
A Robust Harmony Structure Modeling Scheme
for Classical Music Opus Identification

Samuel Kim, Panayiotis G. Georgiou, and Shrikanth Narayanan

Signal Anlaysis and Interpretation Lab. (SAIL)
University of Southern California, Los Angeles, USA.
kimsamue, georgiou, shri@sipi.usc.edu

Abstract—A robust algorithm to model the harmony structure of a
music piece is proposed. The harmony structure is extracted directly
from a music audio signal using a second-order statistic of chroma
feature vectors. The method is experimentally shown to be robust
against the degradation of chroma feature vectors due to noisy pitch
estimation in our classical music opus identification evaluation. To
analyze the effects of the noisy pitch estimation, we propose a noise
model that describes difference between the oracle chroma feature
vectors as obtained from a symbolic representation and those extracted
from the rendered audio signal. The results suggest that the harmony
structure modeling scheme employing the covariance matrix is more
robust than the alternative investigated second-order statistics. The
results also show that the proposed method obtains 84.3% accuracy
with the symbolic representations and 72.0% with the synthesized audio
data, which suggest that the proposed harmony structure modeling
method has room for further improvement by addressing the signal
processing challenges of pitch extraction, or through employing more
robust features.

Index Terms—music information retrieval, music fingerprint, multipitch
analysis, polyphony music signal.

I. INTRODUCTION
An important aspect of music information retrieval (MIR) systems

is the extraction and processing of relevant musical descriptions
according to target applications. For some applications, such as music
transcription, melody extraction, and rhythm detection, retrieving
the musical attributes is the main goal, while other applications
use the acquired musical attributes for their ultimate goals; genre
classification, artist identification, and mood classification are good
examples. Consequently, these applications which utilize the acquired
musical attributes as features of a given piece of music should devise
algorithms both to extract useful musical attributes and to compare
the derived features as needed by the application.
In this work, we aim to model the harmony structure of a

music piece, and utilize it as a discriminant feature in applications
that employ music similarity; specifically we focus on classical
music opus identification. The goal of the classical music opus
identification is to identify the same classical music recorded under
different conditions, such as different players, tempo, instruments,
and even with different orchestrations. It is very similar to cover
song identification which is one of the evaluation categories in
music information retrieval evaluation exchange (MIREX), an annual
evaluation at the International Music Information Retrieval System
Evaluation Laboratory (IMIRSEL) [1]. While the term ‘cover song’
is used in a broad sense including pop music, the classical music opus
identification in this work is restricted to classical music. This specific
application is motivated by the fact that there are many recordings
of the same classical music piece.
Excellent cover song identification efforts have been introduced at

the MIREX evaluation,that also enabled a fair comparison between
various systems (see [2] for an overview). Most studies, however,
require considerable computation to build sophisticated models and to

compute the similarities. Although Jensen proposed a time trajectory
filtering scheme to mitigate the complexity of the direct cross-
correlation method [3], designing the filter bank is still a heuristic
process. Recently, we proposed a novel music fingerprint extraction
algorithm that captures various musical attributes, such as harmony
structure and temporal dynamics [4], [5]. The metric is musically
meaningful, as well as it provides a simple and powerful similarity
measure; the experimental results showed that the proposed music
fingerprint is efficient in terms of both accuracy and complexity. The
rationale behind the main idea is that different recordings of the same
music have similar harmony structures.
Besides the computation problems, the signal processing chal-

lenges in extracting pitch information have not yet been addressed
fully in published studies. Although it is usually difficult to exctract
accurate pitch information due to various reasons such as spectral
overlap of overtones especially in polyphonic and multi-timbre music
audio signals ([6], [7] for a good overview of related work), many
systems utilize the pitch information in various forms, such as
melodies, chroma features, and chord representations.
The present paper addresses the effects of inaccurate pitch infor-

mation presented in chroma features on deriving a robust harmony
structure model based on the music fingerprint framework [4], [5].
We propose a noise model to provide an analytic approach to
this problem, and investigate the implications of noise on music
similarity measure especially in the context of classical music opus
identification. To evaluate this study, it is crucial to have the relevant
ground truth information for the music audio which is difficult to
establish easily in practice. As an intermediate step in that direction,
therefore, we utilize MIDI data and their corresponding synthesized
audio signals, which enables us to have the ground truth information
of the audio signals.

