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Abstract 

 
Based on the assumption that a rational agent will 

adopt a plan that maximizes the expected utility, we pre-
sent a utility-based approach to plan recognition problem 
in this paper. The approach explicitly takes the observed 
agent’s preferences into consideration, and computes the 
estimated expected utilities of plans to disambiguate com-
peting hypotheses. Online plan recognition is realized by 
incrementally using plan knowledge and observations to 
change state probabilities. We also discuss the work and 
compare it with other probabilistic models in the paper. 

 

1. Overview 
 

Since Schmidt et al [1978] first identified plan recogni-
tion as a problem in its own right, plan recognition has 
been applied widely to a variety of domains, including 
natural language understanding and generation [Allen and 
Perrault, 1980; Carberry, 1990], story understanding 
[Wilensky, 1978; Charniak and Goldman, 1989, 1993], 
multi-agent coordination [Huber et al, 1994], dynamic 
traffic monitoring [Pynadath and Wellman, 1995], col-
laborative systems [Ferguson et al, 1996, 1998], adven-
ture game [Albrecht et al, 1998], network intrusion detec-
tion [Geib and Goldman, 2001], multiagent team monitor-
ing [Kaminka et al, 2002], and so on.  

Many plan recognition approaches have been proposed. 
Kautz and Allen [1986] presented the first formal theory 
of plan recognition, using McCarthy’s circumscription. 
They define plan recognition problem as identifying a 
minimal set of top-level actions sufficient to explain the 
observed actions, and use minimal covering set as a prin-
ciple for disambiguation. To deal with uncertainty inher-
ently in plan inference, Charniak and Goldman [1989, 

1993] built the first probabilistic model of plan recogni-
tion based on Bayesian reasoning. Their system supports 
automatically generation of a belief network (BN) from 
observed actions according to some network construction 
rules. The constructed belief network is then used for 
understanding a character’s actions in a story. Huber, 
Durfee and Wellman [1994] used PRS as a general 
language for plan specification. They gave the dynamic 
mapping from PRS specification to belief networks, and 
applied the approach to coordinate multi-agent team. 
Pynadath and Wellman [2000] proposed a probabilistic 
method that was based on parsing. Their approach 
employs probabilistic state-dependent grammars (PSDGs) 
to represent an agent’s plan generation process. The 
PSDG representation, together with inference algorithms 
supports efficient answering of restricted plan recognition 
queries.  More recently, Bui et al [2002, 2003] proposed 
an online probabilistic policy recognition method based 
on the abstract hidden Markov model (AHMM) and the 
extension of AHMM allowing for policies with memories 
(AHMEM). In their frameworks, scalability in policy 
recognition in the models is achieved by using an 
approximate inference scheme (i.e., Rao-Blackwellised 
Particle Filter). Besides Bayesian models, some 
probabilistic approaches are based on Dempster-Shafer 
theory, e.g., Carberry [1990] and Bauer [1995, 1996].  
Though the approaches differ, most plan recognition sys-
tems infer a hypothesized plan based on observed actions. 
World states and in particular, state desirability (typically 
represented as utilities of states) are rarely considered in 
the recognition. On the other hand, in many real-world 
applications, utilities of different outcomes are already 
known [Blythe, 1999]. A planning agent usually takes 
into account that actions may have different outcomes, 
and some outcomes are more desirable than the others. 
Therefore, when an agent makes decisions and acts on the 
world, the agent needs to balance between different pos-
sible outcomes in order to maximize the expected utility 
of overall goal attainment.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Competing Plans of the Troop from the Mother’s Perspective 

Utility and rationality issues have been explored in earlier 
work in AI (e.g., rational assumptions, [Doyle, 1992]). 
Plan recognition can be viewed as inferring the decision- 
making strategy of the observed agent. So it is natural to 
assume that a rational agent will adopt a plan that maxi-
mizes the expected utility. While current probabilistic 
approaches capture the fact of how well the observed ac-
tions support a hypothesized plan, the missing part is the 
utility computation. 

