.

A larger theme that runs through this work is that any learning algorithm must strike a balance between
the potential for performance improvement and pragmatic considerations such as computational effi-
ciency. COMPOSER embodies numerous commitments to achieve efficient learning performance.
We have argued that the utility problem is composed of essentially three basic and roughly indepen-
dent problems. First, there is a problem of searching the space of possible composite modifications.
Second, there is the issue of of obtaining estimates of local properties of transformations across the
pattern of task, in our case estimating incremental utility. Finally, there is an issue of efficiently gather-
ing the information to produce these estimates. By decomposing the problem in this way, it is possible
to consider approaches like COMPOSER as not just a single algorithm, but as a collection of methods,
each of which can be tested individually. It is our hope then that future research in this area will not
proceed simply by the development of large techniques like COMPOSER, or PRODIGY, etc., but
by the development of smaller, well understood, methods that may be combined in a variety of ways
to produce a complete algorithm.

Appendix A Implementation Tradeoffs
Our motivation in designing COMPOSER was not simply to provide a statistically sound learning
technique, but to provide a practical tool. A chief drawback of COMPOSER’s statistical approach
is that it can be expensive. This section discusses pragmatic issues and techniques for improving
COMPOSER’s performance by tailoring it to the specific characteristics of an application.

The principal impediment to COMPOSER’s approach to the utility problem is managing the compu-
tational expense of identifying good transformations. To maximize COMPOSER’s performance we

(5)

(6)

34

would like it to efficiently process each example and to use as few examples as possible to perform
its statistical inferences. More efficient use of examples allows more hill-climbing steps with the
same number of examples, and a greater potential increase in expected utility. When applying COM-
POSER to a particular application there are several ways in which this expense can be mitigated.
This can be addressed in three ways:

1. Tailoring of the Bound function
2. Tailoring of the discrepancy modeling function Q(α)
3. Tailoring of methods for gathering incremental utility statistics

This section describes the rationale behind the standard configuration of COMPOSER and describes
alternative approaches. The tailorable aspects allow the application designer to take advantage of
domain specific knowledge to improve learning efficiency.

A.1 TAILORING BOUND(δ, |T|)

The Bound function defines the error level for each incremental utility estimate in such a way that
the overall probability of learning a worse problem solver is less than δ. Here we consider a more
general definition of Bound that includes the current step in the hill-climbing search: Bound(δ, i,
|T|). To do this, one must account for two sources of error, the error at each step in the hill-climbing
search given that we are choosing a step from a set Τ of estimates, and the cumulative error over each
step in the hill-climbing search. We will look at these sources individually. We use α to denote the
error of each estimate, βi to denote the acceptable error in step i.

A.1.1 Error in a Step

On step i we are investigating a set T of possible transformations. Given that the error of each of
the estimates is α, the expected error for the step, βi, will tend to be greater than α, This is most clearly
seen in the worst case where every member of T has negative incremental utility. The correct decision
for this step is to not adopt any transformation. However, there is probability α that a given transforma-
tion will be estimated to have positive incremental utility and be adopted. Typically, the larger the
number of transformations, the greater the probability that at least one of the estimates will be in error.
Thus, βi is a function of the size of T. The actual relationship depends on the covariance between
the distribution of incremental utility data points associated with each transformation. Unfortunately,
this information is generally unavailable.

It is difficult, if not impossible, to characterize the precise relationship between the size of T and βi.
We have considered two methods for setting α to achieve a step error of βi:

WORST – CASE : := i | | (default)

BEST – CASE : := i

(7)

(8)

(9)

35

In the worst case the error can grow linearly with the size of the number of transformations, for exam-
ple when every transformation has negative incremental utility and the covariances between the dis-
tributions are the worst possible. This situation will probably never arise in practice, however, it
does provide a strong guarantee that the observed statistical error will not be higher than expected.
The best-case model, Equation 6, assumes that the error does not grow appreciably as the size of T
grows. We have performed some empirical evaluations that show that this assumption can be reason-
able if T is relatively small (e.g., 30). The advantage of this assumption is that the size of T does
not have to be known in advance so we can allow the transformation generator to add new transforma-
tions into Τ as we are evaluating the existing members.