II. CHROMA FEATURE VECTOR

The chroma feature describes an energy distribution on the Western
chromatic scale, and it is based on Shepard’s helix model which
factorizes the perception of frequency into tone height and chroma
[8].

f = 2h+c
h ∈ Z, c ∈ [0, 1) (1)

where h, c, and f represent tone height, chroma, and frequency,
respectively. We can compute the chromagram by first performing a
short-time power spectrum analysis,

xc (t) =
X

k

s
“
t, 2c+k

”
(2)

where s
`
t, 2c+k

´
represents a short time power spectrum at time

t. Quantizing the chroma c into twelve levels yields a twelve
dimensional vector x(t) that can closely match the Western chromatic
pitch classes (A to G#). These quantized quantities are usually
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(b) Chromagram from MIDI data
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(c) Chromagram from synthesized audio

Fig. 1. An example of chromagram from MIDI data and synthesized audio
signal compared with pianoroll (BWV772). The representation from audio is
noisier compared with that obtained from MIDI.

called chroma feature vectors, and are widely used in music audio
processing. Each element of the vector represents the energy for the
corresponding pitch class at the time instance t.
However, as we described earlier, it is usually difficult to exctract

accurate pitch information due to various reasons such as spectral
overlap of overtones especially in polyphonic and multi-timbre music
audio signals. To analyze the effects of the challenges, we extract
the chroma feature vector from MIDI data assuming that MIDI data
provide the ground truth information. We compute the time duration
of the notes that correspond to the chromatic pitch classes at a time
instant, i.e.,

x̄c (t) =
X

e

Ed · Ie (c, t) , (3)

where Ed represents the duration of the e-th MIDI event within a
short-time analysis window at time t. Ie(c, t) is an indicator function
for whether the e-th event in MIDI data corresponds with the chroma

pitch class c at time t, i.e.,

Ie (c, t) =

j
1 Es ≤ t < Ee, Ec = c

0 otherwise
, (4)

where Es, Ee, and Ec represent the starting time, ending time, and
the chroma pitch class value of the event, respectively. Since the
chroma c is a discrete value in MIDI data, it can form a twelve
dimensional vector x̄(t) without quantization.
In practice, the analysis is performed on a short-time segment,

and hence the discrete short-time segment index number n is used
instead of continuous time t. Therefore, x[n] and x̄[n] represent
the chroma feature vector at the n-th segment for audio signal and
MIDI data, respectively. In our previous work, we adopted a beat-
synchronous segmentation method from [9] to investigate dynamics
between consecutive beats. However, in this work, we utilize a fixed
length segment since the beat detection itself may introduce artifacts
toward similarity measure. We use a 64 ms analysis window along
with a 32 ms overlap. Since the chroma feature vectors from audio
signals and MIDI data are in different metrics, we normalize the
chroma vectors to have unit norms.
Fig. 1 shows an example of chroma feature vectors from MIDI data

and synthesized audio signal compared with the pianoroll of the MIDI
data. In the figure, one can easily observe that the chroma feature
vectors obtained from the synthesized audio signal introduce noise.
For example, there are several non-zero quantities in the chroma
vectors from the audio signal when the corresponding pitch class is
not played (e.g. G, A, B, and C in the first 4 notes). This might be
caused by the characteristics of overtones, which impose considerable
amount of energy on perfect 5-th (7 chromatic interval) notes. Noise
due to release-time differences can be also observed. Residual energy
beyond MIDI events and vanishing energy during MIDI events are
also evident. This might be caused by the fact that the release-time
is dependent on the musical instruments. The chroma feature vectors
from polyphonous and multiple-instrument audio signals would be
even noisier than the given example which is nearly monophonic
with one musical instrument.

