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Abstract
In this paper we introduce an empirical study of multimodal
cues of turn-taking dynamics in a social interaction context. We
first identify pauses, gaps and overlapped speech segments in
the dyadic conversation dataset. Second, we define two types of
measurements, Mean Equalized Energy (MEE) and Animation
Level (AL) on the audio and video channels, respectively. Then,
we verify the hypothesis that the speaker with higher MEE or
AL is more likely to take the floor after silence or overlapped
speech. The results suggest that both the vocal and visual move-
ment energy offer useful cues towards inferring the intention of
the interlocutor to grab the floor.
Index Terms: turn-taking, cues, equalized energy, motion vec-
tor

1. Introduction
Human behavioral signal processing is an emerging research
domain which considers not only the physical properties of var-
ious signals, but also their meaning in a social and emotional
context [1]. For instance, human dyadic conversations are one
of the most common scenarios of social interaction that exem-
plifies an intricate choreography of give and take behavior be-
tween the interlocutors. Researchers in linguistics have stud-
ied turn-taking behavior for a long time. In a seminal work,
Sacks et al [2] proposed a model for turn-taking with two com-
ponents, namely the turn-constructional component and turn-
allocation component. The first one deals with the construc-
tion of a turn with a certain linguistic unit-type, i.e, sentential,
clausal, phrasal etc. The second one suggests two possible cases
of next speaker allocation: either the current speaker selecting
the next speaker or self-selection by any speaker. This model
considers the intention of interlocutors to get the right to speak
(called the floor). Furthermore, Yule suggested [3] that in a con-
versation, people compete for the floor just as in markets, where
the floor is the scarce commodity. Having control of the floor
is called a turn, and if the control is not fixed in advance, any-
one can attempt to get control, which gives an interpretation of
turn-taking. Researchers in social signal processing suggested
[4] that turn-taking is the key to understanding conversational
dynamics. Nevertheless, turn-taking in spontaneous conversa-
tion involves intricate timing, as pointed out by Shriberg [5].
Listeners project the end of the current speaker’s turn and of-
ten begin speaking before the current speaker is finished. This
results in a considerable amount of overlap in speech, and also
supports the above assumption of people competing for floor.
As we will show in the data we analyzed, turn transitions are fa-
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cilitated by mainly pauses (intra-speaker), gaps (inter-speaker)
and overlaps.

From an engineering point of view, considerable work has
been done towards understanding turn-taking, typically with the
goal of designing automated spoken dialog systems. The efforts
are mainly in three directions. The first one focuses on the du-
rational aspects. Heldner and Edlund [6] studied the duration
of pause, gap and overlap in several corpora, and found that
the timing of turn-taking is less precise and more distributed,
disagreeing with traditional “no-gap-no-overlap” claims. The
second one explores the multimodal cues for predicting the
speaker’s or listener’s intention of taking or yielding the turn.
Cassell et al [7] studied the relation of the gaze behavior of in-
terlocutors with turn-taking integrated with information struc-
tures. It was shown that the beginning of “themes” (what the
utterance is about) are frequently accompanied by a look-away
from the listener, and the beginning of “rhemes” (the contri-
bution to the pool of knowledge in the conversation) are fre-
quently accompanied by a look-toward the listener. Gravano
and Hirschberg [8] first defined Inter-Pausal Unit (IPU) as a
maximal sequence of words surrounded by silence longer than
50 ms, then studied seven different communication cues of the
speaker showing turn-yielding attempt, including a falling or
high-rising intonation at the end of the IPU, an increased speak-
ing rate, a lower intensity level, and etc. Finally, they showed
that the likelihood of a turn-taking attempt from the interlocu-
tor increases linearly with the number of cues mentioned above
conjointly displayed by the speaker. The third direction is to
design spoken dialog agents on the system level where the goal
is to model the turn transitions. Raux and Eskenazi [9] pro-
posed a Finite State Turn-Taking Machine, where the behavior
of the user and system is modeled by six states. The novelty
relies on the non-deterministic transition of states, a cost matrix
that models the impact of different system actions in different
states and a decision-theoretic action selection mechanism. The
design enables data-driven learning of the model. Bohus and
Horvitz [10] designed a multi-party dialog system with three
components: sensing conversational dynamics, real-time turn-
taking decisions and rendering decisions into appropriate be-
haviors. The model was aimed towards a collaborative con-
versation setting. And the proposed floor shift was carried out
with four management actions namely Hold, Release, Take and
Null. To sum up, the research in this area studies how a human
conduct conversations and designs system that mimics human
behavior.

