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Abstract

In this paper, we show the importance of face-voice cor-
relation for audio-visual person recognition. We evaluate
the performance of a system which uses the correlation be-
tween audio-visual features during speech against audio-
only, video-only and audio-visual systems which use audio
and visual features independently neglecting the interde-
pendency of a person’s spoken utterance and the associ-
ated facial movements. Experiments performed on the Vid-
TIMIT dataset show that the proposed multimodal scheme
has lower error rate than all other comparison conditions
and is more robust against replay attacks. The simplicity of
the fusion technique also allows the use of only one classi-
fier which greatly simplifies system design and allows for a
simple real-time DSP implementation.

1. Introduction

Biometric recognition holds tremendous promise for se-
curity applications. Biometrics can include a wide range
of modalities including voice, face, fingerprint, retina and
iris [1]. Each modality has its own advantages and limi-
tations in terms of robustness, accuracy and usability/user
acceptance. For instance, using iris information offers very
high accuracy and robustness but its usability/user accep-
tance is limited. On the other hand, modalities like face
and voice (the modalities of interest in this paper) that can
be accessed in an unobtrusive way and have higher user
acceptance have restricted use due to robustness and accu-
racy issues. We need a way to deal with these issues in or-
der to build real-life systems incorporating these modalities.
Availability of robust solutions, however, promise practical
applications such as personal computer login and location
access.

One of the promising venues for improving overall per-
formance, in terms of both accuracy and robustness, is to

consider combining individual modalities under the premise
that both redundancy and complementarity in information
can be advantageously utilized. Many different ways of
combining the face and voice modalities have been pre-
sented in the literature [2]-[8]. For simplicity, it is often
assumed that the audio and video features are independent.
In real-life speech communication scenarios i.e., consider-
ing the speaking face, however, this assumption does not
hold true. A person’s face dynamically and systematically
changes as he speaks and there is a strong correlation be-
tween this deformation and the spoken utterance. Hence,
their joint modeling can be potentially beneficial to improve
person recognition performance.

In this paper, we present an audio-visual recognition
technique using feature-level fusion which captures the cor-
relation between audio-visual (speech and face) features.
We show that such a system gives better accuracy in normal
situations and is more robust to replay attacks' than audio-
only, video-only and audio-visual systems which use audio
and video independently. We also show that this technique
inherently uses audio and static video features for recog-
nition and dynamic video features for liveness detection (a
sub-application in person detection) without adding any ex-
tra complexity. Lastly, we show that the low complexity
of the proposed design allows for an implementation which
works in real-time. The proposed design has been imple-
mented on a DSP processor (TMS320C6713) to work in
real-time and it gives on line performance comparable to
off line evaluations.

2. Proposed System Description

We first describe the VidTIMIT database used in this re-
search. We then present an overview of the feature extrac-
tion stage for speaker recognition and face recognition and

IReplay attacks refer to impostor attacks where the impostor records
client data (audio or video or both) and uses the recorded information to
breach security.



justify the choice of features used. Then, we present the
proposed multimodal fusion technique. We present several
possible ways of fusing the modalities with the advantages
and disadvantages of each and then describe the proposed
fusion technique and its advantages over the other tech-
niques. Finally, we review some of the possible choices for
classifiers and justify the selection of the GMM model for
this research.

2.1. VidTIMIT Database

The VIidTIMIT database [8] is an audio-visual database
comprised of audio-visual recordings of 43 people reciting
sentences from the test section of the TIMIT corpus [12].
It was recorded in 3 sessions with a mean delay of 7 days
between sessions 1 and 2 and 6 days between sessions 2
and 3. Due to the delay between sessions, possibility of
mood and appearance changes is expected and introduces
some real-life aspects in the dataset. There are 10 sen-
tences per person, 6 of them belonging to session 1 and two
each to sessions 2 and 3. Two sentences are common to all
speakers while the other eight sentences are generally dif-
ferent for each speaker facilitating text-independent speaker
recognition research. The availability of just 10 sentences
per person underscores the training data sparsity issue (al-
though reflective of what is feasible in creating practical
systems). The recordings were done in an office environ-
ment using a broadcast quality digital video camera. The
audio has some background noise (mostly AC and computer
fan noise). Thus, we expect that any audio-only recognition
system would suffer from some performance degradation
on this data. The video is relatively clean. Though it is
captured using a broadcast quality camera and compressed
(lossy compression) into JPEG images with quality factor of
90%, the background is fairly plain and constant with only
the speaker’s frontal face in the picture. This alleviates us
of complicated tasks such as face detection from a clustered
image or view-angle normalization. This situation is indeed
realistic under certain application scenarios such as personal
security systems where we expect a co-operative user and a
fairly controlled data acquisition set up. Nevertheless, the
zoom factor of the camera is randomly perturbed while col-
lecting the video and the face in the video is not at constant
positions. Thus, some pre-processing is still needed to ex-
tract the face from the image and compensate for different
zoom factors but this task is relatively simpler. The audio
and video capture rates are also different and some process-
ing needs to be done to compensate for this.

