
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond
E-mail addr
Computers & Graphics 30 (2006) 368–376

www.elsevier.com/locate/cag
Computer Graphics in Italy

A realtime immersive application with realistic lighting: The Parthenon

M. Callieria,�, P. Debevecb, J. Pairc, R. Scopignoa

aIstituto di Scienza e Tecnologie dell’Informazione(ISTI)-CNR, Pisa, Italy
bICT Graphic Lab, University of Southern California, Marina del Rey, USA
cICT FlatWorld, University of Southern California, Marina del Rey, USA
Abstract

Offline rendering techniques have nowadays reached an astonishing level of realism but pay the cost of long computational times. The

new generation of programmable graphic hardware, on the other hand, gives the possibility to implement in realtime some of the visual

effects previously available only for cinematographic production. We describe the design and implementation of an interactive system

which is able to reproduce in realtime one of the crucial sequences from the short movie ‘‘The Parthenon’’ presented at Siggraph 2004.

The application is designed to run on a specific immersive reality system, making possible for a user to perceive the virtual environment

with nearly cinematographic visual quality.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Realtime shading; Realistic lighting; 3D scanning; Immersive system
1. Introduction

Realtime and offline rendering have always been
considered two separate worlds, since it is usually very
hard to mix the astonishing level of realism obtained in
movies with the user control available in videogames. In
the last few years, however, many examples of offline-to-
realtime conversion have been presented, mostly due to
improvements in video card technology.

A couple of years ago the ICT Graphic Lab of the
University of Southern California started a project aimed
at performing the 3D acquisition of the Parthenon building
and of all its carved decorations with the aim of building
up a complete virtual reconstruction of the building in its
current and original shape [1]. A collaboration between the
Visual Computing Lab (VCLab) of ISTI-CNR and the
ICT Graphic Lab started in the early phase of the project,
since ICT chose the VCLab tools [2] to process the raw
scan data. The most spectacular outcome of the Parthenon
Project has been for sure the short movie presented at the
Electronic Theatre at Siggraph 2004. The objective of this
work is to reproduce in realtime a crucial sequence of the
e front matter r 2006 Elsevier Ltd. All rights reserved.

g.2006.02.015

ing author. Tel.: +39050 3152921; fax; +39 050 3152604.

ess: callieri@isti.cnr.it (M. Callieri).
short movie: the time lapse sequence which shows the
Parthenon during the passing of a whole day, from dawn
till dusk. This sequence shows the interaction between the
changing sun and sky against the building geometry,
originating complex lighting effects and bringing out the
surface details. The aim of the demo we have designed for
an immersive VR platform is to convey the same level of
realism of the sequence computed offline, reproducing the
correct interaction between the light and the building and
thus giving to the viewer a feeling of presence. Some
peculiar characteristics of the work can be summarized as
follows:

Complex shading: The idea behind this work is not to
find tricks that can produce ‘‘plausible’’ results, but to find
an approach which allows to compute a realistic lighting
even in a realtime environment.

HDR: High dynamic range calculation is considered
essential to convey a sufficient level of realism, especially
when we are interested in outdoor scenes. Sun intensity can
be over five orders of magnitude brighter than the sky and
clouds, giving a dynamic range very difficult to manage.
Working on color with only 8-bit-per-channel would result
in excessive loss of visual details.

Immersive stereo: Running the demo in an immersive
environment will greatly enhance the experience. The VR

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2006.02.015
mailto:callieri@isti.cnr.it


ARTICLE IN PRESS

Fig. 1. Available data. The 3D model of the Parthenon building, acquired with TOF scanning and divided in multiple chunks (one of these chunks is

rendered in white); the texture atlas used for the highlighted chunk, which encodes the recovered surface albedo, and the texture-mapped chunk; finally,

HDR images of the sky dome.

M. Callieri et al. / Computers & Graphics 30 (2006) 368–376 369
platform used allows both to manage interaction in a very
natural way, reacting to user movements and supporting a
very large displaying surface (by retroprojection), render-
ing the scene at a scale much closer to reality.

