
A Practical and Configurable Lip Sync Method for Games

Yuyu Xu∗ Andrew W. Feng† Stacy Marsella‡ Ari Shapiro§

USC Institute for Creative Technologies

Figure 1: Accurate lip synchronization results for multiple characters can be generated using the same set of phone bigram blend curves. Our
method uses animator-driven data to produce high quality lip synchronization in multiple languages. Our method is well-suited for animation
pipelines, since it uses static facial poses or blendshapes and can be directly edited by an animator, and modified as needed on a per-character
basis.

ABSTRACT

We demonstrate a lip animation (lip sync) algorithm for real-time
applications that can be used to generate synchronized facial move-
ments with audio generated from natural speech or a text-to-speech
engine. Our method requires an animator to construct animations
using a canonical set of visemes for all pairwise combinations of a
reduced phoneme set (phone bigrams). These animations are then
stitched together to construct the final animation, adding velocity
and lip-pose constraints. This method can be applied to any charac-
ter that uses the same, small set of visemes. Our method can operate
efficiently in multiple languages by reusing phone bigram anima-
tions that are shared among languages, and specific word sounds
can be identified and changed on a per-character basis. Our method
uses no machine learning, which offers two advantages over tech-
niques that do: 1) data can be generated for non-human characters
whose faces can not be easily retargeted from a human speaker’s
face, and 2) the specific facial poses or shapes used for animation
can be specified during the setup and rigging stage, and before the
lip animation stage, thus making it suitable for game pipelines or
circumstances where the speech targets poses are predetermined,
such as after acquisition from an online 3D marketplace.

Index Terms: I.3.2 [Computing Methodologies]: Com-
puter Graphics—Methodology and Techniques; I.3.7 [Computing

∗e-mail: yxu@ict.usc.edu
†e-mail: feng@ict.usc.edu
‡e-mail: marsella@ict.usc.edu
§e-mail: shapiro@ict.usc.edu

Methodologies]: Computer Graphics—Three-Dimensional Graph-
ics and Realism; I.3.8 [Computing Methodologies]: Computer
Graphics—Applications

1 MOTIVATION

Synchronizing the lip and mouth movements naturally along with
animation is an important part of convincing 3D character perfor-
mance. In this paper, we present a simple, portable and editable
lip-synchronization method that works for multiple languages, re-
quires no machine learning, can be constructed by a skilled an-
imator, is effective for real-time simulations such as games, and
can be personalized for each character. Our method associates an-
imation curves designed by an animator on a fixed set of static fa-
cial poses, with sequential pairs of phonemes (phone bigrams), and
then stitches these animations together to create a set of curves for
the facial poses along with constraints that ensure that key poses
are properly played. Diphone- and triphone-based methods have
been explored in various previous works, often requiring machine
learning. However, our experiments have shown that animating
phoneme pairs (such as phone bigrams or diphones), as opposed
to phoneme triples or longer sequences of phonemes, is sufficient
for many types of animated characters. Also, our experiments
have shown that skilled animators can sufficiently generate the data
needed for good quality results. Thus our algorithm does not need
any specific rules about coarticulation, such as dominance functions
or language rules. Such rules are implicit within the artist-produced
data. In order to produce a tractible set of data, our method reduces
the full set of 40 English phonemes to a smaller set of 21, which
are then annotated by an animator. Once the full animation set has
been generated, it can be reused for multiple characters. Each addi-
tional character requires a small set of static poses or blendshapes
that match the original pose set. Lip sync data needed for a new
language requires a new set of phone bigrams for each language,

although similar phonemes among languages can share the same
phone bigram curves. We show how to reuse our English phone bi-
gram animation set to adapt to a Mandarin set. Our method works
with both natural speech and text-to-speech engines.

Our artist driven approach is useful for lip syncing non-human
characters whose lip or face configuration doesn’t match a human’s,
which would make it difficult to retarget. Animators can generate
a lip animation data set for any character or class of characters,
regardless of the facial setup specified. We demonstrate such an ex-
ample on an animated, talking crab that we acquired from an online
3D content source, and whose facial configuration does not match
any existing set of lip sync poses. In addition, our method can be
used with any set of facial poses or blend shapes as input, thus
making it suitable for game pipelines where the characters must
adhere to specific facial configurations. This differs from many
machine learning algorithms where the retargeting efforts must be
done once the learned data is generated, or where specific facial
poses are output from the machine learning process, but differ ac-
cording to the input data. By allowing the setup of the character
to be determined in advance of generating the lip animation data,
our system can be adjusted to be compatible with any existing lip
animation setup, thus making it ideally suitable for game pipelines.
We demonstrate this capability by using the same facial poses as a
commercial lip animation tool, FaceFX [19], whose results we can
then directly compare against. In addition, control over our method
can be achieved by reanimating specific phoneme pairs (such as L-
Oh, as in the word ’low’). Thus control over various parts of the
algorithm are both intuitive and controllable.

It is difficult to compare the quality of the results between one
lip syncing method to another, since the models, data set, and char-
acteristics are often different between methods. With some excep-
tions [27], few research methods attempt to compare their own re-
sults to other established research methods or commercial results.
There are many reasons for this, including the difficulty in repro-
ducing exactly other methods and the lack of availability of data
sets. Consequently, comparisons are made to simpler methods [34].
By contrast, we present a direct comparison with a popular com-
mercial lip syncing engine, FaceFX [19], using identical models
and face shapes. We thus maintain that our method generally pro-
duces good results with very low requirements, while simultane-
ously being controllable and editable.

2 RELATED WORK

There are many facial animation techniques, including 2D image-
based methods, and 3D geometry-based methods. A background
on many of these techniques can be found in the survey by Parke
and Waters [31]. However, the focus of this paper is on lip syncing
to audio, which we summarize below.

