
Presented at the IJCAI International Workshop on Graphical Structures for Knowledge Representation and Reasoning, 2009

1

Abstract
Explorations of graphical representation and rea-
soning have yielded intriguing results spanning
symbol, probability and signal processing. Here
we explore an integrative application of graphs, as
a path towards cognitive architectures of increased
elegance, functionality, and extensibility. The spe-
cific focus is on steps towards a graphical reim-
plementation and extension of the cognitive inner
loop within the Soar architecture. Alchemy, an im-
plementation of Markov logic, is used for initial
experiments, yielding insights into what will ulti-
mately be required for full graphical implementa-
tions of enhanced cognitive inner loops.

1 Introduction
In [Rosenbloom, 2009] a new strategy was laid out for de-
veloping cognitive architectures [Newell, 1990] via a uni-
form implementation level based on factor graphs
[Kschischang et al., 2001]. A cognitive architecture seeks
to provide a coherent integration of capabilities sufficient
for human-level artificial intelligence, whether in the con-
text of a detailed model of human cognition or a system
more loosely tied to the specifics of human behavior. Such
an architecture requires the integration of a wide range of
cognitive capabilities for, among other things, representa-
tion and memory, problem solving and planning, learning,
reflection, interaction (including perception and motor con-
trol, use of language, etc), and the social aspects of cogni-
tion (such as emotion, collaboration, etc.).
 The implementation level for cognitive architectures sits
below the architectural memories and mechanisms, and pro-
vides the technologies out of which they are built. Tradi-
tionally, it is simply a programming language of some sort
that may impact the efficiency, portability and robustness of
the architecture, but is itself of little theoretical interest. The
idea of basing the implementation level on graphical models
looks to go beyond this by leveraging the uniform manner in
which they support broad varieties of symbol, probability,
and signal processing. The intuition is that, if the range of
capabilities required for human-level intelligence can be
built out of, and integrated within, such a uniform substrate
then new architectures that are more elegant, functional and

extensible may be possible. The ultimate goal is thus to
determine whether a graphical implementation level can
enable a new and improved generation of architectures.
 As a step in this direction, I have been investigating a
graphical reimplementation and enhancement of the Soar
architecture [Rosenbloom et al., 1993]. Soar is one of the
longest standing – over 25 years – and most thoroughly in-
vestigated cognitive architectures. It also possesses the un-
usual status of existing in both relatively uniform (up
through version 8 [Laird and Rosenbloom, 1996]) and di-
verse (version 9 [Laird, 2008]) forms, providing a natural
path for reimplementation that starts with a uniform version
and then attempts a more uniform reintegration of later di-
versity. Simultaneously, opportunities can also be sought
for expanding beyond Soar’s predominant symbol process-
ing paradigm, through the deep integration of probability
and signal processing, in support of improved reasoning
about, and interaction with, the real world.
 This article: (1) examines what is involved in reconstruct-
ing a more uniform and functional graph-based cognitive
inner loop for Soar, i.e., its core decision cycle, in which
memory is accessed about the current situation and a deci-
sion is made about what to do next; (2) reports results from
experiments towards this end based on Alchemy [Domingos
et al., 2006]; and (3) identifies the path forward from here.
While not yet achieving a fully implemented and enhanced
version of Soar’s decision cycle, it does yield critical in-
sights into what will be necessary. First, however, the next
two sections cover prior background on cognitive scales,
Soar, and the graphical reimplementation of Soar.