In this paper, we take a decision-theoretic view and ex-
plicitly consider outcome utilities in plan recognition. 
There are different ways to address the utility issue in 
plan recognition, and we believe different approaches are 
appropriate for different problem domains. In [Mao and 
Gratch, 2004], we proposed three possible ways to refine 
the problem. Two of them are the extensions within prob-
abilistic reasoning framework, by incorporating utility 
nodes into belief networks and using them to adjust the 
prior and conditional probabilities in the conditional 
probability tables (CPTs). The third proposal takes an-
other viewpoint. It computes the expected utilities of 
plans and chooses the plan candidate with maximal ex-
pected utility (given the evidence so far). This paper fo-
cuses on the third solution. 

The remainder of the paper is organized as follows. To 
motivate the work, in Section 2, we illustrate an example 
from our leadership training environment. Section 3 intro-
duces the plan representation we adopt in this work. In 
Section 4, we present our approach to intention recogni-
tion based on computing the expected utility of possible 
plans. We then illustrate the approach using the motivat-
ing example. Section 5 discusses the related work and 

compares our approach with Bayesian probabilistic 
models. Finally, in Section 6, we summarize the paper and 
raise some future work. 
 

2. Motivating Example 
 

Consider an example in the context of the Mission Re-
hearsal Exercise (MRE) leadership trainer we are devel-
oping [Rickel et al, 2002]. A human trainee was in com-
mand of a troop in peacekeeping operation to support an-
other unit, eagle 1-6. In route, one of the troop’s vehicles 
severely injured a civilian child. The trainee must balance 
whether to continue the mission or render aid. Many deci-
sions and outcomes are possible. In the scenario, the in-
jured boy’s mother (a virtual agent) observed the troop’s 
actions, trying to infer the troop’s plan and predict subse-
quent actions. 

The mother had a simple task model of the troop. She 
kept two possible plans of the troop in her mind (see Fig-
ure 1). Plan Render-assistance is composed of Troop-stay 
and Treat-child. Plan Support-inspection consists of 
Troop-leave and Support-eagle-1-6. For simplification, 
Troop-stay, Troop-leave, Treat-child and Support-eagle-
1-6 are all primitive actions. Each action has non-
deterministic effects as shown in the figure. Troop-
helping, Troop-in-transit, Child-cured and Eagle-1-6-
supported are action effects. Outcomes Child-cured and 
Eagle-1-6-supported are goals of Render-assistance and 
Support-inspection, with utility values of 20 and 40, re-
spectively (The example here is simplified, as a plan may 
have more than one outcome). 

Plan 1: Render-assistance: 
 

Troop-at-aa & Child-at-aa 
             
 
                    
                        0.9 
          Troop-helping 

 
                    
            
                        0.75 
           Child-cured 
        

  Plan 2: Support-inspection: 
 

Troop-at-aa & Child-at-aa 
                       
             
                     
                           0.9 

            Troop-in-transit 
                     
         
 
                           0.88 
             1-6-supported 
                    

  Troop-stay 

  Treat-child 

+20 

 Troop-leave 

 Support-1-6 

+40 



Typically, using belief networks in Bayesian reasoning, 
the first step is to create a random variable in the belief 
network representing the top-level plan. The rest of the 
variables, dependency arcs and probability values all pro-
vide evidence for or against the proposition that this top 
plan is being pursued by the observed agent. The next 
step is to create a random variable for each action in the 
plan. Because it is the adoption of the top plan that causes 
the execution of these actions, there is a dependency arc 
from the top plan to each of the action node in the belief 
network. Then the last step is to add evidence variables to 
the belief network, to represent the dependencies between 
actions and observed evidence or context. 

Suppose in our example, initially plans Render-
assistance and Support-inspection have the same prior 
probability, and the CPTs of each node in the belief net-
work of Plan 1 are identical to those of corresponding 
nodes in Plan 2. But the two plans have different outcome 
utilities and different probabilities to achieve the out-
comes as shown in Figure 1. As the scenario proceeded, 
assume the trainee decided to send two of his four squads 
moving forward to support eagle 1-6. The mother ob-
served half of the troop staying and half leaving. Since the 
observed action equally support the two plans, Bayesian 
reasoning will infer that the two plans have the identical 
posterior probability (see results in [Mao and Gratch, 
2004]). 