2.1 Visual Speech Animation

The synthesis of realistic visual speech animations corresponding
to novel text or prerecorded acoustic speech input has been a major
research problem for decades. A common approach is to map one
or more individual phonemes to corresponding viseme and gener-
ate the animation by interpolating the visemes given phoneme se-
quences [18] and demonstrated in a system using blendshapes [35].
However, naively interpolating viseme sequences tend to generate
poor results since it does not consider co-articulation. Visual speech
co-articulation is a phenomena describing that, which shows that a
current viseme shape is not an independent face shape but rather
would be affected by adjacent phonemes. The early work by Cohen
et al introduced dominance functions [11, 28] as a parameteriza-
tion method to deal with co-articulation. Their pioneering work is
followed by more research works aimed to improve the dominance
function model [13, 24, 12]. In their work each parameter curve
controls a time-varying deformation over a small region on the face

model. Although this parameterization method is intuitive to use,
it is difficult to generalize across different faces since a set of pa-
rameters is bounded to a certain facial topology. Therefore a lot of
manual effort is required for each new face. Our method parame-
terized the face animation as a set of blend curves using a canonical
set of viseme shapes. Therefore the same set of parameter curve
can be applied on different characters as far as they use the same
canonical definition for viseme shapes.

Many data-driven methods are developed to learn co-articulation
patterns from animation data. Ma et al learned variable length units
based on a motion capture corpus [26]. Deng et al proposed a
method that learn diphone and triphones model presented in weight
curves from motion captured data [16]. Dynamic programming is
applied to calculate the best co-articulation viseme sequences based
on speech input. Although their method can produce natural speech
animation with learned co-articulation, it requires large amounts
of motion data for training and the result is highly dependent on
the training data. Cao et al transferred captured data to a model
to synthesize speech motions [6]. The recent work by Taylor et
al [34] also introduced a dynamic visemes method, which extracts
and clusters visual gestures from video input of human subjects. To
synthesize dynamic visemes from a phoneme sequence, it looks for
the best mapping through the probability graph learned from visual
gesture data and stitch the viseme sequences together. Their method
produces good results with co-articulation effects but requires sig-
nificant animator efforts to setup around 150 visemes animations
for each rigged characters face. By contrast, our method requires
only a small set of static facial poses for each character.

Blendshape is a widely used technique due to its simplicity, when
3D shapes are interpolated and blended together in customized
ways. One of the drawbacks when using blendshapes is the dif-
ficulty in defining a set of face shapes that are orthogonal to each
other. This in turn causes the influence from one face shape to
degrade other shapes. [25, 15] provided a method to avoid inter-
ferences. Human performance also provides a way to produce high
quality and realistic facial animations. Waters and coworkers [36]
applied radial laser scanner to capture facial geometry from the sub-
ject and used the scanned markers to drive the underlying muscle
system. Chai et al [10] used optical flow tracking to capture the
performance from a subject to drive facial animations.

2.2 Expressive Facial Animation

Expressive facial animations, including eye gaze and head move-
ments, would greatly enhance the realism of a virtual character.
Cassell et al developed rule based automatic system [8]. Brand et
al [5] constructed a facial internal state machine driven by voice in-
put using Hidden Markov Model (HMM). Deng et al extended the
work in co-articulation model [16] and added the expressive facial
motion learned from motion data to wrap it along with speech mo-
tion [17]. Cao et al used learning techniques to generate separate
emotion components from speech [7]. More recent research has
used test-to-speech(TTS) to drive expressive speech [29].

2.3 Software

FaceFX is a lip syncing software that has been widely adopted in
many video games and simulations. It takes a speech audio as input
and generate a set of blending curves. It then additively combines
a set of simple component animations based on blending curves
to produce facial animations. In this paper we will compare our
result with its result based on lip-syncing accuracy and naturalness.
In addition to prerecorded audio files, we also make use of text-
to-speech (TTS) engine such as Microsoft TTS [22], Fesitival [4],
and Cereproc [9] to produce mid-quality speech audio and phoneme
timing on the fly.

Our method differs from many of the existing machine learn-
ing methods in that the data can be constructed and modified by

a skilled animator, and therefore does not require any performance
capture or speech corpus. In addition, each phone bigram generated
by the animator has local effects and can be edited or changed indi-
vidually without affecting other parts of the system. Such process
can be repeated for new characters, and thus the fact that our system
can be changed and modified easily represents a strong advantage
over machine learning methods which cannot learn and change the
results for individual sounds per character as our system can.

3 METHOD

Our method involves two phases; an offline phase where an an-
imator constructs animation curves associated with all pairwise
combinations of phonemes, and a runtime phase that produce the
speech animations by stitching, smoothing and constraint satisfac-
tion based on the input timings of the phonemes.

3.1 Offline Phase

Our goal is to construct a set of animations that are associated with
pairs of phonemes. We choose phoneme pairs as our canonical unit
of animation since pairs of phonemes allow for coarticulation ef-
fects that are not possible by associating animation with individual
phonemes. Diphones are commonly used during machine learn-
ing techniques, which represent timings between the middle of one
phoneme and the next. Animators construct phone bigrams, which
represent the timings from the start of one phoneme to the end of the
following one. We choose phone bigrams, and not diphones, since
an animation of a phone bigram is intuitive, whereas an animation
of a diphone has no intuitive representation. Phone bigrams can be
constructed by animating a short word with a single syllable that
represents the two phonemes. For example, when animating the
phone bigram for L-Oh, an animator can create an animation that
represents the word ’Low’. By contrast, there is no intuitive rep-
resentation of the mouth movements for a diphone, which would
require the animator to start the motion from the middle of the ’L’
sound to the middle of the ’O’ sound. By using phone bigrams,
animators are able to create better quality set of animations.

We also choose phoneme pairs, rather than combinations of three
phonemes or higher order sequences in order to reduce the amount
of data needed to be produced by animator. We expect that better
results could be obtained by animating or learning combinations of
three phonemes or even longer sequences. However, our goal is to
identify a tractable set of data that can be quickly generated so that
high quality lip syncing can be produced easily.