The use of virtual reality to better present cultural
heritage artifacts and environment is quite an old trend
[3,4] and cultural heritage applications have been the
standard demos for many virtual theaters or CAVE-like
systems. More recently, the need for improved realism in
this kind of VR applications has been addressed by many
research projects which focused on improved geometric
models and more sophisticated use of textures [5,6]. But
using good geometry and textures is not sufficient to
convey a sense of presence, adding a good modeling of the
illumination is another basic ingredient [7]. How to add
more advanced illumination models in interactive VR
environments is still an open research topic. A requirement
of the project was that the interactive visualization should
be implemented in the framework of a specific virtual
reality environment, called FlatWorld: a peculiar system,
based on retroprojected walls, which simulates a room with
openings (virtual windows) over the external world. The
need to develop the application for this specific environ-
ment has introduced some constraints, described in the
following sections (Fig. 1).

2. Available ingredients

The interactive demo has been designed by using the 3D
data gathered during the Parthenon project. Working on
the same data used to produce the Siggraph movie was a
wonderful opportunity to focus on the rendering techni-
ques, since this data have proven to be accurate and
complete, as shown in the Siggraph movie. Obviously, the
core of the interactive demo is the 3D model of the
Parthenon. This model has been acquired using a time of

flight scanner and then completed with some elements
modeled with standard tools (the latter were needed to
complete parts which were hard to be acquired because of
occlusions).

Another important data for a realistic rendering are the
surface characterization, since knowledge of the reflection
properties of each part of the building makes it possible to
compute a physically plausible illumination. For the
Parthenon dataset, an accurate description of reflection
characteristics was available. First of all, the general
BRDF of the building surface has been measured. Then,
the surface albedo has been recovered for the two short
sides (the other two sides of the Parthenon were occluded
by the scaffolding installed for restoration purposes), using
an inverse rendering method [8].
However, to obtain a realistic illumination of the

building during the entire day sequence, it is necessary to
have a faithful representation of the light sources. In this
outdoor scene, the two major sources of light are the sun
and the rest of the skydome. A day-long sky dataset has
been acquired using HDR imaging techniques [19,9], where
a high dynamic range skydome image is available for every
minute of the day. Moreover, for each image, the sun
position and intensity have been detected, producing a
concise directional light representation. This dataset has
been used in the movie rendering to illuminate the scene,
where the sun is the major light source but also the rest of
the skydome has been taken into account.
To render the Parthenon movie with a high level of realism,

a physically accurate rendering engine is needed. The Arnold
rendering engine [10] was used to render The Parthenon
movie. It implements a Monte Carlo-based global illumina-
tion algorithm able to produce images with a very high
realism. Moreover, coming as a library, it is completely
configurable and it is possible to add plugins to manage
custom data or to write shaders which implement new surface
behaviors. Obviously, it was not possible to directly use the
same engine in a realtime system because of the high
computational cost. One hour has been necessary to compute
each frame to render the movie. However, this rendering
engine can be used to calculate part of the shading equation
and results can be used in the realtime demo.
A design constraint for the interactive demo was that it

should run on the FlatWorld System [11,12], a virtual
reality environment focused on training. In film and
theatrical productions, sets are constructed using modular
components called flats. FlatWorld utilizes a digital flat

system. A digital flat is basically a large retro-projective
display; the actual setup is a room with two active walls
and the user is free to move inside this room, looking at an
outside world displayed on these walls.

3. Design of the rendering method

Our interactive demo should represent both direct and
indirect illumination: the main effect of direct illumination



ARTICLE IN PRESS
M. Callieri et al. / Computers & Graphics 30 (2006) 368–376370
is the production of hard shadows and base lighting, while
indirect illumination smoothes up the effect introducing
additional light bounces and taking into account light
coming from all the skydome. Since the different nature of
the two components we decided to employ two different
algorithms for the computation: one for generating precise
shadows, the other for producing diffuse effects. The
mostly static nature of the scene suggested that the best
approach was to precalculate as much as possible the
invariants in the illumination equations and just complete
the calculation at runtime when all data were available.
Hardware shaders seemed to be the perfect choice for this
kind of task since it is possible to implement efficiently the
lighting calculation. Moreover, the processing power of
GPUs will steadily increase in the immediate future (faster
than CPU grow), providing a better frame rate and the
possibility to add more complex effects. Precomputing
shadows is also a good way to limit the geometry to be
drawn each frame: using shadow maps or shadow volumes
would require all the occluding geometry to be drawn (even
the nondirectly visible parts); obviously, a subsampled
version of the occluders can be used but this would affect
shadow precision. Conversely, by precomputing shadows
we use the whole dataset for shadow calculation, but only a
small part of the geometry will be rendered and shaded by
the realtime application. The same holds also for indirect
illumination, since light bouncing between geometric
elements is determined using the whole dataset, but only
the data related to the realtime model will be stored and
processed at runtime.

