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ABSTRACT

In this paper we investigate an alternative to the Gaussian density for modeling signals encountered in audio
environments. The observation that sound signals are impulsive in nature, combined with the reverberation
effects commonly encountered in audio, motivates the use of the Sub-Gaussian density.
The new Sub-Gaussian statistical model and the separable solution of its Maximum Likelihood estimator
are derived. These are used in an array scenario to demonstrate with both simulations and two different
microphone arrays the achievable performance gains.
The simulations exhibit the robustness of the sub-Gaussian based method while the real world experiments
reveal a significant performance gain, supporting the claim that the sub-Gaussian model is better suited for
sound signals.
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1 INTRODUCTION

In this paper we present an alternative model for signals
encountered in audio environments. Motivated by the
observation that noise in a room environment is mostly
due to reverberation rather than independent sources,
we derive a model of dependent source and noise. In
addition, based on the demonstration of the impulsive-
ness of sound in previous work from these and other
authors[11, 18], we decide to use the α-stable class of
distributions, and more specifically their sub-Gaussian
subset for our model.

We first derive the probability density function of a sub-
Gaussian process with impulsiveness equal to that of a
Cauchy distribution. Sub-Gaussian distributions are a
special case of α-stable random processes [25], and they
are variance mixtures of Gaussian random processes [7].
As such, irrespective of the correlation structure of the
underlying Gaussian, the sub-Gaussian elements cannot
be independent. The fact that reverberation in acoustic
environments is not actually white uncorrelated noise,
but rather highly dependent on the source signal, mo-
tivated our investigation of the sub-Gaussian model for
audio signals.

Secondly, in order to test the validity of our model we
express the issue of localization of multiple sources as
a parameter estimation problem and we formulate the
Maximum Likelihood (ML) estimator based on the de-
rived density. The noise and signals are modeled as
jointly sub-Gaussian (i.e., they are being produced by
the same Lévy sequence). We assume a scenario under
which there are multiple sources received by an array of
a greater or equal number of sensors. The transfer func-
tion each signal undergoes while traveling to the array
can be modeled as an attenuation and a delay based on
the far-field assumption.

We proceed to derive a separable solution for this es-
timator both for the statistics of the signals and the
Directions-of-Arrival (DOA’s). The separable solution
assumes known statistics in order to recover the DOA’s,
and known DOA’s in order to recover the statistics.

We then test, initially on simulated data, the perfor-
mance of the sub-Gaussian based and Gaussian based
ML estimators, and show the improved performance of
the estimator based on the new model in comparison
to the one based on the Gaussian. The algorithms are
evaluated under a variety of signal conditions, and we
demonstrate the robustness of the sub-Gaussian based
ML, which performs well even under these other condi-
tions, while the Gaussian based ML degrades in perfor-
mance significantly when subjected to non-ideal condi-
tions.

Finally, in order to test the localization algorithm with
some real data, we constructed synthetic 20- and 41-
microphone arrays in our Audio Lab (a room with
acoustical characteristics resembling an average living
room). The audio channels were played together through
our 10.2 channel system at 48kHz and 2 microphones
were shifted to form a linear array. The synchronized
playback–recording feature of ProTools, confirmed by
the addition of chirp synchronization signals at the start
of the recording, ensured that the arrays were correctly
created.

Results of localization demonstrate that the sub-Gaus-
sian based ML method has a much better localization
performance than its Gaussian counterpart. The sub-
Gaussian ML is localizing correctly the sound sources
in almost every case, while the Gaussian based ML has
a very low probability of localization and a high mean
square error. We additionally demonstrate the ability
of the sub-Gaussian based method to accurately localize
strong echos.

The development of the aforementioned work will follow
an introduction of α-stable theory in Section 2 for the
mathematically inclined reader. In Section 3, we will in-
troduce the new model, derive its density, ML estimator
and separable solution. The performance of the ML es-
timator based on the new sub-Gaussian model will be
assessed via simulations in Section 4, and on the real
data in Section 5. Finally, Section 6 will give one simple
application of direction finding using in ML in audio.

2 BACKGROUND: ALPHA-STABLE DISTRIBU-
TIONS

The Gaussian distribution has traditionally been the
most widely accepted distribution and used, as a rule,
as a realistic model for various kinds of noise. In recent
years however, there has been a tremendous interest in
the class of α-stable distributions, which are a gener-
alization of the Gaussian distribution, but are able to
model a wider range of phenomena and can be of a more
impulsive nature. In fact, the Gaussian is the least im-
pulsive α-stable distribution, while other widely known
distributions of the α-stable class are the Cauchy and
the Lévy.

In 1991, Cambanis, Samorodnitsky and Taqqu [8] gave
a review of α-stable processes from a statistical point of
view. Several other statisticians have provided valuable
work in the theory of α-stable distributions. Camba-
nis, Weron, Zolotarev, Miller et al. have done extensive
work on the properties of the α-stable distributions, in
the field of linear filtering problems, and in the domain
of spectral representation. A textbook of comprehensive
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coverage of the α-stable theory was written by Samorod-
nitsky and Taqqu in 1994 [25].

In 1993, Nikias and Shao [27] gave an introductory re-
view of α-stable distributions from a statistical signal
processing viewpoint that was followed by a book from
the same authors in 1995 [21].

Alpha-stable distributions have been used to model di-
verse phenomena such as radar clutter [31], random fluc-
tuations of gravitational fields, economic market indices,
, data file sizes on the Web, and network traffic [1].

2.1 Theory

The α-stable distribution, which can model phenomena
of an impulsive nature, is a generalization of the Gaus-
sian distribution and is appealing because of two main
reasons.

• First, it satisfies the stability property, which
states that if X, X1, and X2 are α-stable inde-
pendent random variables of the same distribution,
then there exist µ1 and µ2 satisfying:

ν1X1 + ν2X2
d
= µ1X + µ2 (1)

where ν1, ν2, µ1 and µ2 are constants and
d
= de-

notes equality in distribution.

• Second, it satisfies the Generalized Central
Limit Theorem [21, 25, 29] stating: X is α-stable,
if and only if X is the limit in distribution of the
sum:

Sn =
X1 + X2 + . . . Xn

an
− bn (2)

where X1, X2 . . ., are i.i.d. r.v.’s and n → ∞. Pa-
rameter bn is real and an is real and positive.

There is no closed form expression for the probability
density function of α-stable distributions, but the char-
acteristic function, ϕ(t), is given by:

ϕ(t) = exp (iλt − γ|t|α [1 + iβsign(t)ω(t,α)]) (3)

where:

ω(t,α) =

{
tan απ

2 , if α $= 1
2
π log |t|, if α = 1

(4)

sign(t) =






1, if t > 0
0, if t = 0

−1, if t < 0
(5)

and:

• α is the characteristic exponent satisfying
0 < α ≤ 2. The characteristic exponent controls the
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Fig. 1: The tails of the probability density function of a sym-
metric α-stable distribution for different values of α. The case
of α = 2 being the less impulsive case of Gaussian noise and
α = 1 the more impulsive Cauchy case. In each of the above
cases the dispersion was kept constant at γ = 1.

thickness (also referred to as heaviness) of the tails
of the density function. The tails are heavier, and
thus the noise more impulsive for low values of α
while for a larger α the distribution has a less im-
pulsive behavior (Figs. 1 and 2).