III. HARMONY STRUCTURE
A. Harmony structure
In Western music, the term harmony represents the simultaneous

use of different pitch classes. The way of building the harmony, i.e.
harmony structure, is often governed by common practice period of
western music, genre, and characteristics of composers. We hypoth-
esize that the harmony structure is a unique feature characterizing a
piece of music and that different recordings of the same music have
similar harmony structures. To represent the relationship between
individual pitch classes quantitatively, we proposed a covariance
matrix of chroma feature vectors as a music fingerprint, i.e.,

Φ = E
h
(x − E [x]) (x − E [x])T

i
(5)

where T represents the matrix transpose. This simple covariance
matrix provides the relationship between individual pitch classes
in terms of second-order statistics. From the music fingerprint, we
could extract the various musical attributes, such as usage of pitch
classes and individual harmony structures. In our previous work
[4], we employed the covariance matrix among various second-order
statistics, such as mean matrix and correlation matrix, to capture the
harmony structure. The reason using the covariance matrix instead
of other second-order statistics, however, has not been explicitly
presented. In this section, we investigate how the alternatives fare
in terms of how the noise due to the choice of specific signal
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Fig. 2. An example of usage of pitch classes information; a comparison
between music fingerprints from audio signal and MIDI data (BWV 772).
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Fig. 3. An example of harmony structure information; a comparison between
music fingerprints from audio signal and MIDI data (BWV 772).

representation affects the final decision toward classical music opus
identification.
Fig. 2 and Fig. 3 explore the above ideas further by comparing the

audio and the MIDI data with which the music audio is synthesized.
They illustrate the global usage of pitch classes and the individual
harmony structure, respectively. The dotted lines represent the values
from MIDI data, and the solid lines represent the values from the
audio signal. Although they both provide insights on the distribution
prevalence of the various pitch classes and the individual harmony
structure, the gap between the two lines shows the noise introduced
in estimating chroma features directly from the audio.
Then, we empoly a simple template matching to measure the

similarity of the two candidate music fingerprints. The similarity
between music i and j is computed as follows.

sij =
X

k

X
l

φ
(i)
kl φ

(j)
kl , (6)

where φkl represents the k-th row and l-th row element of the music
fingerprint Φ. Greater value represents higher similarity between two
pieces of music.

B. Noise model

We propose a noise model describing how the noise introduced in
the feature extraction procedure in dealing with audio signals affects
the final decision of the opus identification. Although minimizing the
noise from the signal processing challenges is outside of the scope of
this work, the proposed noise model can provide a rigorous approach

to analyze the effects of the noise toward the opus identification
decision.
Suppose the chroma feature vector from the MIDI synthesized

audio signal is corrupted by additive noise, i.e.,

x[n] = x[n] + ε[n] , (7)

where x and ε represent a chroma feature vector from MIDI data and
a noise vector which can be observed in Fig. 1, respectively. Then,
the music fingerprint can be represented as

Φ = Φ + Δ (8)

where Φ and Δ represent the music fingerprint from MIDI data
and the noise matrix, respectively. Examples of the noise matrix are
depicted in Fig. 2 and Fig. 3. In the proposed covariance matrix
framework, the noise matrix can be written as

Δ = 2
n

E
h
εx

T
i
− E [ε] E [x]T

o
+

n
E

h
εε

T
i
− E [ε] E [ε]T

o
.

(9)
If other second-order statistics are utilized to model the harmony
structure, those can be also easily derived: the correlation matrix can
be written as

Δ = 2
n

E
h
εx

T
io

+
n

E
h
εε

T
io

. (10)

And the mean matrix is

Δ = 2
n

E [ε] E [x]T
o

+
n

E [ε] E [ε]T
o

. (11)

Consequently, the similarity measure is written as

sij = sij + ζ (12)

where sij and ζ denote the similarity measure using MIDI data and
the noise factor, respectively. In other words, the noise due to the
inaccurate chroma extraction is summarized in the similarity noise,
and directly affects the classification decision ζ.

