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Abstract 
Explorations of graphical representation and rea-
soning have yielded intriguing results spanning 
symbol, probability and signal processing.  Here 
we explore an integrative application of graphs, as 
a path towards cognitive architectures of increased 
elegance, functionality, and extensibility.  The spe-
cific focus is on steps towards a graphical reim-
plementation and extension of the cognitive inner 
loop within the Soar architecture. Alchemy, an im-
plementation of Markov logic, is used for initial 
experiments, yielding insights into what will ulti-
mately be required for full graphical implementa-
tions of enhanced cognitive inner loops. 

1 Introduction 
In [Rosenbloom, 2009] a new strategy was laid out for de-
veloping cognitive architectures [Newell, 1990] via a uni-
form implementation level based on factor graphs 
[Kschischang et al., 2001].  A cognitive architecture seeks 
to provide a coherent integration of capabilities sufficient 
for human-level artificial intelligence, whether in the con-
text of a detailed model of human cognition or a system 
more loosely tied to the specifics of human behavior.  Such 
an architecture requires the integration of a wide range of 
cognitive capabilities for, among other things, representa-
tion and memory, problem solving and planning, learning, 
reflection, interaction (including perception and motor con-
trol, use of language, etc), and the social aspects of cogni-
tion (such as emotion, collaboration, etc.). 
 The implementation level for cognitive architectures sits 
below the architectural memories and mechanisms, and pro-
vides the technologies out of which they are built.  Tradi-
tionally, it is simply a programming language of some sort 
that may impact the efficiency, portability and robustness of 
the architecture, but is itself of little theoretical interest.  The 
idea of basing the implementation level on graphical models 
looks to go beyond this by leveraging the uniform manner in 
which they support broad varieties of symbol, probability, 
and signal processing.  The intuition is that, if the range of 
capabilities required for human-level intelligence can be 
built out of, and integrated within, such a uniform substrate 
then new architectures that are more elegant, functional and 

extensible may be possible.  The ultimate goal is thus to 
determine whether a graphical implementation level can 
enable a new and improved generation of architectures. 
 As a step in this direction, I have been investigating a 
graphical reimplementation and enhancement of the Soar 
architecture [Rosenbloom et al., 1993].  Soar is one of the 
longest standing – over 25 years – and most thoroughly in-
vestigated cognitive architectures.  It also possesses the un-
usual status of existing in both relatively uniform (up 
through version 8 [Laird and Rosenbloom, 1996]) and di-
verse (version 9 [Laird, 2008]) forms, providing a natural 
path for reimplementation that starts with a uniform version 
and then attempts a more uniform reintegration of later di-
versity.  Simultaneously, opportunities can also be sought 
for expanding beyond Soar’s predominant symbol process-
ing paradigm, through the deep integration of probability 
and signal processing, in support of improved reasoning 
about, and interaction with, the real world. 
 This article: (1) examines what is involved in reconstruct-
ing a more uniform and functional graph-based cognitive 
inner loop for Soar, i.e., its core decision cycle, in which 
memory is accessed about the current situation and a deci-
sion is made about what to do next; (2) reports results from 
experiments towards this end based on Alchemy [Domingos 
et al., 2006]; and (3) identifies the path forward from here. 
While not yet achieving a fully implemented and enhanced 
version of Soar’s decision cycle, it does yield critical in-
sights into what will be necessary.  First, however, the next 
two sections cover prior background on cognitive scales, 
Soar, and the graphical reimplementation of Soar.   

2 Cognitive Scales and Soar 
Part of the theory behind Soar as a model of human cogni-
tion is that scale counts in cognition [Newell, 1990].  As 
cognition is analyzed in depth, the phenomena and their 
properties change as the focus shifts from small spatiotem-
poral scales to larger ones.  Newell discusses time scales 
from 10-4 seconds (100 µs) up to 107 seconds (months), and 
divides them into four bands in human cognition: biological 
(10-4-10-2 seconds), cognitive (10-1-101 seconds), rational 
(102-104 seconds) and social (105-107 seconds).  In the bio-
logical band in particular there is also a spatial aspect to 
these scales, since signals are limited in how far they can 
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travel within such small time frames.  Organelles (10-4 sec-
onds), neurons (10-3 seconds) and neural circuits (10-2 sec-
onds) yield spatial scales within the biological band, before 
primitive deliberate acts (10-1 seconds) and operations (100 
seconds) are reached at the base of the cognitive band. 
 The architectural mechanisms in the earlier uniform ver-
sions of Soar were traditionally mapped onto a subset of 
these time scales, starting with the elaboration cycle at 10 
ms (neural circuits), the decision cycle at 100 ms (deliberate 
acts), and activity in problem spaces at 1 second (opera-
tions) above this.  The elaboration cycle involves parallel 
match (via a variant of the Rete algorithm [Forgy, 1982]) 
and firing of productions based on the contents of a global 
working memory.  Functionally, it achieves one round of 
parallel associative retrieval of information relevant to the 
current situation.  Production actions specify knowledge for 
potential retrieval while production conditions specify the 
circumstances under which that knowledge is relevant.  
Conditions also bind variables for use in actions. 

