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ABSTRACT

The linear blendshape technique has been intensively used for computer animation and games because of its simplicity and
effectiveness. However, it cannot describe rotational deformations and deformations because of self collision or scene inter-
action. In this paper, we present a new technique to address these two major limitations by introducing physical-based
simulation to blendshapes. The proposed technique begins by constructing a mass–spring system for each blendshape
target. Each system is initialized in its steady state by setting the rest length of each spring as the edge length of the cor-
responding target. To begin shape interpolation, we linearly interpolate the rest lengths of the springs according to a given
interpolation factor ˛ 2 Œ0; 1�. The interpolated shape is then generated by computing the equilibrium of the mass–spring
system with the interpolated rest lengths. Results from our technique show physically plausible deformations even in the
case of large rotations between blendshape targets. In addition, the new blendshape model is able to interact with other
scene elements by introducing collision detection and handling to the mass–spring system. Copyright © 2012 John Wiley
& Sons, Ltd.

KEYWORDS

blendshape animation; mass–spring system; shape interpolation; physical-plausible animation; physical-based simulation

*Correspondence

Wan-Chun Ma, Weta Digital , Wellington, New Zealand.
E-mail: alexma98@gmail.com

1. INTRODUCTION

The linear blendshape technique is a widely adopted solu-
tion for many applications that require an efficient geo-
metrical deformation between two or more input shapes.
One such applications is key frame animation. The shape
at a given frame is obtained by directly interpolating the
shapes from nearby key frames. Another typical applica-
tion is facial animation. Various facial expressions, often
referred to as blendshape targets or key poses, are mod-
eled as input shapes. A new shape of a desired expres-
sion can be generated by fully or partially blending those
input shapes. Despite its simplicity, the linear blendshape
technique is still one of the mostly favored techniques for
computer animation.

However, the linear blendshape technique exhibits two
major drawbacks. First, the interpolated results usually
are degraded when the deformation involves large rota-
tions. Figure 1(c) illustrates typical “shrinking” artifacts
observed when linearly interpolating two shapes with a
large rotation (e.g., bending) present. More intermediate
shapes can be introduced to reduce rotational artifacts. This
requires extra time and storage budgets to prepare and

save these shapes however. Second, the linear blendshape
technique also ignores physical interaction. Any deforma-
tion caused by physical interaction has to be prepared by
either pre-computing a new shape that conforms to the
interaction on the basis of physical simulation or imitating
the shape manually in a post-editing process. The former
usually is not applicable to general physical interaction
because a pre-computed shape would be needed for every
possible deformation. The latter requires experienced digi-
tal artists to produce visually pleasant results. For example,
Borshukov [1] demonstrated both concepts.

In this paper, we introduce a new physically inspired
blendshape technique that addresses the aforementioned
problems. Our method provides a physical underpinning
for shape interpolation using mass–spring physics. A
key observation is that the equilibrium state of a mass–
spring system minimizes local area/volume distortions
through force balancing. As a result, local rigidity can
be maintained as much as possible during deformation.
The underlying mass–spring system also provides a natural
framework for physical interaction. It can be easily carried
out by applying external forces and additional constraints
on the basis of collision detection.
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(a) (b) (c) (d)

Figure 1. A comparison between linear blendshape and our technique. (a) Source shape. (b) Target shape. (c) Linearly interpolated
with ˛D 0:5. (d) Interpolated by the proposed method with the same ˛.

(a) (b) (c) (d) (e) (f)

Figure 2. The proposed technique enables physically plausible deformation. (a) Source shape. (b) Target shape. (c–f) Interpolation
between the two shapes while interacting with a solid cylinder.

The proposed method begins with building a mass–
spring system for each input blendshape targets. The mass–
spring system is initialized to its steady state by setting the
rest length of each spring to the length of the corresponding
edge. We then interpolate the rest lengths of the springs on
the basis of a given interpolation factor and solve for the
equilibrium state of the interpolated mass–spring system,
where the final vertex positions represent the interpolated
shape. The equilibrium computation is the major cost of the
technique. We demonstrate our blendshape technique with
a wide variety of shapes that exhibit complicated geom-
etry and deformations. The method yields more natural
shape interpolations, which can be seen in Figure 1(d).
Figure 2 shows interpolated results while interacting with
a scene element.

Contributions. Two substantial contributions in our
work are as follows:

1. An algorithm that creates natural-looking blend-
shape interpolation results on the basis of interpolat-
ing the rest length of each spring of a mass–spring
system. The proposed method requires no geomet-
ric analysis, articulated skeleton, or any manual
intervention. Because it does not require a skele-
ton to drive the deformation, it is not limited to
articulated shapes.