2 Cognitive Scales and Soar
Part of the theory behind Soar as a model of human cogni-
tion is that scale counts in cognition [Newell, 1990]. As
cognition is analyzed in depth, the phenomena and their
properties change as the focus shifts from small spatiotem-
poral scales to larger ones. Newell discusses time scales
from 10-4 seconds (100 µs) up to 107 seconds (months), and
divides them into four bands in human cognition: biological
(10-4-10-2 seconds), cognitive (10-1-101 seconds), rational
(102-104 seconds) and social (105-107 seconds). In the bio-
logical band in particular there is also a spatial aspect to
these scales, since signals are limited in how far they can

A Graphical Rethinking of the Cognitive Inner Loop

Paul S. Rosenbloom
Department of Computer Science & Institute for Creative Technologies

University of Southern California
rosenbloom@usc.edu

Presented at the IJCAI International Workshop on Graphical Structures for Knowledge Representation and Reasoning, 2009 2

travel within such small time frames. Organelles (10-4 sec-
onds), neurons (10-3 seconds) and neural circuits (10-2 sec-
onds) yield spatial scales within the biological band, before
primitive deliberate acts (10-1 seconds) and operations (100
seconds) are reached at the base of the cognitive band.
 The architectural mechanisms in the earlier uniform ver-
sions of Soar were traditionally mapped onto a subset of
these time scales, starting with the elaboration cycle at 10
ms (neural circuits), the decision cycle at 100 ms (deliberate
acts), and activity in problem spaces at 1 second (opera-
tions) above this. The elaboration cycle involves parallel
match (via a variant of the Rete algorithm [Forgy, 1982])
and firing of productions based on the contents of a global
working memory. Functionally, it achieves one round of
parallel associative retrieval of information relevant to the
current situation. Production actions specify knowledge for
potential retrieval while production conditions specify the
circumstances under which that knowledge is relevant.
Conditions also bind variables for use in actions.

The decision cycle involves repeated cycles of elabora-
tion until quiescence; i.e., until no more productions can
fire. This elaboration phase is followed by a decision based
on preferences retrieved during elaboration. The elabora-
tion phase yields an interpretation of the current situation,
while the decision either selects an operator or generates an
impasse if no operator can be selected. Impasses engender
reflection, enabling processing to recur at the meta-level on
the problem of making the decision. The decision cycle is
Soar’s cognitive inner loop – it accesses whatever knowl-
edge is immediately available about the current situation
and then attempts to decide what to do next.

A sequence of decisions yields activity in a problem
space, amounting to some form of search if knowledge is
limited and impasses occur. Search in problem spaces (ps-
search) is: slow, with each decision occurring at the 100 ms
level; serial, via a sequence of operator selections and ap-
plications; and potentially combinatoric, yielding trees that
grow exponentially in the depth of the search. However, ps-
search is open to control by any knowledge accessible dur-
ing the decisions that occur within it. When the knowledge
is sufficient to uniquely determine the outcome of each de-
cision, behavior is more accurately characterized as algo-
rithmic, or knowledge-driven, than as search.

Accessing knowledge during a decision can also be
viewed as a search process – termed knowledge search (k-
search) – but one that contrasts strongly with ps-search in
character. K-search is: fast, with a 10 ms cycle time, paral-
lel, both in match and firing of productions; and subexpo-
nential, at least in theory, if not in reality in most implemen-
tations. K-search occurs over a closed, extensionally de-
fined, set of structures – the knowledge/productions in the
system – rather than dynamically generating an open search
space in the manner of ps-search. It is inherently algo-
rithmic, rather than using an open cognitive loop, and is thus
not itself penetrable by additional control knowledge.

Chunking [Laird et al., 1986] is a learning mechanism in
Soar that generates new productions based on the results of
problem space activity during impasses. It compiles knowl-

edge that is initially only available through activity at time
scales of 1 second or more down to knowledge that is “im-
mediately available” for use at the 10 ms time scale.
Chunking, in combination with the flexibility of Soar’s
problem solving, has been shown to yield a much wider
range of learning behaviors than just simple speed ups
[Rosenbloom, 2006] – such as concept acquisition and epi-
sodic learning – but speeding up behavior remains its most
essential functionality. In fact, the difficulty of producing
some of these wider learning behaviors, and of integrating
them with routine cognitive activity, was a key driver in
Soar 9’s shift towards diversity. Soar 9 adds, among other
things, new varieties of long-term memory and learning.