The direct lighting algorithm should firstly discriminate
between shadowed and lit areas, this has been done with a
variation of the interval mapping technique (described in
the GPU Gems book [13]). Dynamic shadows are normally
a difficult task, but in this case the only direct light source
in the scene is the sun that is a directional light, easier to
manage with respect to a local point source; moreover, its
location in every minute of the day is well known. It is
therefore possible to regularly sample the daytime and to
calculate the shadows for each sun position in the timeline.
There is no need for storing all the shadows in the scene,
since the only rendered shadows will be the ones casted
onto the visible geometry. The idea is to encode for each
part of visible geometry which time steps will result in
having direct sun illumination of the geometry or,
conversely, those that in having the geometry in shadow.
At runtime, each vertex will be tested to know its state with
respect to the current time. Lit areas will be illuminated
using a Lambertian illumination calculation, which helps
simplifying the computation without affecting too much
the final visual quality, since the measured Parthenon
BRDF proved to be quite close to a Lambertian surface.

The diffuse calculation is based on spherical harmonics

[14]. Spherical harmonics basis are a way to encode a signal
over a sphere which suits our case since the signal to be
encoded is the sky image probe. The initial step is to
calculate for each part of the geometry the lighting
contribution from a particular harmonic; then the lighting
condition is encoded using the harmonic basis. To compute
the lighting at realtime, for each part of the geometry the
influence coefficients are multiplied by the sky dome
encoding for that particular time position and added up.
Spherical harmonic lighting is a very popular technique to
calculate lighting [15,16]; the algorithm used in our
interactive system is a standard implementation. The two
light contributions are added up obtaining the amount of
light reflected by the surface. This value is then modulated
by the surface albedo to obtain the color value of that
surface point.

4. Hardware implementation of the shading process

All the lighting calculations are based on vertices and
this choice is justified by the following arguments. The
model has a very high resolution, so lighting calculated just
on the vertices produces high quality result; then, given the
very complicated model topology, it is very hard to
produce a good (and compact) texture parametrization.
As stated before, the lighting process is divided in two

steps; firstly the direct lighting component is calculated,
then the indirect contribution is added. As introduced in
the previous section, sun direction and intensity are known
at each time of the day; to compute direct lighting on a
surface point it is only necessary to know if that vertex
receives light or does not in the specific time. Therefore,
together with each object vertex we store a bit mask
containing a bit for each time step in the day, representing
the lighting condition (1 for light or 0 for shadow) of that
particular vertex in that particular time. Lighting is
therefore:

Ldirect ¼ Lambertian if mask[current_time] ¼ true,

Ldirect ¼ 0 if mask[current_time] ¼ false.

For indirect illumination, the light contribution in each
vertex is the sum of each harmonic of the influence
coefficient (how much the vertex is affected by that
harmonic) multiplied by the current sky encoding (how
intense the sky is on that harmonic)

Lindirect ¼
X4

i¼1

Coeff i � SkySHi.

The shading algorithm has been first implemented using
OpenGL Shading Language, in order to test the algorithm
in a sample program, then it has been converted to HLSL

to be used in the GameBryo engine. The conversion is quite
straightforward and it involves almost only changing
names of intrinsic functions and data types.
Hard shadowing is the first step of the lighting process.

For each vertex is necessary to know if in the current time
that point is in light or if it is in shadow. The status of the
vertex is determined by accessing the shadow mask ant
testing the appropriate bit. The binary mask has been
implemented using floating values, since floating points