• λ is the location parameter (−∞ < λ < ∞). It
corresponds to the mean for 1 < α ≤ 2 and the me-
dian for 0 < α ≤ 1.

• γ is the dispersion parameter (γ > 0), which de-
termines the spread of the density around its loca-
tion parameter. The dispersion behaves in a similar
way to the variance of the Gaussian density, and it
is in fact equal to half the variance when α = 2, the
Gaussian case.

• β is the index of symmetry (−1 ≤ β ≤ 1). When
β = 0, the distribution is symmetric around the
location parameter.

The case of α = 2, β = 0 corresponds to the Gaussian
distribution, while α = 1, β = 0 corresponds to the
Cauchy distribution. The density functions in these two
cases are given by:

fα=2(γ,λ; x) =
1√
4πγ

exp

{
− (x − λ)2

4γ

}
(6)

fα=1(γ,λ; x) =
γ

π[γ2 + (x − λ)2]
(7)

A closed form expression also exists for the case of the
Lévy distribution, which has parameters β = 1 and α =
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Fig. 2: Sample time series of SαS random variables. The
characteristic exponents are α = 1.2, α = 1.5, and α = 2.0
(Gaussian). The second row of figures shows an enlargement
of parts of the above row, and demonstrates the similarities
between the distributions.

0.5, and therefore is completely skewed to the positive
axis.

f(x) =

{
x
− 3

2 e
− 1

4x

2
√
π

if x > 0

0 if x < 0
(8)

The only other closed form expression for a stable dis-
tribution is the case obtained by symmetric reflection of
the Lévy, i.e., with α = 0.5 and β = −1, the density is
given by fα=0.5,β=−1(x) = fLévy(−x).

The impulsiveness of the α-stable distribution can clearly
be seen in Fig. 2(a), (b), and (c). However, when we take
a closer look at Fig. 2(d), (e), and (f), the time series re-
sulting from the three different distributions do not ap-
pear to be very different.1 This encourages the use of
α-stable distributions in situations where the noise has
been traditionally modeled as Gaussian, but where sud-
den “spikes” might occur. For example, in an enclosed
room sounds produced by pages turning, pens clicking,
or objects falling can give rise to the impulsiveness in the
noise.

The class of α-stable distributions does not possess finite
second (or higher) moments. In fact, α-stable distribu-
tions with α $= 2 have finite moments only for order p

1It is clear that if the signals were not sampled, self sim-
ilarity would hold and the similarity between the signals of
Fig. 2(d), (e) and (f) would not be apparent.

lower than α:

α < 2, E|Xα|p Not Defined ∀ p ≥ α

α < 2, E|Xα|p < ∞ ∀ 0 ≤ p < α

Gaussian: α = 2, E|Xα|p < ∞ ∀ p ≥ 0

References [1, 21, 27] and [25] treat the α-stable theory
further.

2.2 Properties of α-stable signals

The covariation of two signals x and y is defined as:

[X, Y ]α !
∫

S

xyα−1µ(ds) =
E(XY <p−1>)

E(|Y |p)
γy (9)

where S is the unit circle, µ(.) is the spectral mea-
sure of the SαS random vector (X,Y), γy is the dis-
persion parameter of signal Y , p satisfies 1 ≤ p < α, and
y<k> = |y|k−1 y∗ is the signed-power non-linearity.

The covariation of complex jointly SαS random vari-
ables is not generally symmetric and has the following
properties:

P1 If X1, X2, and Y are jointly SαS, then

[aX1 + bX2, Y ]α = a[X1, Y ]α + b[X2, Y ]α (10a)

for any complex constants a and b.

P2 If Y1 and Y2 are independent and Y1, Y2 and
X are jointly SαS, then

[aX, bY1+cY2]α = ab<α−1>[X, Y1]α+ac<α−1>[X, Y2]α
(10b)

for any complex constants a, b and c.

P3 If X and Y are independent SαS, then

[X, Y ]α = 0 (10c)

An alternative to the covariation measure is the Frac-
tional Lower Order Correlation Function defined as:

AXY = E
{
X<p>Y ∗<q>} (11)

2.3 Sub-Gaussian Random Variables

A Sub-Gaussian random vector X can be defined as a
random vector with characteristic function of the form

ϕ(u) = exp

(
−1

2

[
uT R u

]α/2
)

(12)

where R is a positive-definite matrix.

Sub-Gaussian processes are variance mixtures of Gaus-
sian processes [7]. If X(t) is sub-Gaussian with parame-
ter α (will be denoted by α-SG(R) ) and S is a positive
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Fig. 3: Multivariate Gaussian random vector of size 4 along
time with Σ = [1 0.9 ; 0.1 0].

stable process with characteristic exponent α/2 (i.e., S
is α

2 -stable random variable completely skewed to the
right) and Y (t) is a multivariate Gaussian process inde-
pendent of S, then:

X(t) = S1/2Y (t) (13)

Clearly from the above, irrespective of the correlation
structure of Y (t), the components of X(t) can not be
independent.

A multivariate Gaussian random vector of size 4 is shown
in Fig. 3, while a sub-Gaussian random vector of impul-
siveness α = 1 is shown in Fig. 4. The sub-Gaussian
random vector is obtained by eq. (13) using a Lévy ran-
dom variable (8) for S and the multivariate Gaussian
random of Fig. 3

3 THE NEW MODEL

We considered in previous work [11] a sound source lo-
calization method using an array of microphones based
on the computationally simple Time Delay Estimation
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Fig. 4: Multivariate sub-Gaussian random vector of size 4
along time with α = 1 and generated with the Gaussian
signal of Fig. 3. The signals are very impulsive and hence
sign(x) loge(|x|) is shown on the graphs.

(TDE) Phase Transform Method (PHAT). We demon-
strated the impulsive nature of sound signals and pro-
vided a modified version of the common PHAT method
that takes this nature into consideration. The result-
ing localization algorithm – the Fractional Lower-Order
Statistics (FLOS) PHAT method – performed signifi-
cantly better (up to a factor of 4) than the existing
PHAT method. The development in [11] focused on a
single source, two-sensor scenario.

We continue in this chapter our work on localization by
focusing on the development of methods relating to the
estimation of the parameters of a system – such as the
one shown in Fig. 5 – where we assume multiple sources
received by an arbitrary number of sensors (greater than
the number of sources). Additionally, we are aiming to
provide a more accurate statistical description of the sig-
nals encountered in acoustical environments.