A.1.2 Error Across Steps

Let βi denote the chance of adopting a transformation with negative incremental utility on the ith
step. As the number of steps grows, so does the chance that at least one step will result in a decrease
in expected utility. However, even if some steps reduce utility, the final problem solver may still
be a significant improvement. By default, we implement a liberal policy. COMPOSER allows an
error of δ at each step, the rational being that it is worth one step backwards to quickly take several
steps forward. The alternative, worst-case, approach is to limit the probability that COMPOSER
will adopt any incorrect step to less than or equal to δ (i.e., Σβi ≤ δ). This guarantees that COMPOSER
satisfies the error requirement, but may require many more examples than the former approach. There
are different ways to implement the worst-case approach depending on if we know the number of
possible steps in advance. We have considered three methods for setting βi in terms of the overall
error parameter δ:

LIBERAL–BOUND : i := (default)

WORST–CASE–BOUND LIMITED–STEPS : i := k

WORST–CASE–BOUND UNLIMITED–STEPS : i := 6
i2 2

The default policy, Equation 7, relies on the assumption that the magnitude of the incremental utility
of incorrect steps is comparable to the magnitude of the incremental utility of correct steps so that
even if some steps reduce utility, the final result will tend to improve on the initial problem solver.
This assumption has held across several simulation experiments. The later two equations are useful
when efficiency must be sacrificed for rigor. When the number of steps can be limited in advance,
one can simply divide the error evenly over each of the k steps (Equation 8). When the number of
steps is unbounded in advance, the error at each step must be such that no matter what the final number
of steps, the total error sums to less than δ. Equation 9 satisfies this requirement.11

11. This equation was suggested to us by Russell Greiner. and is the basis for his PALO algorithm (see [Greiner92a]).

36

Once the application implementor chooses a model for the error within a step and a model for the
error across steps, these should be unified into a overall function Bound(δ, i, |Τ|) which combines
the two choices into a error level for each estimate for the ith step in the hill-climbing search.

A.2 TAILORING Q(α) AND n0

The function Q(α) models the normalized expected discrepancy between the estimated incremental
utility and the true incremental utility. Here we consider a more general definition, Q(α, n). The
estimate is the average of a finite sample of n data points. This sample will be roughly representative
of the actual distribution of data points as it is drawn randomly from the fixed distribution. However
this sample will be more or less representative depending on random chance, and so the mean of the
sample will be more or less close to the true mean of the distribution. The Nádas stopping rule bounds
the normalized difference, d, between the sample mean and the true mean. The normalized difference
is the difference divided by the observed variance in the sample mean. The expected normalized
difference can be modeled by a probability distribution function which shows the likelihood that a
particular normalized difference arises from a random sample. Such a distribution function is illus-
trated in Figure 7. The bell shaped curve shows the likelihood of observing different normalized
differences. The function Q(n, α), also called the α/2th quantile of this distribution, is the positive
difference d such that the probability of observing a difference greater than this is less than or equal
to α/2.

a/2

Figure 7: Probability distribution of the normalized difference between the sample
mean and true mean of the original distribution. Q(n, α) is the value such that the
probability of achieving a distance greater than this is less than or equal to α/2.

Q(n, α)

a a/2
0

Pr Xn – E[X]
S2

n
n

= d

d

It is rarely possible to know the exact distribution of differences for a given learning situation. Fortu-
nately, no matter what the underlying distribution, as n increases, the distribution of differences con-
verges to a normal distribution with zero mean and unit variance (also called a standard normal distri-
bution). This property is asserted by the central limit theorem in statistics. This fact implies, under
some weak conditions,12 that function Q(n, α) can be approximated satisfactorily using the quantile
of a standard normal distribution. The approximation improves as the sample size increases. This

12. The distribution must have positive variance and hence finite mean.

(10)

(11)

37

is the motivation behind the n0 parameter. Taking a sufficiently large initial sample of data points
ensures an accurate approximation. We have investigated two approximation methods for Q(n, α):

