
Appears in Ninth International Machine Learning Conference, Aberdeen, Scotland, 1992, pp. 178–188

Jonathan Gratch and Gerald DeJong
Beckman Institute for Advanced Studies,University of Illinois

405 N. Mathews, Urbana, IL 61801
e–mail: gratch@cs.uiuc.edu

An Analysis of Learning to Plan as a Search Problem

Abstract

COMPOSER is one of a growing number of tech-
niques for learning to plan. Like other approaches,
it embodies a number of simplifications to over-
come the complexities of learning. These simpli-
fications introduce tradeoffs between learning ef-
ficiency and effectiveness. In this paper we relate
COMPOSER to our general framework of simplifi-
cations for learning to plan [Gratch92a]. This dis-
cussion illustrates how such a framework may be
used to analyze a particular approach, highlighting
the learning system’s strengths and weaknesses.

1 INTRODUCTION

In machine learning there is considerable interest in tech-
niques which improve planning ability. Investigation in this
area has identified a wide array of techniques including ma-
cro–operators [DeJong86, Fikes72, Mitchell86, Segre88],
chunks [Laird86], and control rules [Minton88, Mitch-
ell83]. With these techniques comes a growing battery of
successful demonstrations in domains ranging from
8–puzzle to space shuttle payload processing. Unfortunate-
ly, the formal properties of these approaches are not well un-
derstood. This is highlighted by demonstrations where
learning degrades planning performance [Etzioni90b,
Gratch91a, Minton85, Subramanian90].

In this paper we relate a particular learning system to our
general framework for learning to plan described in
[Gratch92a] The framework provides a unifying perspec-
tive where seemingly different approaches are related
through their use of common simplifying assumptions. We
review the framework (Section 3) and then turn to describ-
ing the COMPOSER [Gratch92b] technique from this new
perspective (Section 4). The discussion illustrates the
framework’s use as an analysis tool. It also provides a de-
tailed illustration of the tradeoffs involved in some common
learning simplifications. The next section motivates the
view of learning to plan as a search problem.

2 LEARNING AS SEARCH
In classification learning, techniques are frequently charac-
terized as search processes (see [Mitchell82]). Some novel
issues arise when this view is extended to techniques for
learning to plan. In this context, a learning system takes a
particular planner operating in a particular domain, and tai-
lors it to more effectively solve problems. From the search
perspective, this can be viewed as a transformational pro-
cess where a series of transformations are applied to the
original problem solver. A planner may be transformed in
a variety of ways. They include the introduction of search
control knowledge [Braverman88, Mitchell83] and refine-
ments to a world model [Richards91, Towell90].
Each learning technique utilizes a vocabulary of transfor-
mations. These are “learning operators” and collectively
they define a transformation space. For instance, acquiring
a macro–operator can be viewed as an operation which
transforms the initial system (the original planner) into a
new system (the planner operating with the macro–opera-
tor). A learning technique must explore this space of poten-
tial transformations for a sequence which results in a more
effective planning system.
The quality of a learning technique can be characterized
along two dimensions: the efficiency of its search and the
effectiveness of the transformed planner. Efficiency can be
evaluated by complexity measures. The effectiveness of a
planner depends on the objectives of the agent which uses
it. Common measures of effectiveness include average
planning time [Minton88], probability of goal satisfaction
[Drummond90], and solution quality [Eskey90]. These
measures are usually dependent on the expected distribu-
tion of planning problems present in the task environment.
In [Gratch92a] we draw on these notions of efficiency and
effectiveness to define a particular class of learning tech-
niques called minimally adequate learners. Given an initial
planner, a minimally adequate technique applies zero or
more transformations, resulting in a planner of equal or
(with high probability) higher effectiveness. Furthermore,
the learning process must be tractable. This definition does
not require that each transformation monotonically im-
prove planning performance. Rather the learning system
must terminate with something equal or better than the ini-

tial planner. A surprising observation is that many learning
to plan techniques do not insure this minimal requirement
[Gratch91b, Minton85, Subramanian90].

We assume that effectiveness is characterizable by a distri-
bution sensitive utility function. For example, if the objec-
tive is to reduce problem solving cost, utility could be re-
lated to the sum of the solution cost of each problem in the
distribution weighted by its probability of occurrence:

UTILITY(planneri) =
prob Distribution

Cost(planneri,prob)×Pr(prob)–

Utility is a preference function over planners. It is also use-
ful to discuss the utility of individual transformations. The
incremental utility of a transformation is defined as the
change in utility that results from applying the transforma-
tion to a particular planner (e.g. adopting a control rule).
This means the incremental utility of a transformation is
conditional on the planner to which it is applied. We denote
this as: ΔUTILITY(Transformation|Planner).

A learning system need not explicitly compute utility values
to identify preferred planners, but it must act (at least ap-
proximately) as if it does. In fact many learning systems do
not explicitly evaluate utility. For example, many speed–up
learning systems incorporate operationality criteria to de-
termine which transformations to adopt (e.g. [Braver-
man88, Letovsky90, Mitchell83]). This can be viewed as
a binary approximation to incremental utility –– transfor-
mations which satisfy the operationality criteria are ex-
pected to exhibit positive incremental utility, while those re-
jected by the criteria are expected to exhibit negative
incremental utility.

From the search perspective, a learning system must ex-
plore the transformation space to identify preferred plan-
ners. This task can be decomposed into three basic compo-
nents:

* A search component that explores the space.

* A utility estimation component which determines which
transformations to incorporate into the final planner,

* An observation component which provides information
about the task environment and the performance of the
planner to the other two components.

The search space is determined by which transformations
are proposed by the learning system and what combinations
of transformations are sanctioned. Typically, transforma-
tions are proposed in response to problem–solving suc-
cesses or impasses. Incremental utility might be estimated
by combining information from multiple problems drawn
from the distribution. The observation component must ex-
tract from examples the particular information required to
propose and evaluate transformations.