ARTICLE IN PRESS
M. Callieri et al. / Computers & Graphics 30 (2006) 368–376 371
variables are native in graphics hardware while integers
(normally used as bitmask) are just emulated. Each float (in
the standard IEEE implementation) has a 23 bit mantissa
that can be used to store 23 binary samples. The mask is
composed of four float, giving a total of 92 samples. More
samples could be stored in a single float (for example, using
the float sign) but that would cause problems in the
hardware shader since it would be necessary to discrimi-
nate particular cases. According to our specific sky dataset,
the sun begins to be visible at 6:52 and it remains visible
until 17:44. Using the 92 samples encodable in the mask it
is possible to cover the time from 6:57 to 17:34 having
7min lapse between each sample. Each vertex has four
floating point values containing the shadow mask. Since
each float contains 23 samples the bit we need can be found
as bit N1 of float N2 with N1 ¼ CurrentTimeIndex mod 23

and N2 ¼ CurrentTimeIndex div23. To avoid calculating
those values for every vertex the two indexes are computed
in the program and passed down as constants. Binary
operations are not implemented into shaders, therefore the
old trick of ‘‘divide and check the rest’’ is used to extract
the bit value: ((mask[N2]/2*N1)mod2)returns 1 if the
bit is set, 0 otherwise. After this step the light value for the
vertex is set to 0 (if in shadow) or to the standard
Lambertian lighting value (if in light) calculated as

DirectL ¼ LightIntensity � maxðdot

�ðVertexNormal; LightDirÞ; 0:0fÞ.

Given the direct lighting contribution, we have now to add
the diffuse component computed using the spherical
harmonics. Each vertex has four floats which represent
the amount of influence the spherical harmonic base has on
that vertex; this is used as a multiplication factor for the
sky probes encoded as spherical harmonics. The lighting
contribution of each harmonic to a particular vertex is
obtained by multiplying the influence factor by the
spherical harmonics encoding of the sky (basically, an
HDR RGB value) and summing it up to the direct lighting
previously calculated:

Directlight:r þ ¼ vert_sh½0� � sky_sh_encode½0�:r;

Directlight:g þ ¼ vert_sh½0� � sky_sh_encode½0�:g;

Directlight:bþ ¼ vert_sh½0� � sky_sh_encode½0�:b;

: : : : : : ½omissis harmonics 1� 2� 3� : : : : : : .

Only the first four harmonics are used into our interactive
system; in other publications nine harmonics are used to
obtain a more precise representation of the high frequency
shading variations. However, in our case, we are using this
kind of technique to calculate just half of the lighting; at
this point the high frequency direct illumination is already
calculated and we just need to introduce low frequency
indirect lighting.

At the end of this process we have the final light value
incoming in that vertex. This value is then passed down
toward the fragment shader. This way the lighting values
that are calculated on the vertices are interpolated across
the faces of the model. This produces a smooth and
plausible effect, under the hypothesis that the base
geometry is detailed enough and that the user will never
get too close to the object. In our case the geometry is dense
and the usual view specs makes each triangle project on 3–4
pixels area on the FlatWorld display. The use of a less
detailed model, would require moving the computation
from the vertex to the pixel/fragment, therefore requiring
to encode all the needed parameters on a texture map (and
thus a parametrization will be needed). In the fragment
shader the light value is multiplied by the surface albedo,
producing the final color of the fragment. Up to this point
all the computation have been performed using floating
point values, it is now time to get from HDR to values in
the ½0::1� interval for the final rendering. The color is
multiplied by the exposure level (calculated as 2stops and
passed to the shader by the application) and clamped in the
½0::1� interval. Gamma correction is then applied to match
the monitor (or videoprojector) response (Fig. 2).
5. Offline parameters calculation

As stated before, the main idea behind the interactive
system is to precalculate all the invariants: all the shading
computation is based on different parameters that have to
be computed offline. This parameters can be divided in two
groups: vertex attributes and lapse attributes. Vertex
attributes are stored in each vertex of the 3D model and
they are used during computation, they appear as variables
in the vertex (and fragment) programs since they are
model-dependent. Lapse attributes represent the light
condition in a particular time of the day and they are
generated from the skydome probes.
To precalculate the invariants of lighting equation, it is

necessary to have an implementation of the lighting process
that can be used to compute lighting ‘‘up to’’ a specific
point and then retrieve the partial result. The Arnold
rendering engine is the tool used to produce ‘‘The
Parthenon’’ movie, it is completely configurable since it is
basically a library of functions. To render the offline movie,
custom programs have been implemented to manage the
data format used for the Parthenon model, the material
shaders and the lighting environment. Beside its accuracy,
another important feature of the Arnold engine is that it
can be used to produce just the shading of a particular
point on the scene geometry. Using the Arnold library is
therefore possible to build a program that, given the scene
as input, computes for each vertex of the geometry the
various values we are interested in. The use of the Arnold
engine to precalculate the lighting values is not only
justified by a code reuse policy (no need to rewrite complex
lighting computations) but it also guarantees that the
shading results will be coherent with respect to the ones
presented in the offline movie.