STANDARD – NORMAL : Q (n,) = x such that
x

1 2 e–0.5y2dy =
2

 (default)

T : Qt(n,) = x such that

x

(n + 1) 2
n (n 2)(1 + y2 r)(n+1) 2 dy =

2

The first, COMPOSER’s default, is based on the standard normal distribution model. The second
is based on a model called the student t distribution. This second model is accurate when there is
high variance in the sample, but it is more expensive to compute. For a given learning situation, the
function Q(n, α) and n0 should be chosen to best model the expected discrepancy in the given learning
situation. If an exact model can be determined then an initial sample size is unnecessary. In general,
higher variance in incremental utility values requires a greater n0 ensure the approximation model
is a close approximation. Smaller values for δ require more precise modeling of the error and therefore
a better approximation. In general, the smaller the requested error level, the greater the n0 should
be to ensure a close approximation to δ. If n0 is set too small, the likely result is a higher-than-requested
statistical error. If n0 is too large, an excessive number of examples is required to perform statistical
inference. The optimal setting for no is difficult to determine, however the general experience in
the statistical community is that the normal approximation becomes quite good after only a few initial
samples. We recommend a value around fifteen.

A.3 GATHERING STATISTICS

Given a current problem solver PS and a set of transformations T, COMPOSER must infer from exam-
ples the likely difference in utility between the current problem solver and each of the transformed
problem solvers. For many application there are natural ways to both reduce the number of utility
values necessary to make inferences, and to reduce to cost of obtaining each utility value.

As was shown in the theoretical analysis, the number of examples needed to make statistical infer-
ences grows with the variance in the incremental utility values. Using a sampling technique called
blocking it is often possible to minimize this variance [Büringer80]. To understand blocking, consider
the problem of finding the highest yielding variety of wheat. Wheat yield is effected by several factors
including the factor of interest, the variety of wheat, and other nuisance factors (e.g., the weather
conditions in the year the crop was grown). Often these nuisance factors have the greatest influence,
washing out the contribution of the factor of interest, and thus increasing the variance in the data.
A standard solution, called randomized block design is to combine all data with identical values on
their nuisance factors into a single block, and only consider the differences in the observations within
the block when computing utility values.

38

In COMPOSER, the nuisance factors are the specific characteristics of each problem drawn from
the task distribution – some problems are easy, others hard, and these differences are likely to over-
whelm the differences due to the choice of transformation. The solution we have by default adopted
is to block transformations by problem. We take each problem (the block) and observe the behavior
of each possible transformation on that problem. Incremental utility values are then derived by sub-
tracting the utility of the default strategy from the utility of each transformation in turn, for that block.
When the problem influences are dominant this procedure can lead to a significant reduction in the
number of examples needed for statistical inference. These problem influences tend to dominate
in many of the intended applications as transformations generally make relatively small incremental
changes to the current problem solver, and therefore each transformed problem solver will perform
similarly on similar problems. The alternative to blocking is to compute the incremental utility where
each utility value is derived from a different problem. In some situations it may be necessary to per-
form this strategy as it may not be possible to repeatedly solve the identical problem. Blocking will
also not help much if problem differences are small relative to the effect of the transformations.

In some applications it may also be possible to reduce the cost of obtaining utility data. The simple
strategy we recommend is to actually solve a given problem with each of the candidate problem solv-
ers. The complexity of this brute-force processing an example is therefore tied to the complexity
of each of the |T| problem solvers. In some learning situations brute-force processing may prove too
expensive. For example, one or more of the candidate problem solvers may be intractable. Further-
more, the brute-force force method is intrusive – it requires explicit experimentation with alternative
problem solvers. In some learning situations is is desirable to learn passively, through the normal
operations of the problem solver. As gathering statistics is COMPOSER’s principal expense, it is
important to take into account any information that could reduce this cost.