But actually, in this example, the outcome of Support-
inspection is more desirable to the troop, and more likely 
to be achieved. Intuitively, the troop should be more 
likely to actively pursue this plan. Current probabilistic 
models could not make this distinction, as neither out-
come utility nor outcome probability is explicitly used in 
plan inference. To address the problem, we first introduce 
the plan representation used in our approach. 
 

3. Plan Representation 
 

We adopt probabilistic plan representation in our ap-
proach. Each action consists of a set of preconditions and 
effects. Actions can have non-deterministic effects (de-
noted as Effect_prob(A, e), where A is an action and e is 
an effect of A), as well as conditional effects. To represent 
success or failure of action execution, actions have execu-
tion probability (denoted as Execute_prob(A), where A is 
an action). The likelihood of preconditions and effects is 
represented by probability values. The desirability of ac-
tion effects is represented by utility values.  

In a hierarchical plan representation, an action can be 
primitive (i.e., an action that is directly executed by an 
agent) or abstract. An abstract action may be decomposed 
in multiple ways and each decomposition consists of a 
sequence of primitive or abstract sub-actions. A non-
decision node in plan structure is an action that can only 

be decomposed in one way. A decision node, on the other 
hand, can be decomposed in multiple ways and an agent 
must decide amongst the options. An outcome is a primi-
tive action effect (or a group of primitive action effects 
when several action effects have a single utility value) 
with a non-zero utility value. 

A plan is represented as an action sequence. Each plan 
is associated with an intended goal (with a positive utility 
value). When a plan contains abstract actions, this denotes 
a set of primitive plans that would result from decompos-
ing these abstract actions into primitive ones. As there 
might be side effects in goal attainment, a plan may have 
more than one desirable/undesirable outcome including 
the goal itself. From a decision-theoretic point of view, 
the expected utility of a plan represents the overall benefit 
or disadvantage of the plan. We shall discuss how to 
compute plan utility in the next section. 
 

4. Intention Recognition 
 

Intention recognition is to infer another agent’s 
goal/plan based on a perceiving agent’s observations. The 
plan inference is from the perceiving agent’s perspective, 
using the knowledge and information the perceiver has 
about the observed agent. We model the perceiver’s infer-
ence process by computing the estimated expected utili-
ties of the observed agent’s possible plans, based on the 
perceiver’s plan knowledge about and observations of the 
observed agent. 
 
4.1 Computing Plan Utility 
 

The computation of plan utility is similar to that in de-
cision-theoretic planning (e.g., DRIPS, [Haddawy and 
Suwandi, 1994]), based on an abstraction hierarchy of 
operators. However, since plan recipes are already known, 
we compute an exact utility value rather than a range of 
utility values for searching the plan space as in decision-
theoretic planning. 

Since action theory (i.e., actions, their preconditions 
and effects) is known, this information can be utilized by 
the recognizer. In our approach, we take the observations 
of both actions and state information into consideration, 
and use them as evidence to incrementally update state 
probabilities. The updated state probabilities change the 
probabilities of other action preconditions, which in turn, 
will change the probabilities of other action execution and 
effect occurrences. Thus, the expected utilities of associ-
ated plans are updated incrementally with the changes of 
observations. 

Let E be the evidence. If an action A is observed, the 
execution probability of A is 1.0. The probability of each 
precondition of A must be 1.0 (excluding those deleted by 
delete effects), and the probability of each effect of A is 



equal to its effect probability. If A has conditional effects, 
the probability of the consequent of each conditional ef-
fect of A is equal to the probability of the antecedent of 
the conditional effect.  