3 FRAMEWORK OF SIMPLIFICATIONS
There are three challenges to adequate learning: 1) the
space of possible transformations may be large, 2) it is diffi-
cult to reliably estimate effective transformations, and 3) it
may be expensive to extract the necessary information from
the task environment. Taken together, these difficulties
suggest there there does not exist a general solution to the
problem of adequate learning. Nevertheless, there are a
number of published techniques which claim to work well.
This apparent contradiction is resolved by noting that learn-
ing techniques adopt simplifications to address each chal-
lenge. Many of these simplifications embody a simple
tradeoff: efficiency is gained by adopting less than optimal
transformation sequences. Other simplifications are heu-
ristic and can result in inadequate behavior under some (dif-
ficult to articulate) circumstances.

In this section we outline the basic simplifications adopted
by learning to plan techniques (a more complete treatment
appears in [Gratch92a]). Simplifications are rarely explic-
itly noted in these works. It is often difficult to determine
the precise simplifications an algorithm embodies. We
present concise and obvious simplifications to each chal-
lenge. We then argue how different techniques are best
viewed as approximating these commitments. The frame-
work is representative of the approaches which are popular
in the literature rather than an exhaustive list of possible ap-
proaches. The discussion is organized into approaches for
each of the three basic challenges.

3.1 TRANSFORMATION SPACE COMPLEXITY

A learning system must explore a potentially large space of
transformation sequences. This space is infinite if the trans-
formation vocabulary is unbounded or if the same transfor-
mation can be applied an unbounded number of times. Even
with a finite vocabulary and restricting each transformation
to at most one application, the complexity is still daunting:
for n transformations there are O(n!) distinguishable se-
quences (any planner may be the result of up to n ordered
transformations). Depending on the vocabulary of transfor-
mations and utility function, each of these alternative plan-
ners can have different utility.
3.1.1 Utility Equivalence Classes
Under some circumstances the complexity of the transfor-
mation space is misleading. For example, depending on the
vocabulary of transformations, the order in which transfor-
mations are adopted may be irrelevant to the utility of the
final planner. In this circumstance, any of the m! permuta-
tions of a set of m transformations. would yield planners
with equivalent utility if applied to the initial planner. These
permutations form a utility equivalence class. If utility
equivalence classes can be identified, they can be exploited
to reduce search. For example, the learning system can nar-
row the search such that only one member of each equiva-
lence class is considered.

Many learning systems adopt a particular simplification
which is best viewed as exploiting an utility equivalence
class. The simplification is to treat the incremental utility
of a transformation as independent of other transforma-
tions. This means that the incremental utility of a transfor-
mation is the same regardless of what other transformations
have been adopted. With this simplification a learning sys-
tem can reduce an exponential search to O(n) (see
[Gratch92a]). This simplification leads to adequate learn-
ing under certain sufficient conditions. If the transforma-
tions are in fact independent, a learning system can in O(n)
identify the planner with optimal utility. If independence
does not hold, this simplification can sacrifice minimal ade-
quacy. For example, we document how negative interac-
tions between control rules cause PRODIGY/EBL [Min-
ton88] to to acquire harmful control strategies.

Many learning systems do not explicitly consider interac-
tions (including SOAR [Laird86], STATIC [Etzioni90b],
PRODIGY/EBL, RECEBG [Letovsky90], IMEX [braver-
man88], and PEBL [Eskey90]). Ma and Wilkins illustrate
a similar situation for knowledge–base revision systems
[Wilkins89]. Systems which do not adopt this simplifica-
tion include PALO [greiner92], COMPOSER [Gratch92b],
and [Leckie91].
3.1.2 Generation Pruning
Most learning systems employ powerful pruning tech-
niques to reduce the space of alternatives. One way to re-
duce complexity is by restricting which transformations are
actively considered. Most transformation vocabularies de-
fine a vast space of possible transformations. For example,
a system using macro–operators might consider macros
built from any legal sequence of operators in the domain.
Most learning systems only consider a tiny fraction of the
legal transformations. We say a system employs generation
pruning if it restricts the class of transformations which are
actively considered. A common approach is event driven
learning. Under this strategy, transformations are only pro-
posed in response to planning events such as success or fail-
ure which are observed in the course of problem solving.
Etzioni’s nonrecursive hypothesis can also be viewed as a
generation pruning strategy [Etzioni90b]. His criterion
states that a control rule should only be considered if it is
based on a nonrecursive explanation. Rosenbloom, Lee,
and Unruh provide an interesting discussion of the relation-
ship between a planner’s architecture and generation prun-
ing [Rosenbloom92].
3.1.3 Composition Pruning
In addition to restricting the class of available transforma-
tions, many learning systems restrict how transformations
are composed. For example, even when transformations are
not order independent, many techniques only consider a
single permutation of the transformation sequence, effec-
tively pruning the other ordered sequences from the trans-
formation space. In some cases the order is resolved in a
particular way. In the case of macro–operators, Shavlik

suggests an ordering scheme: order the library of macro–
operators such that each newly learned macro–operators is
placed before the original domain theory but after previous-
ly learned macro–operators [Shavlik88]. Thus the organi-
zation of macro–operators is determined by the order in
which the transformations were adopted and the learning
system cannot alter this order.
Another powerful simplification is to adopt a heuristic
search technique like hill–climbing or beam search. For ex-
ample, COMPOSER and PALO employ hill–climbing
search to restrict the space of alternatives. A greedy tech-
nique can climb the gradient of incremental utility values,
picking the transformation with highest incremental utility
with respect to the previously selected transformation.
Pruning simplifications introduce tradeoffs. A system may
not find preferred planners when they exist. Thus it may
preclude optimality or otherwise lower the adequacy of the
learning system. On the other hand, a system utilizing this
simplification retains minimal adequacy, as it does not ef-
fect the perceived utility of the remaining transformations.
Every learning system we have analyzed implements some
form of generation or composition pruning.