The decision cycle involves repeated cycles of elabora-
tion until quiescence; i.e., until no more productions can 
fire.  This elaboration phase is followed by a decision based 
on preferences retrieved during elaboration.  The elabora-
tion phase yields an interpretation of the current situation, 
while the decision either selects an operator or generates an 
impasse if no operator can be selected.  Impasses engender 
reflection, enabling processing to recur at the meta-level on 
the problem of making the decision.  The decision cycle is 
Soar’s cognitive inner loop – it accesses whatever knowl-
edge is immediately available about the current situation 
and then attempts to decide what to do next. 

A sequence of decisions yields activity in a problem 
space, amounting to some form of search if knowledge is 
limited and impasses occur.  Search in problem spaces (ps-
search) is: slow, with each decision occurring at the 100 ms 
level; serial, via a sequence of operator selections and ap-
plications; and potentially combinatoric, yielding trees that 
grow exponentially in the depth of the search.  However, ps-
search is open to control by any knowledge accessible dur-
ing the decisions that occur within it.  When the knowledge 
is sufficient to uniquely determine the outcome of each de-
cision, behavior is more accurately characterized as algo-
rithmic, or knowledge-driven, than as search. 

Accessing knowledge during a decision can also be 
viewed as a search process – termed knowledge search (k-
search) – but one that contrasts strongly with ps-search in 
character.  K-search is: fast, with a 10 ms cycle time, paral-
lel, both in match and firing of productions; and subexpo-
nential, at least in theory, if not in reality in most implemen-
tations.  K-search occurs over a closed, extensionally de-
fined, set of structures – the knowledge/productions in the 
system – rather than dynamically generating an open search 
space in the manner of ps-search.  It is inherently algo-
rithmic, rather than using an open cognitive loop, and is thus 
not itself penetrable by additional control knowledge. 

Chunking [Laird et al., 1986] is a learning mechanism in 
Soar that generates new productions based on the results of 
problem space activity during impasses.  It compiles knowl-

edge that is initially only available through activity at time 
scales of 1 second or more down to knowledge that is “im-
mediately available” for use at the 10 ms time scale.  
Chunking, in combination with the flexibility of Soar’s 
problem solving, has been shown to yield a much wider 
range of learning behaviors than just simple speed ups 
[Rosenbloom, 2006] – such as concept acquisition and epi-
sodic learning – but speeding up behavior remains its most 
essential functionality.  In fact, the difficulty of producing 
some of these wider learning behaviors, and of integrating 
them with routine cognitive activity, was a key driver in 
Soar 9’s shift towards diversity.  Soar 9 adds, among other 
things, new varieties of long-term memory and learning. 

3 Prior Work on the Elaboration Cycle 
The work reported in [Rosenbloom, 2009] focused on reim-
plementing Soar’s elaboration cycle (10 ms); and, in par-
ticular, on factor-graph algorithms for production match.  
Factor graphs in general provide a means of efficiently 
working with nearly decomposable functions of many vari-
ables.  They arose in coding theory, where they underlie the 
surprisingly effective performance of turbo codes.  They are 
similar to Markov networks (aka Markov random fields) in 
being undirected graphs with nodes that correspond to vari-
ables.  However, in addition to variable nodes there are also 
factor nodes that represent functions over subsets of the 
variables.  Factor nodes are analogous to clique poten-
tials/weights in Markov networks, but they are directly in-
corporated as network nodes in factor graphs.  Inference in 
factor graphs may be done through variations on the stan-
dard summary-product algorithm – a message passing ap-
proach that generalizes the more familiar (loopy) belief 
propagation algorithm in Bayesian networks [Pearl, 1983] – 
or via Monte Carlo methods. 