2.2. Feature Extraction

Feature extraction is the first and the most important
stage of any classification system. The goodness of the ex-

tracted features highly affects the performance of the com-
plete system. Audio and visual data, though correlated, are
in completely different forms and are sensed differently by
humans. Thus, the features used for both are also differ-
ent. The fields of audio and face recognition are highly de-
veloped and many different ways of capturing features are
available in the literature. Our approaches to feature extrac-
tion are among such developed strategies and described in
the subsequent sub-sections.

2.2.1 Voice Feature Extraction

As a pre-processing step on the audio signal, we perform
pre-emphasis to compensate for the high frequency fall-
off. We then use the short-term analysis technique using
a 25ms window with 50% overlap between adjacent win-
dows. We apply Hamming window to each segment to
minimize spectral leakage. The above-mentioned steps are
the most widely used and form a part of most (if not all)
speech and speaker feature extraction systems. We select
the widely accepted MFCC features for our research due
to their demonstrated superior performance [2]-[3], [S]-[6].
We use the first 13 MFCC features (12 + energy) along with
their delta and accelerations to form a 39-dimensional audio
feature vector for each frame.

2.2.2 Face Feature Extraction

As discussed in the VidTIMIT database section, we assume
that each frame of video has just the person of interest in it
with a frontal view of the face (VidTIMIT provides video
data in this form). We first detect the face and throw away
the background information (box the face) [9]. We get dif-
ferent sizes for the boxed faces because of the random per-
turbation of the camera zoom factor. We need to compen-
sate for this effect and rescale the face image into a standard
size suitable for feature extraction. We use bilinear interpo-
lation and get the standardized face image of 24x24 pixels.

Many different kinds of features can be used for face
recognition [2]-[6], [10]. The most widely used ones in-
clude Eigenfaces, DCT and Gabor wavelets. Eigenfaces are
well suited for face recognition. In this technique, the fea-
tures independent of the person’s facial expression (princi-
pal components) are preserved while dynamically changing
features are discarded. Also, the technique needs a group
of images to extract features. Our application requires that
we extract static as well as dynamically changing features
of the person per frame instead of averaging out the infor-
mation contained in neighboring frames. Gabor wavelets
and DCT suit our requirement as they can be used to ex-
tract information based on a single image and static as well
as dynamic features can be captured and preserved. Ga-
bor wavelets are however computationally expensive which
challenges their use in real-life applications. DCT gives a



(a) Original Image

(b) Reconstructed Image

Figure 1. (a) Original face image: Input to the face fea-
ture extractor. (b) Face image reconstructed using the DC
coefficient and the proposed DCT features (first 2 AC coef-
ficients: 1 in either direction.). Note that these figures have
been enlarged for better display.

performance comparable to Gabor wavelets and is simpler
to implement and computationally less expensive (desirable
for real-time implementation). For these reasons, we use
DCT to extract visual features in this paper. To extract
features, we segment the face images into blocks of size
6x6 pixels and calculate the DCT of each block separately.
From video compression theory, we know that the lower
order DCT coefficients contain most of the structural infor-
mation and even after throwing away the higher order coef-
ficients, a reasonable re-construction of the original image
can be achieved. The DC coefficient contains the average
gray level of the block and is most affected by illumination
changes. It does not carry any information about variations
in the block. Thus, we also discard this coefficient. We
use information of the first AC DCT coefficients in either
direction as features for the face image. Thus, we end up
with a 32-dimensional feature vector for each face image (2
features per block for 16 blocks).