IV. EXPERIMENTS AND RESULTS

A. Database

Recall that the goal of this work is to investigate the implications of
the challenges in estimating accurate pitch information directly from
music audio signals. For the purposes of evaluation, therefore, we
utilize MIDI data and their corresponding synthesized audio signals,
which enables us to have the ground truth pitch information of
the audio signals, something that is difficult to obtain in practice
otherwise.
In our database, there are about 2000 pieces of various classical

music composers: Bach, Beethoven, Brahms, Chopin, Debussy, Han-
del, Haydn, Mozart, Schubert, Tchaikovsky, and Vivaldi (about 1000
songs and 2 variations of each song). They were originally recorded
in the MIDI format [10], and the audio signal for each was generated
using Timidity++ toolkit [11] at 16kHz sampling rate. The types of
variations in recording the same music may vary; some pieces were
recorded in different keys, some in different instruments or tempos,
and others in different arrangements. The range of recording length
is from 1 minute to 10 minutes, and the songs whose length exceed
10 minutes were truncated to 10 minutes for simplicity. We use one
of the two versions as a query, and the other as a reference. For
classification, we make a decision by the maximum similarity score
among the reference data set.
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Fig. 4. Performance comparison between various second-order statistics
using MIDI data and audio signal.

B. Results and Discussion

Fig. 4 illustrates the performance gaps in the various second-
order statistics used to generate the music fingerprint: mean matrix
and correlation matrix as well as the proposed covariance matrix.
It also shows the performance gap between features extracted from
MIDI data and their synthesized audio signals. This implicates the
limitations of the signal processing involved. While the accuracy
using MIDI data does not vary significantly, the accuracy using
the audio signal highly depends on how the music fingerprints are
generated. This implies that the effects of the noise in dealing with
audio signals toward the opus identification vary depending on the
modeling methods used for harmony structure.
According to the proposed noise model, the performance gaps are

directly captured by ζ, which summarizes the noise in processing
audio. Fig. 5 depicts the histogram-based probability density of ζ

for each music fingerprint generation scheme (for better illustration,
the average value is subtracted to make zero-mean distribution).
Having very close standard deviation values, the distribution of the
noise in the proposed method seems symmetric while the distribution
of the others are skewed to negative values. This introduces more
classification errors by adding biased noise to similarity measure.
The skewness is from the wrong assumptions embedded in the

noise matrix model in (10) and (11). Compared with (9), the method
using correlation matrix assumes E[ε]E[x]T = 0 and E[ε]E[ε]T =
0 which are equivalent to zero-mean signal processing noise. This
assumption is not necessarily true in practical cases. The assumption
embedded in the method using mean matrix is even more stronger and
unrealistic. It assumes E[εxT ] = 0 which is equivalent to saying x

and ε are orthogonal. It also assumes that the signal processing noise
is uncorrelated with itself. As it is shown earlier in Fig. 1, however,
the assumption is not valid in the given chroma feature extraction
algorithm. The noise seems highly correlated with the corresponding
pitch class (e.g. considerable amount of energy on the perfect 5-th
pitch class of the played pitch class).
Although the proposed algorithm is shown to be fairly robust in

dealing with the audio signal (72.0% accuracy), it also provides an
idea that one can at least achieve 84.3% accuracy with the proposed
harmony structure modeling scheme by solving signal processing
challenges related to representation uncertainty.
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Fig. 5. Distribution of noise in similarity measure.

V. CONCLUSION
A robust algorithm to model the harmony structure of a given

music piece was proposed toward classical music opus identification.
To analyze the challenges in estimating pitch information directly
from audio signal, we introduce a noise model to describe the
difference between the chroma feature vectors from MIDI data
and from synthesized audio signals. In the proposed noise model
framework, we experimentally showed that the harmony structure
modeling scheme with covariance matrix is more robust against the
noise in chroma features than other second-order statistics. The results
also suggested that the proposed harmony structure modeling scheme
has more room to improve by equipping a robust pitch information
extracting algorithm.
Our future goal is to extend our analysis on the proposed algorithm

with real recordings including pop music as well as classical music.
Devising algorithms that reduce the noise in dealing with audio signal
and model various musical attributes for improved performance will
be studied as well.
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