2. We provide a natural physical interaction capabil-
ity, which has not been seen in traditional shape
interpolation techniques, by applying additional col-
lision detection and handling. The proposed shape
interpolation exhibits correct deformation on the

basis of the interaction with other scene elements
and without requiring any pre-computation.

2. RELATED WORK

Our technique relates to works for interpolating between
shapes in two or three dimensions, mass–spring systems,
and rest length animation.

Shape interpolation and deformation. Shape inter-
polation has been widely used for animating geometric
deformation. The linear blendshape technique is the most
common method for shape interpolation. Shape interpo-
lation can also be achieved using an articulated skeleton.
The skeleton may be manually specified [2–4] or auto-
matically determined by finding near-rigid components of
input shapes [5] or using the medial axis transform [6,7].
Rohmer et al. [8] proposed a skinning method that exactly
preserves (or controls) the volume of an object.

Other methods are free of using an articulated skeleton.
One effective research trend is based on maintaining the
rigidity criteria of local geometrical elements or so-called
as-rigid-as possible principle. Typical examples of this
approach are in [9,10]. Baxter et al. [11] proposed a solu-
tion for solving the rotation ambiguity arising from pre-
vious rigid as-rigid-as possible approaches. Winkler et al.
[12] interpolated edge lengths and dihedral angles of
the input shapes, followed by a global multi-registration
method to determine the best rigid transformation.

There are also methods that create shape interpolation
that conforms to user manipulation. Barbič et al. [13]
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proposed a method for key frame animation on the basis
of an underlying physically based simulation, which, simi-
lar to our approach, can also be driven by a mass–spring
system. Both their method and ours compute an equi-
librium state as the interpolated result. However, their
method interpolates the deformation forces, which are
either provided by a user or computed automatically on
the basis of key poses. Our method simply interpolates
spring rest lengths. Kondo et al. [14] provided guided ani-
mations with dynamics. A user can have controls over
trajectory and deformation. Their target trajectory is not
obtained via proper shape interpolation, but just by push-
ing the object into next key frame. Lewis and Anjyo [15]
introduced a direct manipulation method for blendshapes.
This approach constrains any desired subset of vertices
on the basis of manual manipulations and automati-
cally infers the remaining vertex positions. However, the
method only produces shapes that are within the con-
vex space of the original blendshape poses and has no
physical meaning.

Other related works on shape interpolation or defor-
mation include [16], which used example shapes to build
a reduced deformable model, which controls with mesh-
based inverse kinematics. Galoppo et al. [17] introduced
the concept of dynamic morph targets, to skeletally inter-
polate elastic forces, which allows control over geometry
and elastic properties of an animated character. Teran et al.
[18] solved quasi-static states of a finite element system
for simulating deformations of nonlinear elastic materi-
als. We also solve for quasi-static states and consider
interaction with other rigid bodies, but we only bal-
ance the mass–spring system with respect to varying the
rest lengths.

Lewis et al. [19] regards shape interpolation as a
scattered data interpolation problem in an abstract param-
eter (pose) space. Our method does not require high-
dimensional scattered data interpolation, and it interpolates
shape with the support of physical simulation, presumably
requiring fewer input shapes. Kilian et al. [20] presented
an isometric deformation method based on Riemannian
geometry, considering shape interpolation as a geodesic
curve in shape space. Both of these previous techniques
are unable to provide interaction capabilities because they
lack an underlying physical approach.

Mass–spring systems. Mass–spring systems are com-
monly used for simulating physical behaviors. Generally,
such systems are easy to implement and convenient to
integrate with other techniques, such as collision detec-
tion. Applications that make use of a mass–spring sys-
tem include surgical simulation [21], dynamics for animals
[22], cloth [23–25], muscles [26,27], and other deformable
objects. Lee et al. [28] applied mass–spring systems to
facial animation using a three-layered mesh to model the
anatomy of human facial tissue. While finite element meth-
ods can deliver more sophisticated and physically accu-
rate analysis, mass–spring systems are attractive because
of their low computational complexity.

Rest length animation. There are works that simu-
late muscle activation through controlling the rest length
of each spring in a mass–spring system. Raibert and
Hodgins [29] used rest length animation to simulate sim-
ple leg locomotion. Adjusting the rest length changes the
force at each spring so that it is able to initiate or ter-
minate its motion. Tu and Terzopoulos [30] constructed
a mass–spring system of a fish body and assigned some
springs to be muscle springs driven by animated rest
lengths. However, these earlier techniques were not applied
to shape interpolation.