The choice of the standardized face image size, block
size and number of features per block was made empirically.
A small image size was desired to minimize redundant in-
formation and reduce the calculations to facilitate real-time
implementation. A smaller block size reduces computations
for DCT calculation and ensures that short-term stationarity
assumption is satisfied. On the other hand, a larger block
size is desired to reduce the number of blocks and hence,
the number of feature vectors per image. Also, the block
size dictates the sampling resolution in the frequency do-
main. Oversampling leads to larger number of redundant
(or even potentially detrimental) features while undersam-
pling may lead to loss of useful information. Considering
these, a block size of 6x6 seemed reasonable for our exper-
iments. The choice of just 2 features per block was made
based on human feedback. As shown in Figure 1, a 24x24
image reconstructed using a 6x6 block size with all except
for the first 2 AC co-efficients (1 in either direction) set to
0 (except the DC co-efficient) for each block still contains
enough information for a human to recognize a person and

thus, is deemed to contain enough person dependent infor-
mation in it. This choice was also verified experimentally
(a face recognizer using these features gives a reasonably
good performance as reported in Section 3). It should be
noted that this may not be an ideal choice of parameters
for optimal face recognition (which is of course data depen-
dent). Our aim here is not to build an ideal face recognizer;
rather it is to show the importance of voice-face correlation
for person recognition and thus, we work with these param-
eters as they are primarily designed to reduce computational
complexity and memory requirement while giving a reason-
ably good performance (as will be seen in Section 3).

2.3. Multimodal Fusion

Multimodal fusion is at the heart of any system which
uses more than one modality. The choice of a fusion strat-
egy is highly dependent on the modalities being used. In
this section, we review some of the possible audio-visual fu-
sion strategies, discuss their advantages and disadvantages
and justify our choice of the feature-level fusion strategy in
terms of audio-visual feature correlation.

Fusion techniques can be broadly divided into 3 cate-
gories: Early integration, Intermediate integration and Late
integration [2]-[3]. Late integration techniques use differ-
ent classifiers for both modalities and combine their deci-
sions. This combination can be decision level fusion (AND,
OR, etc.) or opinion (score-level) fusion (weighted sum-
mation, weighted product, etc.). The inherent assumption
in using such techniques is that the modalities used are in-
dependent of each other. This is not the case when audio-
visual modalities of speech communication are used. A per-
son’s face deforms differently depending on what is being
spoken and the underlying speaking style variations. Also,
such systems require separate classifiers for each modality
which may complicate system design. Intermediate inte-
gration techniques use multi-stream HMMs. Though better
than the late integration techniques, the inherent drawback
in this technique is that it again assumes independence be-
tween the modalities used. This assumption enables it to
handle audio and video streams asynchronously but some
useful information correlating the two modalities is lost.

Early integration offers a natural way of integration for
our problem. Feature level fusion is a type of early inte-
gration technique. Here, we process the different modali-
ties separately and extract appropriate features and merge
them by either concatenating or by weighted summation,
etc. This enables the use of a single classifier which sim-
plifies system design. It also takes into account the correla-
tion between two modalities inherently. A drawback of this
technique is that it needs data in time synchronism. In our
application, we desire the data to be in time synchronism
irrespective of the fusion technique and thus, this drawback



is not pertinent. We calculate features for the individual
modalities separately and just concatenate them. This ef-
fectively ties a spoken utterance and the corresponding face
appearance. This correlation is preserved by the classifier.
We will show that this correlation acts as a hidden liveness
detector to differentiate between true claims and replay at-
tacks and increases robustness. It should be noted that audio
and video are captured at different rates. This poses a prob-
lem to synchronism and needs to be addressed. This can be
done in two ways. We can either upsample the video data or
use a hybrid scheme in which we use only audio data when
video data is not available and use both when video is avail-
able. The first scheme just adds redundant data, which while
helps smooth out discontinuities between adjacent frames,
may not be of use for the recognition task. It also adds extra
amount of processing. On the other hand, the hybrid tech-
nique is more suitable for the recognition task which has
to be done in real-time and all possible redundancies need
to be removed. In our work, the first technique has been
used for offline training as well as testing while the hybrid
technique has been used for online DSP implementation.