Learning cost can be dramatically reduced if there is a detailed cost model of the problem solver that
efficiently derives the ramification of proposed transformations without actually solving the problem
(e.g. [Greiner89, Subramanian90]). With such a model we could simply draw a random training ex-
ample and then use the model to determine the effect of different transformations. Such models are
rarely available. Short of this, it may be possible to extract the necessary statistics to determine the
effectiveness of different transformations by solely by observing the normal operations of the current
problem solver. In Section 4 we describe one such unobtrusive implementation. Sometimes it is
only possible to extract partial information in this way. Greiner and Jurisica [Greiner92a] propose
one method for using such partial information that does not conflict with COMPOSER’s assumptions
and could incorporated.

Appendix B BIN-WORLD Domain
This domain, introduced in [Gratch91b], highlights deficiencies in PRODIGY/EBL’s utility analysis
and Etzioni’s non-recursive hypothesis. The domain is a robot assembly task where the goal is to

39

construct a composite part from a set of components. All the components for a particular part are
stored in a bin. If all the components in the bin are free of defects, the part may be assembled. Other-
wise another bin must be examined for acceptability. The INSPECT–BIN operator determines if
a given bin is suitable for assembly. The ASSEMBLE–COMPONENTS operator constructs the part.

B.1 DOMAIN THEORY
(ASSEMBLE–COMPONENTS (<BIN>)
 (preconds (exists (<BIN>) (parts–bin <BIN>) (defect–free–components <BIN>)))
 (effects ((add (TOP)))))

(INSPECT–BIN (<BIN>)
 (preconds (forall (<MEMBER>) (in–bin <MEMBER> <BIN>)

(GOOD <BIN> <MEMBER>)))
 (effects ((add (defect–free–components <BIN>)))))

B.2 PROBLEM DISTRIBUTION

A problem distribution is defined by enumerating a set of problem classes and assigning probabilities
to each class. A set of problems is created by randomly constructing problems according to the distri-
bution. The experiment is based on a uniform distribution over two problem classes. This means
that each class has an equal chance of participating in a problem solving attempt. The first class con-
tains problems with fifty bins of two components each. Forty-nine bins contain a defective compo-
nent. One bin contains no defects. The bins are ordered with the defect-free bin last. The second
class contains problems with two bins of two hundred components each. One bin is defect–free.
The other bin contains a defective component. The components are ordered with the defective com-
ponent last. The bins are also ordered with the defect–free bin last.

The rational behind this problem distribution is to construct a distribution with high variance. PRODI-
GY/EBL bases its utility estimates on a single example. Estimating utility of a bi-modal distribution
(or any distribution with high variance) from a single example results in an inaccurate representation
of the true incremental utility of any learned control rule.

References
[Berger80] J. O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer Ver-

lag, 1980.

[Borgida89] A. Borgida and D. W. Etherington, “Hierarchical Knowledge Bases and Effi-
cient Disjunctive Reasoning,” Proceedings of the First International Confer-
ence on Principles of Knowledge Representation and Reasoning, Toronto, On-
tario, Canada, May 1989, pp. 33–43.

[Büringer80] H. Büringer, H. Martin, and K. –H. Scriever, Nonparametric Sequential Selec-
tion Procedures, Birkhäuser Publishers, Boston, 1980.

40

[Bylander92] T. Bylander, “Complexity Results for Extended Planning,” Proceedings of the
First International Conference on Artificial Intelligence Planning Systems, Col-
lege Park, Maryland, June 1992, pp. 20–27.

[Chapman87] D. Chapman, “Planning for Conjunctive Goals,” Artificial Intelligence 32, 3
(1987), pp. 333–378.

[Cheeseman89] P. Cheeseman, B. Kanefsky and W. M. Taylor, “Where the Really Hard Problems
Are,” Proceedings of the Twelfth International Joint Conference on Artificial In-
telligence, Sidney, Australia, August 1989, pp. 163–169.

[Chien94] S. A. Chien, J. M. Gratch, and M. C. Burl, “On the Efficient Allocation of Re-
sources for Hypothesis Evaluation in Machine Learning: A Statistical Ap-
proach,” Technical Report UIUC–BI–AI–94–01, Beckman Institute, University
of Illinois at Urbana-Champaign, January 1994.