• IF x ∈ Precondition(A)−Del_effect(A),  P(x|E) = 1.0 
• IF x ∈ Add_effect(A),  P(x|E) = Effect_prob(A, x) 
• IF x ∈ Del_effect(A),  P(x|E) = 1.0−Effect_prob(A, ¬x) 
• IF x ∈ Consequent(Cond_effect(A)) 

P(x|E) = P(Antecedent(Cond_effect(A))) 

If an action effect x is observed, then P(x|E)=1.0. If an 
action A is observed, then P(A|E)=1.0 , otherwise the 
probability of the successful execution of A given E is 
computed as 

∏
∈

×=
)(

)(_))|(()|(
Aeconditionprx

AprobExecuteExPEAP  

Let Oi be the set of outcomes of a primitive plan Pi, an 
outcome oj∈ Oi. A1, …, Ak is the action sequence in Pi that 
leads to oj. The probability of oj is computed as 
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The estimated expected utility of a primitive plan Pi 
given E is computed as 
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In a hierarchical plan representation, if an abstract ac-
tion is a non-decision node, the expected utility of the 
abstract action is the sum of the utilities of its sub-actions. 
If an abstract action is a decision node, the expected util-
ity of the abstract action is the maximum of the utilities of 
its sub-actions (because we assume that an agent tries to 
maximize the expected utility). The utility of the root 
node in the plan hierarchy is the estimated expected utility 
of the abstract plan. 

After the computation, the plan with the highest esti-
mated expected utility is chosen as the hypothesized plan 
given the evidence so far. 
 
4.2 Illustration 
 

Now we return to the example introduced in Section 2. 
Initially, the troop was at the accident area (Troop-at-aa) 
and the child was at the accident area (Child-at-aa). From 
the mother’s perspective, assume the execution probabil-
ity of each action is 0.95. The prior probabilities of states 
and the execution probabilities of actions are as follows. 

P(Troop-at-aa) = P(Child-at-aa) = 1.0 

P(Troop-helping) = P(Troop-in-transit) = 0.5 
P(Child-cured) = P(1-6-supported) = 0.5 

Execute_prob(Troop-stay) = 0.95 
Execute_prob(Troop-leave) = 0.95 
Execute_prob(Treat-child) = 0.95 
Execute_prob(Support-1-6) = 0.95 

From Figure 1, we also know 

Effect_prob(Troop-stay, Troop-helping) = 0.9 
Effect_prob(Troop-leave, Troop-in-transit) = 0.9 
Effect_prob(Treat-child, Child-cured) = 0.75 
Effect_prob(Support-1-6, 1-6-supported) = 0.88 

The observation of the troop’s action equally supports 
Troop-stay and Troop-leave, that is, 

P(Troop-stay|E) = P(Troop-leave|E) = 0.5 

So we have 

P(Troop-helping|E) = 0.45 
P(Troop-in-transit|E) = 0.45 

Now compute the probabilities of executing Treat-child 
and Support-1-6 given the evidence 

P(Treat-child|E) = 0.4275 
P(Support-1-6|E) = 0.4275 

Now compute the outcome probabilities 

P(Child-cured|E) = 0.1603 
P(1-6-supported|E) = 0.1881 

Now compute the estimated expected utilities of Plan 1 
and Plan 2 given current observations 

EU(Plan1|E) = 3.206 
EU(Plan2|E) = 7.524 

So the mother recognized that the troop was pursuing 
the plan Support-eagle-1-6. 

Although this is an oversimplified example, for the 
more complex cases including multiple outcomes, condi-
tional probabilities, abstract actions, etc, the algorithm can 
be applied the same way. 
 

5. Discussions 
 

Some probabilistic approaches have considered the in-
fluence of world states on plan recognition, e.g., Goldman 
et al [1999], Pynadath and Wellman [1995] and Bui et al 
[2002]. Goldman et al [1999] argued that the state of the 
world would influence an agent’s decision to pursue plans. 
They proposed a plan execution model using probabilistic 
Horn abduction. In traffic monitoring in [Pynadath and 



Wellman, 1995], actions themselves are as unobservable. 
The recognizer infers a driver’s plan based on some ob-
servable action effects.   