This problem, which we initially visit from a completely
theoretical perspective and later in the microphone array
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s2(t) Source 2

s3(t) Source 3

sk(t) Source k

sκ(t) Source κ

Sensor 1 x1(t)

Sensor r xr(t)

Sensor ρ xρ(t)

e iωτ1,1 = 1

e iωτ
1,ρ

e
iωτ2,1 = 1

e iωτ2,ρ

e
iω

τ3,
1 = 1

e iωτ3,ρ

e iωτκ,ρ

e
iωτK,1 = 1

e
iωτk,r

θk

θ1

θ1

Fig. 5: We assume κ source signals being received by ρ ≥ κ sensors. Sources are assumed to be in the far-field, and thus there
is a single incidence angle for each source on all sensors.

signal processing framework, can have significant appli-
cations in a variety of fields. The scenario of impulsive
and multiplicative noise is encountered for instance in
communications, owing to the presence of local scatter-
ers in the vicinity of the mobile or due to wavefronts that
propagate through random inhomogeneous media. Ger-
shman et al [12] have, for example, presented a method
that assumes a random phase perturbation along all
source-sensor paths. Their method has led to a non-
Gaussian model, and did not result in a ML estimator.
Besson et al [3] suggested a similar localization algorithm
for a source, which appears as a scatter of sources. Sim-
ilarly Stoica et al [30] have presented a Gaussian based
ML method in the presence of multiplicative noise, but
constraining the amplitude of the noise to be 1. The
model we propose in this chapter is well suited for such
cases, even though experiments will be performed for
audio signals only.

The transmitted signals for the development of the lo-
calization algorithm are assumed to be stochastic, and

as such, the parameters of interest will be their statis-
tics and Directions-of-Arrival (DOA’s). The estimation
process combines the measurements to obtain a vector
x(t), which best describes the observed data. The esti-
mation process is in essence a mathematical algorithm
that maximizes a certain cost function with respect to
the observation vector x(t), and the cost function is ob-
tained by assuming a certain statistical model for the
signal and a certain optimization criterion. Common op-
timization criteria are the Least-Squares (LS), Weighted
LS, Maximum Likelihood (ML), as well as constrained
optimization criteria. Despite the wide variety of opti-
mization criteria, the optimal detector is characterized
by a single result: the Maximum Likelihood ratio test,
which was also one of the first methods to be applied
in the area of array signal processing [17], and which we
will be using in this work.

The Maximum Likelihood technique applied to the
source localization problem usually makes two different
assumptions for the signal waveforms, resulting in two
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Fig. 6: A multivariate Gaussian signal corrupted by multi-
plicative Lévy noise is transformed through a set of delays to
the receiving end of the array. Similarly, the additive noise is
generated by the same Lévy sequence. This may be a good
model for a reverberation noise, which is highly dependent on
the signal of interest.

different ML methods. According to the Stochastic ML
(SML), the signals are usually modeled as Gaussian ran-
dom processes motivated by the Central Limit Theorem,
and result in closed form mathematical expressions. On
the other hand, in the Deterministic ML (DML) the sig-
nals are considered to be unknown but deterministic. In
this case, estimates of the signals as well as the DOA’s
are desired, while in the former case, the only parameters
to be estimated are the statistics and DOA’s. In this pa-
per we deal exclusively with Stochastic ML estimation,
and we will deviate from the usual Gaussian assumption
to work with the alternative impulsive model.

3.1 Motivation for a sub-Gaussian model

The demonstration of the impulsiveness of sound sig-
nals motivates our work in improving the signal model.
Additionally, one of the most important sources of noise
in any acoustical environment is the reverberation (while
similar effects such as multipath can be observed in other
environments). As we are interested in a more accurate
model for acoustical signals, we attempt to model both
these effects.

The sub-Gaussian processes are attractive in this respect
for two main reasons. First, sub-Gaussian processes are
impulsive, and hence are able to account for the impul-
siveness of the signals. Secondly, the components of a
multivariate sub-Gaussian process can not be indepen-
dent. We suspect this process to be a good model for
reverberant noise, which is highly related to the signal
itself. As Fig. 6 shows, the noise, which mostly consists
of unwanted reverberant signals, can be considered as

jointly sub-Gaussian with the signal, as would be the
signals produced from the same Lévy process.

We begin with a theoretical analysis for the SML esti-
mator of a Gaussian signal in the presence of Gaussian
noise. This analysis is given as a precursor to the deriva-
tion of the sub-Gaussian density and the SML estimation
of a signal modeled as a sub-Gaussian random process.

3.2 Framework

We assume a scenario as described on Fig. 5, under which
there are κ sources received by an array of ρ sensors. The
transfer function each signal undergoes while traveling
to the array can be modeled as an attenuation and a
delay. The attenuation will be considered the same at
all sensors under the assumption that the sources are in
the far-field of the array. These transfer functions are

ar,k = e−iωτr,k , r = 1 . . . ρ and k = 1 . . .κ (14)

where τr,k is the delay of the signal (of source k) received
at sensor r relative to the first sensor.

We assume the sources to be in the far-field and hence,
τr,k = τr(θk), and it is also clear that assuming a linear
array

τr,k = (r − 1) · τ1(θk) (15)

We denote the vector of the medium transformations for
source k by

ak = [a1,k a2,k . . . aρ,k ]T

= [1 e−iωτ1,k e−iωτ2,k . . . e−iωτρ,k ]T (16)

The array’s input at a single sensor r is

xr(f) =
κ∑

k=1

ar,k · sk(f) + nr(f) (17)

and therefore the array’s input vector is

x(f) = A · s(f) + n(f) (18)

where

A =





a1,1 a1,2 · · · a1,κ

a2,1 a2,2 · · · a2,κ

...
...

. . .

aρ,1 aρ,2 aρ,κ




and s(f) =





s1(f)
s2(f)

...
sκ(f)





3.3 Gaussian Signals

The most commonly used Maximum Likelihood DOA
estimator is the Gaussian ML derived either under the
assumptions of a deterministic or a stochastic signal. We
present in this section the Stochastic ML (SML) DOA
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estimator for a Gaussian signal in additive white Gaus-
sian noise as background material for the SML DOA es-
timator to be presented in section 3.4, which is based on
sub-Gaussian signals.

Assuming the signals to be jointly stationary Gaus-
sian stochastic processes with covariance matrix Σ =

E
[
s(t) s†(t)

]
= E

[
s(f) s†(f)

]
, and the noise to be un-

correlated white noise of variance σ2, we can express the
covariance matrix of the received signal as

R = E
[
x(f) x†(f)

]

= E

[[
A s(f) + n(f)

] [
A s(f) + n(f)

]†]

= AΣA† + σ2I (19)

From the assumption that the snapshots are independent
and identically distributed, the density function of the
complete data set of size M is

f(X) =
fM∏

f=f1

1

πρ
∣∣∣R
∣∣∣
exp

(
−x†(f)R−1x(f)

)
(20)

where
X = x(f1), x(f2), . . . , x(fM ) (21)

In order to solve the SML problem, we need to estimate
σ̂2, Σ̂, and θ̂ by maximizing eq. (20) with respect to
these parameters

[
σ̂2, Σ̂, θ̂

]
= arg max

σ̂2,Σ̂,θ̂

fM∑

f=f1

{
− ρ loge(π) − loge |R|

− x†(f)R−1x(f)
}

(22)

Removing constant terms and terms independent of the
parameters σ̂2, Σ̂ and θ̂, we reach:

[
σ̂2, Σ̂, θ̂

]
= arg min

σ̂2,Σ̂,θ̂

fM∑

f=f1

{
loge |R| + x†(f)R−1x(f)

}

(23)
or
[
σ̂2, Σ̂, θ̂

]
= arg min

σ̂2,Σ̂,θ̂

{
loge |R| + Tr

[
R−1R̂

]}
(24)

where

R̂ =
1
M

fM∑

f=f1

[
x(f)x†(f)

]
(25)

The problem is further investigated in [4] and [16], and
numerical methods are developed for the minimization

of the ML function, an introduction of which is given
here for completeness.