[Dean91] T. L. Dean and M. P. Wellman, Planning and Control, Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1991.

[DeJong86] G. F. DeJong and R. J. Mooney, “Explanation–Based Learning: An Alternative
View,” Machine Learning 1, 2 (April 1986), pp. 145–176. (Also appears as Tech-
nical Report UILU–ENG–86–2208, AI Research Group, Coordinated Science
Laboratory, University of Illinois at Urbana–Champaign.)

[Dean88] T. Dean and M. Boddy, “An Analysis of Time–Dependent Planning,” Proceed-
ings of The Seventh National Conference on Artificial Intelligence, Saint Paul,
MN, August 1988, pp. 49–54.

[Dechter87] R. Dechter and J. Pearl, “Network–Based Heuristics for Constraint–Satisfaction
Problems,” Artificial Intelligence 34, 1 (December 1987), pp. 1–38.

[Dechter92] R. Dechter, “Constraint Networks,”in Encyclopedia of Artificial Intelligence,
Stuart C Shapiro (ed.), John Wiley and Sons, Inc., 1992.

[DeGroot70] M. H. DeGroot, Optimal Statistical Decisions, McGrawHill Book Co., New
York, 1970.

[Doyle90] J. Doyle, “Rationality and its Roles in Reasoning (extended version),” Proceed-
ings of the National Conference on Artificial Intelligence, Boston, MA, 1990, pp.
1093–1100.

[Eorl92] K. Eorl, D. S. Nau and V. S. Subrahmanian, “On the Complexity of Domain–In-
dependent Planning,” Proceedings of the National Conference on Artificial In-
telligence, San Jose, CA, July 1992, pp. 381–386.

[Etzioni90a] O. Etzioni, “A Structural Theory of Search Control,” Ph.D. Thesis, Department
of Computer Science, Carnegie–Mellon University, Pittsburgh, PA, 1990.

41

[Etzioni90b] O. Etzioni, “Why Prodigy/EBL Works,” Proceedings of the National Confer-
ence on Artificial Intelligence, Boston, MA, August 1990, pp. 916–922.

[Etzioni91] O. Etzioni, “STATIC a Problem–Space Compiler for PRODIGY,” Proceedings
of the National Conference on Artificial Intelligence, Anaheim, CA, July 1991,
pp. 533–540.

[Etzioni92] O. Etzioni and S. Minton, “Why EBL Produces Overly–Specific Knowledge: a
Critique of the PRODIGY Approaches,” Proceedings of the Ninth International
Conference on Machine Learning, Aberdeen, Scotland, July 1992, pp. 137–143.

[Fikes71] R. E. Fikes and N. J. Nilsson, “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving,” Artificial Intelligence 2, 3/4 (1971), pp.
189–208.

[Fisher81] M. Fisher, “The Lagrangian Relaxation Method for Solving Integer Program-
ming Problems,” Management Science 27, 1 (1981), pp. 1–18.

[Freuder82] E. C. Freuder, “A Sufficient Condition for Backtrack–Free Search,” J. Associ-
ation for Computing Machinery 29, 1 (January 1982), pp. 24–32.

[Goldberg82] A. Goldberg, P. W. Purdom and C. A. Brown, “Average time analysis of simpli-
fied Davis–Putnam procedures,” Information Process. Lett. 15, (1982), pp.
72–75.

[Govindarajulu81] Z. Govindarajulu, The Sequential Statistical Analysis, American Sciences Press,
INC., Columbus, OH, 1981.

[Gratch91] J. Gratch and G. DeJong, “A Hybrid Approach to Guaranteed Effective Control
Strategies,” Proceedings of the Eighth International Workshop on Machine
Learning, Evanston, IL, June 1991.

[Gratch92a] J. Gratch and G. DeJong, “COMPOSER: A Probabilistic Solution to the Utility
Problem in Speed–up Learning,” Proceedings of the National Conference on Ar-
tificial Intelligence, San Jose, CA, July 1992, pp. 235–240.