3.2 ESTIMATION COMPLEXITY
The utility of a transformation depends on information
which is frequently unavailable such as the distribution of
future problems. The natural approach is to estimate utility
from training examples. The simplest approach is estima-
tion by brute force. If there is a known finite set of problems
of interest, the planning system might attempt them all, ob-
serving its behavior. After applying a transform, the planner
could be rerun on the set. The difference between the runs
is, by definition, the incremental utility of the transforma-
tion. This procedure identifies a single incremental utility
value and the process must be repeated for each utility deter-
mination. As the set of problems may be large, unavailable,
or infinite, and there may be many transformations from
which to choose from, this approach is clearly impractical.
3.2.1 Learning Without Examples
Some learning approaches employ syntactic criteria to
identify transformations with positive incremental utility.
For example, syntactic operationality criteria are often used
to discriminate between transformations with positive and
negative utility [Braverman88, Hirsh88, Letovsky90]. In
this sense, operationality can be seen as a two–valued ap-
proximation of incremental utility. The STATIC [Etzio-
ni90b] and RECEBG [Letovsky90] systems utilize criteria
based on the concept of recursive unwindings. A potential
problem with these approaches is that they do not account
for distribution information. Thus it can be quite difficult
to devise a sufficiently general criterion. One interpretation
of these criteria is that they produce heuristic estimates ––
they do not guarantee accurate estimates for every distribu-
tion, but they are sufficiently close on “typical” distribution.
Unfortunately it is quite difficult to characterize the distri-
butions which are acceptable to these techniques.

3.2.2 Unquantified Error
The empirical approach views utility as a random variable.
Incremental utility values on individual problems represent
data points; utility is estimated as the mean of a sample of
problems. This approach yields a learning system which is
probabilistically adequate. PRODIGY/EBL was perhaps the
first system to average incremental utility values across
many training problems. One simplification is to forbid rea-
soning about the accuracy of utility estimates. The average
of a sample may differ from the true average. A transforma-
tion which is estimated to be good may in fact have negative
utility. The likelihood of a large discrepancy may be mini-
mized by drawing more examples, but techniques which do
not reason about the confidence of their estimates have no
way of assessing if sufficient examples have been taken.
Approaches which adopt the simplification of unquantified
error require the user to determine the number of training
examples. If this number is insufficient, the learning ap-
proach may not be minimally adequate.
3.2.3 Quantified Error
More recent approaches have provided bounds on the prob-
ability of mistakes. Greiner and Cohen [Greiner92] intro-
duce a method based on Chernoff bounds. This distribu-
tion–free approach adopts transformations after drawing
enough examples to ensure (with high probability) that the
transformation will improve performance. The guarantee
is gained at the cost of many training examples, but Greiner
and Cohen show how (under weak assumptions) to achieve
an arbitrary level of confidence with a number of examples
polynomial in the error level.

3.3 OBSERVATION COMPLEXITY

Learning techniques must extract the necessary information
to generate transformations and to estimate utility. This
process is complicated by the fact that the form of the infor-
mation depends on the utility function. A utility function
based on planning cost requires information on how a trans-
formation affects the resource usage patterns of the planner.
A utility function based on solution quality requires first
that a solution be generated, and second that information
about quality be assessed. A technique which supports arbi-
trary utility functions is unlikely. Even with a fixed utility
function, the problem of gathering information is often
non–trivial. Ideally we have access to an efficient analytic
model of the planner which can predict incremental utility.
Unfortunately it is difficult to provide such a model for non–
trivial planning systems. The common alternative is to to
rely on empirical approaches which directly observe the
planner in the course of problem solving. But empirical ap-
proaches introduce new difficulties. Planning is undecid-
able in general. There are obvious difficulties in measuring
the performance of an intractable process.
3.3.1 Learning From Self–solutions
Many learning techniques use complete planning solutions
to generate utility estimates. As the system is generating its

own information, we refer to this process as learning from
self–solutions. This approach equates observation com-
plexity with the complexity of the (possibly transformed)
planner in the domain of interest. If this approach is to be
feasible, this complexity must be sufficiently small. While
this condition is rarely articulated, it is implicit in a wide
range of learning techniques [Braverman88, Gratch91b,
Greiner92, Leckie91, Minton88, Mitchell83, Ruby91].
One might ask why we need to learn at all if problem solving
is already feasible. However, in many circumstances this is
quite reasonable. For instance, in situations where large
numbers of problems must be solved, small increases in ef-
ficiency can result in huge savings.
3.3.2 Learning From Partial Solutions
The simplest approach to learning from self–solutions is to
solve the same problem many times, comparing the differ-
ence between transformed and untransformed planners.
However, as planning can be expensive, we may not have
the resources to completely solve each problem. Consider-
able savings could result if the system can learn from partial
solution attempts. Two obvious ways to generate partial so-
lutions would be to terminate problem solving after the first
sign of inefficiency (e.g. when backtracking occurs) or by
giving the planner fewer resources during learning than are
normally available.
Several learning techniques use information from partial
solution attempts when they generate transformations. For
example, SOAR interleaves generation and planning by pro-
posing transformations after each planning impasse. In
fact, most failure–driven learning techniques should be able
to generate transformations in response to partial planning
traces. Some approaches also extract utility information
from partial solution traces. For example, in PRODIGY/
EBL, an incomplete solution may contain several examples
of control rule behavior. PRODIGY/EBL also incorporates
a simplification where part of the utility estimate is derived
from a single example. Unfortunately, extracting utility in-
formation from partial solution traces will only be effective
if incremental utility is relatively homogeneous for the
transformations in use. This sufficient condition may prove
difficult to demonstrate. It it does not hold, the increase in
observation efficiency is gained at the cost of estimation ac-
curacy which in turn can violate minimal adequacy.
3.3.3 Learning From a Teacher
An alternative to self–solutions is to require a teacher to pro-
vide the appropriate data. This places observation complex-
ity in the hands of the teacher. The teacher, with its superior
knowledge, presumably can elicit the information with rea-
sonable cost. Implementations of this approach place
strong constraints on the information the teacher can pro-
vide. For example, Tadepalli introduces a system where the
teacher is required to generate solutions in a particular, non–
intuitive form [Tadepalli91]. Natarajan discusses another
approach where the teacher must provide the system with
optimal solution paths [Natarajan89]. The availability of a
teacher can greatly simplify the observation complexity.