3 Prior Work on the Elaboration Cycle
The work reported in [Rosenbloom, 2009] focused on reim-
plementing Soar’s elaboration cycle (10 ms); and, in par-
ticular, on factor-graph algorithms for production match.
Factor graphs in general provide a means of efficiently
working with nearly decomposable functions of many vari-
ables. They arose in coding theory, where they underlie the
surprisingly effective performance of turbo codes. They are
similar to Markov networks (aka Markov random fields) in
being undirected graphs with nodes that correspond to vari-
ables. However, in addition to variable nodes there are also
factor nodes that represent functions over subsets of the
variables. Factor nodes are analogous to clique poten-
tials/weights in Markov networks, but they are directly in-
corporated as network nodes in factor graphs. Inference in
factor graphs may be done through variations on the stan-
dard summary-product algorithm – a message passing ap-
proach that generalizes the more familiar (loopy) belief
propagation algorithm in Bayesian networks [Pearl, 1983] –
or via Monte Carlo methods.

Although Soar’s Rete match algorithm could potentially
be implemented directly via factor graphs, the focus of the
prior work was on match algorithms arising more naturally
from factor graphs. The investigation began with a straight-
forward, although ultimately naïve, approach. Working
memory was represented as a three dimensional array of
potential working memory elements, with one dimension for
each of the three slots of a working memory element – ob-
ject, attribute and value – and a value of one in every array
cell for which the corresponding element was in working
memory and zero otherwise. In the factor graph, variable
nodes corresponded to production variables while factor
nodes corresponded to conditions and actions. Match oc-
curred via the summary-product algorithm, passing mes-
sages about the legitimate bindings of condition variables,
and eventually converging on bindings for action variables.

Without going into the gory details, this initial approach
raised generality, correctness and efficiency issues that ul-
timately led, through a sequence of optimizations and con-
ceptual adjustments, to a new graphical match algorithm
combining: (1) a junction-tree-like approach for graph con-
struction, to enable the tracking of compatible combinations
of bindings for different variables; and (2) an N-dimensional
generalization of quad/octrees (called exptrees for lack of an

Presented at the IJCAI International Workshop on Graphical Structures for Knowledge Representation and Reasoning, 2009

3

existing term) for working memory and messages that en-
ables uniform regions – i.e., regions in which all of the po-
tential working memory or message elements are either pre-
sent (one) or absent (zero) – to be matched without examin-
ing each element individually. The resulting match algo-
rithm yielded correct results with dramatically reduced
match times from the naïve approach. It also avoided creat-
ing the full production instantiations required by Rete, re-
ducing the worst-case bound on match cost to exponential in
the treewidth of a production rather than in the number of
conditions in the production (as in Rete).

Beyond match, the remainder of the elaboration cycle
consists of the firing of productions, empowering instanti-
ated actions to add and delete working memory elements by
flipping the corresponding array values from zero to one or
vice versa. Once working memory is updated, the next
elaboration cycle can begin.

4 Rethinking the Decision Cycle
In the work reported here, the focus has moved up to the
decision cycle (100 ms) – Soar’s cognitive inner loop –
comprising an elaboration phase and a decision. This is the
lowest level at which knowledge may affect decisions, at
which multiple fragments of knowledge may be combined,
and at which k-search may involve more than one cycle of
match and firing. It is also the key scale at which extending
Soar beyond strictly symbolic processing could lead to radi-
cally expanded functionality and at which it makes sense to
begin considering incorporation of Soar 9’s diversity.
 Any reimplementation of Soar’s elaboration phase must
support its three core functions: (1) elaborating the descrip-
tion of the current situation in working memory based on
relevant long-term knowledge; (2) generating operator pref-
erences based on this elaborated working memory; and (3)
altering working memory to reflect the application of se-
lected operators. The first two functions are mostly mono-
tonic, while the third is inherently non-monotonic. Overall,
operation is similar to that of a truth maintenance system
[Doyle, 1979], with operators determining the current as-
sumptions and elaborations automatically asserting and re-
tracting as these assumptions change.
 Two additional constraints on the long-term knowledge
must also be met by any reimplementation of the elaboration
phase. The first constraint is that it must be capable of be-
ing processed in bounded time and space. Soar’s produc-
tion-based elaboration phase runs in time that is bounded by
the volume of the elaboration phase – cost per production ×
number of productions × number of elaboration cycles. In
reality, the second dimension is close to constant, as a suita-
bly optimized Rete algorithm enables match time to remain
close to constant with growth in the number of productions
[Doorenbos, 1993]. However, the other two dimensions can
be problematic. As mentioned earlier, the cost per produc-
tion may be exponential in the size of the production. Even
worse, the length of the elaboration phase can be infinite –
new working memory elements can be generated on each
elaboration cycle that lead to more productions firing in the
next cycle. A reimplementation should at least avoid exac-