From eq. (19) we can deduce that:

Σ̂(θ) = A−
[
R̂ − σ̂2(θ)I

]
A−† (26)

and [4, 16]

σ̂2 =
1

ρ− κ
Tr

[
P⊥

A
R

]
(27)

where in the above

A− =
(
A†A

)−1
A† (28)

is the pseudo-inverse of A and P⊥
A

projects into the null

space of this pseudo-inverse, i.e.,

P⊥
A

= I − AA− (29)

From eqs. (24), (26), and (27), we can deduce that:

θ̂ML = arg min
θ

loge

∣∣∣A Σ̂A† + σ̂2I
∣∣∣ (30)

We should reiterate here that A above is a function of
θ, although the dependence has been dropped for nota-
tional convenience.

Numerical methods have to be employed to solve this
optimization problem[28].

3.4 Sub-Gaussian Signals

An alternative to modeling the signal as Gaussian dis-
tributed described in the previous section is by employ-
ing a Sub-Gaussian random process. This model allows
both for the impulsiveness and dependence appearing in
audio signals. For this purpose, we can use a distribution
of impulsiveness α = 0.5, which is completely skewed to
the positive axis together with a multivariate Gaussian
density. The Lévy (Fig. 8) distribution satisfies exactly
these properties (also referred to as a Paretto type 5
distribution with an index of symmetry β = 1 and char-
acteristic exponent α = 0.5). Fig. 7 gives a top level
description of the problem and signals:

• A multivariate Gaussian signal is corrupted by mul-
tiplicative Lévy noise to the half power, i.e., sk(f) =

uk(f)
1
2 · vk(f) = wk(f) · vk(f)

• The resulting signal sk(f) is transformed through a
set of delays x(f) = A ·s(f) to the receiving end of
the array

• Any added noise can be modeled as jointly sub-
Gaussian

AES 113TH CONVENTION, LOS ANGELES, CA, USA, 2002 OCTOBER 5–8 8
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Multivariate
Gaussian Signal

E {vm(t)vn(t)} = σ2
m,n

E {vm(t)vm(t + τ)}= 0 ∀ τ "= 0

×
Medium

Transformation
A(θ) s(t)

+

A

R

R

A

Y

Lévy Noise
(after square root)

f(w) =

{
1√
πw−2 exp

{
− 1

4w2

}
if w > 0

0 if w ≤ 0

×
Gaussian
Noise
n(t)

SG Signal

SG Noise

Fig. 7: A multivariate Gaussian signal, corrupted by multiplicative Lévy noise, is then transformed through a set of delays to
the receiving end of the array. The addition of white Gaussian noise is also desirable. The noise can be generated from the
same Lévy process in order to be jointly sub-Gaussian with the signal.

PSfrag replacements

17.6% of the signal is of
amplitude higher than 10

γ = 1

u

f
(u

)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Fig. 8: Lévy distribution along with the histogram of the data
generator.

3.5 The Sub-Gaussian Density Function

The Gaussian density is similar in form to the one of
eq. (20), and the Lévy distribution [32] is given by:

f(u) =

{
u
− 3

2 e
− 1

4u

2
√
π

if u > 0

0 if u < 0
(31)

So from eq. (13), the signal s = [s1 . . . sκ]T is of the form

sk(t) = uk(t)
1
2 · vk(t) = wk(t) · vk(t) (32)

In order to find the distribution of sk(t), we first need
the distribution of wk(t).
From [23]

w = g(u) =
√

u (33)

where the dependence has been dropped for convenience.
Using the root of this equation, u1 = w2

g′(u1) =
u
− 1

2
1

2
=

w−1

2
(34)

and therefore

fw(w) =
fu(w2)

| 12w−1|
= 2|w|fu(w2)

= |w|w
−3e−

1
4w2

√
π

(35)

From eq. (31):

f(w) =

{
w−2e

− 1
4w2

√
π

if w > 0

0 if w < 0
(36)

The distribution of the transmitted signal can now be
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given by the multivariate distribution function:

F (S) =

+∞∫

w=−∞

s/w∫

v=−∞

f(w) f(v) dv dw

=

+∞∫

w=0

s/w∫

v=−∞

w−2e−
1

4w2

√
π

1

πκ
∣∣∣Σ
∣∣∣

· exp
(
−v†(t)Σ−1v(t)

)
dv dw

=

+∞∫

w=0

w−2e−
1

4w2

√
π

erf
[ s
w

]
dw (37)

Differentiating with respect to s, and then integrating
with respect to w

f(s) =
d
ds

+∞∫

w=0

s/w∫

v=−∞

w−2e−
1

4w2

√
π

1

πκ
∣∣∣Σ
∣∣∣

· exp
(
−v†(t)Σ−1v(t)

)
dv dw

=

+∞∫

w=0

d
dv

s/w∫

v=−∞

w−2e−
1

4w2

√
π

1

πκ
∣∣∣Σ
∣∣∣

· exp
(
−v†(t)Σ−1v(t)

)
dv

(
1
ds
dv

)
dw

=

+∞∫

w=0

w−2e−
1

4w2

√
π

1

πκ
∣∣∣Σ
∣∣∣

· exp
(
−s†(t)Σ−1s(t)/w2

)
· w−1 dw

=

+∞∫

w=0

C · w−3 · exp

{
− 1

w2
G

}
dw

=
C
2G

(38)

where

C =
1

√
π πκ

∣∣∣Σ
∣∣∣

and G =
[
1/4 + s†(t)Σ−1s(t)

]
(39)

Therefore

f(s) =
1

2
√
π πκ

∣∣∣Σ
∣∣∣
·
[
1/4 + s†(t)Σ−1s(t)

]−1
(40)

Note that if the Gaussian random variable was one di-

Lévy f(u) =






u− 3
2 e− 1

4u

2
√

π
if u > 0

0 if u < 0

Gaussian f(x) =
1√
2πσ

e−
x2

2σ2

1-D Sub-Gaussian f(x) =
1

2
√

2πσ
· 1

x2

2σ2 + 1
4

ρ-D Gaussian f(X) =
1

πρ
∣∣Σ

∣∣ exp
(
−x†Σ−1x

)

ρ-D Sub-Gaussian f(X) =
[
x†Σ−1x + 1

4

]−1

2
√

ππρ
∣∣Σ

∣∣

Table 1: Distributions of interest

mensional and real, then

f(s) =
1

2
√
π
√

2πσ
·
[
1/4 +

s2

2σ2

]−1

=
1

2
√

2πσ
·
[
1/4 +

s2

2σ2

]−1

(41)

Plots are shown on Fig. 9 for the one dimensional case.