ARTICLE IN PRESS

Fig. 3. Shadows precalculation: for each sun position, the scene is rendered in the Arnold Engine. In this case the engine works like a ray tracer, to

determine if each single vertex is receiving light in that time of the day.

Fig. 2. Examples of realtime shading: note how the shadows moves precisely over the geometry (top-let and bottom-left images) and how the HDR

lighting calculation allows to adjust the exposure to better perceive details (images on the right) which are under shadows in the images on the left.

M. Callieri et al. / Computers & Graphics 30 (2006) 368–376372
5.1. Illumination parameters

Two different kind of values are required to compute the
direct light contribution: the shadow mask and position
and intensity of the sun (Fig. 3).

Shadow mask: The mask represents the lighting state of
the vertex during the day. To calculate these values (for
each vertex and for each sun position), the Arnold
rendering engine has been used in ‘‘probing’’ mode. The
scene with all the geometry has been initialized as doing a
normal rendering, then for each sun position we calculated
the irradiance of each vertex using a single ray with no light
bouncing. Vertices with an irradiance equals to 0 are in
shadow. As an alternative, any ray tracing implementation
would work fine since in this phase it is only important to
know if the vertex can see the light source or not.

Sun position and intensity: This is the most intuitive data
and comes directly from the processing of the HDR sky
probes. In each skydome image, the sun position and
intensity have been determined analyzing the brightest
pixels. To have more details on this process, refer to the
HDR sky acquisition paper [9]. For each time position
there are three floats to encode the normalized direction
[XYZ], and three floats for the high dynamic range color
[RGB].
Again, two different values are required to compute the
indirect light contribution, which are the spherical harmo-
nics vertex response and skydome spherical harmonics
encoding, in particular:

Spherical harmonics response: Spherical harmonic basis
describes a signal over a sphere. Using that signal as a
skydome light source to illuminate an object it is possible
to measure how much each vertex is affected by the
lighting. This value, a float for each basis, is used to
modulate the spherical harmonic encoding of the real
skydome. Again, the Arnold engine was used in probing
mode, rendering a scene with no direct light sources and
using the spherical harmonics as skydome. This time, light
scattering has been included in the computation, using four
levels of recursion. For each vertex in the model, four
signed floats are generated.

Skydome spherical harmonics (SH) encoding: This value
is a representation of the sky using the first four SH
basis. In theory it is the sphere integral of the multi-
plication of the sky by the spherical harmonic. Practi-
cally it is computed as the weighted sum for all pixels
of the multiplication of the sky probe image by the
spherical harmonic image. For each harmonic basis
there are three floats, basically a signed HDR color value
(Fig. 4).



ARTICLE IN PRESS
M. Callieri et al. / Computers & Graphics 30 (2006) 368–376 373
5.2. Geometric model setup

The original Parthenon model was too big to be used
directly into a realtime application: even at a medium
resolution the polygon number exceed 10 million triangles.
A smaller model was required to grant a realtime frame
rate. The 3D model used for rendering the movie is
composed by different elements:
�

Fig

bas

gre

sky

is i

Fig

env
the ground, which is obtained by 3D scanning, it is
stored as a single file and it is textured;

�
 the temple, which is obtained by 3D scanning, it is
divided in various chunks (corresponding to a regular
voxel-based space subdivision); only the front and rear
facades are textured;

�
 filling geometry, that is modeled with a CAD system to
fill gaps in the scanned data and it is encoded to a single
file.

Since the image resolution that is available in the
FlatWorld system is 1024x768 for each wall, an over-
detailed geometry would be useless. Moreover, the Flat-
World goal is to simulate a window over a real environment
through the walls of the visualization room. The room has
to be statically placed into the scene and the user will look
out from one virtual window, having the possibility to
move inside the room. The FlatWorld system has been
designed for military simulation and training applications,
for example, for allowing a soldier to observe the external
environment (buildings, other actors) from inside a
building. This restricts the set of possible view position
. 4. Diffuse lighting precalculation. On the left, the spherical harmonic

e used for lighting with positive and negative values encoded in red and

en. On the right, by illuminating the scene using the harmonic as a

dome light source it is possible to see how much each part of the object

nfluenced by this harmonic.