Audio and video modalities have complementary as well
as redundant information. The complementary information
in these modalities (for example, static features of a per-
son’s face) is usually independent and provides extra infor-
mation which helps to increase the accuracy of the system.
The complementary information also helps to increase the
robustness of the system to some extent (only against sim-
ple replay attacks like RP1 described in Section 3). The
redundant information in these modalities (for example,
dynamically-changing utterance-dependent features of the
face like lips) is usually correlated and does not provide any
extra information for recognition. Thus, this information
cannot be used to increase accuracy of the system. How-
ever, this redundancy can be advantageously utilized to give
a high degree of robustness against many different kinds of
replay attacks (as will be seen in Section 3). We show below
in Section 3 that the proposed fusion technique preserves
both the complementary and the redundant information and
uses them effectively to provide increased accuracy and ro-
bustness.

2.4. Classification

Many different classifiers have been used for audio and
visual recognition over the years (including DTW, GMM,
HMM, SVM and NN) and significant literature is available
on them [2]-[3], [10]. HMMs are widely used for speech
recognition and they give high accuracy, flexibility and ro-
bustness. They can be used for speaker recognition with
the same efficacy. Since our task is text-independent, we do
not need to capture/retain phone specific information. The
GMMs (single state HMM) exploit this. They give a sim-

ilar performance as compared to HMMs and computation-
ally are more efficient than the HMMs. Other advantages of
GMMs include low memory requirement (only means and
variances need to be stored), flexibility (well suited for text-
dependent as well as text-independent applications), high
accuracy and robustness. Due to these reasons, we use
GMMs for our classification task.

3. Experiments and Outcomes

In this section, we first describe the different experiments
performed on the VidTIMIT database using the proposed
technique. We then show the results of the experiments fol-
lowed by a discussion of the results which highlights the
importance of exploiting the correlation between audio and
video in terms of accuracy and robustness. Finally, we show
that the proposed system is capable of operating in real-time
with similar performance.

3.1. Experimental Detalils

The VidTIMIT database consists of 43 speakers, the first
19 are female and the remaining 24 are male (alphabetically
arranged). We use the last 4 females and last 4 males as
impostors and the remaining 35 speakers as clients. There
are 10 sentences per speaker. For the clients, we used 8 of
them (sessions 1 and 3) for training the client model and 2
(session 2) for testing. We use all 10 sentences of impostors
for impostor trials. In short, we have 70 client trials and
80 impostor trials. For training the impostor model, we use
the UBM technique. Ideally, we need to train the UBM
using all possible data collected from people other than the
clients. However, due to lack of data, we train the UBM
using all the data in the database (including all impostor
trials and client train and test utterances).

We first perform experiments to demonstrate that the
proposed system is more accurate than audio-only, video-
only and the audio-visual system in which audio and video
are considered independent of each other (we simulate this
by randomizing the video frames). For this, we use the
client trials and the impostor trials mentioned above.

We then move on to demonstrate the robustness of the
proposed design to replay attacks. We design three types
of replay attacks. The first and the simplest replay attack
(RP1) consists of pure audio from the client trials combined
with video from one of the impostor trials. Care has been
taken that the gender of both client and the impostor used to
form this replay attack is the same. It represents an attack
where client audio is recorded by an impostor and used to
breach the security. These kinds of attacks are fairly easy to
detect and most audio-visual systems should be able to de-
tect these. The second replay attack (RP2) is more difficult
to detect than the first. It consists of pure audio from the



client trials and a single still image from the same client
trial. It represents a replay attack where along with the
recorded audio of the client, his photo is used to breach
the security. Not all audio-visual systems would be able
to detect these. Only those which employ liveness detec-
tion would be robust against such attacks. The third replay
attack (RP3) is the most difficult to detect. For this replay
attack, we just swap the videos of the two client trials from
the same client. It represents the video of the client speak-
ing something and the audio of the same client speaking
something else. Even audio-visual systems employing live-
ness detection can be easily fooled by such attacks. Most
systems employing liveness detection just concentrate on
the lip region to conclude whether the person is actually
speaking something or not. They do not take into account
what the person is speaking. The only way to be robust
against such attacks is to capture and exploit the correlation
between audio and video.