erbating these boundedness issues, and ideally improve on
them (such as the prior work’s improved match bound).
 The second constraint is that the long-term knowledge
must be learnable. Soar acquires productions via chunking,
and Soar 9 adds other mechanisms to acquire its additional
varieties of long-term knowledge; but satisfying this con-
straint in a graphical reimplementation is left to future work.
 Beyond these two constraints, the uniform versions of
Soar also lived with the constraint that all long-term knowl-
edge must be cast as productions. Productions have the
advantage that they are uniform, active, relatively flexible,
and learnable. They also have a long successful history in
cognitive modeling. Still, they have proven balky in dealing
with both declarative and perceptual knowledge, ultimately
leading to the elimination of this long held constraint in
Soar 9 and the addition of three new long-term memories –
two for declarative knowledge (semantic and episodic) and
one for perceptual knowledge (visual imagery) – each with
its own distinct variety of knowledge structures.
 The approach explored here is not to eliminate the third
constraint, but to replace it with one based on the varieties
of knowledge structures efficiently implementable via
graphical models. The hope is thereby to support a much
wider range of functionality – including symbol, probabil-
ity, and signal processing, as well as Soar 9’s new kinds of
knowledge structures – in a general yet uniform fashion.

The prior work discussed in Section 3 implemented a
complete elaboration cycle. A straightforward elaboration
phase is thus obtainable merely by repeating these cycles
until quiescence is reached. While such an elaboration
phase has been implemented, and initial ideas exist for ex-
tending it to continuous values and declarative memory, it
has a serious flaw in only being able to propagate informa-
tion forward across rule firings. Bidirectional information
flow is needed for probabilistic information to propagate
correctly across rules. It is also necessary for the implemen-
tation of trellis diagrams – in which a graph is composed of
a linked sequence of identical subgraphs – such as the hid-
den Markov models used in speech recognition and other
varieties of sequential signal processing.

The prior implementation supported bidirectional infor-
mation flow within rules, and reused the same rule graph on
each elaboration cycle – as is needed for a trellis – but the
only linkage across cycles was implicit in the working
memory elements generated during early elaboration cycles
and matched on later ones. In addition to a graph for the
generalized rules, a graph representing rule instantiations
and the linkages among them may be needed to support
bidirectional information flow across the rule instantiations
generated within an elaboration phase.

In contrast to the elaboration phase, there are many fewer
constraints on the decision procedure that follows it. Deci-
sions in Soar were based on vote counting in a very early
version, on symbolic preferences – acceptable, reject, better
worse, etc. – in most versions, and on a combination of
symbolic and (additive) numeric preferences in Soar 9. The
key constraint on a reimplementation of the decision proce-
dure is that all of the preferences accessed during the elabo-

Presented at the IJCAI International Workshop on Graphical Structures for Knowledge Representation and Reasoning, 2009 4

ration phase must be combined in an appropriate and tracta-
ble manner to yield either the selection of a unique operator
or the detection of an impasse.