In this paper, we study two multimodal cues, speech en-
ergy and body movement, in dyadic conversations. We found
empirically that during overlap, the speaker with higher energy
is more likely to get the floor afterwards. Moreover, during
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overlap, pause and gap, if body movement is observed, the one
with higher degree of body movement is also more likely to get
the floor afterwards. In other words, the data we analyzed sup-
port the model that has suggested that people compete for the
floor, and this kind of competition could manifest multimodally.
We show that in contrast to Cassell et al’s work [7], although
the motion vector extracted from the video recording as a body
movement measure is not as precise as gaze, it provides valu-
able information about the intention of the interlocutors, and is
quite easy to access. Earlier work [11] had shown the usefulness
of motion features directly derived from videos in characteriz-
ing fluency in spoken child-machine interactions.

The dataset we adopted for this study is a multimodal
dyadic interaction database recently collected at USC, which
includes audio, video and motion capture modalities. The inter-
action scenario concerned conflict between couples or friends in
which college students role-played. This distinguishes our work
from [8] where visual information was absent and the scenario
was collaborative.

In the following we introduce the dataset and manual an-
notation in Section 2, then the method of feature extraction is
described in Section 3. The results of analysis are given in Sec-
tion 4, and we conclude with future work in Section 5.

2. Dataset
In this section we introduce the dataset [12]. The sessions are
dyadic interactions based on unscripted role-playing on con-
flictual topics, such as cheating in relationships, arguing over a
drinking problem etc. Two groups of nine topics were designed
to fit same sex participants acting as friends, and opposite sex
participants acting as couples. In order to get interactions that
are as realistic as possible, participants were provided with the
topics a few days before the recording. On the site of collec-
tion, participants were allowed several minutes to prepare for
a topic, where they could exchange ideas and make up a story.
They were also encouraged to bring life experiences to make
the conversation vivid. The total length of collection is about 3
hours of several 3 to 10 minutes sessions. During the collection
the two participants sat on a couch side by side.

The hardware in the collection included 10 HD Flea 2 cam-
eras (30fps), 12 sensor Vicon motion capture system (120fps),
three 4-microphone T-arrays, two lapel microphones and one
shotgun microphone (48kHz) without dropped frames. Two
cameras were near-view of the subjects and the rest were far-
view ceiling cameras, all in resolution 1024×768. Cameras
were synchronized by Firewire bus, while microphones were
connected to two daisy-chained 8-channel MOTU-896 devices.
Audio and video timelines were aligned to the precision of a
single video frame.

In order to get a reliable ground truth of turn-taking, we
manually segmented the speaker activity on the two lapel mi-
crophone channels using the Transcriber software. The joint
state of the dyadic conversation is obtained by combining the
segmentation on two channels. Four possible states are assigned
to every 10 ms sample on the time axis, namely silence (SIL),
speaker one active (S1), speaker two active (S2) and overlapped
speech (OVL). We reject inactive segments on the lapel channel
shorter than 200 ms, because it becomes unreliable and fuzzy
due to hesitation and stop between words. Nevertheless for the
final joint states, the duration of SIL might be small.

For this study we analyzed 35 sessions with total duration of
160 minutes. The data streams from the two lapel microphones
and the two near view cameras were used for feature extraction.

3. Feature Extraction
3.1. Extraction of Equalized Energy

The audio signals from the two lapel microphones are used for
computing short time energy. For both channels, we apply a
rectangular window with 20 ms length and 10 ms shift to the
original audio signal, and compute L2 norm of the sample vec-
tor within the window. This gives us the raw energy E1 and E2

for speaker 1 and speaker 2 respectively. However, due to the
gain difference of the two devices, E1 and E2 are not directly
comparable. In order to equalize the energy, we assume that
when the joint state is SIL, the two microphones would pick up
environmental noise (e.g. from air-conditioners, computers) at
the same energy level. Then the mean value of E1 and E2 upon
SIL segments can be computed asN1 andN2. DividingE1 and
E2 by N1 and N2 respectively, we achieve equalization in the
sense that the mean values of the environmental noise on the
two channels are equal. Note that potentially microphones can
exhibit a DC bias that can affect measured energy levels how-
ever we analyzed the collected signals and for our microphone
setup these biases are negligible. The equalized energies are
denoted by Ẽi(t) =

Ei(t)
Ni

and i = 1, 2 for time index t.