3.2. Results and Observations

To simplify system design, we use the same number of
Gaussians for each client model and an integer multiple of
this number as the number of Gaussians for the impostor
model. These simplifications might lead to sub-optimal re-
sults. Nevertheless, the performance degradation is negli-
gible (for example, for 15 Gaussians, an FR of 8.57% can
be reduced to 7.14% for the same FA by fine tuning the
number of Gaussians for the impostor model) and it simpli-
fies system design to a great extent and helps us compare
the performance of the systems in a better and simpler way.
We vary the number of Gaussians for the client model (Ng)
from 1 to 50 and calculate the FA and FR values. Instead of
plotting the FA vs. FR curve, we plot FA and/or FR vs. Ng.
This benefits us in many ways. The foremost advantage is
that for the required FA and/or FR values, we directly get
the number of Gaussians for the design. This speeds up the
design process. For real-time systems, computational com-
plexity (or latency) and memory requirement increases as
Ng increases. Thus, FA and/or FR vs. Ng plot allows us
to compare FA, FR, latency and memory requirement for
the real-time system to be designed. These are as impor-
tant as accuracy and robustness for real-time systems. It
also enables us to study how the system behaves when Ng
is varied. For a given Ng, the FA and FR values obtained
are always data dependent. For real-life systems, when test
data is unknown, we need to ensure stability of the system
in the given region of operation (specified by Ng). The FA
and/or FR vs. Ng plot enables us to do this. For example,
for the audio only plot in Figure 2, when Ng is 1, FR is about
40% while FR increases to 80% when Ng is increased to 2.
This shows us that the system is unstable in this region and
reliable performance cannot be guaranteed. Such conclu-
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Figure 2. Client Trials (FR vs. Ng).

sions are impossible to make when FA vs. FR curve is used
and we might end up designing an unstable and non-reliable
system.

3.3. Discussion on the Results

From Figure 2, we see that the audio-only system has
the highest FR values. One reason for this is that the audio
in this database is noisy. The video-only system gives the
second best FR. This is because the video in the database
is comparatively clean. The FR values for the audio-visual
system where audio and video are assumed independent of
each other are higher than the video-only system. This
proves that the assumption that audio and video are in-
dependent does not hold and such assumptions can prove
detrimental to performance. The best FR values are given
by the proposed system. This indicates that exploiting the
correlation between audio and visual data can lead to sig-
nificant improvement in accuracy.

From Figure 3, we see that in most regions of operation,
FA is O for the video-only and both types of audio-visual
systems. The FA for the audio-only system is again high
due to noisy data. It is worthy to note that small values of
FR for the proposed system does not come at the cost of
increased FA.

From Figures 2 and 3, it can be seen that the region
where Ng is very small is unstable for most systems. The
performance in this region is unpredictable and data depen-
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dent. Also, when Ng becomes very large, FR starts increas-
ing for all systems which shows that performance degrades
due to overfitting when excessively large number of Gaus-
sians are used. We can see that the stable region of operation
is the smallest for audio-only system and is the largest for
the proposed design. This shows that the proposed design
promises greater stability and reliability.

From Figure 4, we can see that the proposed design is
very robust against RP1 and RP2 replay attacks. The FA
values in almost all regions of operation are 0. The robust-
ness against RP1 is due to the mere fact that this is a mul-
timodal system. The video in RP1 is of an impostor and
thus, the video modality is responsible for this robustness.
RP2 has both audio and video (still image) of the client and
still the system is very robust. This shows that the system
has an inherent liveness detector (though we have not ex-
plicitly designed one). The correlation between audio and
visual data which we preserved during training acts as a
hidden liveness detector in our design which provides ro-
bustness against RP2. RP3 has both audio and video of the
client speaking different sentences. Most audio-visual sys-
tems would fail against such attacks. Even those employing
liveness detection are vulnerable to such attacks as they de-
tect liveness using lip movement information and RP3 has
a live video. The only way to be robust against such attacks
is to make sure that the person is speaking the same sen-
tence in audio as well as video. One possible way would
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be to perform speech recognition on both audio and visual
data. This technique has two problems. One is that us-
ing visual data only speech recognition is inherently limited
and not reliable. Second is that this adds complexity into
the design which makes this technique unsuitable for real-
time applications. The proposed design inherently does this
task without adding any complexity into the system design.
It does this at the frame level. For every frame, it implic-
itly checks if audio and video correspond to the same sound
and assigns probabilities accordingly. Figure 4 shows that
for RP3, FA as low as 10% is possible using the proposed
technique where other audio-visual systems would break-
down. We see that for low values of Ng, FA is very high
and it drops steadily as Ng increases. This is because at
low values of Ng, different sound units and the correspond-
ing facial expressions are averaged out. Thus, the system
is not able to decide reliably if the voice and face informa-
tion correspond to the same utterance and hence FA is high.
As Ng is increased, each Gaussian represents fewer num-
ber of sound units and thus, the averaging effect is reduced.
Now, the system has enough information to decide whether
the voice and face information correspond to the same ut-
terance and hence, FA decreases. To conclude, we see that
the proposed technique is robust to a variety of replay at-
tacks and can assure reasonable reliability for high security
applications.