Unfortunately, as the necessary information is a function of
the utility function and the vocabulary of transformations,
it may be difficult to provide an adequate teacher.
3.3.4 Learning From Simpler Problems
An intriguing alternative is to learn to solve intractable
problems by training on simpler, tractable problems. This
is analogous to classroom learning were a carefully selected
set of “text book” problems leads to sophisticated problem
solving ability. Minton informally adopts this approach in
his evaluation of PRODIGY/EBL [Minton88 pp. 137–138].
In these experiments the training set is biased such that
problem difficulty is gradually increased as learning pro-
ceeds. This idea shares the potential drawbacks of learning
from partial information. The incremental utility of trans-
formations varies across different problems. If the incre-
mental utility of a transformation varies systematically with
problem difficulty, a multi–example estimate of incremen-
tal utility will be compromised. Such an approach amounts
to making an assumption that incremental utility is relative-
ly insensitive to problem difficulty. Under certain circum-
stances, however, such biasing can prove effective. Natara-
jan demonstrates some sufficient conditions under which
this type of learning is possible [Natarajan89].
3.3.5 Simultaneous Extraction
The previous simplifications address the complexity of
solving a single problem. However, one solution attempt
may be insufficient to determine the utility of a set of poten-
tial transformations. A brute force approach to estimate the
utility of n transformations would be to solve the same prob-
lem n+1 times (once without any transformation, and once
with each of the n candidates). Incremental utility can be
extracted by the difference in utility between runs. Many
learning approaches implement observation procedures
which enable the the extraction of utility values for multiple
transformations from a single solution trace. We refer to
such an approach as simultaneous extraction. PRODIGY/
EBL, COMPOSER, SYLLOG [Markovitch89], and PALO
[Greiner92] perform simultaneous extraction.

Simultaneous extraction can reduce the cost of extracting
information. However, it is possible that such techniques
might compromise the veracity of the utility values. To
maintain accuracy, it must be the case that the incremental
utility value determined for one transformation is not in-
fluenced by whatever other transformations are being deter-
mined. This condition does not always hold. For example,
PRODIGY/EBL gathers statistics for control rules as other
rules are learned and forgotten. These shifting conditions
influence the estimates. In [Gratch91a] we illustrate a do-
main where these influences lead to learning behavior
which is not minimally adequate.

4 APPLYING THE FRAMEWORK
There are a variety of simplifications to address the chal-
lenges of adequate learning. Each involves its own set of

tradeoffs and in many cases these are difficult to evaluate.
In this section we apply the framework to a particular learn-
ing technique. By grounding the framework in a particular
system we can elaborate the consequence of some common
simplifications. More importantly this section illustrates
how the framework clarifies and organizes the process of
analyzing a learning system. We characterize the COMPOS-
ER system [Gratch92b]. The algorithm is summarized in
Figure 2

Input: TRAINING_EXAMPLES

CONTROL_STRATEGY = ∅
CANDIDATE_SET = ∅
While more training examples

solve problem with Planner+CONTROL_STRATEGY
learn new rules and add them to CANDIDATE_SET
acquire statistics for all rules in CANDIDATE_SET from trace
POSITIVE_RULES = ∅
Forall rules ∈ CANDIDATE_SET

If ΔUTILITY(rule|PRODIGY+CONTROL_STRATEGY)
significantly negative
Then remove rule from CANDIDATE_SET

If ΔUTILITY(rule|PRODIGY+CONTROL_STRATEGY)
significantly positive
Then add rule to POSITIVE_RULES

If POSITIVE_RULES
add rule with highest utility to CONTROL_STRATEGY
remove this rule from CANDIDATE_SET
discard all statistics on rules in CANDIDATE_SET

Output: CONTROL_STRATEGY

Figure 2: The COMPOSER algorithm

COMPOSER learns search control rules to improve the aver-
age planning speed of a STRIPS–like planner. It can be
viewed as a rigorous version of the utility analysis method
introduced by PRODIGY/EBL [Minton88]. In fact, it is im-
plemented with the PRODIGY 2.0 architecture. Its design
was motivated by the observation that PRODIGY/EBL is not
minimally adequate. Another paper elaborates these defi-
ciencies which are shared by many other learning to plan
techniques [Gratch91b]. In terms of our framework, COM-
POSER can be viewed as relaxing some unjustified simplifi-
cations imposed by PRODIGY/EBL. In particular, COM-
POSER eliminates an unjustified independence
simplification in the search component, introduces an esti-
mation technique with quantified error, and eliminates an
unjustified partial solution simplification for extracting
utility estimates. A number of other simplifications are re-
tained and these are discussed at length.

4.1 EMPIRICAL EVALUATION

Before preceding, we briefly summarize an empirical eval-
uation of the COMPOSER approach from [Gratch92b]. We
draw on these results in the later discussion. We tested the
STRIPS domain from [Minton88], and two domains for
which PRODIGY/EBL learns harmful control knowledge:

0

700

1400

2100

2800

3500

4200

4900

5600

6300

0 20 40 60 80 100

0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

300

600

900

1200

1500

1800

2100

2400

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

AB–WORLD

STRIPS

BIN–WORLD

of training examples # of training examples # of training examples

Figure 3: Summary of empirical results

COMPOSER
PRODIGY/EBL

Rules
Added

Train
Time

Test
Time

No Learning
1 4 0

11 20 2
210
266

311

2323
382
622

346
346

6020
1667
1253

4133
3775

3425
6383

SYSTEM

AB–WORLD STRIPS BIN–WORLD

––––––––– –––––––––

Rules
Added

Train
Time

Test
Time

Rules
Added

Train
Time

Test
Time

the AB–WORLD domain from [Etzioni90a] and the BIN–
WORLD domain from [Gratch91a]. COMPOSER is com-
pared against PRODIGY/EBL and a non–learning system.
The results are summarized in Figure 3. In each domain the
systems are trained on 100 training examples drawn ran-
domly from a fixed distribution. The current control strate-
gy is saved after every twenty training examples. The
graphs illustrate learning curves where the independent
measure is the number of training examples and the depen-
dent measure is execution time for 100 test problems drawn
from the same distribution. This process is repeated eight
times, using different but identically distributed training
and test sets. Values in Figure 3 represent the average of
these eight trials. “Rules Added” indicates the average
number of rules learned by the system; “Train Time” is the
number of seconds required to process the 100 training ex-
amples (including the time to solve training problems, gen-
erate control rules, and perform utility analysis); “Test
Time” is the number of seconds required to generate solu-
tions for the 100 test problems. COMPOSER uses an error
parameter which bounds the probability of adding a harmful
control rule. This was set at 10%.