3.1.1 Phoneme Selection

Phonemes differ from each other according to their sounds.
However, similar-looking facial movements can produce multiple
phonemes. For example, a person will make a similar-looking face
of folding their lips together when producing the ’b’ and ’p’ sounds.
Thus, in order to further reduce the amount of data necessary for
our method, we map the 40 English phonemes [37] into a smaller
phoneme set, which we call the Common Phoneme Set, in turn
greatly reducing the number of pairwise phonemes that must be
produced during the offline phase. Table 1 shows the mapping to
our common set of phonemes.

The mapping of phonemes (for example, mapping all ’b’ and
’m’ sounds to the common ’bmp’ phoneme) somewhat reduces the
subtleties that result from the differences between those sounds.
However, our method allows for the inclusion of additional de-
tail as needed by remapping the phonemes. Thus, the ’b’ and ’m’
phonemes could be separated, resulting in an additional number of
phone bigrams to animate.

A language with n phonemes uses n2 pairwise phoneme com-
binations. Thus, English has 40 phonemes and 402 = 1600 pair-
wise phoneme combinations. By contrast, our reduced Com-
mon Phoneme Set of 21 phonemes contains 212 = 441 pairwise

English
phoneme

Common
Phoneme Set

Examples

ae, ah, ax ah cat, cut, ago
aa aa father
ao ao dog
ey, eh eh ate, pet
er er fur
ih, iy ih feel, fill, debit
w, uw, uh w with, too,

book
ow ow go
aw aw foul
oy oy toy
ay ay bite
h h help
r r red
l l lid
s, z z sit, zap
sh, ch, jh, zh,
y

sh she, chin, joy,
pleasure, yard

th, dh th thin, then
f, v f fork, vat
d, t, n, ng d dig, talk, no,

sing
k, g kg cut, gut
p, b, m bmp put, big, mat

Table 1: Forty English phonemes mapped to our common set of
phonemes. The left column lists the full set of English phonemes.
The right column all the canonical visemes and the second right
column lists all the pairwise phoneme combinations for the given
phoneme schedules.

phoneme combintions. Thus, animators only need to generate ap-
proximately 25% of the animations that would ordinarily be con-
structed if the entire English phoneme set were used.

Using this reduced phoneme set, we generated phone bigrams
from a corpus of approximately 200 utterances of varying length,
from a single word, to utterances composed of several sentences.
Table 2 shows the frequencies of the Common Phoneme Set pair-
wise phoneme combinations when generated from the Microsoft
TTS Engine:

Note that the d Common Phoneme Set phoneme appears fre-
quently, since it encompases four phonemes: d, t, n, ng. In addi-
tion, 104 of the 441 Common Set phone bigrams never appeared,
and thus, nearly 99.1% of the phone bigrams could be generated
from the first 283 most common phone bigrams. The phone bigram
distribution is shown below in Figure 2. It is possible that different
phoneme sequencers would generate slightly different results based
on their own analysis of words and their mapping to the phonemes.
However, we would expect them to be mostly aligned with our re-
sults, since to do otherwise would indicate a lack of synchronization
with the SAMPA [37] phoneme set.

3.1.2 Facial Pose Selection and Phone Bigram Animation

Our method sequences a series of animations that are associated
with our Common Phoneme Set of phoneme pair. Therefore instead
of having animators create animations from scratch, we choose to
represent phone bigram animations as a set of blend curves using
a canonical set of face poses. This not only greatly simplifies the
task for animators, but also allow our animations to be portable to
different characters. As far as the new character has the same set
of canonical face poses, our phone bigram curves can be applied on
that character to generate high quality lip syncing animations. To

Rank Common Set Phoneme Pair Percentage
1 ah - d 4.62
2 d - ih 3.44
3 ih - d 2.68
4 d - d 2.64
5 d - ah 2.40
6 eh - d 1.83
7 d - w 1.66
8 ah - r 1.58
9 ih - w 1.50
10 d - z 1.43
11 ih - z 1.37
12 ih - kg 1.32
13 aa - d 1.27
14 z - ih 1.22
15 r - ih 1.21
16 th - ah 1.19
17 z - d 1.16
18 kg - ah 1.15
19 ah - l 1.10
20 z - ah 1.04
21 ah - bmp 0.98

Table 2: Frequency of Common Phoneme Set. Phoneme pairs gen-
erated from a TTS engine on a corpus of approximately 200 utter-
ances.

Figure 2: Distribution of Common Phoneme Set phoneme pairs using
a text-to-speech engine. Horizontal axis shows the number of pair-
wise phonemes. Vertical axis shows the percentage of all pairwise
phonemes.

produce a Common Phoneme Set of phone bigram animations, ani-
mators construct facial movements by combining several static face
poses over time using a curve editor or similar tool. The animation
curves are normalized, and will be timewarped over the length of
the phone bigrams.

In order to reduce efforts from animators when creating blend
curves, we develop a novel phone bigram curve editor which would
assist the user to quickly create curves and evaluate the quality of
resulting facial animations. As shown in Figure 3, our editing tool
[32] allows the animator to choose pairwise phoneme combinations
and edit their corresponding blend curves. The animator specifies

a piecewise linear curve lk
j (t) for each face pose fk and for each

phoneme pair d j. The linear curve represents the control curve for

a smooth B-spline curve ck
j(t), which will be use to adjust the influ-

ence of pose fk for a specific phone bigram d j. Here each pose
fk represents displacements from neutral pose and therefore the

weights ∑k ck
j(t) does not necessarily sum to one. It can also gener-

ate a speech animation for a specific sentence automatically from a
TTS engine or from a prerecorded audio file. The sentence will be
analyzed on the fly and transformed into the individual phone bi-
grams. We show an example of a set of curves associated with the
F-Ah phone bigram (for example, when saying the the beginning
of the word ’fat’). After the animator updates the blend curves for

a specific phone bigram, he can immediately evaluate its quality in
a speech animation by typing words or sentences that contain the
phoneme pair. This feedback can also help the animator to quickly
identify the subset of phone bigrams that need improvements. By
testing various words and sentences, problematic results can be ef-
fectively found and provide informations for the animator to fill in
missing phone bigrams or improve existing ones.

