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1 Introduction
Nonparametric methods have been successfully applied to many existing graphical models with
latent variables [3, 2, 7, 4]. In contrast to all previous work, the infinite Hidden Conditional Random
Fields (iHCRF), introduced in this work, is the first, to our knowledge, discriminative bayesian
nonparametric model.

Finite Hidden Conditional Random Fields (HCRFs) [5] are discriminative models that learn the joint
distribution of a class label and a sequence of latent variables conditioned on a given observation
sequence, with dependencies among latent variables expressed by an undirected graph. A limitation
of the finite HCRFs is that finding the optimal number of hidden states for a given classification
problem is not always intuitive, and involves cross–validation, that can be very computationally
expensive. This limitation motivated our nonparametric HCRF model that automatically learns the
optimal number of hidden states given a specific dataset. This is achieved by using Hierarchical
Dirichlet Processes (HDPs) to allow for an infinite number of hidden states for the HCRF. The reader
is encouraged to look at [6] for a complete description of Hierarchical Dirichlet Processes [6].

2 Infinite Hidden Conditional Random Fields (iHCRFs)
We represent T observations as X = [x1,x2, . . . ,xT ]. Each observation at time t ∈ {1, . . . , T} is
represented by a feature vector f(X, t) ∈ ℜd, where d is the number of features. ft, for brevity,
is a vector that can include any features of the observation sequence. One of the main repre-
sentational power of iHCRFs is that the latent variables can depend on arbitrary features of the
observation sequence. We wish to learn a mapping between observation sequence X and class
label y ∈ Y , where Y is the set of available labels. The iHCRF does so by estimating the con-
ditional joint distribution over a sequence of latent variables s = [s1, s2, . . . , sT ] and a label
y, given X. The iHCRF allows its latent variables to select from an infinite number of hidden
states H = {h1, h2, . . . , h∞} and learn an appropriate model configuration automatically. Being
discriminative, the iHCRF models the conditional probability of a class label given an observa-
tion sequence by: P (y | X;θ) =

∑
s P (y, s | X;θ) =

∑
s Ψ(y,s,X;θ)∑

y′∈Y,s Ψ(y′,s,X;θ) .The potential function

Ψ(y, s,X;θ) ∈ ℜ is parameterized by θ, which measures the compatibility between a label, a se-
quence of observations and a configuration of the hidden states. In this work, the graph of our
model is a chain where each node corresponds to a st. Our parameter vector θ is made up of three
components: θ = [θxT θyT θeT ]T . θx models the compatibility between features and hidden
states. θy models the compatibility of the hidden states and labels . θe models the compatibility of
state transitions and labels. It is the equivalent to the transition matrix in a iHMM, but an important
difference is that an HCRF model keeps a matrix of “transition” weights for each label. We define
potential functions for each of these relationships, and our Ψ as their product along the chain:

Ψ(y, s,X;θ) = Ψx(s,X;θx)Ψy(y, s;θy)Ψe(y, s;θe) (1)
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Ψx(s,X;θx) =

T∏
t=1

exp{ft · θx[st]}, Ψy(y, s;θy) =

T∏
t=1

exp{θy[y, st]}, Ψe(y, s;θe) =

T∏
t=2

exp{θe[y, sλ, sκ]}

where a · b denotes the dot product between vectors a and b. We use the notation θx[hi] to refer to
the weights that corresponds to state hi. Similarly, θy[y, hi] refers to parameters that correspond to
class y and state hi, and θe[y, hi, h

′] measures the compatibility of a transition from hi to h′ and y. In
our iHCRF θx,θy , and θe are obtained as a function of the mixing proportions produced from three
Hierarchical Dirichlet Processes [6], a separate process for each of our potential functions in (1):
HDPx, HDPy , HDPe. The choice to use HDPs and not separate DPs was in line with previous work
(e.g. [3]) as for each set of the iHCRF parameter sets we want to introduce intraset dependencies.
These dependencies should be different for each of the three components of θ, which was also
the reason for our choosing three distinct HDPs with different hyperparameters and counts. The
number of visited states represented in an iHCRF, K, is nevertheless the same for all three HDPs.
Our iHCRF is then parameterized only by the 6 hyperparameters —{αx

0 , γ
x, αy

0 , γ
y, αe

0, γ
e}:

P (y, s | X;αx
0 , γ

x, αy
0 , γ

y, αe
0, γ

e) ∝ Ψx(s,X;θx)Ψy(y, s;θy)Ψe(y, s;θe) (2)

βx ∼ GEM(γx), πx
j | βx ∼ DP (αx

0 ,β
x), θx

j = Kπx
j − 1 (3)

βy ∼ GEM(γy), πy
j | βy ∼ DP (αy

0 ,β
y), θy

j = Kπy
j − 1 (4)

βe ∼ GEM(γe), πe
j | βe ∼ DP (αe

0,β
e), θe

j = Kπe
j − 1 (5)

The functions for θx,θy,θe were chosen to allow for negative weights.

For hyperparameter learning and inference, we adapted the Beam Sampling algorithm, an MCMC
sampling method that has successfully been used to sample whole trajectories for the iHMM [3].
Since we have adopted in this work a chain structure for our model, the Beam Sampler can easily be
adapted for the iHCRF, by forward filtering and backward sampling on an undirected chain.

3 Experiments
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Figure 1: Convergence analysis of
iHCRF number of represented states K.

We evaluated the performance of the proposed iHCRF
and the adapted Beam Sampler on the recognition
of agreement and disagreement episodes in video se-
quences [1]. We conducted iHCRF experiments with
initial values for K = {1, 10, 20, · · · , 100} spliting our
dataset equally between training and testing sets. As can
be seen in figure 1, our model was able to converge within
20 iterations, in all cases, to a K ranging from 3 to 5
states. The iHCRF model with initial K = 10 converged
to 3 states and achieved 69.23% total accuracy, recogniz-
ing 76.92% of agreement and 61.54% of disagreement
test cases. We trained and tested finite HCRFs, with hid-
den states 2, 3, 5, 7 and 9, and 11 different random ini-
tializations, using the same datasplits. The best total ac-
curacy was 61% and it was shown that converging to a
model with 3 states was the appropriate choice, same as
our iHCRF model.

References
[1] K. Bousmalis, L.-P. Morency, and M. Pantic. Modeling hidden dynamics of multimodal cues for spontaneous agreement and disagreement recognition. In IEEE

FG 2011.

[2] E.B. Fox. Bayesian Nonparametric Learning of Complex Dynamical Phenomena. PhD thesis, MIT, July 2009.

[3] J. Van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani. Beam sampling for the infinite hidden markov model. In ICML 2008.

[4] P. Orbanz and J. Buhmann. Nonparametric bayes image segmentation. Int’l Journal in Computer Vision, 77:25–45, 2008.

[5] A. Quattoni, S. Wang, L.P. Morency, M. Collins, and T. Darrell. Hidden conditional random fields. IEEE PAMI, pages 1848–1852, 2007.

[6] Y. W. Teh, M. I. Jordan, M. J. Beal, and Blei D.M. Hierarchical dirichlet processes. Journal of the American Statistical Association, 101:1566–1581, 2006.

[7] J. Van Gael, Y.W. Teh, and Z. Ghahramani. The infinite factorial hidden markov model. Advances in Neural Information Processing Systems, 21:1697–1704,
2009.

2