COMPOSER exhibits minimal adequacy on each domain
while PRODIGY/EBL does not. In BIN–WORLD COMPOS-
ER terminated without adopting any transformations (there
does not appear to be a good control rule for this domain).
Both systems have comparable efficiency.

4.2 TRANSFORMATION SPACE COMPLEXITY

COMPOSER combines both generation and composition
pruning methods to address the complexity of the transfor-
mation space. COMPOSER uses PRODIGY/EBL’s rule gen-
erator and thus inherits its generation pruning technique.
After solving a problem, the rule generator proposes control

rules based on observed planning inefficiencies. Different
inefficiencies can arise in different problems. Furthermore,
as control rules are adopted, old inefficiencies are corrected
and new inefficiencies arise. In this sense the rule generator
is a function which takes a particular problem and a particu-
lar transformation sequence, and generates a set of control
rules. This bias is dynamic. It changes as the planner is
transformed (see [Rosenbloom92]). This provides a strong
(but difficult to analyze) bias on which of the syntactically
valid control rules will be entertained in the transformation
space. Note that this bias is influenced by a number of fac-
tors including which training examples are presented and
the order in which transformations are adopted.
COMPOSER implements composition pruning through a
greedy hill–climbing approach. As control rules are gener-
ated they are placed on a candidate set and statistically eva-
luated. The system adopts the first control rule which dem-
onstrates positive incremental utility to a pre–specified
confidence level. Recall that by definition, incremental
utility is conditional on a particular planner. In this case in-
cremental utility is estimated with respect to the planner us-
ing the previously adopted sequence of control rules. As
rules are adopted they are placed at the end of this sequence.
As utility is evaluated conditional on the current control
strategy, this approach avoids the negative interactions be-
tween control rules which hampers PRODIGY/EBL’s form
of utility analysis. However, a disadvantage is that the sys-
tem cannot exploit positive interactions between rules. For
example, it may be the case that two control rules have nega-
tive incremental utility in isolation, but combine synergisti-
cally to produce a good control strategy. Hill–climbing
techniques like COMPOSER cannot recognize such situa-
tions and can be caught on local maxima.
Collectively the generation and composition simplifica-
tions form a very strong bias. For example, in the STRIPS

domain the number of syntactically valid control rules is ef-
fectively infinite. For our distribution of problems the rule
generator produces fifty–seven distinguishable rules. This
defines approximately 1076 distinguishable transformation
sequences. The bias, however, enable COMPOSER to iden-
tify beneficial control strategies with only 165 incremental
utility determinations on average. For AB–WORLD the sys-
tem explores a potential space of 1030 transformation se-
quences with 119 utility determinations. In BIN–WORLD
a space of 154 sequences is evaluated in five determina-
tions.

Unfortunately, it is difficult to evaluate what this bias costs
the system in terms of lost learning opportunities. Clearly,
many transformation sequences are excluded from consid-
eration. Many of these sequences could result in effective
planners. The obvious to evaluating the potential loss is to
determine the topology of the unbiased space can compare
this with the biased sub–space. Unfortunately, determining
utility values for 1076 strategies is impractical. However,
we can make some statements based on an analysis of COM-
POSER’s transformation vocabulary and some less exhaus-
tive empirical investigations.

The generation bias is difficult to analyze, but it seems un-
likely that beneficial rules are being excluded. Recall that
generation is biased by observed planning inefficiencies.
An interesting question is what additional tradeoffs are em-
bodied in the hill–climbing approach. First we note that lo-
cal maxima cannot arise if the incremental utility of a trans-
formation is independent of what other transformation have
already been adopted. Under this circumstance the trans-
formation space exhibits a single peak. If there are interac-
tions, COMPOSER retains minimal adequacy but it can be
prevented from finding optimal strategies.

Unfortunately, control rules can exhibit significant interac-
tions (see [Gratch91b]). Furthermore, we have observed in-
stances where COMPOSER adopts one transformation se-
quence where sequences with higher utility exist. For
example, in [Gratch92b] we demonstrate the alternative
hill–climbing approach embodied in PALO [Greiner92] can
produce somewhat better control strategies, although at a
substantial loss in efficiency. In summary, COMPOSER’s
biases enable it to identify better planners but it is suscepti-
ble to local maxima. Perhaps further analysis can lead to a
result like greedy set covering where the discrepancy be-
tween global and local optimal is bounded. Short of this, it
is difficult to assess the ultimate cost of this form of bias.

4.3 ESTIMATION COMPLEXITY

COMPOSER implements a statistical estimation technique
which provides bounds on the probability of adopting harm-
ful control rules. The incremental utility of a transformation
is estimated by averaging utility values from successive,
randomly drawn, problems. This is treated as a sequential
analysis problem (see [Govindarajulu81]). Observations
are gathered until a specified confidence level is reached.