Figure 3: Curves for F-Ah phone bigram. The animator selects three
facial poses; FV, open and wide, and constructs animation curves
over normalized time. The animation can be directly played on the
character, or the character’s lip animation could be driven using TTS
or recorded audio.

Since we rely on blend curves to produce character indepen-
dent phone bigram animations, it is crucial to choose a good set
of canonical face poses. In our method, we choose a set of fa-
cial poses that allows the generation of nearly any facial expression
through various combinations of the facial poses. For compatibility
with existing pipelines and for purposes of comparison, we chose
the same facial poses that are used for the FaceFX software [20]
and detailed in Figure 4. These shapes include 5 face shapes, and
3 tongue shapes. We expect that any canonical set of facial poses
could be used, since the animator decides how and when to activate
the various components. The facial poses need to be able to model
sophisticated facial movements such as pursing the lips and tongue
movements.

Figure 4: From first to the end: fv, open, pbm, shch, w, wide. In
addition, three tongue positions: up, down and back are used as well
as a neutral pose.

The animators construct curves in normalized time. The phone
bigram animation will be used by the realtime algorithm by time-
warping the animation curve over the length of each phone bigram,
detailed in the section below. Each language, such as English, re-
quires its own set of animations, although other language sets can
reuse the same phone bigram animations, since many phonemes are
shared between languages.

3.2 Runtime Phase

Figure 5 shows a flow chart for our runtime system. The runtime
component operates on sequence of phonemes generated from a
phoneme scheduler. The phoneme scheduler can be extracted di-
rectly from a TTS engine, extracted offline from recorded audio,
or online via various phoneme translator tools. We have tested our
TTS path using the Microsoft [30], Cereproc TTS [9], and Festival
[3] TTS engines. Recorded audio can be extracted using various
commercial [19] or noncommercial tools [23, 33]. The details of
such phoneme scheduling are outside of the scope of this work.
Our system expects a sequence of English phonemes and timings
for each phoneme.

3.2.1 Curves Stitching and Smoothing

Our method then groups the sequence of phonemes into phoneme
pairs, and maps those to the Common Phoneme Set. As shown
in Figure 6, assuming the input phoneme schedules p0, p1, ...pn

occur at times t0, t1, ...tn. Our method first constructs a se-
quence of phoneme pairs consisting of adjacent pairs of phonemes
(p0, p1),(p1, p2), ...(pn−2, pn−1) and their corresponding time span
(t0, t2),(t1, t3)...,(tn−2, tn).

Each phoneme pair (pi, pi+1) is also associated with a set of

phone bigram curves ck
i (t){ti ≤ t ≤ ti+2} for each canonical face

pose fk. We stretch or compress the curves according to the time

span of the phoneme pair to generate ck
i (t). We then stitch the over-

lapping curves for the same face pose fk over adjacent time spans

to produce one single continuous blend curve ck(t) {t0 ≤ t ≤ tn}.
The stitching process eliminates overlapping areas between adja-

cent curves ck
i and ck

i+1 by retaining the curves with largest value, as

shown in Figure 7. For example, ck(t) = max(ck
i (t),c

k
i+1(t)){ti+1 ≤

t ≤ ti+2}. We choose the maximum value over linear blending or
averaging in the overlapping area so that the original information is
preserved in the resulting curves to activate face poses. Applying
other blending methods may damp the curves and produce unde-
sired lip movements during transition.

We also perform a smoothing pass over each curve using a user-
specified window to scan through temporal domain and find local
maximas. Figure 8 shows the resulting curves after the smooth-
ing process. Here we defines a sliding window, with its size 2tw
defined by user. The smoothing window will be slideing over the

curve ck(t) from t0 to tn and detect the local maximums for ck(t).
If at any time instant t there are two or more local maximas ck(ta)
and ck(tb) inside the window from t − tw to t + tw, we will smooth
out the curve values between ta and tb by interpolating two maxi-

mas ck(ta) and ck(tb) with a spline curve. Specifically, since ck(ta)
and ck(tb) are the values of spline curves associated with piecewise

linear curves whose values are lk(ta) and lk(tb) at time ta and tb, the

new spline curve can be obtain by linearly interpolating lk(ta) and

lk(tb) such that lk(t) = (tb−t)lk(ta)+(t−ta)lk(tb)
tb−ta

from time ta to tb. This

new linear curve thus defines a updated values for ck(t) from ta to
tb. Intuitively, this process smoothes out the ”valley” between two
maximas and therefore helps reduce high frequency lip movements
that are not natural for a speech animation.

3.2.2 Constraint Satisfaction

Since facial poses are activated based on parametric values, any
two poses could be arbitrarily combined together to form a new
face shape. However, certain poses, when activated simultane-
ously, would produce unnatural results. For example, the face pose
for ’open’ viseme should not be activated along with the pose for
’bmp’. Since one pose is open mouth and the other is close mouth,
combining them together may cause interference and cancel each
other. This can cause important information being eliminated from
the resulting facial motion. To fix this problem, we added the con-
straints between face pose pair to filter out undesired poses. A con-
straint threshold C(a,b) is defined for each pose pair (fa, fb). A
priority value for both P(a) and P(b) is also defined for each face
pose fa and fb to determine which pose should have its paramet-
ric value reduced during conflict. The threshold C(a,b) determines
whether the two poses fa and fb may interfere with each other, and

it is activated when ca(t) + cb(t) > C(a,b). Once the constraint
is activated, the parametric value from the lower priority curve

is reduced to satisfy the constraint ca′(t) + cb′(t) ≤ C(a,b). As-

suming P(a)> P(b), we define ca′(t) = ca(t) and cb′(t) = cb(t)−
(C(a,b)− ca(t)− cb(t)). Figure 9 shows the resulting curves after
constraint adjustments. This simple heuristic ensures that the in-
compatible curves will not affect each other and thus it improves the
quality and expression of resulting animations. The method is not
restricted to a standard set of face poses, it can be extended to work
with any arbitrary, non-conventional sets of face poses since the an-
imator can define suitable thresholds and priority values based on
the given face pose set. In our example, we found that setting the
constraints C(open,FV) = C(open, pbm) = C(open,ShCh) = 0.5,
C(a,b) = 2.0 for all other face pose pairs, and priorities P(open)<
P(W)< P(wide)< P(ShCh)< P(FV)< P(pbm) work well under
standard FaceFx face pose set.