Although Soar’s Rete match algorithm could potentially 
be implemented directly via factor graphs, the focus of the 
prior work was on match algorithms arising more naturally 
from factor graphs.  The investigation began with a straight-
forward, although ultimately naïve, approach.  Working 
memory was represented as a three dimensional array of 
potential working memory elements, with one dimension for 
each of the three slots of a working memory element – ob-
ject, attribute and value – and a value of one in every array 
cell for which the corresponding element was in working 
memory and zero otherwise.  In the factor graph, variable 
nodes corresponded to production variables while factor 
nodes corresponded to conditions and actions.  Match oc-
curred via the summary-product algorithm, passing mes-
sages about the legitimate bindings of condition variables, 
and eventually converging on bindings for action variables. 

Without going into the gory details, this initial approach 
raised generality, correctness and efficiency issues that ul-
timately led, through a sequence of optimizations and con-
ceptual adjustments, to a new graphical match algorithm 
combining: (1) a junction-tree-like approach for graph con-
struction, to enable the tracking of compatible combinations 
of bindings for different variables; and (2) an N-dimensional 
generalization of quad/octrees (called exptrees for lack of an 
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existing term) for working memory and messages that en-
ables uniform regions – i.e., regions in which all of the po-
tential working memory or message elements are either pre-
sent (one) or absent (zero) – to be matched without examin-
ing each element individually.   The resulting match algo-
rithm yielded correct results with dramatically reduced 
match times from the naïve approach.  It also avoided creat-
ing the full production instantiations required by Rete, re-
ducing the worst-case bound on match cost to exponential in 
the treewidth of a production rather than in the number of 
conditions in the production (as in Rete). 

Beyond match, the remainder of the elaboration cycle 
consists of the firing of productions, empowering instanti-
ated actions to add and delete working memory elements by 
flipping the corresponding array values from zero to one or 
vice versa.  Once working memory is updated, the next 
elaboration cycle can begin. 

4 Rethinking the Decision Cycle 
In the work reported here, the focus has moved up to the 
decision cycle (100 ms) – Soar’s cognitive inner loop – 
comprising an elaboration phase and a decision.  This is the 
lowest level at which knowledge may affect decisions, at 
which multiple fragments of knowledge may be combined, 
and at which k-search may involve more than one cycle of 
match and firing.  It is also the key scale at which extending 
Soar beyond strictly symbolic processing could lead to radi-
cally expanded functionality and at which it makes sense to 
begin considering incorporation of Soar 9’s diversity. 
 Any reimplementation of Soar’s elaboration phase must 
support its three core functions: (1) elaborating the descrip-
tion of the current situation in working memory based on 
relevant long-term knowledge; (2) generating operator pref-
erences based on this elaborated working memory; and (3) 
altering working memory to reflect the application of se-
lected operators.  The first two functions are mostly mono-
tonic, while the third is inherently non-monotonic.  Overall, 
operation is similar to that of a truth maintenance system 
[Doyle, 1979], with operators determining the current as-
sumptions and elaborations automatically asserting and re-
tracting as these assumptions change. 
 Two additional constraints on the long-term knowledge 
must also be met by any reimplementation of the elaboration 
phase.  The first constraint is that it must be capable of be-
ing processed in bounded time and space.  Soar’s produc-
tion-based elaboration phase runs in time that is bounded by 
the volume of the elaboration phase – cost per production × 
number of productions × number of elaboration cycles.  In 
reality, the second dimension is close to constant, as a suita-
bly optimized Rete algorithm enables match time to remain 
close to constant with growth in the number of productions 
[Doorenbos, 1993].  However, the other two dimensions can 
be problematic. As mentioned earlier, the cost per produc-
tion may be exponential in the size of the production.  Even 
worse, the length of the elaboration phase can be infinite – 
new working memory elements can be generated on each 
elaboration cycle that lead to more productions firing in the 
next cycle.  A reimplementation should at least avoid exac-

erbating these boundedness issues, and ideally improve on 
them (such as the prior work’s improved match bound). 
 The second constraint is that the long-term knowledge 
must be learnable.  Soar acquires productions via chunking, 
and Soar 9 adds other mechanisms to acquire its additional 
varieties of long-term knowledge; but satisfying this con-
straint in a graphical reimplementation is left to future work.   
 Beyond these two constraints, the uniform versions of 
Soar also lived with the constraint that all long-term knowl-
edge must be cast as productions.  Productions have the 
advantage that they are uniform, active, relatively flexible, 
and learnable.  They also have a long successful history in 
cognitive modeling.  Still, they have proven balky in dealing 
with both declarative and perceptual knowledge, ultimately 
leading to the elimination of this long held constraint in 
Soar 9 and the addition of three new long-term memories – 
two for declarative knowledge (semantic and episodic) and 
one for perceptual knowledge (visual imagery) – each with 
its own distinct variety of knowledge structures. 
  The approach explored here is not to eliminate the third 
constraint, but to replace it with one based on the varieties 
of knowledge structures efficiently implementable via 
graphical models.  The hope is thereby to support a much 
wider range of functionality – including symbol, probabil-
ity, and signal processing, as well as Soar 9’s new kinds of 
knowledge structures – in a general yet uniform fashion. 