5 Progress towards a New Decision Cycle
The lack of bidirectional message passing across elaboration
cycles in the existing implementation, in conjunction with a
desire to better understand the utility of existing graphical
languages – in particular those that already combine some
forms of symbolic and probabilistic reasoning, such as Al-
chemy, BLOG [Milch et al., 2007], and FACTORIE
[McCallum et al., 2008] – for implementing cognitive archi-
tectures, led to the decision to begin investigating the revi-
sion of Soar’s decision cycle via such a language. Alchemy,
which is based on combining first-order logic and Markov
networks to form Markov logic, was ultimately selected
because it: supports forms of both symbolic and probabilis-
tic processing along with nascent signal processing [Wang
and Domingos, 2008], provides an obvious approach to
working with both rules and their instantiations, is publi-
cally available, runs on multiple types of computers, and has
manuals, tutorials, and rapid response to emailed questions.1
 To date, several small-scale experiments have been run
with Alchemy: (1) re-implementing simple production sys-
tems that had previously been implemented via factor
graphs; (2) adding a form of semantic long-term memory to
the production memory; (3) exploring an implementation of
the eight puzzle, one of the earliest tasks investigated in
Soar [Laird and Newell, 1983] and the basis for early learn-
ing experiments with it [Laird et al., 1986]; and (4) experi-
menting with trellis diagrams.2
 In Alchemy, a Markov logic network (MLN) is defined
via first-order predicates and formulas, with weights as-
signed to the formulas. The MLN is then compiled into a
ground Markov network with binary nodes for each ground
predicate, links among nodes that appear in common formu-
las, and features for each possible ground formula. Infer-
ence is performed on this ground Markov network, unless
additional optimizations such as laziness (where grounding
only occurs for variables that take on non-default values
[Poon et al., 2008]) or lifting (where multiple ground atoms
are combined into single network nodes when they can be
guaranteed to pass the same messages during belief propa-
gation [Singla and Domingos, 2008]) are included.

The initial mapping of Alchemy to Soar’s decision cycle
focused on the first two functions of the elaboration phase:
elaborating the current situation in working memory based
on the contents of (a production-based) long-term memory,
and generating preferences. Productions were represented
as conditional formulas in an MLN file and the state of
working memory at the beginning of the decision cycle was

1 Alchemy has also been explored in the Icarus cognitive archi-

tecture [Langley and Choi, 2006], with a focus specifically on the
implementation of an inference component [Stracuzzi, 2009].

2 Several of these experiments have been replicated with
BLOG, but the results do not fundamentally alter the conclusions
reported here based on Alchemy.

represented as evidence in an Alchemy database file. A
single elaboration phase was then mapped onto a single in-
vocation of Alchemy’s inference procedure with this net-
work and database.

The details of this mapping and the ensuing experiments
are relatively uninteresting, so they are omitted here to con-
serve space. What is worth noting though are the implica-
tions of these experiments for a graphical reimplementation
of Soar in particular, and a graphical implementation level
for cognitive architectures in general. The most critical re-
sult is that the core of the mapping works, enabling a uni-
form elaboration phase that combines Soar’s standard rule-
based capabilities with probabilistic reasoning, simple trel-
lises and semantic memory. The approach solves the
aforementioned bidirectional, across rule, information flow
problem by compiling the rules into a ground Markov net-
work, and then performing inference in this ground network.
Because nodes in this network correspond to working mem-
ory elements, and each such node links to every other ele-
ment with which it coexists in a ground formula, the ground
Markov network provides a single linked network for the
entire elaboration phase. If the rules define a trellis, by
repetition across elaboration cycles, bidirectional inference
also occurs appropriately for it.

Another major result concerns the nature of production
match under this mapping. Alchemy does not use inference
in graphs to perform the equivalent of match for conditional
formulas. Instead, match corresponds to Alchemy’s extra-
network process of compiling (first-order) Markov logic
networks down to ground Markov networks. In essence, the
Markov logic network corresponds to the definition of the
production system while the ground Markov network corre-
sponds to working memory elements (the ground nodes) and
production instantiations (the ground formulas). In contrast
to the prior implementation, working memory elements cor-
respond to distinct nodes in this network rather than simply
serving as the basis for messages among nodes.