3.2.3 Parametric Speed Limits

To produce natural lip syncing animation, a character should only
move his lips with a reasonable speed. However, the animator may
create a bigram curve with high slope and the time warping could
also compress the curve to be excessively sharp. This can cause fast
activation or deactivation of various static face poses or shapes, re-
sulting in popping or similar artifacts. We cap the parametric speed
dl(t)

dt of piecewise linear curve l(t) by a value lmax. This prevents
overly fast changes to any shape, and is intended to track the speed
at which a person’s face can be changed (for example, how quickly
the mouth can be opened or closed). We have found that values
where lmax = 15 provides reasonable results. Figure 10 shows the
resulting curves after limiting the parametric speeds.

Once the speed limit phase has been completed, we transfer the
curves to our animation system, which blends the facial poses or
blendshapes according to their activation values dictated by the
curves.

3.2.4 Editing

By constructing animation curves that are driven by a fixed set
of shapes or poses, the animator constructs a data set that can
be reused on other characters which use similar facial poses or
blendshapes. Thus, during the offline phase, the animator creates
character-independent animations. In addition, our method is well-
suited for an animation pipeline since there are no black-box com-
ponents whose results are difficult to interpret or modify. Specific
segments of the animations can be directly mapped back to their
originating phone bigrams and subsequently changed. In addition,
character-specific animations can be added to the original set of
phone bigrams curves to adjust the motions per character. Thus, our
method allows two types of adjustments; changing the static poses

!!"#$%&'%(

)*+%(,(#

"-*(./0(1

)*+%(#2'&13,4#5+#

6/17(4#8399'%&

:%',35'+%#3%.#

;(%.(1'%&

6/17(#"5'5-*'%&

6/17(#",++5*'%&

)+4(#6+%4513'%54

"9((.#6+%4513'%54

)1(1(-+1.(.#

:/.'+

!!"#<(%(135(.#

:/.'+

Figure 5: Runtime phase flow chart. A phoneme scheduler pro-
duces phonemes and their respective timings. Animations previously
created by an artist are associated with each phone bigram anima-
tion. Each facial pose then stitches together those animations, runs
a smoothing process, speed and pose constraints. The final curves
are animated by the system.

Figure 6: Curve visualization from our interactive tool. First step:
Curves of the phone bigram animations from the ’open’ viseme are
shown and placed together on the timeline (shown in red). Phoneme
boundaries are shown as vertical lines. Time axis is shown in the
first row of the black boxes underneath the curves. Phonemes and
their corresponding times are shown in the second and third row.

or blendshapes, as well as the changing of specific phone bigram
animations on a per character basis.

4 STUDY

It can be difficult to evaluate the relative quality of various lip sync-
ing algorithms against each other because of the difficulty in im-
plementing each solution and the supporting data that is needed,
such as character models, rigs and configuration parameters. Thus,
most lip syncing algorithms are typically indirectly compared with
each other taking into account those differing aspects. However, we
are able to compare our results directly with a popular commercial
lip syncing solution; FaceFX. For our experiment, we use the same
character, the same phoneme scheduler, and we construct phone
bigram animations using the set of FaceFX static poses. When pro-
ducing results from our algorithm, the FaceFX phonemes are then
mapped to our Common Phoneme Set. Thus our algorithm differs
from the results in FaceFX only in the interpretation and transla-
tion of phonemes into animation curves. Therefore we can directly
compare the two methods.

4.1 Method: Comparison With Other Methods

We performed a study comparing the results from both algorithms.
The study includes 4 characters; one cartoon character, one high
quality (near photo-realistic) character, one medium quality female

Figure 7: Curve visualization from our interactive tool. Second step:
Overlapping curves are stitched together;parametric values of curves
are compared in the overlapped regions and only the ones with
largest values are retained (shown in blue). The original stitched
curves from previous step are shown in green.

Figure 8: Curve visualization from our interactive tool. Third step:
The stitched curves are smoothed by finding local maximums with a
sliding window through temporal domain. The valleys of the curves
are removed by connecting two local maximums inside the sliding
window. The smoothed curves are shown in yellow.

character and one medium quality male character as shown in Fig-
ure 11. We captured 10 movie clip pairs for each character, each
pair is one random utterance from the pool generated using our
method and using FaceFX. A total of 80 people participated in the
study with 20 observers assigned to each character’s 10 movie clip
pairs, so 200 choices are made for each character’s lip animation
performance. The positioning of the movie clip inside a pair is ran-
domized.

The survey was done on Amazon Mechanical Turk [2] asking ob-
servers to choose the preferred clip between the paired clips as well
as state the strength of their preference, using a scale from 1(weak)
to 5(strong). Subjects were asked to choose based on the general
performance of the lip animation accuracy and naturalness. Ac-
curacy indicates that the mouth configuration is synchronized with
the words heard from the audio. The higher the accuracy, the more
you can understand what the character is saying by just reading the
lip syncing even without sound. Naturalness indicates closely the
mouth configuration resembles that of a human’s during speech.

Figure 9: Curve visualization from our interactive tool. Fourth step:
The curves are adjusted by enforcing the constraints between each
face pose pairs. Conflicted face pose curves are adjusted according
to their priority values. The resulting curves after adjustments are
shown in cyan.

Figure 11: The four characters used in our study (top left) a cartoony character, (top right) a high quality character, (bottom left) a medium quality
male character, (bottom right) a medium quality female character.

Figure 10: Curve visualization from our interactive tool. Fifth step:
The curves are further adjusted to satisfy the speed limits. The
slopes of curves are reduced if their parametric speeds are over a
user-defined threshold. The final curves are shown in magneta.