[Gratch92b] J. Gratch and G. DeJong, “A Framework of Simplifications in Learning to Plan,”
First International Conference on Artificial Intelligence Planning Systems, Col-
lege Park, MD, 1992, pp. 78–87.

[Gratch93a] J. Gratch and G. DeJong, “Rational Learning: A Principled Approach to Balanc-
ing Learning and Action,” Technical Report UIUCDCS–R–93–1801, Depart-
ment of Computer Science, University of Illinois, Urbana, IL, April 1993.

[Gratch93b] J. Gratch and S. Chien, “Learning Search Control Knowledge for the Deep Space
Network Scheduling Problem,” Proceedings of the Tenth International Confer-
ence onf Machine Learning, Amherst, MA, July 1993.

42

[Gratch93c] J. Gratch, S, Chien, and G, DeJong, “Learning Search Control Knowledge to Im-
prove Schedule Quality,” IJCAI93 scheduling workshop.

[Gratch93d] J. M. Gratch, “COMPOSER: A Decision-Theoretic Approach to Adaptive Prob-
lem Solving,” Technical Report UIUCDCS–R–93–1806, Department of Com-
puter Science, University of Illinois, Urbana, IL, 1993.

[Gratch94] J. Gratch, S. Chien, and G. DeJong, “Improving Learning Performance Through
Rational Resource Allocation,” Proceedings of the Twelfth National Conference
on Artificial Intelligence, Seattle, WA, August 1994.

[Greiner89] R. Greiner and J. Likuski, “Incorporating Redundant Learned Rules: A Prelimi-
nary Formal Analysis of EBL,” Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, Detroit, MI, August 1989, pp. 744–749.

[Greiner92a] R. Greiner and I. Jurisica, “A Statistical Approach to Solving the EBL Utility
Problem,” Proceedings of the National Conference on Artificial Intelligence,
San Jose, CA, July 1992, pp. 241–248.

[Greiner92b] R. Greiner and W. W. Cohen, “Probabilistic Hill–Climbing,” Proceedings of
Computational Learning Theory and ’Natural’ Learning Systems, 1992 (to ap-
pear).

[Hogg78] R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, Macmillan
Publishing Co., Inc., London, 1978.

[Holder92] L. B. Holder, “Empirical Analysis of the General Utility Problem in Machine
Learning,“ Proceedings of the National Conference on Artificial Intelligence,
San Jose, CA, July 1992, pp. 249–254.

[Horvitz89] E. J. Horvitz, G. F. Cooper and D. E. Heckerman, “Reflection and Action Under
Scarce Resources: Theoretical Principles and Empirical Study,” Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence, Detroit,
MI, August 1989, pp. 1121–1127.

[Knoblock89] C. Knoblock, “Learning Hierarchies of Abstraction Spaces,” Proceedings of the
Sixth International Workshop on Machine Learning, Ithaca, NY, 1989, pp.
241–245.

[Korf87] R. E. Korf, “Planning as Search: A Quantitative Approach,” Artificial Intelli-
gence 33, (1987), pp. 65–88.

[Laird86] J. E. Laird, P. S. Rosenbloom and A. Newell, Universal Subgoaling and Chunk-
ing: The Automatic Generation and Learning of Goal Hierarchies, Kluwer Aca-
demic Publishers, Hingham, MA, 1986.

[Laird92] P. Laird, “Dynamic Optimization,” Proceedings of the Ninth International Con-
ference on Machine Learning, Aberdeen, Scotland, July 1992, pp. 263–272.

43

[Letovsky90] S. Letovsky, “Operationality Criteria for Recursive Predicates,” Proceedings of
the National Conference on Artificial Intelligence, Boston, MA, August 1990,
pp. 936–941.

[Lewins93] N. J. Lewins, “Practical Solution-caching for PROLOG: An Explanation-based
Learning Approach, Ph.D., Thesis, Department of Computer Science, Universi-
ty of Western Australia, July 1993.

[Maron94] O. Maron and A W. Moore, “Hoeffding Races: Accelerating Model Selection
Search for Classification and Function Approximation,” In Advances in Neural
Information Processing Systems 6, Morgan Kaufmann, April 1994.