We use a distribution–free test developed by Nádas [Na-
das69]. Statistics are gathered on each candidate control
rule until the following inequality holds:

(Vr,n/Xr,n)2 < n(1/a)2

where Xr,n is the average utility of the rule r over n prob-
lems, Vr,n 2 is the sample variance, n is greater than or equal
to three, and a is the (1 − δ)/2th quantile of the standard nor-
mal distribution (see [Gratch92b] for more details).
After processing an example, the inequality is evaluated for
each candidate rule. Any candidates which satisfy the in-
equality and have negative incremental utility (Xr,i < 0) are
removed from the candidate set. If candidates satisfy the in-
equality and have positive incremental utility (Xr,i < 0), the
rule with highest incremental utility is added to the transfor-
mation sequence. If a transformation is adopted, the statis-
tics for the remaining candidate rules are discarded as they
reflect the previously transformed planner (recall that incre-
mental utility is conditional on a particular planner).
Statistical models necessarily introduce simplifications
into the estimation process. Although techniques are often
described as “distribution–free,” they make weak assump-
tions about properties of the distribution. For example, one
minimally requires that the distribution of utility values has
finite variance. In recent years, statistical work in machine
learning has been influenced by the weak statistical models
favored in computational learning theory [Valiant84].
These models are based on worst–case analysis and fre-
quently provide overly–conservative estimates of error (see
[Buntine89] for a critique of this model). Conservative esti-
mates adversely impact learning efficiency as they require
more examples than necessary to achieve significance.
Practical experience in the field of statistics has demon-
strated that stronger simplifications can be reasonably
adopted. The success of modern statistics is based on the
Central Limit Theorem [Hogg78 p. 192] which demon-
strates that the distribution of the mean of a sample tends to
a normal distribution as the size of the sample grows. A tra-
ditional simplification is to treat the mean as if it is normally
distributed.1 COMPOSER’s estimation technique is based
on the Central Limit Theorem. This simplification implies
that if an error level of δ is specified, the observed error rate
will be approximately δ; it may be somewhat higher or low-
er. The discrepancy is a function of the underlying utility
distribution. Practical experience has validated this approx-
imation in practice.
The empirical evaluation of COMPOSER allows us to test
the reasonableness of our statistical simplifications. For
each domain COMPOSER was tested on eight independent
learning trials for a total of twenty–four trials. The error rate
was set at 10%. Across these trials the system adopted for-
ty–three transformations. Thirty–nine of these transforma-
tions improved planning utility. Four transformations hurt
1. Actually, the common procedure is to approximate the distribution
of the mean with a distribution that converges to normal. This is the ra-
tionale behind the t–test.

performance and can be characterized as mistakes (STRIPS
– 36 transformations, 4 errors; AB–WORLD – 7 transforma-
tions, 0 errors; BIN–WORLD – 0 transformations, 0 errors).
Collapsing across domains this yields an observed error rate
of 11%. This difference from the intended level of 10% is
not statistically significant. Figure 4 shows the learning
curves for each trial in the STRIPS domain. Mistakes oc-
curred on trials three, four, and eight. The graphs illustrate
that when errors occurred, they tended to be small. This is
expected as the statistical model predicts that the probabili-
ty of an error diminishes with its severity.

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

1 2 3 4

5 6 7 8

Figure 4: Individual trials for STRIPS domain

The approach also performs well in the number of training
examples required for each utility estimate. Estimates aver-
ages fifteen examples to reach significance (minimum
three, maximum eighty–five). This is in strong contrast to
computational learning theory style bounds which require
thousands of examples (see [Gratch92b]). A general trend
was that transformations with higher incremental utility re-
quired fewer examples to reach significance.

4.4 OBSERVATION COMPLEXITY

Observation complexity is the challenge to which COM-
POSER makes its most restrictive simplification. There
does not exist a practical cost model for the PRODIGY plan-
ner. Thus, COMPOSER uses self–solutions to extract infor-
mation for rule generation and evaluation. The control rule
generator only needs partial solution traces to conjecture
control rules. However, to extract incremental utility val-
ues, we insist on complete solution traces. This requirement
is motivated in [Gratch91b]. The difficulty is that the utility
of a control rule varies heterogeneously within a given solu-
tion so that partial information is misleading.

If n rules are in COMPOSER’s candidate set, the simplest ap-
proach to extracting utility information is to solve each
problem n+1 times (see Section 3.3.5). COMPOSER imple-
ments a simultaneous extraction technique such that all n
utility values can be extracted from a single solution trace.
The technique requires matching the preconditions of con-
trol rules without actually adopting their control recom-

mendations. After each solution, COMPOSER analyzes the
annotated solution trace and extracts utility values for each
candidate rule. The advantage of this approach is that it di-
minishes the number of solutions. The disadvantage is that
it is more expensive to process each example. In addition
to the normal solution cost, the planner pays the additional
cost of evaluating candidate rule preconditions.
In principle, COMPOSER can accurately extract the esti-
mates for an arbitrary number of candidate control rules. In
practice, it is a difficult task to implement a system which
accurately measures its own resource use. Empirically,
COMPOSER exhibits good overall behavior. However, in
viewing the system from our framework it occurred to us
that simultaneous extraction could be tested directly.
Simultaneous extraction is justified if utility values derived
for one candidate control rule are not influenced by the pres-
ence of other candidate rules. We tested this justification by
comparing utility values of a rule in isolation against utility
values of the same rule in the context of other candidate
rules. For each domain, up to twenty control rules were se-
lected at random and placed in the candidate set. Utility val-
ues were extracted over twenty planning problems. Each
rule was then placed on the candidate set by itself and utility
values were extracted over the same twenty problems. Fi-
nally, we derived the “true” incremental utility values by ex-
ecuting the planner n+1 times (with no control rules, and
with n strategies consisting of one rule each), again over the
same twenty planning problems. Values across the twenty
problems were averaged. This process was repeated many
times for each domain. Figure 5 illustrates a one trial from
the STRIPS domain. It illustrates a trend which was seen in
every trial. The vertical axis is incremental utility (in sec-
onds). The horizontal axis represents ten rules sorted by
their true incremental utility.

–40

–30

–20

–10

0

0 2 4 6 8

Individual value

Simultaneous value

True value

Figure 5: Simultaneous Extraction Test

The results indicate that utility value are accurate when a
control rule is the only member of the candidate set. How-
ever, extracted values may differ when several other candi-
date rules are be estimated simultaneously. The trend on all
of our tests is the same: utility is overestimated for rules
with negative incremental utility. The discrepancy in-

creases for rules with larger negative utility. Essentially our
algorithm is undercounting the match cost for harmful con-
trol rules when many rules are on the candidate set. We have
not observed a case where a rule with negative utility is as-
signed positive utility values, thus this effect does not com-
promise minimal adequacy in practice, but it does reveal a
problem with our implementation.