3. BLENDING SHAPES WITH A
MASS–SPRING SYSTEM

The proposed blendshape technique consists of the follow-
ing two steps:

1. Given a set of input blendshape targets, we construct
a mass–spring system for each blendshape target on
the basis of its structure.

2. We interpolate rest lengths between two or more
aforementioned mass–spring systems to generate
a intermediate mass–spring system. The interpo-
lated shape is the quasi-static state of the interme-
diate system.

3.1. Structure of the Mass–Spring System

It is important to maintain the stability of the mass–spring
system during interpolation, and this mostly depends on
a good spring structure. On the basis of [24], we build the
mass–spring system on the basis of input triangulated mesh
as a combination of structure springs and bending springs.
The structure springs model the elastic properties of the
mesh surface, connecting neighboring vertices. The bend-
ing springs define the bending and flexural properties of
the material and connect a vertex to secondary neighbor-
ing vertices (i.e., at a distance of 2). These bending springs
help maintain the object’s resting shape and preserve
surface curvature.

Nevertheless, our experiments show that a large surface
that consists of many small triangles tends to be crum-
pled during interpolation because of insufficient numeri-
cal precision. To solve this problem, we insert additional
springs inside the shape to help preserve volume. We apply
constrained Delaunay tetrahedralization [31] to determine
where to insert these internal springs. Similar to the mesh
refinement step in [9], to prevent springs with long rest
lengths, we can also perform mesh refinement by insert-
ing new vertices. Those vertices have to be added to all
the input shapes correspondingly. Certain additional ver-
tices that are inside the input shapes can be assigned as an
anchor as described in Section 3.4.

A mass–spring system M D hV;Si is defined by a
collection of vertices V D fvi ji D 1:::nvg connected by
springs S D fsq jq D 1:::nsg. Each spring sq 2 S connects
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two vertices veq0 and veq1 , where eq0 D e.sq ; 0/ and
eq1 D e.sq ; 1/ and function e returns the indices of spring
sq’s two vertices. We enforce 1 � eq0 < eq1 � nv. In
addition, sq is characterized by a rest length rq D r.sq/
and spring constant kq D k.sq/, where functions r and
k return the rest length and spring constant of spring
sq , respectively.

3.2. Blending between Two Shapes

We first introduce our technique by explaining the case
of blending between two shapes G0 and G1. We build
two consistent mass–spring systems M0 D hV0;S0i and
M1 D hV1;S1i from G0 and G1. The two mass–spring
systems are initially set to be in their own steady states, that
is, r0q Dk v

0
eq0
�v0eq1 k and r1q Dk v

1
eq0
�v1eq1 k. For each

˛ 2 Œ0; 1�, the interpolated result from the input shapes is
the equilibrium state of a new mass–spring system NM D

h NV; NSi, where for each spring,

Nrq D .1� ˛/r
0
q C ˛r

1
q (1)

In an equilibrium state, the force f .vi / at each vertex vi in
M equals zero:

f .vi /D
X
j2n.i/

kq.kvi � vj k � rq/
vi � vj

kvi � vj k
D 0 (2)

where function n returns the indices of those vertices that
are adjacent to vi , and spring sq connects vi and vj . Note
that the velocity of each vertex can be ignored because our
results are based solely on quasi-static states. We assume
that each vertex has the same mass; therefore, the mass
term can also be ignored. To formulate Equation (2) into a
linear system, first we vectorize V into an one-dimensional
vector x as:

x D Œx.v1/; y.v1/; z.v1/; � � � ; x.vnv/; y.vnv/; z.vnv/�
T

where x.vi /, y.vi /, and z.vi / are functions that return the
X , Y , and Z Cartesian coordinates of vi . One can then
solve the system by using the Newton–Raphson method
to determine the first-order approximation of the optimal
vertex configuration:

f .xtC1/� f .xt /C J .xt /�xt (3)

where xtC1 D xt C �xt and J .xt / D
@f
@x
.xt / are the

global stiffness (Jacobian) matrix of f evaluated at the
current vertex positions xt . When the system is in its equi-
librium state, f .xtC1/D 0. Equation (3) now becomes

J .xt /�xt D�f .xt / (4)

The non-diagonal elements of the global stiffness matrix
Jij are defined by

Jij D Jj i D kq

 
rq
k dij k

2 I � dij d
T
ij

k dij k3
� I

!

where I is an identity matrix, dij D vi � vj , and spring
sq connects vi and vj ; or else, a 3 � 3 matrix of zeros if
no such a spring exists. The diagonal elements (i D j ) are
defined as

Ji i D�
X
j2n.i/

Jij

x0 is initialized as the vertex positions of the source shape
V0. We then iteratively solve Equation (4) until k�xtk is
smaller than a threshold ( NM reaches its equilibrium). The
final vertex positions are then assigned to NV . Generally,
matrix J is very sparse. There are both iterative (e.g., con-
jugate gradient) and direct methods for solving this sparse
linear system.