[Melhorn84] K. Melhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer
Verlag, 1984.

[Miller92] D. P. Miller, R. S. Desai, E. Gat, R. Ivlev and J. Loch, “Reactive Navigation
through Rough Terrain: Experimental Results,” Proceedings of the National
Conference on Artificial Intelligence, San Jose, CA, July 1992, pp. 823–828.

[Minton88] S. Minton, in Learning Search Control Knowledge: An Explanation–Based Ap-
proach, Kluwer Academic Publishers, Norwell, MA, 1988.

[Mitchell86] T. M. Mitchell, R. Keller and S. Kedar–Cabelli, “Explanation–Based General-
ization: A Unifying View,” Machine Learning 1, 1 (January 1986), pp. 47–80.

[Mitchell92] D. Mitchell, B. Selman and H. Levesque, “Hard and Easy Distributions of SAT
Problems,” Proceedings of the National Conference on Artificial Intelligence,
San Jose, CA, July 1992, pp. 459–465.

[Moore94] A. W. Moore and M. S. Lee, “Efficient Algorithms for Minimizing Cross Valida-
tion Error,” Proceedings of the Eleventh International Conference on Machine
Learning, July 1994.

[Mostow81] J. Mostow, “Mechanical Transformation of Task Heuristics into Operational
Procedures,” Ph.D. Thesis, Department of Computer Science, CMU, Pittsburgh,
PA, 1981.

[Nádas69] A. Nádas, “An extension of a theorem of Chow and Robbins on sequential confi-
dence intervals for the mean,” The Annals of Mathematical Statistics 40, 2
(1969), pp. 667–671.

[Natarajan89] B. K. Natarajan, “On Learning from Exercises,” Proceedings of the Second An-
nual Workshop on Computational Learning Theory, Santa Cruz, CA, JULY
1989, pp. 72–87.

44

[Pérez92] M. A. Pérez and O. Etzioni, “DYNAMIC: a new rule for trining problems in
EBL,” Proceedings of the Ninth International Conference on Machine Learning,
Aberdeen, Scotland, July 1992, pp. 367–372.

[Roy71] B. Roy, “Problems and Methods with Multiple Objective Functions,” Mathe-
matical Programming, Vol. 1, No. 2, 1971.

[Russell89] S. Russell and E. Wefald, “Principles of Metareasoning,” Proceedings of the
First International Conference on Principles of Knowledge Representation and
Reasoning, Toronto, Ontario, Canada, May 1989, pp. 400–411.

[Schoppers92] M. Schoppers, “Building Plans to Monitor and Expoint Open–Loop and Closed–
Loop Dynamics,” Proceedings of the First International Conference on Artifi-
cial Intelligence Planning Systems, College Park, Maryland, June 1992, pp.
204–213.

[Schwuttke92] U. M. Schwuttke and L. Gasser, “Real–time Metareasoning with Dynamic Tra-
de–off Evaluation,” Proceedings of the National Conference on Artificial Intelli-
gence, San Jose, CA, July 1992, pp. 500–506.

[Subramanian90] D. Subramanian and R. Feldman, “The Utility of EBL in Recursive Domain
Theories,” Proceedings of the National Conference on Artificial Intelligence,
Boston, MA, August 1990, pp. 942–949.

[Subramanian92] D. Subramanian and S. Hunter, “Measuring Utility and the Design of Provably
Good EBL Algorithms,” Proceedings of the Ninth International Conference on
Machine Learning, Aberdeen, Scotland, July 1992, pp. 426–435.

[Tadepalli91] P. Tadepalli, “Learning with Inscrutable Theories,” Proceedings of the Eighth
International Workshop on Machine Learning, Evanston, IL, June 1991, pp.
544–548.

[Wellman92] M. P. Wellman and J. Doyle, “Modular Utility Representation for Decision–
Theoretic Planning,” Proceedings of the First International Conference on Arti-
ficial Intelligence Planning Systems, College Park, Maryland, June 1992, pp.
236–242.