This experiment is not interesting from a theoretical per-
spective as it simply indicates an error in our implementa-
tion. However, it illustrates how our framework highlights
the type of issues which are often taken for granted. Stan-
dard experimental evaluations treat a learning system as a
large black box. Our frameworks decomposes systems into
many specific design decisions. Experiments like this one
amount to validating the assumptions which underly a
learning technique. They, therefore, provide greater infor-
mation on why a technique does or does not work.

COMPOSER’s observation complexity reflects two costs:
the cost of solving problems, and the overhead of evaluating
candidate rules. Problems are solved using the currently
transformed planner. Thus, solutions are produced more ef-
ficiently as transformations are adopted. The overhead cost
is minimized by discarding rules from the candidate set if
they exhibit negative incremental utility. The results in Fig-
ure 3 indicate that COMPOSER’s observational complexity
compares favorably with the training times for PRODIGY/
EBL. Thus, at least in these domains, COMPOSER has
achieved minimal adequacy (an advance over PRODIGY/
EBL) without a large reduction in efficiency. COMPOSER
actually exhibits higher efficiency in the BIN–WORLD do-
main. However, while this is an advance over PRODIGY/
EBL, it is clear the neither technique is appropriate when
self–solutions are infeasible to generate. The common jus-
tification for this type of simplification (which is very com-
mon in learning to plan techniques) is that a high learning
cost can be amortized over many test problems.

To summarize, COMPOSER implements a number of sim-
plifications to address the complexities of learning to plan.
The space of transformations is reduced by applying strong
generation and composition pruning techniques including
event driven learning and hill–climbing. Incremental util-
ity is estimated by random sampling across the problem dis-
tribution. Errors our bounded with a statistical technique.
Information for rule generation and estimation is obtained
by simultaneous extraction over self–solutions. The tech-
nique achieves minimal adequacy with high probability.
The disadvantage is that the technique may terminate at lo-
cal maxima, the error rate may be higher than expected over
some distributions, and the technique is restricted to prob-
lem classes where it is feasible to generate self–solutions.

5 CONCLUSIONS
Learning to plan embodies a number of complexities which
preclude a general solution. Techniques are confronted
with a vast space of alternatives. Even estimating beneficial

transitions in this space can involve considerable expense.
Approaches address this complexity by adopting simplify-
ing assumptions. These simplifications increase efficiency
but they frequently introduce tradeoffs. Furthermore, as
these simplifications are often implicit, it is difficult to eval-
uate the behavior of particular learning techniques.

We described the COMPOSER system from the more gener-
al perspective of a framework of simplifications for learn-
ing to plan. Such a perspective forces us, as authors of a sys-
tem, to recognize a number of simplifications which are
implicit in the architecture. Once these simplifications are
made explicit, they can be evaluated objectively. Instead of
experimentally validating an approach as a single “black
box,” the framework facilitates a finer grained analysis of
different components of the system. In the case of COM-
POSER, many of these simplifications are shared by other
learning techniques. Thus, our evaluation can provide at
least indirect evidence on the validity of assumptions in the
context of these other systems.

Acknowledgements

This research is supported by the National Science Founda-
tion, grant NSF IRI 87–19766. We thank Nick Lewins, Dan
Oblinger, Russ Greiner, and David Page for many interest-
ing comments and discussions. We extend special appreci-
ation to the PRODIGY group at CMU who provided us with
a copy of their system.

References
[Braverman88] M. S. Braverman and S. J. Russell, “IMEX:

Overcoming intractability in explanation based learning,”
Proceedings of the National Conference on Artificial Intelli-
gence, St. Paul, MN, 1988, pp. 575–579.

[Buntine89] W. Buntine, “A Critique of the Valiant Mod-
el,” Proceedings of the Eleventh International Joint Confer-
ence on Artificial Intelligence, Detroit, MI, August 1989, pp.
837–842.

[DeJong86] G. F. DeJong and R. J. Mooney, “Explana-
tion–Based Learning: An Alternative View,” Machine
Learning 1, 2 (April 1986), pp. 145–176.

[Drummond90] M. Drummond and J. Bresina, “Anytime
Synthetic Projection: Maximizing the Probability of Goal
Satisfaction,” Proceedings of the Eighth National Confer-
ence on Artificial Intelligence, Boston, MA, August 1990,
pp. 138–144.

[Eskey90] M. Eskey and M. Zweben, “Learning Search
Control for Constraint–Based Scheduling,” Proceedings of
the National Conference on Artificial Intelligence, Boston,
MA, August 1990, pp. 908–915.

[Etzioni90a] O. Etzioni, “A Structural Theory of Search
Control,” Ph.D. Thesis, Department of Computer Science,
Carnegie–Mellon University, Pittsburgh, PA, In preparation,
1990.

[Etzioni90b] O. Etzioni, “Why Prodigy/EBL Works,” Pro-
ceedings of the National Conference on Artificial Intelli-
gence, Boston, MA, August 1990, pp. 916–922.

[Fikes72] R. E. Fikes, P. E. Hart and N. J. Nilsson,
“Learning and Executing Generalized Robot Plans,” Artifi-
cial Intelligence 3, 4 (1972), pp. 251–288.

[Govindarajulu81] Z. Govindarajulu, The Sequential Statistical
Analysis, American Sciences Press, INC., Columbus, OH,
1981.

[Gratch91a] J. M. Gratch and G. F. DeJong, “On compar-
ing operationality and utility,” Technical Report
UIUCDCS–R–91–1713, Department of Computer Science,
University of Illinois, Urbana, IL, 1991.

[Gratch91b] J. Gratch and G. DeJong, “A Hybrid Ap-
proach to Guaranteed Effective Control Strategies,” Pro-
ceedings of the Eighth International Workshop on Machine
Learning, Evanston, IL, June 1991.

[Gratch92a] J. Gratch and G. DeJong, “A Framework of
Simplifications in Learning to Plan,” First International
Conference on Artificial Intelligence Planning Systems, Col-
lege Park, MD, 1992.