3.3. Blending Multiple Shapes

The proposed technique can also be extended to blending
multiple shapes by simply considering the interpolated rest
length as a convex linear combination of the spring rest
lengths from the input shapes:

Nrq D

nbX
iD0

wi r
i
q

where
Pnb
iD0 wi D 1. This is illustrated in Figure 3 where

the interpolated shapes (shown in yellow) are the results
of linearly blended spring rest lengths from three differ-
ent input shapes (shown in blue). Notice that this shares
exactly the same formulation for controlling blendshape
targets as the traditional linear blendshape technique does.

3.4. Boundary Conditions

Boundary conditions must be specified in order to solve
the equilibrium of a mass–spring system. Without bound-
ary conditions, the system will be under-constrained and
the solution will not be unique. Simply speaking, boundary
conditions are vertices that are fixed in a mass–spring sys-
tem. In practice, this can be achieved by assigning Dirichlet
boundary conditions to the global stiffness matrix, that is,
by replacing the block of the global stiffness matrix corre-
sponding to boundary vertices with an identity matrix. The
entries of the boundary vertices in f are replaced by zeros
to enforce that the corresponding vertices do not move. A
straightforward method to assign the boundary conditions
is to find vertices that remain static between the source and
target shapes. However, this is unlikely to apply to gen-
eral blendshape targets. Alternatively, certain vertices on
the surface can be manually marked as boundary condi-
tions. During the interpolation, the positions of the marked
vertices are then interpolated linearly. However, we found
that this method often does not yield visually pleasing
results, because these marked vertices still follow a linear
trajectory during interpolation.
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Figure 3. Blending between multiple shapes. The top row
shows three source shapes, and the bottom row shows blended

results with corresponding weights shown as .w0;w1;w2/.

(a) (b) (c)

Figure 4. Apply an internal anchor as boundary conditions. (a) A
source shape with an anchor object (a rectangular plane, shown
in red) inside. (b) The interpolated result. The vertices of the
anchor act as the boundary conditions during the spring relax-
ation, thus allowing free movement of all the surface vertices.
(c) The interpolated result with a rigid transformation applied.

Similar to [32], we propose a more general method that
allows all the surface vertices to move freely and to use an
auxiliary object as an anchor, whose vertex positions act
as the boundary conditions. For example, placing a rect-
angle around the center of mass of the object would keep
this region fixed through the pose interpolation. We use the
following procedure to add an anchor:

1. Select an anchor position inside the source shape
(Figure 4(a)).

2. When building the structure of the mass–spring
system (as in Section 3), we connect additional
springs to the vertices of the anchor. All the
springs belonging to the anchor are set as hard
constraints by setting a very large spring constant.
This enforces rigidity during the relaxation detailed
in the next step.

Figure 5. Physical interactions. The top row shows the origi-
nal interpolation. The bottom row shows the same interpolation
while a vertex is pulled away from the face. Parts of the mesh

boundary are fixed as boundary conditions.

3. The rest lengths of the internal springs that con-
nect surface vertices to the anchor are computed
from the source shape on the basis of the user-
assigned anchor positions. However, the rest lengths
of these surface-anchor springs in the target shape
still remain unknown. We have to determine the
location of the anchor first. One possible solution
is to reverse the roles of anchor and shape, that is,
we set all the vertices in the target shape as the
boundary conditions and copy the rest lengths of the
springs connecting the anchor to the source, then we
determine the positions of anchor vertices within the
target shape by solving the equilibrium.

4. Once the locations of the anchors are known, we
can determine an optimal rigid transformation T D
fRjtg between the anchors of the source and target
shapes such that p1i D Rp

0
i C t , where p0i and p1i

are the positions of the source and target anchors’
vertices, respectively.

5. For each step during the shape interpolation, we
move the anchor according to the linearly interpo-
lated rigid transformation T 0 D fq.I ; R; ˛/j˛tg,
where q is the function that interpolates the identity
matrix I and the rotation matrix R with a weight
˛ using quaternions [33]. We subsequently fix the
interpolated anchor vertices as the boundary con-
ditions and compute the equilibrium state of the
mass–spring system. To improve numerical stabil-
ity, we solve for the equilibrium in the local coor-
dinate frame of the (initial) anchor. Afterwards, we
reapply the rigid transformation to both the anchor
and the shape. This is illustrated in Figure 4.