The prior work discussed in Section 3 implemented a 
complete elaboration cycle.   A straightforward elaboration 
phase is thus obtainable merely by repeating these cycles 
until quiescence is reached.  While such an elaboration 
phase has been implemented, and initial ideas exist for ex-
tending it to continuous values and declarative memory, it 
has a serious flaw in only being able to propagate informa-
tion forward across rule firings.  Bidirectional information 
flow is needed for probabilistic information to propagate 
correctly across rules.  It is also necessary for the implemen-
tation of trellis diagrams – in which a graph is composed of 
a linked sequence of identical subgraphs – such as the hid-
den Markov models used in speech recognition and other 
varieties of sequential signal processing. 

The prior implementation supported bidirectional infor-
mation flow within rules, and reused the same rule graph on 
each elaboration cycle – as is needed for a trellis – but the 
only linkage across cycles was implicit in the working 
memory elements generated during early elaboration cycles 
and matched on later ones.  In addition to a graph for the 
generalized rules, a graph representing rule instantiations 
and the linkages among them may be needed to support 
bidirectional information flow across the rule instantiations 
generated within an elaboration phase. 

In contrast to the elaboration phase, there are many fewer 
constraints on the decision procedure that follows it.  Deci-
sions in Soar were based on vote counting in a very early 
version, on symbolic preferences – acceptable, reject, better 
worse, etc. – in most versions, and on a combination of 
symbolic and (additive) numeric preferences in Soar 9. The 
key constraint on a reimplementation of the decision proce-
dure is that all of the preferences accessed during the elabo-
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ration phase must be combined in an appropriate and tracta-
ble manner to yield either the selection of a unique operator 
or the detection of an impasse. 

5 Progress towards a New Decision Cycle 
The lack of bidirectional message passing across elaboration 
cycles in the existing implementation, in conjunction with a 
desire to better understand the utility of existing graphical 
languages – in particular those that already combine some 
forms of symbolic and probabilistic reasoning, such as Al-
chemy, BLOG [Milch et al., 2007], and FACTORIE 
[McCallum et al., 2008] – for implementing cognitive archi-
tectures, led to the decision to begin investigating the revi-
sion of Soar’s decision cycle via such a language. Alchemy, 
which is based on combining first-order logic and Markov 
networks to form Markov logic, was ultimately selected 
because it: supports forms of both symbolic and probabilis-
tic processing along with nascent signal processing [Wang 
and Domingos, 2008], provides an obvious approach to 
working with both rules and their instantiations, is publi-
cally available, runs on multiple types of computers, and has 
manuals, tutorials, and rapid response to emailed questions.1 
 To date, several small-scale experiments have been run 
with Alchemy: (1) re-implementing simple production sys-
tems that had previously been implemented via factor 
graphs; (2) adding a form of semantic long-term memory to 
the production memory; (3) exploring an implementation of 
the eight puzzle, one of the earliest tasks investigated in 
Soar [Laird and Newell, 1983] and the basis for early learn-
ing experiments with it [Laird et al., 1986]; and (4) experi-
menting with trellis diagrams.2 
 In Alchemy, a Markov logic network (MLN) is defined 
via first-order predicates and formulas, with weights as-
signed to the formulas.  The MLN is then compiled into a 
ground Markov network with binary nodes for each ground 
predicate, links among nodes that appear in common formu-
las, and features for each possible ground formula.  Infer-
ence is performed on this ground Markov network, unless 
additional optimizations such as laziness (where grounding 
only occurs for variables that take on non-default values 
[Poon et al., 2008]) or lifting (where multiple ground atoms 
are combined into single network nodes when they can be 
guaranteed to pass the same messages during belief propa-
gation [Singla and Domingos, 2008]) are included. 