Table 1 shows the best-case comparison between the pro-



Table 1. Best-case comparison among systems.

System Best FR | Best FA
Audio only 1571% | 1.25%
Video only 5.71% 0.00%
Audio-Visual (independent) | 11.43% | 0.00%
Audio-Visual (correlated) 2.86% 0.00%

Table 2. Some useful design values.
Ne | FRD) | FACO |7 TRps | KPS
6 2.86 10.00 | 0.00 | 0.00 70.00
9 5.71 6.25 | 0.00 | 0.00 65.71
16 8.57 0.00 | 0.00 | 0.00 37.14
31 | 12.86 0.00 | 0.00 | 0.00 20.00
48 | 30.00 0.00 | 0.00 | 0.00 8.57

posed design, audio-only system, video-only system and
audio-visual system which uses audio and video indepen-
dently. Except for the audio-only system, all other systems
are capable of achieving an FA value of 0%. Due to the
noisy nature of audio data, the audio-only system is unable
to achieve this value. Due to the same reason, the audio-
only system also gives the highest best-case FR value. The
video-only system gives the second lowest best-case FR
value. FR value of audio-visual system which uses audio
and video independently is higher than that of the video-
only system which again proves that performance can de-
grade if audio and video are assumed independent. The best
FR value (as low as 2.86%) is given by the proposed design
which shows that the proposed design offers superior per-
formance.

Table 2 lists some useful design values. Accuracy and
robustness measures (in terms of FA, FR and FA against
replay attacks) are listed against the design factor Ng (num-
ber of Gaussians for the client model) to speed up the de-
sign process. Though the exact values are data dependent,
depending on the accuracy and robustness requirements, a
rough estimate of the design factor Ng can be obtained from
the table.

A simpler version of the proposed technique has been
implemented on a DSP processor (TMS320C6713) using 5
Gaussians for client models. The system demands about
100kb of program memory and 512kb of data memory (ex-
cluding memory required for storing interface messages).
The system is able to achieve an average latency of less than
1.5 seconds (ranging from less than a second for fast speak-
ers to about 3 seconds for slow speakers). An additional
latency of 2 seconds is introduced by the End-of-Speech
Detector (2 seconds of silence is required to conclude end
of speech). The system is able to achieve an online accu-
racy close to 90% under semi-controlled testing conditions
(distance of the person from the mic, view angle for the per-

son’s face, etc are controlled but background noise, lighting
conditions, etc. are not controlled).

4. Conclusions

In this paper we have shown that the correlation between
audio and visual data during spoken utterances offers useful
information for person recognition. Assuming these modal-
ities to be independent can result in degraded performance.
Better accuracy in recognition and robustness against a va-
riety of replay attacks can be obtained by exploiting this
correlation between audio and visual data. In fact, robust-
ness against certain kinds of replay attacks (RP3) can only
be provided by considering this correlation.

We have proposed a simple feature level concatenation
technique of multimodal fusion as a means to exploit the
correlation between audio and visual data. The proposed
design offers superior performance as compared to audio-
only, video-only and audio-visual systems which assume
audio and visual data to be independent which shows that
the proposed fusion technique effectively captures the cor-
relation between audio and visual data and uses it to give
better performance. We demonstrated that the proposed de-
sign demands low amount of memory and less computa-
tions which makes it suitable for a low-cost real-time DSP
implementation. We also showed that the proposed design
is capable of operating in real-time and it gives a reasonably
good performance in real-time as well.
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