3.6 Sub-Gaussian based ML

Using the derived density function of the previous sec-
tion, we can now proceed to derive the ML solution of
the array problem as described in Fig. 7.

The received signal x = [x1 . . . xρ]
T is now of the form:

xr(t) = y(t)
1/2 · zr(t) (42)

where again, as the transmitted signal, the received sig-
nal is sub-Gaussian.

xr(f) = y(f)
1/2 zr(f)

= A1 v(f)
1/2 A

2
uk(f)

= v(f)
1/2 A uk(f) (43)
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PSfrag replacements

σSG = 2

σSG =
√

2

σSG = 1

−5 0 5

−5 0 5

−5 0 5

0.1

0.2

0.3

0.4

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0.05
0.1
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0.2
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0.3
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Gaussian: Solid line Sub-Gaussian: Dash-Dot Cauchy: Dashed

Fig. 9: Sub-Gaussian versus Cauchy and Gaussian distribu-
tions. When the dispersion of the underlying Gaussian of the
sub-Gaussian process is equal to 1 (i.e., γSG = 1 ⇒ σSG =√

2), the sub-Gaussian is equal in distribution to the normal-
ized Cauchy.

Clearly, there exists a scalar A1 such that y = v.

Without any loss of generality, we can now assume that
the linear transformation A1 on the one-dimensional
Lévy distribution can be incorporated in the matrix
transformation A = A1A

2
. It is therefore straightfor-

ward to show that the received signal’s correlation ma-
trix will follow eq. (19), but in this case, the charac-
teristics of z will be relating to those of v (assuming a
noise-free scenario):

R = E
[
z(f)z†(f)

]

= E

[[
A v(f)

] [
A v(f)

]†]

= AΣ
v
A† (44)

or in a noisy environment:

R = AΣ
v
A† + σ2

nI
ρ

(45)

Therefore, the maximum likelihood estimator is

[Σ̂, θ̂] = arg max
Σ̂,θ̂

fM∏

f=f1

2
√
π πρ

∣∣∣R
∣∣∣
·
[
x†(f)R−1x(f) +1/4

]−1

(46)

To simplify, take the loge

[Σ̂, θ̂] = arg min
Σ̂,θ̂

fM∑

f=f1

{
loge

∣∣∣R
∣∣∣

+ loge

[
x†(f)R−1x(f) +1/4

] }
(47)

Introducing the original signal statistics:

[Σ̂, θ̂] = arg min
Σ̂,θ̂

fM∑

f=f1

{
loge

∣∣∣AΣ
v
A† + σ2

nI
ρ

∣∣∣

+ loge

[
x†(f)

{
AΣ

v
A† + σ2

nI
ρ

}−1
x(f) +1/4

]}

(48)

3.7 Separable Solution

We proceed to reach an alternative minimization func-
tion to reduce the search space. To do so we follow the
derivations of [16] in which the ML function is first mini-
mized w.r.t. the signal statistics, assuming known DOA:

Summation is omitted for the derivations, and thus we
define the function to be minimized as:

L =

{
loge

∣∣∣AΣ
v
A† + σ2

nI
ρ

∣∣∣

+ loge

[
x†(f)

{
AΣ

v
A† + σnI

ρ

}−1
x(f) +1/4

]}

= loge

∣∣∣R
∣∣∣

︸ ︷︷ ︸
L1

+ loge

[
x†(f)R−1x(f) +1/4

]

︸ ︷︷ ︸
L2

(49)

Differentiating:

∂L
∂σij

=
∂

∂σij

{
loge

∣∣∣R
∣∣∣+ loge

[
x†(f)R−1x(f) +1/4

]}

=
∂ loge

∣∣∣R
∣∣∣

∂σij
+
∂ loge

[
x†(f)R−1x(f) +1/4

]

∂σij

(50)
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Working separately on the two terms:

∂L1

∂σij
=
∂ loge

∣∣∣R
∣∣∣

∂σij

= Tr









∂ loge

∣∣∣R
∣∣∣

∂R






T

∂R

∂σij





but

∂ loge

∣∣∣R
∣∣∣

∂R
= [R−1]T

∂R

∂σij
= aia

†
j (51)

Hence

∂L1

∂σij
=
∂ loge

∣∣∣R
∣∣∣

∂σij
= Tr

[
R−1aia

†
j

]
= a†

jR
−1ai (52)

Similarly, for the second term:

∂L2

∂σij
=

∂ loge

[
x†(f)R−1x(f) +1/4

]

∂σij

=
∂ loge

[
Tr
[
R−1C

]
+1/4

]

∂σij

=
1

Tr
[
R−1C

]
+1/4

· ∂
∂σij

{
Tr
[
R−1C

]
+1/4

}

= − 1

Tr
[
R−1C

]
+1/4

· Tr
[
R−1 C R−1 ai a†

j

]

= − 1

Tr
[
R−1C

]
+1/4

· a†
jR

−1 C R−1 ai (53)

where we define C = xx†.

Therefore

∂L
∂σij

=
∂L1

∂σij
+
∂L2

∂σij

= a†
jR

−1ai −
a†

jR
−1 C R−1 ai

Tr
[
R−1C

]
+1/4

= a†
j



R−1 −
R−1 C R−1

Tr
[
R−1C

]
+1/4



ai (54)

or in matrix notation, and at the ML value of Σ

∂L
∂Σ

= A†



R−1 −
R−1 C R−1

Tr
[
R−1C

]
+1/4



A
i

= A†R−1



R −
C

Tr
[
R−1C

]
+1/4



R−1A
i

= 0 (55)

Using Sherman-Morrison-Woodbury identity:

(
A + UV†

)−1
= A−1−A−1U

(
I + V† A−1 U

)−1
V† A−1

(56)
with the relation connecting R to the original signal
statistics Σ

R = AΣ
v
A† + σ2

nI (57)

Therefore

R−1 =
1
σ2

n

{
I − A

(
ΣA† A + σ2

nI
)−1

ΣA†
}

(58)

and in order to substitute back in eq. (55), we calculate

R−1A =
1
σ2

n

{
I
ρ
− A

(
ΣA† A + σ2

nI
)−1

ΣA†
}

A

=
1
σ2

n

{
A − A

(
ΣA† A + σ2

nI
)−1

ΣA†A

}

=
1
σ2

n
A

{
I
κ
−
(
ΣA† A + σ2

nI
)−1

ΣA†A

}

=
1
σ2

n
A
{
ΣA† A + σ2

nI
}−1

·
{
ΣA† A + σ2

nI − ΣA† A
}

= A
{
ΣA† A + σ2

nI
}−1

(59)

Substituting back in eq. (55)

∂L
∂Σ

=
{
ΣA† A + σ2

nI
}−1

A†

[
R

−
C

Tr
[
R−1C

]
+1/4

]
A
{
ΣA† A + σ2

nI
}−1

(60)
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But ∂L
∂Σ = 0, therefore

A†



AΣ
v
A† + σ2

nI −
C

Tr
[
R−1C

]
+1/4



A =

A†AΣ
v
A†A + A† σ2

n A −
A† C A

Tr
[
R−1C

]
+1/4

= 0 (61)

Solving for Σ, we can find the Σ
ML

(over all available

data)

Σ
ML

=
1
M

tM∑

t=t1

[ (
A†A

)−1
A†

(
xx†

Tr
[
R−1xx†

]
+1/4

− σ2
n

)
A
(
A†A

)−1
]

(62)

To solve the above, an initial estimate of R can be found
from the data using a covariation measure, as will be
demonstrated in the next section. However, experience
has shown this step not to be necessary, since the recur-
sion converges rapidly from an identity matrix.