Given that the goal is ultimately to implement a broadly
functional cognitive architecture uniformly in graphs, Al-
chemy’s match-as-compilation approach is problematic. A
key question for future work therefore becomes whether it is
possible to unify match – i.e., the computation of ground
instances from first-order formulas – with the other neces-
sary forms of inference into a single graph that is processed
in a uniform manner, or whether it will be necessary to de-
velop a dual graph/network approach in which match occurs
via a first-order graph that generates, and is linked to, a
ground graph in which the remaining inference occurs. Ei-
ther way, the decision cycle will need to be extended from
its current two stages to three: (1) compilation/match to
generate a ground/instantiated network; (2) inference in the
ground/instantiated network; and (3) decision making.

A final significant outcome is more conceptual, and con-
cerns the general mapping between graphical systems and
the hierarchy of cognitive scales, particularly as mediated by
the mapping of both onto Soar. If the elaboration phase –
which performs k-search (100 ms) – consists of the compi-

Presented at the IJCAI International Workshop on Graphical Structures for Knowledge Representation and Reasoning, 2009

5

lation of, and inference in, a multi-layer ground network,
then two important consequences follow:

1. The goal for a probabilistic first-order reasoner should
not be a single uniform system capable of directly
solving any problem no matter how complex. Instead,
it should be bounded to the needs of k-search; e.g.,
only being capable of finding local minima in the solu-
tion space. Problems too complex to be solved in this
manner would require a sequence of deliberate acts –
i.e., steps in a problem space (ps-search) at the 1-
second time scale – to move among local minima in
search of a global minimum. Systems like Alchemy
can get stuck in local minima [Stracuzzi, 2009], but
according to this argument that is all a flat inference
system should ever strive for. Reaching global minima
in general requires a sequence of deliberate acts.

2. Cycles of message passing map onto the neural circuit
(10 ms) scale. Functionally this implies that the 10 ms
scale supports (only) local propagation of information,
the 100 ms scale supports global propagation but
(only) local minima, and global minima generally re-
quire time scales of 1 sec and above unless the prob-
lem is particularly simple or the system gets lucky.

Beyond these major implications, several smaller yet still
interesting results have also been extracted from the map-
ping and resulting experiments:

3. Production systems utilize specific forms of non-
monotonic reasoning, including an implicit closed-
world assumption about the contents of working mem-
ory, and the ability to arbitrarily add and delete work-
ing memory elements. Such capabilities map awk-
wardly onto first-order reasoners, such as Alchemy.

4. Many production systems, Soar included, provide the
ability to generate new unique symbols via production
actions. Although such actions are local to individual
productions, the process of checking uniqueness is a
global activity that is difficult to implement through
local message passing in a graph/network.

5. Exptrees served a role in the prior work that is analo-
gous to what laziness and lifting achieve in Alchemy.
The latter mechanisms eliminate unnecessary computa-
tion, either by avoiding the processing of default val-
ues or by grouping together items that can be treated
the same. With exptrees, defaults are identified natu-
rally and items are grouped by region if their values
are identical. Exptrees appear to be a coarser ap-
proach, but it may ultimately be possible to bring these
approaches more into alignment.

6. Experiments with simple trellises (linked repetitions)
and semantic memory (encoded as ground atoms) have
shown the feasibility of incorporating both within the
decision cycle, but they involve computing most prob-
able explanations (MPEs) rather than the marginals
used for production match in the prior work to generate
all instantiations. One possibility for the future is to
localize the use of marginals to the generation of
ground networks from first-order networks, and use
MPE for all computations in the ground network.

Reflections on the first two of these smaller outcomes, in
conjunction with the prior conclusion that the 10 ms scale
only performs local propagation, has led to the conclusion
that neither non-monotonicity nor the generation of new
unique symbols should occur in individual productions (i.e.,
within an elaboration cycle). Non-monotonic reasoning has
an implicit global aspect to it, given that the current answer
is always dependent on nothing else being true that would
overturn it. Operator implementation – the third function of
the elaboration phase – and negated conditions in produc-
tions are examples of non-monotonic processing that thus
should be banned from rules and moved up to the level of
decision cycles. Generation of new unique symbols also
involves an obvious global aspect.