The initial mapping of Alchemy to Soar’s decision cycle 
focused on the first two functions of the elaboration phase: 
elaborating the current situation in working memory based 
on the contents of (a production-based) long-term memory, 
and generating preferences.  Productions were represented 
as conditional formulas in an MLN file and the state of 
working memory at the beginning of the decision cycle was 

                                                
1 Alchemy has also been explored in the Icarus cognitive archi-

tecture [Langley and Choi, 2006], with a focus specifically on the 
implementation of an inference component [Stracuzzi, 2009]. 

2 Several of these experiments have been replicated with 
BLOG, but the results do not fundamentally alter the conclusions 
reported here based on Alchemy. 

represented as evidence in an Alchemy database file.  A 
single elaboration phase was then mapped onto a single in-
vocation of Alchemy’s inference procedure with this net-
work and database. 

The details of this mapping and the ensuing experiments 
are relatively uninteresting, so they are omitted here to con-
serve space.  What is worth noting though are the implica-
tions of these experiments for a graphical reimplementation 
of Soar in particular, and a graphical implementation level 
for cognitive architectures in general.  The most critical re-
sult is that the core of the mapping works, enabling a uni-
form elaboration phase that combines Soar’s standard rule-
based capabilities with probabilistic reasoning, simple trel-
lises and semantic memory.  The approach solves the 
aforementioned bidirectional, across rule, information flow 
problem by compiling the rules into a ground Markov net-
work, and then performing inference in this ground network.  
Because nodes in this network correspond to working mem-
ory elements, and each such node links to every other ele-
ment with which it coexists in a ground formula, the ground 
Markov network provides a single linked network for the 
entire elaboration phase.   If the rules define a trellis, by 
repetition across elaboration cycles, bidirectional inference 
also occurs appropriately for it. 

Another major result concerns the nature of production 
match under this mapping.  Alchemy does not use inference 
in graphs to perform the equivalent of match for conditional 
formulas.  Instead, match corresponds to Alchemy’s extra-
network process of compiling (first-order) Markov logic 
networks down to ground Markov networks.  In essence, the 
Markov logic network corresponds to the definition of the 
production system while the ground Markov network corre-
sponds to working memory elements (the ground nodes) and 
production instantiations (the ground formulas).   In contrast 
to the prior implementation, working memory elements cor-
respond to distinct nodes in this network rather than simply 
serving as the basis for messages among nodes. 

Given that the goal is ultimately to implement a broadly 
functional cognitive architecture uniformly in graphs, Al-
chemy’s match-as-compilation approach is problematic.  A 
key question for future work therefore becomes whether it is 
possible to unify match – i.e., the computation of ground 
instances from first-order formulas – with the other neces-
sary forms of inference into a single graph that is processed 
in a uniform manner, or whether it will be necessary to de-
velop a dual graph/network approach in which match occurs 
via a first-order graph that generates, and is linked to, a 
ground graph in which the remaining inference occurs.  Ei-
ther way, the decision cycle will need to be extended from 
its current two stages to three: (1) compilation/match to 
generate a ground/instantiated network; (2) inference in the 
ground/instantiated network; and (3) decision making. 

A final significant outcome is more conceptual, and con-
cerns the general mapping between graphical systems and 
the hierarchy of cognitive scales, particularly as mediated by 
the mapping of both onto Soar.  If the elaboration phase – 
which performs k-search (100 ms) – consists of the compi-
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lation of, and inference in, a multi-layer ground network, 
then two important consequences follow: 

1. The goal for a probabilistic first-order reasoner should 
not be a single uniform system capable of directly 
solving any problem no matter how complex.  Instead, 
it should be bounded to the needs of k-search; e.g., 
only being capable of finding local minima in the solu-
tion space.  Problems too complex to be solved in this 
manner would require a sequence of deliberate acts – 
i.e., steps in a problem space (ps-search) at the 1-
second time scale – to move among local minima in 
search of a global minimum.  Systems like Alchemy 
can get stuck in local minima [Stracuzzi, 2009], but 
according to this argument that is all a flat inference 
system should ever strive for.  Reaching global minima 
in general requires a sequence of deliberate acts. 

2. Cycles of message passing map onto the neural circuit 
(10 ms) scale.  Functionally this implies that the 10 ms 
scale supports (only) local propagation of information, 
the 100 ms scale supports global propagation but 
(only) local minima, and global minima generally re-
quire time scales of 1 sec and above unless the prob-
lem is particularly simple or the system gets lucky. 

Beyond these major implications, several smaller yet still 
interesting results have also been extracted from the map-
ping and resulting experiments: 

3. Production systems utilize specific forms of non-
monotonic reasoning, including an implicit closed-
world assumption about the contents of working mem-
ory, and the ability to arbitrarily add and delete work-
ing memory elements.  Such capabilities map awk-
wardly onto first-order reasoners, such as Alchemy. 