4.2 Study Results

All the results are shown in Figure 12. Our method is preferred
over FaceFX with 47%, 34%, 23%, 39% stronger preference re-
spectively for cartoony character, high quality character, medium
quality male character, medium quality female character and there’s
a significant different using chi-square goodness of fit test on prefer-
ences, χ2

(2) = 44.14, p< .005; χ2
(2) = 23.12, p< .005; χ2

(2) = 10.58,

p < .005; χ2
(2) = 30.42, p < .005. When it comes to average

strength of preferences, our method versus FaceFX is 4.03/3.70,
3.97/3.80, 3.54/3.60, 3.62/3.7 respectively.

4.3 Study Discussion

As expected, the results show our method is favored more by the
participants across all types of characters. Participants that pre-

ferred our technique preferred it on average at greater than medium
strength, with a preference strength that is greatest in the case of the
cartoon character(4.03) and high quality character(3.97). Interest-
ingly participants that preferred FaceFX, though fewer in number,
also preferred it on average greater than medium strength. This
suggests the need for a follow-on study where we tease apart what
factors are leading to these judgments across techniques as well as
across character types. Specifically in reference to our technology,
there is a question of why the cartoony and high quality characters
have stronger preferences than the medium quality. Is it just the
quality of the character or is there an interaction between character
quality and the realization of the visemes?

5 DISCUSSION

In this paper, we present a lip syncing method that can achieve
high-quality results using only artist-driven data. We observe that
only phoneme pairs are needed, and that higher-order phoneme se-
quences are not necessary for generating reasonable synchronized
lip movements with audio. We also observe that artist-designed
animation curves work well at run-time to synthesize high qual-
ity speech animations, and that machine learning is not necessary.
A key advantage to our method is that in can be constructed from
any set of static facial poses or shapes. This allows the construc-
tion of lip animation for non-human characters using non-standard
face poses, as well as allowing the construction of character face
rigs separately from the animation, since the facial setup needed
can be determined in advance, and does not have to be explicitly
retargeted.

We also demonstrate that such a method can be effective on a

Figure 12: Comparison between our method and FaceFX using cartoony, high quality, medium quality characters. (Left) preference comparison
(right) average strength of preference comparison. We use Amazon Mechanical Turk to collect viewer ratings from 80 participants.

range of character styles, including cartoon-like and realistic look-
ing models. High levels of facial realism are becoming increasingly
popular, and thus spurring the need for animation methods suitable
for such levels of fidelity.

5.1 Data-Driven Methods

We observe that many previous methods attempt to solve the lip
syncing problem by extracting co-articulation effects from captured
data. The goal of these methods can be considered as generat-
ing a correct facial animation for each diphone or triphone com-
bination through either heuristics such as dominance function or
through machine learning methods. Therefore on a higher level,
they attempt to achieve the similar goal as our method to fill out
the phoneme pair or phoneme trio (diphones/phone bigrams, or tri-
phones/phone trigrams) tables to account for co-articulations.

The limitation with data-driven methods is that there is no guar-
antee that all the required combinations exist or could be extracted
effectively in the training data. Therefore the missing combinations
would directly affect the quality of resulting animations. More-
over, there is no easy way to modified the learned model to account
for missing combinations. The goal of our method is to provide
a transparent framework for the animator to explicitly fill out the
phoneme pair/diphone/phone bigram tables. Thus the animator has
direct control over the quality of resulting speech animations. Note
that although we did not choose to solve the problem via data-driven
methods, our framework can be extended to make use of captured
facial animations. Diphone curves, instead of phone bigrams, can
be extracted from captured animations by fitting the animation data
with canonical face poses.

5.2 Offline Data Generation

Our offline phase requires an animator to generate 441 short anima-
tions for the English language, which can be used by any character
that utilizes the same speech targets used during the animation gen-
eration phase. Our animators were able to generate a single phone
bigram animation in just a few minutes. Our supplemental video
shows an example of generating such animations. Thus, if we con-

servatively estimate that each phone bigram animation takes 5 min-
utes to generate, an entire language set can be generated in approxi-
mately 441∗5 = 2205 minutes = 37.5 hours. Thus, a new language
data set can be generated by a single animator using standard tools
in less than 1 week. This language data set can be used for all char-
acters which utilize the same static facial poses. In addition, we
provide the English language data set openly to the community 1 so
that others may use it directly in their experiments or works, thus
further lowering the barrier to implementation for this method.

In addition, since nearly 25% of the Commone Phoneme Set
phoneme pairs never appeared in our speech corpus, a mostly com-
plete animation set in English can be generated in 75% of that time,
or around 3 days. Short sentences can require around 30-40 unique
phoneme pairs to be annotated, which typically take a only a few
hours to construct. Thus, our lip sync method can be tested on en-
tirely new 3D characters that have distinctive facial poses or shapes
in a relatively short amount of time.

5.3 Configurability

A key advantage to our method is the configurability of the facial
setup to the lip syncing setup. Any set of facial poses can be used
to construct a language set which will be effective for all characters
that use the same matching facial poses. Machine learning methods
generally dictate the facial setup needed based on the learned data;
for example, in generating shapes based on a statistical analysis
such as PCA. Our method can adopt to any set of input data. This
can be effective when the facial requirements have been dictated to
the animator, such as when acquiring models from a 3D market-
place where the facial poses have alreay been established. This is
also useful for non-human characters whose facial configurations
either don’t match a human’s or contain a different set of poses that
activate various non-human capabilities. With our method, it would
be possible to construct a different phone bigram animation set to
match any standard lip syncing configuration, thus allowing direct
compatibility with other lip syncing setups.

1http://smartbody.ict.usc.edu

We purchases a rigged crab model from an online marketplace
[1] which contained several non-standard facial poses, such as ’bare
teeth’, ’frown’, ’smile’, ’mouth open’, ’mouth OO’ and various
tongue positions, such as those seen in Figure 13. We then con-
structed phone bigrams necessary to animate the crab, since our
method allows the generation of such animation for use in lip
synching from any set of facial poses. Our supplementary video
shows the results. Note that we are not performing any remodeling
or rigging changes in order to create the lip sync data set.