. 5. The 3D model after reduction and culling; even if the model is not

ironment (right).
and directions that the tracked user can generate by
moving in the interior space. Therefore, it is not necessary
to have a model which looks good from all possible
viewpoints, like in a standard browsing/manipulation
framework, but just a model that looks good from the
allowed viewpoints. Our first task was then to choose a
position for the virtual FlatWorld room (on top of the
Acropolis), such that it should have been possible to see
from the virtual window the whole Parthenon at an
adequate distance and from a sufficiently low position, to
convey a sense of greatness. Part of the sky and of the
ground should have been also visible to show the changing
of the day and the shadows movement. We have chosen a
position on the west side, offset towards north, looking
more or less at the same area covered by the movie; which
is also the area with better 3D scanning coverage (Fig. 5).
The Parthenon model has then been divided in different

areas, having different resolutions according to the view
distance from the room position. This was done to have
high detailed geometry in front of the camera and less
detailed triangulation in the parts further away. We
adopted this static LOD approach since the specific
characteristics of the virtual reality environment, Flat-
World, did not allow us to use more efficient and
sophisticated multiresolution approaches [17]. The filling
geometry, that had been modeled using Maya to close the
holes of the scanned geometry, required also some
modifications. This added geometry was good for offline
rendering, but problematic for our shading algorithms
because it is composed of very large triangles and self-
intersecting parts. For this reason, the geometry has been
recursively splitted into smaller triangles to have a more
uniform triangulation and the redundant and self-inter-
secting parts have been eliminated. These processing steps
were needed due to the characteristics of the 3D model.
Scanned models are very accurate, but at the same time
they are usually not topologically clean and highly
incomplete, requiring intense processing.
At this point we had a simplified model, however, this

model still had too much geometry (2 million triangles) to
be suitable for our realtime application. By exploiting the
characteristics of our constrained virtual window system
(the model will be viewed from a virtual window and with a
freedom of movements of a few cubic meters) we further
reduced the size of the geometry by purging those model
complete (left) it contains all the elements visible from the FlatWorld



ARTICLE IN PRESS
M. Callieri et al. / Computers & Graphics 30 (2006) 368–376374
faces which will always be back-facing or occluded from all
possible points of view in the FlatWorld space. A ray
tracing algorithm has been used to detect those back-facing
or occluded faces. The size of the model was reduced to
700,000 triangles, a number low enough to be rendered in a
realtime context but still enough to convey a very precise
geometry when displayed on the FlatWorld screen.

6. Interactive system implementation

Building a single task interactive application, with the
possibility to use every bit of the host machine and without
coding restrictions, can produce very good results, but the
code implemented will not be usable in conjunction with
other tasks or inside more structured programs. In our
case, part of the initial specification was the need to
integrate the demo in the FlatWorld framework. The idea
was to implement the demo as a sort of architectural
‘‘stage’’ such that, afterwards, more elements (people,
animals, special effects) could be added.

Beside its hardware setup, the core of the FlatWorld
system is an application framework able to manage the
various elements of the immersive system: head tracking
system, sound, lighting and so on. This framework is based
on a commercial DirectX-based game engine called
GameBryo [18]. The skeleton of the demo program was
already available: a simple application able to render a
scene graph and to accept input from keyboards, game
controllers and the tracking system. The real problem was
to integrate all the data and processing requested in a way
that was suitable for the GameBryo engine, efficient and
still open to future extensions.

Geometry: The geometry has been imported in the
GameBryo engine using multiple OBJ files, since it is
impossible to have such a large object in a single
GameBryo node. This because each geometric node is
converted in an high performance indexed buffer on the
video card memory and, due to hardware limitations, the
size of those buffers is limited to 20K triangles.

Shader data: Shader data are stored in the video
memory, in the same objects where geometry is stored.
All data are loaded at startup and transferred to the video
card. This way no further updates are necessary at runtime,
all animation is done just changing the shader parameters.