The noise variance σ2
n can also be found from the same

covariation measure assuming the number of sources and
sensors are known, similarly to eq. (27).

3.8 DOA Estimation

Assuming that eq. (45) holds, i.e., that signal and noise
are jointly sub-Gaussian, we can proceed to estimate the
DOA. Using the pseudo-ML approach, the modified ML
function can now be expressed as:

θ̂ = arg min
θ̂

fM∑

f=f1

{
loge

∣∣∣R
∣∣∣+

+ loge

[
x†(f)R−1x(f) +1/4

] }
(63)

where the inverse of R̂ can be estimated using the Wood-
bury identity. It is also significant to note here that the

first term loge

∣∣∣R
∣∣∣ is not a function of the data, and hence

can be left out of the minimization process in the case
that we are only searching for the angle parameters.

Therefore:

[θ̂] = arg min
θ̂

fM∑

f=f1

{
loge

[
x†(f)R−1x(f) +1/4

]}
(64)

0 50 100 150 200 250 300 350 400 450 500
−400

−300

−200

−100

0

100

 Time in samples

0 50 100 150 200 250 300 350 400 450 500
−300

−200

−100

0

100

 Time in samples

Fig. 10: Sample transmitted (real) signal for a two-source
problem.

4 SIMULATIONS

A sample realization based on the derivation assump-
tions of eq. (40) for a two source problem is shown on
Fig. 10. By observing the sample signal the reason why
second order statistics fail under this conditions becomes
clear. Considering that the dominating data will be the
few realizations of high amplitude, the overall second
order statistics will fluctuate significantly depending on
the statistics of these spikes. For example, while a data
block between 250 and 350 will give a normalized auto-
correlation of near 1, it will be closer to −1 between 200
and 300.

4.1 Array Spacing

Simulations in this section are performed using a nar-
rowband signal, thus we briefly discuss the intersensor
spacing of the array.

We assume that d, the intersensor distance, is equal to
ξλ/2, where ξ ≤ 1. Therefore, from (15)

−iωτ = −iξπ sin θ

and hence

A =





1 1 · · · 1
e−iξπ sin(θ1) e−iξπ sin(θ2) · · · e−iξπ sin(θκ)

...
...

. . .

e−iξπρ sin(θ1) e−iξπρ sin(θ2) e−iξπρ sin(θκ)





(65)

4.2 DOA Estimation

Several sets of simulations need to be performed to test
the validity of the algorithm. In each of the following
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Desired
Signal

Reverberant
Signal

(1) w is Lévy (2) w is Gaussian
(3) w = 1 (4) w is ρ + κ-variate Lévy.

v(t) n(t)

A +

A

R

R

A

Y

Fig. 11: Explanation of the conditions of the four testing
cases.

tests, Σ = I is assumed to hold, although the test ma-
trix had a random correlation structure, but always with
diagonal elements of dispersion equal to the dispersion
of the Lévy sequence (γs = γu = γv = 1). In all cases
the impulsiveness was kept constant (α = 1 for cases 1
& 4, and α = 2 for 2 & 3 as described below). The
Generalized Signal-to-Noise Ratio used below is defined
as:

GSNR = 10 log10

(
γs

γn

)
= −10 log10 (γn) (66)

In the following four cases, we had random DOA’s for 2
sources, 8 sensors, and blocks of 32 samples. The four
simulation scenarios are described below:

1. Exactly as per the derivation assumptions
(Fig. 12a): received signal is sub-Gaussian, created
from a Multivariate Gaussian and a univariate
Lévy. Received signal impulsiveness is α = 1
(impulsiveness – dependence)

2. The signal is a Multivariate Gaussian (Fig. 12b),
and is created from a Multivariate Gaussian (v)
and a univariate Gaussian (w). Received signal im-
pulsiveness is α = 2
(no impulsiveness – dependence)

3. The signal is a Multivariate Gaussian (Fig. 12c) and
it undergoes no energy fluctuation (w = 1, v = s).
This conforms to the assumptions of the well known
Gaussian based ML. Clearly, the received signal

impulsiveness is α = 2
(no impulsiveness – no dependence)

4. Finally, the received signal is sub-Gaus-
sian(Fig. 12d), created from a Multivariate
Gaussian (v) and a Multivariate Lévy (w). In this
case, the signals can be viewed as simply Cauchy.
Received signal impulsiveness is α = 1
(impulsiveness – no dependence)

Fig. 12a shows the mean squared error for the derivation
assumption conditions, where signal and noise are jointly
sub-Gaussian. The impulsiveness of the noise variation
degrades significantly the performance of the Gaussian
based ML, especially at low GSNR’s.

We evaluate the performance of the sub-Gaussian based
ML by testing the robustness when the process ceases to
be impulsive. The sub-Gaussian algorithm performs bet-
ter than the Gaussian ML (Fig. 12b), even under these
conditions.

As expected however, when there is no envelope applied
to the signals, i.e., the signals are pure Gaussian, the per-
formance of the Gaussian ML method is slightly better
than that of the sub-Gaussian-based ML (Fig. 12c).

The real benefit of the proposed ML method can be ob-
served when the signals are impulsive due to random
multiplicative noise, independent from one source to the
next (Fig. 12d).

4.3 Estimating Statistics using Covariation

Consider the Gaussian signals v1 and v2 with covariance
σ2

12, i.e., Σ = [1 σ12; σ
∗
12 1], and a Lévy sequence u used

to create a sub-Gaussian signal. We seek to extract Σ
from the signal s = u v.

With the hypothesis that second order statistics are de-
fined for the above signals, then one could proceed in the
usual way of:

E [(u v1)(u v2)
∗] = E [u v1 u∗ v∗

2 ]

= E [u u∗] E [v1 v∗
2 ]

= Const. σ12

However, as E [u u∗] does not exist, one is required to use
lower order statistics. We investigate the Fractional Or-
der Correlation Function encountered previously in the
FLOS-PHAT algorithm and defined as:

Axy = E
{
x<p>y∗<q>} (67)

Clearly, in this case:

E
[
(u v1)

<p>(u v2)
∗<p>] =

= E
[
u<p> u∗<p>] E

[
v<p>
1 v∗<p>

2

]

= Const. E
[
v<p>
1 v∗<p>

2

]
∀ p < 0.5
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Fig. 12: Simulations demonstrate the obtained benefit in localization by using the Stochastic ML method based on the Lévy Sub-
Gaussian processes versus the Gaussian ML method for the conditions described in the text. Robustness of the Sub-Gaussian
method is apparent especially in case (d).
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Fig. 13: Estimates of the fractional correlation measure can
be deterministically connected to the covariance of the under-
lying Gaussian densities. The horizontal axis shows the true
covariance for the two underlying signals of the sub-Gaus-
sian density, while the vertical axis shows the FLOS estimate.
Clearly, as we increase the value of p, we approach the region
where statistics are not defined, and for any value of p > 0.25
(i.e., 2p > 0.5, the characteristic exponent of the Lévy den-
sity) we have undefined statistics as expected.