In addition, phoneme pairs can be individually identified and re-
placed as needed on a per character basis. These phoneme pairs
are easy to identify, since their effect can be scene at the times cor-
responding to the phoneme activation. As mentioned above, this
enables the partial construction of a lip sync animation set for test-
ing purposes, without having to complete the entire set (for exam-
ple, to preview the quality of the animation on a single sentence),
since the parts of the lip sync that need to be consructed are readily
indentifiable from their phoneme schedule.

Recent work by Taylor et al [34] have also utilized hand-crafted
animations to generate lip sync data. Note that our method requires
only a small set of static facial poses, while their method requires
the construction of 150 short animations per character. We believe
that the quality of our results are comparable to theirs while requir-
ing over an order of magnitude less data per character.

5.4 Multilanguage Efforts

Our method can operate on multiple languages by creating a new set
of animations based on the phonemes for the language or reusing
existing phone bigram animations. We were able to generate a Man-
darin phone bigram animation set by mapping the phonemes associ-
ated with Mandarin pinyin [38] to the our Common Phoneme Set in
English, then adding one additional phoneme unique to Mandarin.
The additional phoneme required adding 43 additional diphone an-
imations, which were generated in less than one day. Thus our
Mandarin lip synchronization could be generated in a short amount
of time. We expect that other languages could be added through
similar means.

5.5 Direct Method Comparisons

We were able to compare our method directly with FaceFX using a
nearly identical pipeline. We do not claim that our method yields
superior results to all other methods, but rather that our results are
comparable to many others that have much larger requirements.
Other methods that attempt to quantity the quality of animation are
limited to learning based methods [27] or comparisons between the
original data and the reconstructed data, which are not applicable to
animator-driven methods. McGurk studies [14] can be performed
to see how the McGurk effect on real humans compares to that of
synthesized speech. Likewise, noise studies where words are ran-
domly removed from utterances and must be recovered by reading
lips can help judge the quality of the articulation. We believe that
the best criteria for comparison is side-by-side comparison in sub-
jective studies. We believe that our method is accessible and simple
enough and adaptable to be used for comparison from future re-
search.

5.6 Limitations

Our method does not address the issue of emotional content dur-
ing speech. Many recent research works have identified expressive
speech as a more interesting problem than simple lip animation,
and thus have avoided the problem of generating high quality lip
animation on its own by pursuing high quality emotional facial per-
formances, presuming that a high quality emotional facial perfor-
mance would include a high quality lip sync result. In doing so,
however, there has been no consensus among the research commu-
nity regarding the best lip sync methods for 3D characters. Lip

animation independent of facial expression remains an important
component of many games and simulations, as well as for methods
that use the upper face as a means to express emotional content.

We anticipate that the use of phone trigram or triphones (or
longer sequences of phonemes) would result in slightly better re-
sults, but would require too much data to be annotated by an anima-
tor. Triphones would require p3 animations, where p is the num-
ber of phonemes in our Common Phoneme Set. Thus, manually
annotating phone trigrams or triphones would make our method
unwieldly. Also, slightly better results could be obtained by ex-
panding the Common Phoneme Set. For example, separating the
’b’ and ’m’ phonemes. Our selection of the Common Phoneme
Set is based on general practices and expert knowledge within the
animation community.

5.7 On Achieving Good Lip Synching

There are many factors that contribute towards high quality lip
syncing, including the model rendering, facial setup including rig-
ging, and input data. Proper phoneme alignment is critical to gen-
erating properly timed lip syncing, which is why text-to-speech al-
gorithms or slow, even-toned utterances can generate good results,
while fast talking, emotional speech, stutters, partial word expres-
sions and other non-words can be difficult to map properly. Re-
search has show that the best phoneme alignment can be determined
only as a margin of error by agreement among experts [21].

ACKNOWLEDGEMENTS

Thanks to Teresa Dey for her extensive artistic contributions in
support of this work. Thanks also to Matt Liewer, Joe Yip and
Oleg Alexander for artistic and technical support. Thanks to Jarvis
McGee for his work on the curve editor. Thanks to Dominic Mas-
saro for discussions about lip animation and dominance function
methods.

REFERENCES

[1] Daz3d, content marketplace, http://www.daz3d.com, 2013.
[2] Amazon. Amazon mechanical turk, 2012.
[3] A. Black, P. Taylor, and R. Caley. The festival speech synthesis sys-

tem, 1998.
[4] A. W. Black and P. A. Taylor. The Festival Speech Syn-

thesis System: System documentation. Technical Report
HCRC/TR-83, Human Communciation Research Centre, Uni-
versity of Edinburgh, Scotland, UK, 1997. Avaliable at
http://www.cstr.ed.ac.uk/projects/festival.html.

[5] M. Brand. Voice puppetry. In Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH
’99, pages 21–28, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[6] Y. Cao, P. Faloutsos, E. Kohler, and F. Pighin. Real-time speech mo-
tion synthesis from recorded motions. In Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 345–353. Eurographics Association, 2004.

[7] Y. Cao, P. Faloutsos, and F. Pighin. Unsupervised learning for
speech motion editing. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages
225–231. Eurographics Association, 2003.

[8] J. Cassell, C. Pelachaud, N. Badler, M. Steedman, B. Achorn, B. Dou-
ville, S. Prevost, and M. Stone. Animated conversation: Rule-based
generation of facial expression, gesture and spoken intonation for mul-
tiple conversational agents. pages 413–420, 1994.

[9] Cereproc. Cerevoice text-to-speech synthesis,
http://www.cereproc.com, 2012.

[10] J.-x. Chai, J. Xiao, and J. Hodgins. Vision-based control of
3d facial animation. In Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages
193–206. Eurographics Association, 2003.

Figure 13: Some face poses from cartoon crab acquired from an online marketplace. Our method is able to use any set of facial poses to
construct a lip animation data set.