Beyond the issues of non-monotonicity and symbol gen-
eration, limiting global information propagation to decision
cycles and above implies that semantic memory, when de-
fined in terms of finding the best match in memory to a cue
[Anderson, 1990], should also occur at the level of decision
cycles, as it currently does in Soar 9. Even more critically,
though, this raises hard questions about the use of a global
working memory in production match. One possible resolu-
tion to this dilemma would be to allow operator application
to have global effects on working memory, as it is already
being shifted up to the decision level, but to require elabora-
tion to proceed via local propagation of information.
Whether this can work, and more generally how to develop
an effective architecture when all of the non-local forms of
processing currently embodied by rules are moved up to the
decision level, is a key issue for future work.

The actual decision making process has been neglected so
far in this discussion. Limited experiments have been per-
formed by leveraging Alchemy’s provision of weights on
formulas to encode preferences, and MPE inference to select
operators based on these preferences. This has proven ade-
quate for simple examples, but more complex ones are pres-
ently foundering on the preliminary step of dynamically
generating operator instantiations and the accompanying
unique symbols that are needed to identify them. Develop-
ing a full decision mechanism is thus left for future work.

6 Summary and Future Directions
This article has begun the exploration of graphical models
for Soar’s cognitive inner loop, with an Alchemy-based
implementation of an elaboration phase that combines
Soar’s symbolic, rule-based, long-term memory with prob-
abilities, simple bidirectional trellises and long-term seman-
tic memory. In the process, four directions for the future
have been explicitly called out: (1) satisfying the learnabil-
ity constraint on long-term knowledge; (2) unifying rule
match with inference in graphs while determining the re-
spective roles of marginal versus MPE inference; (3) under-
standing how to feasibly and functionally move all non-
local processing from the elaboration cycle to the decision
cycle; and (4) implementing a complete decision procedure.

In addition, the full incorporation of signal processing, for
perception and motor control, and of semantic and episodic
knowledge is critical, and remains to be done. Beyond the

Presented at the IJCAI International Workshop on Graphical Structures for Knowledge Representation and Reasoning, 2009 6

inner loop, there is more of Soar to be explored, along with
other existing architectures and hybridizations among them.
Totally new architectures that take full advantage of what
graphical models provide also need investigation. The ulti-
mate intent is to definitively answer the question first posed
in [Rosenbloom, 2009] as to whether implementing cogni-
tive architectures on top of a uniform graph-based imple-
mentation level can yield a new generation of architectures
with improved uniformity, functionality, and extensibility.

Acknowledgments
This effort was made possible by sabbatical support from
the USC Viterbi School of Engineering plus funding from
the Institute for Creative Technologies (ICT). ICT’s Cogni-
tive Architecture Working Group has been invaluable for
semi-public exploration of these ideas. I would also like to
thank the Alchemy group at the University of Washington
for their help in installing Alchemy and working through
various issues that arose during experimentation with it.

References
[Anderson, 1990] John R. Anderson. The Adaptive Charac-

ter of Thought. Erlbaum, Hillsdale, NJ, 1990.
[Domingos et al., 2006] Pedro Domingos, Stanley Kok,

Hoifung Poon, Matt Richardson, and Parag Singla. Uni-
fying logical and statistical AI. In Proceedings of the 21st
National Conference on Artificial Intelligence, pages 2-
7, July 2006. AAAI Press.

[Doorenbos, 1993] Robert B. Doorenbos. Matching 100,000
Learned Rules. In Proceedings of the 11th National Con-
ference on Artificial Intelligence. Page 290-296, 1993.

[Doyle, 1979] John Doyle. A Truth Maintenance System.
Artificial Intelligence, 12(3): 251-272, 1979.

[Forgy, 1982] Charles L. Forgy. "Rete: A Fast Algorithm
for the Many Pattern/Many Object Pattern Match Prob-
lem". Artificial Intelligence, 19(1): 17-37, 1982.