3.5. Spring Constants

The proposed shape interpolation method guarantees that
its results reach both of the input shapes as rest states
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Figure 6. Results of shape interpolation using the proposed method. The input shapes are blue, whereas interpolated shapes are
yellow. Table I lists the number of vertices, number of springs, and timings for each shape.

Table I. Statistics on the size of the input shapes and average
running time per interpolation step (in seconds), assuming there
are 36 steps for the interpolation between the source and target

for all the experiments.
Shape nv ns tCPU tGPU

Man 2.2k 21.6k 2.23 3.62
Face 8.1k 65.1k 40.11 3.67
Cat 7.3k 81.7k 67.58 13.67
Horse 8.5k 96.1k 81.36 15.95
Hand 18.6k 150.4k 153.99 26.28

nv, number of vertices (including internal and anchor vertices); ns,
number of springs; tCPU, running time with the PARDISO solver; tGPU,
running time with the Cusp solver.

of NMi . However, having a uniform spring constant for
every spring leads to the problem that longer springs may
have larger influences at each step of the interpolation
.f D k�x/. To counterbalance this effect, we set the
spring constant to be inversely proportional to the
rest length:

kq /
1

rq

The strategy ensures every spring, no matter what its rest
length is, contributes a similar amount of force during the
interpolation process.

4. PHYSICAL INTERACTION

As the interpolation framework is based on physical-
based simulation (mass–spring system), our method is
able to physically interact with other objects during the
interpolation. During each interpolation step, we per-
form collision detection between the mass–spring system
and obstacles. An axis-aligned bounding box tree struc-
ture is built for both objects to accelerate the detection.
The following procedures are executed once collisions
are reported:

1. Move the intersecting vertices back to the surface of
the obstacle according to the penetration normals.

2. Enforce all the intersecting vertices as addi-
tional boundary conditions. However, sometimes,
the deformation might be too large such that
both surface and internal vertices (as described in
Section 3.1) are involved in the intersection. In this
case, we only use surface vertices as the bound-
ary conditions. The internal vertices never become
fixed because of a collision in order to preserve the
internal structure.

3. Recompute the equilibrium state.

This produces a result that preserves as much as
possible the original shape’s features, with respect to the
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collision constraints. Figures 2 and 5 show interpolation
results while physical interactions are applied.

5. RESULTS

Figure 6 shows several results (yellow) resulting from
interpolation of the input shapes (blue). The supplemental
video provides additional examples of our technique. Our
interpolation method is able to produce visually pleasant
motions from just a few example shapes (e.g., the opening
and closing of the hand). It also successfully demonstrates
physical interaction capabilities.

Implementation. A sparse matrix solver is required
for Equation (3). For our implementation, we have tried
both the CPU-based PARDISO [34,35] and the GPU-based
Cusp [36]. SOLID [37] is used for collision detection.
Table I lists the statistics of each shape interpolation. All
the results are generated on a desktop computer with a
2.66 GHz Intel Core 2 Quad CPU, an NVIDIA Quadro FX
580 GPU, and 3.0 GB main memory. The actual execution
time for each Newton–Raphson step is to a large extent
determined by the complexity of the mass–spring system.

Limitations. A mass–spring system may have more than
one equilibrium. This leads to an element inversion prob-
lem. We found that the element inversion problem is more
likely to occur if the input shapes originally contains folds
due to self-intersecting triangles.

6. CONCLUSION AND
FUTURE WORK

In this paper, we present a new blendshape technique where
the interpolated shape is defined as the equilibrium state
of an interpolated mass–spring system. The proposed tech-
nique is fully automatic, requires no additional geometri-
cal analysis or skeleton, and generates physically plausible
shape interpolation with low distortion of surface area and
volume. It also follows the linear blending control strat-
egy used in traditional blendshapes. Digital artists who are
familiar with traditional linear blendshape technique can
potentially convert to our method without much effort.

Our currently implementation does not achieve real-
time performance; however, for post-production use, this
is not a critical issue. We are still exploring how to accel-
erate this technique. One possible method is to compute
the deformation with the use of a multi-resolution strat-
egy or to enforce the positive definiteness of the global
stiffness matrix and use a faster conjugate gradient solver
as described in [18]. Our current implementation for col-
lision handling is also very simplified (e.g., let the con-
tact vertices be fixed by assigning them as the boundary
conditions). Friction force should be considered for better
simulation. We would also like to investigate the effect of
heterogeneous spring constants analogous to those in [38].
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