[Gratch92b] J. Gratch and G. DeJong, “COMPOSER: A
Probabilistic Solution to the Utility Problem in Speed–up
Learning,” Proceedings of the National Conference on Arti-
ficial Intelligence, San Jose, CA, July 1992.

[Greiner92] R. Greiner and W. W. Cohen, “Probabilistic
Hill–Climbing,” Proceedings of Computational Learning
Theory and ’Natural’ Learning Systems, 1992. ((to appear))

[Hirsh88] H. Hirsh, “Reasoning about Operationality
for Explanation–Based Learning,” Proceedings of the Fifth
International Conference on Machine Learning, Ann Arbor,
MI, June 1988, pp. 214–220.

[Hogg78] R. V. Hogg and A. T. Craig, Introduction to
Mathematical Statistics, Macmillan Publishing Co., Inc.,
London, 1978.

[Laird86] J. E. Laird, P. S. Rosenbloom and A. Newell,
Universal Subgoaling and Chunking: The Automatic Gener-
ation and Learning of Goal Hierarchies, Kluwer Academic
Publishers, Hingham, MA, 1986.

[Leckie91] C. Leckie and I. Zukerman, “Learning Search
Control Rules for Planning: An Inductive Approach,” Pro-
ceedings of the Eighth International Workshop on Machine
Learning, Evanston, IL, June 1991, pp. 422–426.

[Letovsky90] S. Letovsky, “Operationality Criteria for Re-
cursive Predicates,” Proceedings of the National Conference
on Artificial Intelligence, Boston, MA, August 1990, pp.
936–941.

[Markovitch89] S. Markovitch and P. D. Scott, “Utilization
Filtering: a method for reducing the inherent harmfulness of
deductively learned knowledge,” Proceedings of The Elev-
enth International Joint Conference on Artificial Intelli-
gence, Detroit, MI, August 1989, pp. 738–743.

[Minton85] S. Minton, “Selectively Generalizing Plans
for Problem–Solving,” Proceedings of the Ninth Internation-
al Joint Conference on Artificial Intelligence, Los Angeles,
August 1985, pp. 596–599.

[Minton88] S. N. Minton, “Learning Effective Search
Control Knowledge: An Explanation–Based Approach,”
Ph.D. Thesis, Department of Computer Science, Carnegie–
Mellon University, Pittsburgh, PA, March 1988.

[Mitchell82] T. M. Mitchell, “Generalization as Search,”
Artificial Intelligence 18, 2 (1982), pp. 203–226.

[Mitchell83] T. M. Mitchell, P. E. Utgoff and R. Banerji,
“Learning by Experimentation: Acquiring and Refining Pro-

blem–solving Heuristics,”in Machine Learning: An Artifi-
cial Intelligence Approach, R. S. Michalski, J. G. Carbonell,
T. M. Mitchell (ed.), Tioga Publishing Company, Palo Alto,
CA, 1983, pp. 163–190.

[Mitchell86] T. M. Mitchell, R. Keller and S. Kedar–Ca-
belli, “Explanation–Based Generalization: A Unifying
View,” Machine Learning 1, 1 (January 1986), pp. 47–80.

[Nadas69] A. Nadas, “An extension of a theorem of
Chow and Robbins on sequential confidence intervals for the
mean,” The Annals of Mathematical Statistics 40, 2 (1969),
pp. 667–671.

[Natarajan89] B. K. Natarajan, “On Learning from Exer-
cises,” Proceedings of the Second Annual Workshop on Com-
putational Learning Theory, Santa Cruz, CA, JULY 1989,
pp. 72–87.

[Richards91] B. L. Richards and R. J. Mooney, “First–order
theory revision,” Proceedings of the Eighth International
Workshop on Machine Learning, Evanston, IL, June 1991,
pp. 447–451.

[Rosenbloom92] P. S. Rosenbloom, S. Lee and A. Unruh, “Bias
in Planning and Explanation–Based Learning,”in Machine
Learning: Induction, Analogy and Discovery, S. Chipman,
A. Meyrowitz (ed.), Kluwer Academic Publishers, Hing-
ham, MA. In Press, 1992.

[Ruby91] D. Ruby and D. Kibler, “SteppingStone: an
empirical and analytical evaluation,” Proceedings of the Na-
tional Conference on Artificial Intelligence, Anaheim, CA,
July 1991, pp. 527–532.

[Segre88] A. M. Segre, Machine Learning of Robot As-
sembly Plans, Kluwer Academic Publishers, Norwell, MA,
March 1988.

[Shavlik88] J. W. Shavlik, “Generalizing the Structure of
Explanations in Explanation–Based Learning,” Ph.D. The-
sis, Department of Computer Science, University of Illinois,
Urbana, IL, January 1988. (Also appears as UILU–
ENG–87–2276, AI Research Group, Coordinated Science
Laboratory, University of Illinois at Urbana–Champaign.)

[Subramanian90] D. Subramanian and R. Feldman, “The Util-
ity of EBL in Recursive Domain Theories,” Proceedings of
the National Conference on Artificial Intelligence, Boston,
MA, August 1990, pp. 942–949.

[Tadepalli91] P. Tadepalli, “Learning with Inscrutable
Theories,” Proceedings of the Eighth International Work-
shop on Machine Learning, Evanston, IL, June 1991, pp.
544–548.

[Towell90] G. G. Towell, J. W. Shavlik and M. O. Noor-
dewier, “Refinement of approximate domain theories by
knowledge–base neural networks,” Proceedings of the Na-
tional Conference on Artificial Intelligence, Boston, MA,
August 1990, pp. 861–866.

[Valiant84] L. G. Valiant, “A Theory of the Learnable,”
Communications of the Association for Computing Machin-
ery 27, (1984), pp. 1134–1142.

[Wilkins89] D. C. Wilkins and Y. Ma, “Sociopathic
knowledge bases: correct knowledge can be harmful even
given unlimited computation,” Technical Report
UIUCDCS–R–89–1538, Department of Computer Science,
University of Illinois, Urbana, IL, 1989.