[Kschischang et al., 2001] Frank R. Kschischang, Brendan
J. Frey, Hans-Andrea Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions on Informa-
tion Theory, 47(2): 498-519, February 2001.

 [Laird, 2008] John E. Laird. Extending the Soar cognitive
architecture. In Artificial General Intelligence 2008:
Proceedings of the First AGI Conference, Memphis, TN,
March 2008. IOS Press.

 [Laird and Newell, 1983] John E. Laird and Allen Newell.
"A Universal Weak Method: Summary of Results." In
Proceedings of the Eighth International Joint Confer-
ence on Artificial Intelligence, pages 771-773,
Karlsruhe, FRG, August 1983. William Kaufmann.

 [Laird and Rosenbloom, 1996] John E. Laird and Paul S.
Rosenbloom. The evolution of the Soar cognitive archi-
tecture. In D. M. Steier. and T. M. Mitchell (Eds.), Mind
Matters: A Tribute to Allen Newell, pages 1-50. Erl-
baum, Mahwah, NJ, 1996.

 [Laird et al., 1986] John E. Laird, Paul S. Rosenbloom,
and Allen Newell. Chunking in Soar: The anatomy of a
general learning mechanism. Machine Learning, 1(1):
11-46, March 1986.

 [Langley and Choi, 2006] Pat Langley and Dongkyu Choi.
A unified cognitive architecture for physical systems. In
Proceedings of the Twenty-First National Conference on
Artificial Intelligence. Boston, MA, 2006. AAAI Press.

[McCallum et al., 2008] Andrew McCallum, Khashayar
Rohanemanesh, Michael Wick, Karl Schultz and Sameer
Singh. FACTORIE: Efficient probabilistic program-
ming via imperative declarations of structure, inference
and learning. In Proceedings of the NIPS workshop on
Probabilistic Programming, Vancouver, Canada, 2008.

[Milch et al., 2007] Brian Milch, Bhaskara Marthi, Stuart
Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: Probabilistic models with unknown
objects. In L. Getoor and B. Taskar, (Eds.) Introduction
to Statistical Relational Learning, pages 373-398. MIT
Press, Cambridge, MA, 2007.

[Newell, 1990] Allen Newell. Unified Theories of Cogni-
tion. Harvard University Press, Cambridge, MA, 1990.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Morgan
Kaufman, San Mateo, CA, 1988.

[Poon et al., 2008] Hoifung Poon, Pedro Domingos, and
Marc Sumner. A general method for reducing the com-
plexity of relational inference and its application to
MCMC. In Proceedings of the 23rd AAAI Conference on
Artificial Intelligence, pages 1075-1080, July 2008.
AAAI Press.

[Rosenbloom, 2006] Paul S. Rosenbloom. A cognitive od-
yssey: From the power law of practice to a general learn-
ing mechanism and beyond. Tutorials in Quantitative
Methods for Psychology, 2(2): 43-51, 2006.

[Rosenbloom, 2009] Paul S. Rosenbloom. Towards a new
cognitive hourglass: Uniform implementation of cogni-
tive architecture via factor graphs. Submitted to the
Twenty-First International Joint Conference on Artificial
Intelligence, 2009.

[Rosenbloom et al., 1993] Paul S. Rosenbloom, John E.
Laird, and Allen Newell. The Soar Papers: Research on
Integrated Intelligence. MIT Press, Cambridge, MA,
1993.

[Singla and Domingos, 2008] Parag Singla and Pedro Dom-
ingos. Lifted first-order belief propagation. In Proceed-
ings of the 23rd AAAI Conference on Artificial Intelli-
gence, pages 1094-1099, July 2008. AAAI Press.

[Stracuzzi, 2009] David Stracuzzi. Personal Communica-
tion, 2009.

[Wang and Domingos, 2008] Jue Wang and Pedro Domin-
gos. Hybrid Markov logic networks. In Proceedings of
the 23rd AAAI Conference on Artificial Intelligence,
pages 1106-1111, July 2008. AAAI Press.