Sky data: The sky behind the Parthenon is a rough
sphere geometry textured using the sky image dataset. Even
if 92 samples are acceptable to show the shadows moving
on the objects, for the sky this is quite a poor time
resolution since clouds move much faster than the sun. For
this reason, in the FlatWorld demo we used 184 sky maps
(two for each time position). This means that during time
flow there are two kinds of transition: in odd transition
only the sky changes, in even transition the sky and the
shadow change.

Beside pure rendering, the main activity inside the
application is to change the time-dependent data, updating
the shaders with the new frame constants, this is done by a
class called TimeLapseNavigator. The lapse navigation
object contains the lapse attributes (sun intensity and
position, SH sky encoding, exposures) for each time
position. When the time position is changed (automatically
or by user command) the shader frame constants are
updated using the corresponding data.
Interaction with the demo is quite simple: the viewpoint

is initially set to the center of the virtual room and can be
modified using a keyboard, a game controller or using the
tracking system. The demo starts in automatic time flow
mode, the time advances automatically throughout the day
lapse, completing a cycle in more or less 30 s and then
starting again (the speed can be specified in the configura-
tion file). This behavior can be interrupted (and then
resumed), stopping the demo in a particular time position
that can be moved forward and backward with just a
gesture (using a floating wireless mouse). Exposure is
automatically adjusted to a ‘‘good’’ level in the automatic
mode but can be tuned up or down with another gesture.
Despite the complex lighting calculation, the current

system implementation resulted quite fast. In stereo, with
head tracking, it is able to run at 12 frames per second (or
at 24 fps on a single monitor). The host machine is a
Pentium4 3GHz with 1GB of ram and a GeForce FX6800
Ultra. The most important part of the computer is
obviously the video card, since it is where all shading
computation is done. The memory footprint of the demo is
only 200MB and the CPU is not completely saturated by
the application. This makes possible to add more elements
to the scene, such as dynamic actors. Regarding the
resulting realism, even if the lighting calculation imple-
mented in the demo is just an approximation, many of the
lighting effects that appeared on the offline movie are still
visible. Shadows are precisely represented, the sky color
(yellow in the morning and red in the evening) influences
the overall hue of the building very realistically and the
HDR rendering gives the user the possibility to change the
exposure to bring out different ranges of details (Fig. 6).

7. Conclusions and future work

In this paper we presented the development of a realtime
version of the time lapse sequence from the short movie
The Parthenon. We discussed some technical problems
related to the size of the dataset and complexity of the
lighting computations required. To solve these problems,
we presented methods to make a scanned 3D model more
adequate for realtime rendering applications and we
described lighting algorithms based on the separation
between direct/indirect light and extensive precalculation.
We showed how to use existing rendering engine to
precalculate lighting invariants and how to implement
those shading algorithms using modern GPUs. The
resulting techniques have proven to be accurate (in terms
of rendering results) and affordable (in terms of time) for
realtime applications. Moreover, being the algorithm
execution restricted to hardware shaders, we showed how



ARTICLE IN PRESS

Fig. 6. Screenshots of the realtime demo. Time flows from dawn to dusk, shadows moves across the building and the overall hue of the scene changes

according to the sky illumination. The shots are taken from different positions, each time nearer to the building.

M. Callieri et al. / Computers & Graphics 30 (2006) 368–376 375
this computation has been integrated inside an existing
application framework. Since the techniques used in the
demo are quite general, the same kind of computation
could be integrated in other existing visualization systems.
Having all the calculation done on hardware shaders of
modern GPU, it is viable to extend existing rendering
engine to accommodate additional data and shader
management. This way it would be possible to add realistic
lighting even to large 3D dataset visualization tools.

Acknowledgments

I would like to thank people that made possible this joint
work, among whom I am pleased to mention Paul Debevec
and Diane Piepol. Thanks also to all people at the ICT
Graphic Lab and FlatWorld for their contributions in the
development of this work.

References

[1] Stumpfel J, Tchou C, Hawkins T, Martinez P, Emerson B, Brownlow

M. et al. Digital reunification of the Parthenon and its sculptures. In:

Fourth international symposium on virtual reality, archaeology and

intelligent cultural heritage. VAST; 2003.

[2] Callieri M, Cignoni P, Ganovelli F, Montani C, Pingi P, Scopigno R.