3.2. Extraction of Motion Vectors

We extract Motion Vector (MV) features from MPEG 4 Xvid
coded videos of the two front view cameras associated with the
two subjects using the FFmpeg library. The MVs are computed
as a part of the MPEG 4 video encoding procedure and embed-
ded in the bit-stream. For our dataset, MVs are estimated on
every 16×16 pixels block, giving a 64×48 grid of MV field for
a 1024×768 image frame. Since the MVs are mostly zeros, we
store the result sparsely with each entry being a 4 dimensional
vector (X,Y, dX, dY ), where 0 ≤ X < 64 and 0 ≤ Y < 48
are the column and row indices of the MV, and dX , dY are
integer-valued speed on the horizontal and vertical directions.
Intuitively the MVs are results of block matching among con-
secutive frames, so they best represent the motion if the object’s
shape does not change, and the distance of movement is ade-
quate to fit the block size. Plotting MVs on top of the video
demonstrates that common hand and head movements are well
captured by the MVs in terms of the location and direction, and
to a certain degree of the velocity. However, the MV is insensi-
tive to motion of small objects like eyes and lips. Also it is not
able to distinguish specific objects of interest from others, like
on a region of clothes and background.

It is necessary to filter the MVs to get better representa-
tion of body movement. First, empirically we eliminate MVs
that are with too small or too large velocity. If |dX| < 2 and
|dY | < 2, the entry is removed from the set of MV. And if
|dX| ≥ 10 or |dY | ≥ 10, the entry is also removed. Small
MVs are usually caused by lighting and camera noise, while
large MVs usually exceed reasonable range of body movement
and are subject to accidental matching of blocks. Next, we
apply a simple background-foreground separation to eliminate
“false” motion caused by noise. The foreground is obtained by
thresholding the difference of a new image and the background,
while the background is updated by a running average of new
image and old background. The percentage of foreground pixels
on every motion vector block is counted, and motion vector of a
block with a percentage lower than another threshold is rejected.
Finally we had to setup a rectangular “region of interest” (ROI)
because sometimes a part of the other subject appears crossing
the boundary of the scene. These movements are excluded to
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Figure 1: Example of MV on one frame (The image is clipped).

avoid interference of the two subjects. For a relatively small
number of sessions, these ROI are manually set. One example
of MV field is demonstrated in Figure 1.

When the filtering is done, we get a sequence of sets ofMVs
for the sequence of frames, although the set could be empty.
For this paper, we only use the count of MVs on each frame
as a measure of how animated the subject is, denotedMi(t) =
|{MV of speaker i on frame t}| and i = 1, 2.

4. Analysis and Results
4.1. Distribution of Overlap, Pause and Gap

Based on the segmentation data of the joint states (defined in
Sec. 2), we find that turn transition is facilitated mostly by gap
and overlap, as argued in [6]. The counts of transition from one
segment to the next are shown in Table 1 where the rows corre-
spond to the current state and columns correspond to the next.
Note that transitions directly between S1 and S2 are rare, as are
direct transitions between SIL and OVL. We can see that in a
conflictual scenario, occurrences of overlap are more prevalent.

We selected the OVL segments that are not proceeded or
followed by SIL. In other words we only look into the OVL
segments where the previous and next segments are either S1
or S2. The rest of the cases are too scarce to analyze. As a
result, 1523 occurrences of OVL segments are collected. 568
samples correspond to the case that the speaker before and after
the overlap are the same (OVL-Intra), and 955 samples have a
different speaker before and after the overlap (OVL-Inter).

Similarly, all SIL segments (either pause or gap) are picked
out, excluding silence at the start and end of each session,
pauses shorter than 200 ms, as well as those segments having
OVL as either previous or next segment. As a result, 2959
samples are collected with 1623 pauses and 1336 gaps. The
histogram of duration of pause, gap and overlap is plotted in
Figure 2. As we can see, OVL-Intra is not rich in short dura-
tion because normally the other speaker cannot make very short
utterances. For the other 3 groups, frequencies of occurrence
almost always decrease with the increase of duration. These
observations are also consistent with [6].

SIL S1 S2 OVL
SIL 0 1535 1556 15
S1 1439 0 37 816
S2 1655 27 0 725
OVL 9 731 815 0

Table 1: Count of speaker state transition.
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Figure 2: Duration histogram of pause, gap and overlap.