Bui et al [2002] use the abstract hidden Markov model 
for online policy recognition. While their framework is a 
stochastic model, they exploit the special properties of the 
AHMM structure that lead to efficient plan recognition 
algorithms. We did not adopt a Markov model in our 
work for some considerations. A Markov-based approach 
requires relatively large state space, and assumes fixed 
goals. The core technologies of our application system 
center on a common representation of plan knowledge, 
which is shared and reused among different system com-
ponents. Besides, in modeling realistic virtual agents, we 
would like to give our agents the flexibility of strategi-
cally varying their interpretations of outcome desirability, 
as a result of coping with specific situations [Marsella and 
Gratch, 2003]. 

In Pynadath and Wellman [2000] and Bui et al [2002], 
an agent’s utility functions are implicitly taken into ac-
count, as their approaches capture the likelihood that the 
agent will expand a plan in a particular way (e.g., the ex-
pansion probabilities of Pynadath and Wellman’s PSDGs). 
The main difference between our approach and most other 
probabilistic approaches is that we explicitly take an 
agent’s preferences into consideration. However, in doing 
so, we are not claiming that a recognizer must always 
know the exact utility functions of the observed agent, but 
rather, we think that if the recognizer does know (or par-
tially know), this information can be utilized as evidence 
to impact the recognition process. Indeed, in many real 
world applications as well as in our own, utilities of states 
are already there [Blythe, 1999]. 

Bayesian probabilistic models view plan recognition as 
abduction, and use Bayesian rules to compute the best 
candidate plan. Though probabilistic reasoning is advan-
tageous in accounting for how well the observed actions 
support a hypothesized plan, the inference itself requires 
large numbers of prior and conditional probabilities. In 
many situations, these probabilities are hard to obtain.  
There is no good answer for where the numbers come 
from. 

We view plan recognition as recognizing the decision-
making strategy of the observed agent, and use maximiz-
ing expected utilities of plans as criterion for disambigua-
tion. Our approach also needs prior probabilities, such as 
prior probabilities of states, action success/failure and 
probabilities of action effects. Some probabilities, like 
non-deterministic and/or conditional action effects are 
already available in many systems with a planning com-
ponent. State probabilities and probabilities of action exe-
cution are relatively easier to obtain comparing with the 
CPTs required in belief networks. So it partly eases the 
burden of defining large numbers of prior and conditional 
probabilities as in the probabilistic models, but the trade-

off is that our approach is an approximate one, and it does 
not consider state dependencies.  

The knowledge about actions, their preconditions and 
effects are typically available in a plan-based system. Our 
approach makes use of this knowledge, using observa-
tions of actions and effects to change the probabilities of 
states. However, there is no strong assumption of the ob-
servability of actions or effects in our approach, and a 
sequence of observations can be processed incrementally 
in the same way. Finally, our approach is compatible with 
the idea of decision-theoretic planning. It helps computer 
systems share representation, intermediate results and 
underlying techniques for both planning and recognition, 
and allows systems to interleave between planning and 
inferring plans depending on the tasks at hand. 
 

6. Summary and Future Work 
 

Based on the assumption that a rational agent will adopt 
a plan that maximizes the expected utility, we view plan 
recognition as inferring the decision-making strategy of 
the observed agent. In this paper, we present a utility-
based approach to plan recognition problem. The ap-
proach explicitly takes the observed agent’s preferences 
into consideration, and computes the estimated expected 
utilities of plans to disambiguate competing hypotheses. 
We consider both actions and state information in the rec-
ognition process. Online plan recognition is realized by 
incrementally using plan knowledge and observations to 
change state probabilities. 

We discuss the work and compare it with other prob-
abilistic models in the paper. We point out some limita-
tions in Bayesian inference, and show where our approach 
might help. Though the approach seems sufficient for our 
practical application and compatible with the existing sys-
tem representation, the heuristic of narrowing the hy-
potheses space based on the rational assumption is not 
evaluated. In the future, we need to collect experimental 
data and run experiments in realistic scenarios to test the 
effectiveness of the approach. As our virtual environment 
supports face-to-face interactions of humans and virtual 
agents, it provides an ideal testbed for evaluating the work.  
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