[11] M. M. Cohen and D. W. Massaro. Modeling coarticulation in synthetic
visual speech. In Models and Techniques in Computer Animation,
pages 139–156. Springer-Verlag, 1993.

[12] M. M. Cohen, D. W. Massaro, and R. Clark. Training a talking head.
In Proceedings of the 4th IEEE International Conference on Mul-
timodal Interfaces, ICMI ’02, pages 499–, Washington, DC, USA,
2002. IEEE Computer Society.

[13] P. Cosi, E. Caldognetto, G. Perin, and C. Zmarich. Labial coarticula-
tion modeling for realistic facial animation. In Multimodal Interfaces,
2002. Proceedings. Fourth IEEE International Conference on, pages
505 – 510, 2002.

[14] D. Cosker, S. Paddock, D. Marshall, P. L. Rosin, and S. Rushton.
Toward perceptually realistic talking heads: Models, methods, and
mcgurk. ACM Transactions on Applied Perception (TAP), 2(3):270–
285, 2005.

[15] Z. Deng, P.-Y. Chiang, P. Fox, and U. Neumann. Animating blend-
shape faces by cross-mapping motion capture data. In Proceedings of
the 2006 symposium on Interactive 3D graphics and games, I3D ’06,
pages 43–48, New York, NY, USA, 2006. ACM.

[16] Z. Deng, J. Lewis, and U. Neumann. Synthesizing speech anima-
tion by learning compact speech co-articulation models. In Computer
Graphics International 2005, pages 19 – 25, june 2005.

[17] Z. Deng, I. C. Society, T. yong Kim, M. Bulut, S. Narayanan, and
S. Member. Expressive facial animation synthesis by learning speech
co-articulation and expression. Space, IEEE Transaction on Visual-
ization and Computer Graphics, 12:2006, 2006.

[18] T. Ezzat and T. Poggio. Miketalk: A talking facial display based on
morphing visemes. In In Proceedings of the Computer Animation
Conference, pages 96–102, 1998.

[19] FaceFX. Facefx software, http://www.facefx.com/, 2012.
[20] FaceFX. Facefx speech targets,

http://www.facefx.com/documentation/2010/w76, 2012.
[21] J.-P. Hosom. Speaker-independent phoneme alignment using

transition-dependent states. Speech Communication, 51(4):352–368,
2009.

[22] X. Huang, A. Acero, H. Hon, Y. Ju, J. Liu, S. Meredith, and
M. Plumpe. Recent improvements on microsoft’s trainable text-to-
speech system-whistler. In Acoustics, Speech, and Signal Process-
ing, 1997. ICASSP-97., 1997 IEEE International Conference on, vol-
ume 2, pages 959–962 vol.2, 1997.

[23] D. Huggins-Daines, M. Kumar, A. Chan, A. Black, M. Ravishankar,
and A. Rudnicky. Pocketsphinx: A free, real-time continuous speech
recognition system for hand-held devices. In Acoustics, Speech and
Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE In-
ternational Conference on, volume 1, pages I–I. IEEE, 2006.

[24] S. A. King and R. E. Parent. Creating speech-synchronized anima-
tion. IEEE Transactions on Visualization and Computer Graphics,
11(3):341–352, may 2005.

[25] J. P. Lewis, J. Mooser, Z. Deng, and U. Neumann. Reducing blend-
shape interference by selected motion attenuation. In Proceedings of
the 2005 symposium on Interactive 3D graphics and games, I3D ’05,
pages 25–29, New York, NY, USA, 2005. ACM.

[26] J. Ma, R. Cole, B. L. Pellom, W. Ward, and B. Wise. Accurate Vis-

ible Speech Synthesis Based on Concatenating Variable Length Mo-
tion Capture Data. IEEE Transactions on Visualization and Computer
Graphics, 12:266–276, 2006.

[27] X. Ma and Z. Deng. A statistical quality model for data-driven speech
animation. IEEE Trans. Vis. Comput. Graph., 18(11):1915–1927,
2012.

[28] D. W. Massaro, M. M. Cohen, M. Tabain, J. Beskow, and R. Clark.
Animated speech: research progress and applications. pages 309–345,
2012.

[29] W. Mattheyses, L. Latacz, and W. Verhelst. Comprehensive many-to-
many phoneme-to-viseme mapping and its application for concatena-
tive visual speech synthesis. Speech Communication, 2013.

[30] Microsoft. Microsoft english phonemes,
http://msdn.microsoft.com/en-us/library/ms717239, 2012.

[31] F. I. Parke and K. Waters. Computer Facial Animation. AK Peters
Ltd, second edition, 2008.

[32] A. Shapiro. Building a character animation system. Motion in Games,
pages 98–109, 2011.

[33] S. Sutton, R. Cole, J. D. Villiers, J. Schalkwyk, P. Vermeulen, M. Ma-
con, Y. Yan, E. Kaiser, B. Rundle, K. Shobaki, P. Hosom, A. Kain,
Johan, J. Wouters, D. Massaro, and M. Cohen. Universal speech tools:
The cslu toolkit. In In Proceedings of the International Conference on
Spoken Language Processing (ICSLP, pages 3221–3224, 1998.

[34] S. L. Taylor, M. Mahler, B.-J. Theobald, and I. Matthews. Dy-
namic units of visual speech. In Proceedings of the 2012 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, jul 2012.

[35] A. Wang, M. Emmi, and P. Faloutsos. Assembling an expressive fa-
cial animation system. In Proceedings of the 2007 ACM SIGGRAPH
symposium on Video games, pages 21–26. ACM, 2007.

[36] K. Waters and D. Terzopoulos. Modeling and animating faces using
scanned data. The Journal of Visualization and Computer Animation,
2(4):123–128, 1991.

[37] J. Wells et al. Sampa computer readable phonetic alphabet. Handbook
of standards and resources for spoken language systems, 4, 1997.

[38] P. H. Zein. Mandarin chinese phonetics,
http://www.zein.se/patrick/chinen8p.html, 2012.