4.2. Multimodal Turn-Taking Cues

In order to compare the energy level of two speakers dur-
ing overlapped speech, we define the Mean Equalized En-
ergy (MEE) value for speaker i on the kth OVL segment as
MEEk

i = mean(log{Ẽi(t)|t ∈ T
k

OVL}), where T k

OVL is the cor-
responding time index set. To verify the hypothesis that the
speaker with higher energy is more likely to continue speak-
ing, we compare the speaker index having larger MEE with the
speaker index after OVL segment. As a result, the two indices
are equal with a chance of 0.66. This suggests that the speaker
with higher energy during overlapped speech is approximately
twice as likely as the other one to take the floor. In addition,
MEE of the speaker getting the floor after the current segment
(SPK-WIN) versus that of the other speaker (SPK-LOS) is plot-
ted in Figure 3. As we can see, more samples are placed under
the line connecting (0, 0) and (1, 1).

For the visual modality, Animation Level (AL) is defined
as the log scale of average number of motion vectors in the seg-
ment of interest. Specifically, let ALki = log(mean({Mi(t)|t ∈
T

k})+ 1), where i = 1, 2 and T k is the time index in interest.
Note that video is in a different frame rate from audio, so the
index range is computed separately. As their may be no motion
in a frame, 1 is added to the mean to avoid taking logarithm
of zero. Normalized histograms of AL for both interlocutors
combined on SIL and OVL segments are plotted in Figure 4. It
shows that during OVL segments, the AL is distributed more to
the higher end, meaning that the interlocutors tend to be more
animated during OVL then SIL.

To investigate the relation of having higher AL and turn-
grabbing after OVL segments, we plot the AL of SPK-WIN
versus that of SPK-LOS. The resulting plot in Figure 5 is split
to 6 disjoint regions: (i) At the origin, neither speaker exhibits
animation; (ii) SPK-WIN has non-zero AL while SPK-LOS has
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Figure 3: MEE of SPK-WIN vs. SPK-LOS on OVL segments.
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Figure 4: Normalized histogram of AL during SIL and OVL
segments.

zero AL; (iii) The opposite case of (ii). (iv) Both speakers have
non-zero AL, and the SPK-WIN’s AL is higher. (v) The op-
posite case of (iv). (vi) Both speakers have equal non-zero AL.
The counts for these cases are labeled in the figure. We note that
region (i) is quite small, and region (ii) and (iv) both outnumber
region (iii) and (v). We see that region (ii) and (iv) are 60% of
the overall occurrences (excluding cases (i) and (vi)), hence the
higher-animated speaker is more likely to win the floor.

Similarly, the analysis is applied to SIL segments. The AL
of SPK-WIN versus that of SPK-LOS is plotted in Figure 6.
The resulting figure is also split in the same way. Here the size
of region (i) is relatively larger than in OVL segments. And a
similar trend, with a ratio of 0.64, is presented for regions (ii)
and (iv) versus overall cases (excluding (i) and (vi)).

The findings mentioned above support the hypothesis that
the interlocutor with a higher energy level or higher animation
level is more likely to get the floor. Moreover, when the two
cues are observed jointly, we found that the interlocutor with
both higher MEE and higher AL gets the floor with a probability
of 0.74.

5. Conclusions
In this paper we conducted an empirical study on turn-taking
behavior, focused on the audio and visual cues that represent
the intention of the speaker to take the turn. The Mean Equal-
ized Energy and Animation Level measures were defined, and
comparison of these cues of the two interlocutors shows that
the one with higher energy or animation level is more likely to
get the floor. Based on these findings, we suggest that in human
dyadic conversations, higher vocal energy and visual movement
energy are a means of conveying an attempt to grab the floor.
By monitoring these cues, a behavioral computing system shall
have better understanding of the intention or mental states of
the subject. This could be beneficial not only to automated spo-
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ken dialog system design but also other behavioral informatics
applications trying to infer the mental state of the subject, or
understand the interaction between humans.

The study is limited by the amount of the data and lacking
of rich annotation on psychological state of the subject. More-
over, body movement and hand gestures are culturally related.
In our dataset, the subjects are mainly American English speak-
ing college students, so the claim might not extend to cross-
cultural conversations.

For future work, finer annotation of the intention of speak-
ers over pause, gap and overlap regions might be helpful to in-
form the observation-based behavioral computing for interper-
sonal interactions.
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