The plots of Fig. 13 demonstrate the connection between
the FLOS statistics and the second order statistics of the
Gaussian part of the signal. There exists a deterministic
correspondence when 2p is lower than αu = 0.5. Similar
results can be obtained for complex signals. A generated
lookup table can, if required, provide an estimate of the
underlying Gaussian statistics.

4.4 Estimating Statistics using ML

As mentioned earlier, random initial conditions are suf-
ficient for the solution of eq. (62). Fig. 14 shows the
estimates for a 3-source problem with

Σ =




2 −1 −0.4i 1.0−1.6i

−1+0.4i 4 −0.3−0.8i
1+1.6i −0.3+0.8i 3





when the initialization vectors are the identity matrix.

The sample statistics are slightly different from the above
depending on the length of the realization, and are plot-
ted on Fig. 14 as well. The histogram plots show on the
positive side the sample statistics, and on the negative
side the estimates of the diagonal elements of Σ̂ as es-
timated by eq. (62). The insignificantly small complex
components of the diagonal of Σ̂ are ignored due to prior
knowledge. The scatter plots present the off-diagonal el-
ements of the statistics matrix on an Argand diagram.

The dots denote the actual sample statistics, while the
estimates are shown with ‘×’.

As can be observed from Fig. 14, the number of sensors
is far more important than the total number of samples.
As an example, we can see that cases (a) and (b) have
the same overall number of samples, but the performance
is far superior in case (b) where the number of sensors
is 4 times the ones in (a). In fact, a significant decrease
of SNR in (c) can be compensated by an increase in the
number of sensors. Likewise, we can observe that even a
significant increase in SNR from (d) to (e) provides little
improvement in the accuracy of the estimates, while an
increase in the number of sources dramatically improves
the accuracy in (f).
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Fig. 14: Simulations show the effectiveness of the separable ML estimation of statistics for a 3-source problem under various
noise conditions and array arrangements.
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Fig. 15: Sample frequency transformation of a 1st order all-
pass filter

5 SUB-GAUSSIAN AND GAUSSIAN ML LOCAL-
IZATION COMPARISONS ON REAL DATA

In order to test the localization algorithm with some real
data, we constructed two synthetic microphone arrays:
using the 10.2 channel system and ProTools we played
back several (dry) signals (Trumpet, Cello, a female voice
in English, and a female voice in Danish). These audio
channels were played together in various combinations
through the loudspeakers at 48kHz, and 2 microphones
were shifted forming a linear array. The synchronized
playback–recording feature of ProTools, confirmed by
the addition of chirp synchronization signals at the start
of the recording, ensured that the array was accurately
created.
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Fig. 16: Actual frequency mapping used in the real signal ML
localization experiments

The ML function for the following cases was evaluated
over all frequencies, by re-calculating the transformation
matrix A for all possible (θ, f) combinations, which is a
computationally expensive process. For the localization
part, a Non-linear FFT (NFFT) [2, 19, 22] was used

ARRAY
✺

✺

✺

✺

✺

✺

✺

✺

✺

C

RC – 90◦ Trumpet

R

RS – 170◦ British Speech Echo

LC – 45◦ Cello

L

LS – 15◦ British speech

H.L

H.R – 105◦ Danish Speech

Fig. 17: Experiment setup for the 20-microphone array. An-
gles shown are relative to the center of the array arrange-
ment. Only the Cello and Trumpet sources could be reliably
localized due to the inaccuracies in sensor placement with the
20-microphone array.

in order to keep the resulting frequency domain signals.
Specifically, we employed the method described by Mi-
tra et al in [19], with a first order all-pass filter and a
30ms window (1440 samples). The resulting frequency
mapping is shown on Fig. 16, while a more visual repre-
sentation of the first-order mapping is shown on Fig. 15
with fewer taps.

5.1 20-Microphone Array

In the 20-microphone array case, the aperture was 38cm
and the intersensor spacing was 2cm, while 4 (originally
dry) signals (Trumpet, Cello, a female voice in English,
and a female voice in Danish) and an artificial echo of the
cello were used. These 5 channels were played together
in various combinations, although the results shown here
are based on localization of the sources when two signals
were active (the Cello and Trumpet at 45◦ and 90◦ re-
spectively). This array was not very accurately spaced
and the error rate from the part where all 5 channels
were active was very large. The array setup is shown on
Fig. 17.

Results of localization demonstrate that the sub-Gaus-
sian based ML method performs significantly better than
its Gaussian counterpart. Fig. 18 shows 7s of the sig-
nal where only the cello and trumpet are being played.
Each frame of the segment corresponds to a sliding win-
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Gaussian Sub-Gaussian
45◦ angle RMS error 16 5
90◦ angle RMS error 22.5 10
Overall RMS error 19.5 8

Table 2: Errors for the Gaussian based ML method are more
than double those of the sub-Gaussian based ML.

dow of 30ms, and the sources were placed at 45◦ and at
90◦. As can be observed, the sub-Gaussian ML method
works significantly better. Table 2 shows the RMS er-
ror for this localization experiment, and reveals that the
performance of the Gaussian based ML is significantly
worse than that of the sub-Gaussian based ML.

5.2 41-Microphone Array

In the 41-microphone array the recording conditions are
similar to the previous case. However, the inter-sensor
spacing is 1cm, the array is much more accurately spaced
than the previous one, and the sources are the two speech
signals used in the previous section placed at 48◦ and
110◦. In addition, the arrangement is such that a strong
echo is created at 90◦. Fig. 19 shows the positions of
the sources, the array, and the flat screen,2 which as we
expect causes a strong sound reflection.

48◦ 110◦
90◦

Fig. 19: Arrangement of 41-microphone array.

We note that, in addition to a superior performance of
the sub-Gaussian based ML, the errors of the sub-Gaus-
sian tend to be more reasonable. In other words, the sub-

2The screen is made from a synthetic material that is
highly reflective.

Gaussian Sub-Gaussian
48◦ angle RMS error 11.1 9.3
90◦ angle RMS error 13.1 6.9
110◦ angle RMS error 17.7 6.6

Overall RMS error 24.6 13.3

Table 3: Errors for the Gaussian based ML method are much
higher than those of the sub-Gaussian based ML, but compare
better under these conditions of the larger array than in the
case of the 20-microphone array.

Gaussian algorithm incorrectly localizes sources mostly
in the range 50◦-90◦, which we believe corresponds to
the reflections off the console, while the Gaussian based
ML is severely influenced by the noise impulsiveness and
locates sources more indiscriminately. Nevertheless, the
performance difference decreases as the array size grows,
a similar conclusion with the performance difference gap
narrowing at increasing SNR’s in the simulations. The
RMS error of localization for the two methods is shown
on Table 3.