4. Many production systems, Soar included, provide the 
ability to generate new unique symbols via production 
actions.  Although such actions are local to individual 
productions, the process of checking uniqueness is a 
global activity that is difficult to implement through 
local message passing in a graph/network. 

5. Exptrees served a role in the prior work that is analo-
gous to what laziness and lifting achieve in Alchemy.  
The latter mechanisms eliminate unnecessary computa-
tion, either by avoiding the processing of default val-
ues or by grouping together items that can be treated 
the same.  With exptrees, defaults are identified natu-
rally and items are grouped by region if their values 
are identical.  Exptrees appear to be a coarser ap-
proach, but it may ultimately be possible to bring these 
approaches more into alignment. 

6. Experiments with simple trellises (linked repetitions) 
and semantic memory (encoded as ground atoms) have 
shown the feasibility of incorporating both within the 
decision cycle, but they involve computing most prob-
able explanations (MPEs) rather than the marginals 
used for production match in the prior work to generate 
all instantiations.  One possibility for the future is to 
localize the use of marginals to the generation of 
ground networks from first-order networks, and use 
MPE for all computations in the ground network. 

Reflections on the first two of these smaller outcomes, in 
conjunction with the prior conclusion that the 10 ms scale 
only performs local propagation, has led to the conclusion 
that neither non-monotonicity nor the generation of new 
unique symbols should occur in individual productions (i.e., 
within an elaboration cycle).  Non-monotonic reasoning has 
an implicit global aspect to it, given that the current answer 
is always dependent on nothing else being true that would 
overturn it.  Operator implementation – the third function of 
the elaboration phase – and negated conditions in produc-
tions are examples of non-monotonic processing that thus 
should be banned from rules and moved up to the level of 
decision cycles.  Generation of new unique symbols also 
involves an obvious global aspect. 

Beyond the issues of non-monotonicity and symbol gen-
eration, limiting global information propagation to decision 
cycles and above implies that semantic memory, when de-
fined in terms of finding the best match in memory to a cue 
[Anderson, 1990], should also occur at the level of decision 
cycles, as it currently does in Soar 9.  Even more critically, 
though, this raises hard questions about the use of a global 
working memory in production match.  One possible resolu-
tion to this dilemma would be to allow operator application 
to have global effects on working memory, as it is already 
being shifted up to the decision level, but to require elabora-
tion to proceed via local propagation of information.   
Whether this can work, and more generally how to develop 
an effective architecture when all of the non-local forms of 
processing currently embodied by rules are moved up to the 
decision level, is a key issue for future work.  

The actual decision making process has been neglected so 
far in this discussion.  Limited experiments have been per-
formed by leveraging Alchemy’s provision of weights on 
formulas to encode preferences, and MPE inference to select 
operators based on these preferences.  This has proven ade-
quate for simple examples, but more complex ones are pres-
ently foundering on the preliminary step of dynamically 
generating operator instantiations and the accompanying 
unique symbols that are needed to identify them.  Develop-
ing a full decision mechanism is thus left for future work. 

6 Summary and Future Directions 
This article has begun the exploration of graphical models 
for Soar’s cognitive inner loop, with an Alchemy-based 
implementation of an elaboration phase that combines 
Soar’s symbolic, rule-based, long-term memory with prob-
abilities, simple bidirectional trellises and long-term seman-
tic memory.  In the process, four directions for the future 
have been explicitly called out: (1) satisfying the learnabil-
ity constraint on long-term knowledge; (2) unifying rule 
match with inference in graphs while determining the re-
spective roles of marginal versus MPE inference; (3) under-
standing how to feasibly and functionally move all non-
local processing from the elaboration cycle to the decision 
cycle; and (4) implementing a complete decision procedure. 

In addition, the full incorporation of signal processing, for 
perception and motor control, and of semantic and episodic 
knowledge is critical, and remains to be done.  Beyond the 
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inner loop, there is more of Soar to be explored, along with 
other existing architectures and hybridizations among them. 
Totally new architectures that take full advantage of what 
graphical models provide also need investigation.  The ulti-
mate intent is to definitively answer the question first posed 
in [Rosenbloom, 2009] as to whether implementing cogni-
tive architectures on top of a uniform graph-based imple-
mentation level can yield a new generation of architectures 
with improved uniformity, functionality, and extensibility. 
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