VCLab’s tools for 3D range data processing. in: Chalmers A, Arnold

D, Niccolucci F, editors. VAST 2003, Bighton, UK. Eurographics;

November 5–7, 2003. p. 13–22

[3] Dave P, Imai T, Anstey J, Roussou M, DeFanti T. XP: an authoring

system for immersive art exhibitions. In: Proceedings of fourth

international conference on virtual systems and multimedia, Gifu,

Japan; November 1998.
[4] Reilly P. Towards a virtual archaeology. In: Computer applications

in archaeology. British Archaeological Reports (International Series

565); 1990.

[5] Drettakis G, Roussou M, Tsingos N, Reche A, Gallo E. Image-based

techniques for the creation and display of photorealistic interactive

virtual environments. In: Eurographics symposium on virtual

environments. EUROGRAPHICS; 2004.

[6] Willmott J, Wright L, Arnold D, Day A. Rendering of large and

complex urban environments for real time heritage reconstructions.

In: International symposium on virtual reality, archaeology and

intelligent cultural heritage; 2001.

[7] Roussou I, Chalmers A. High fidelity lighting of Knossos. In:

Chalmers A, Arnold D, Niccolucci F, editors. VAST 2003, Bighton,

UK. Eurographics; November 5–7, 2003. p. 195–201.

[8] Debevec P, Tchou C, Gardner A, Hawkins T, Poullis C, Stumpfel J,

Jones A, Yun N, Einarsson P, Lundgren T, Martinez P, Fajardo M.

Estimating surface reflectance properties of a complex scene under

captured natural illumination. Technical report, ICT-TR-06.2004.

USC ICT, December 2004.

[9] Stumpfel J, Jones A, Wenger A, Tchou C, Hawkins T, Debevec P.

Direct HDR capture of the sun and sky. In: Proceedings of the

AFRIGRAPH; 2004.

[10] Fajardo M. Montecarlo ray tracing in action. In: Course 29. ACM

SIGGRAPH; 2001.

[11] Pair J, Piepol D. FlatWorld: a mixed reality environment for

education and training. In: International conference on information

systems, analysis and synthesis. SCI/ISAS; 2002.

[12] Pair J, Neumann U, Piepol D, Swartout W. FlatWorld: combining

hollywood set-design techniques with VR. IEEE Computer Graphics

and Applications 2003;23(January/February).

[13] Fernando R, editor. GPU gems. Reading, MA: Addison-Wesley;

2004.

[14] Green R. Spherical harmonic lighting: the gritty details. Sony

Computer Entertainment America, Pdf document; 2003. hhttp://

www.research.scea.com/-gdc2003/spherical-harmonic-lighting.pdfi.

http://www.research.scea.com/-gdc2003/spherical-harmonic-lighting.pdf
http://www.research.scea.com/-gdc2003/spherical-harmonic-lighting.pdf


ARTICLE IN PRESS
M. Callieri et al. / Computers & Graphics 30 (2006) 368–376376
[15] Kautz J, Sloan P-P, Snyder J. Fast, arbitrary BRDF shading for low-

frequency lighting using spherical harmonics. In: Proceedings of the

13th eurographics workshop on rendering. Eurographics Association;

June 2002.

[16] Ramamoorthi R, Hanrahan P. An efficient representation for

irradiance environment maps. In: Computer graphics (ACM

SIGGRAPH ’01 Proceedings); 2001.

[17] Cignoni P, Ganovelli E, Gobbetti F, Marton F, Ponchio F, Scopigno

R. Adaptive tetrapuzzles: efficient out-of-core construction and
visualization of gigantic multiresolution polygonal models. ACM

Transactions on Graphics (SIGGRAPH 2004) 2004;23(3):

796–803.

[18] Numerical Design Limited. GameBryo game engine. www.ndl.com,

2005.

[19] Debevec PE, Malik J. Recovering high dynamic range radiance maps

from photographs. In: Whitted T, editor. Computer graphics.

Proceedings annual conference series (SIGGRAPH 97), ACM

SIGGRAPH; August 1997. p. 369–78.

http://www.ndl.com

	A realtime immersive application with realistic lighting: The Parthenon
	Introduction
	Available ingredients
	Design of the rendering method
	Hardware implementation of the shading process
	Offline parameters calculation
	Illumination parameters
	Geometric model setup

	Interactive system implementation
	Conclusions and future work
	Acknowledgments
	References