6 SIGNAL RECOVERY

The accurate extraction of sound from specific locations
in the room is a possible application of a large array.
We attempt to reconstruct the original English speech
signal from the 41-microphone array with the simplest
of methods to demonstrate the concept.

An overview of the signal reconstruction process is given
on Fig. 21. First, the time aligned signal blocks are
transformed in the frequency domain. The transforma-
tion into the frequency domain is the same as the one
for the ML localization, and as such, it will add no ad-
ditional computational expense. Vectors equal to the
array size are constructed from each frequency and fil-
tered through the frequency dependent steering vectors
w. The resulting collection of w(f)T S(f) coefficients
forms the frequency domain of the required signal. How-
ever, as inverse FFT is not sufficient to recover the sound
since it causes clicks in the signal, a phase and amplitude
corrected sinusoid is created instead from each frequency
coefficient. The resulting sinusoid is windowed to smooth
the transition and minimize the clicks in the final signal.
Finally, the collection of overlapping sinusoids over all
frequencies are added to produce the sound signal esti-
mate. For improved signal quality, interpolation in the
frequency domain (both in amplitude and phase) can be
used before the creation of the sinusoids to produce a
better signal recovery.

Much research has been performed in estimating a signal
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Fig. 18: The audio array ML DOA comparison for the localization of two sources at 45◦ and at 90◦ using the sub-Gaussian
and Gaussian ML based methods. The Gaussian based ML appears to suffer significantly from reverberation effects. The
two original sound signals are plotted at the bottom two graphs, and we can see the correlation of the error rising when the
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Fig. 20: Angle estimates for Gaussian and sub-Gaussian based
ML methods for the 41-microphone setup.

from its short-term Fourier transform, mostly due to the
need for good compression algorithms such as MPEG.
Since compression is not an issue in our case, we used
the simple sinusoidal addition with a reconstruction win-
dow identical to the window used in the time domain
(Hanning window). A similar algorithm is described by
Griffin and Lim in [13]. Further analysis on the subject
is given in [24, 26], however this material is beyond the
scope of this paper.

The signal recovery process was successful to a certain
extent, although the array size was restrictive. Tradi-
tional design of the focusing vector w is based on the con-
cept that a signal can be classified as source, interference
and noise. However, in an environment where reverbera-
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S0(f0)

S1(f0)
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S (f0)
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Freq.
Domain

Reconstructed
sinewaves,
windowed,
overlapping

Sum of sinewaves over all frequencies

Fig. 21: Signal reconstruction process.

tion is both the noise and interference, the “noise” level
is extremely high. Nevertheless, we have used a con-
strained algorithm that minimizes the overall response
at high frequencies, and places additional constraints at
lower frequencies at the other source locations (at 90◦

and 110◦). These correspond to the Minimum Vari-
ance Distortionless Response (MVDR) algorithm and
the Linearly Constrained Minimum Variance (LCMV)
[5, 6, 9, 10], respectively. Again, these methods are based
on second order measures, and better algorithms could
be used to allow for impulsive signals.

However, automated design fails for both methods as
they are designed for placing specific restrictions at spe-
cific locations. In addition, the constraints often lead to
weight vectors of extreme amplitude range, which cause
amplification of microphone placement errors. Work in
literature such as [14, 15, 20], attempts to tackle these
issues.

The transformation at the frequency domain was at-
tempted with both the linear and non-linear FFT’s. In
the case that we use the NFFT method, the resulting
signal’s frequency content must be weighted with the in-
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verse density of the frequency mapping, i.e.,

Emphasis =
δfout

max(δfout)
(68)

Fig. 22 and Fig. 23 show the obtained beampattern us-
ing the MVDR method and a non-linear frequency trans-
formation. Although the constraints are sufficient for a
large part of the frequency range, they can be too re-
strictive at certain frequencies, or not restrictive enough
at other frequencies. As an example, the constrain of
C = 1 at 48◦ will cause a very narrow beampattern at
high frequencies, while a plateau constrain in a range
48◦ ± 5◦ will cause extreme ripples; nevertheless, the
same problem does not appear at low frequencies.

In the design of the coefficients of Fig. 22 and Fig. 23,
we did not place any constraints on the amplitude of the
coefficients; however, by using only two constraints (zero
at 110◦ and unity at 48◦, and vice versa), the resulting
set of vectors w was well behaved.

The smaller amplitude variation on the weights clearly
produces better quality sounds at the cost of poor source
separation. In fact, attempts to use significantly con-
strained beampatterns gave a high pitch noise that made
the resulting signal incomprehensible, while the ones of
Fig. 22 and Fig. 23 gave a better quality signal but with
far poorer separation. The common assumptions in the
literature that the interference source is white noise fail
to allow for these kinds of problems, which we encounter
with real signals. Clearly, we need to further explore
methods of automatic creation of the weight space for
more constraints.

Fig. 22: Beampattern for recovery of the 48◦ source (English
speech) using the NFFT mapping.

Fig. 23: Beampattern for recovery of the 110◦ source (Danish
speech) using the NFFT mapping.

Acoustically, the best separation occurred with the
NFFT approach using emphasis as in eq. (68), and with
a block size of 30ms. However, with the Danish speech
source being much louder originally and much more re-
verberant,3 the result in recovering only the English
speech is poor. Nevertheless, we were able to achieve
a pretty good separation in the case of removing the En-
glish speech from the Danish one. Rough estimates from
periods of silence in one of the two signals suggest a min-
imum of 10dB attenuation of the English speech. Much
better separation can be achieved with the use of non-
linearly spaced arrays and 2-D arrangements such as in
a cross pattern.

7 CONCLUSIONS

We have presented in this work a model designed to ac-
count for signals that are dependent and impulsive in
nature. Such signals are often encountered in many dis-
ciplines including audio. Our present research was moti-
vated by existing work demonstrating the impulsiveness
of sound and by the observation that reverberation is
highly dependent on the original source.

The ML solution of this model was given under a sensor
array scenario, and its separable solution was derived.
The separable solution assumes known statistics to lo-
calize the directions-of-arrival and known directions-of-
arrival to find the statistics of the underlying processes.

3The console is located between the 110◦ loudspeaker and
the array, and the Danish speech is still much louder than the
English one at the receiving sensors. This suggests that the
Danish reverberant component is comparable in intensity to
the direct component of the English speech.
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Although the statistics estimator could not be derived as
a closed form expression, the resulting form allows for a
fast iterative solution. The directions-of-arrival estima-
tor still requires a search, but of a much smaller space.

Simulations have demonstrated the robustness of the
sub-Gaussian based ML, and encourage us to further de-
velop methods employing the sub-Gaussian, rather than
the Gaussian, model. Additionally, the performance loss
of the sub-Gaussian based ML in the case that signals
are Gaussian is insignificant, which further enforces our
robustness claim.

Real world measurements were conducted with two large
arrays (20 and 41 microphones) in our audio lab, a room
with the acoustics of a typical living room. These exper-
iments have also supported the advantages of the new
model. The sub-Gaussian based ML exhibits an im-
provement in localization up to a factor of 3 in the RMS
error versus the Gaussian ML.
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