
An Analysis of Motion Blending Techniques

Andrew Feng1, Yazhou Huang2, Marcelo Kallmann2, and Ari Shapiro1

1 Institute for Creative Technologies, University of Southern California
2 University of California, Merced

Abstract. Motion blending is a widely used technique for character an-
imation. The main idea is to blend similar motion examples according
to blending weights, in order to synthesize new motions parameterizing
high level characteristics of interest. We present in this paper an in-depth
analysis and comparison of four motion blending techniques: Barycentric
interpolation, Radial Basis Function, K-Nearest Neighbors and Inverse
Blending optimization. Comparison metrics were designed to measure
the performance across different motion categories on criteria including
smoothness, parametric error and computation time. We have imple-
mented each method in our character animation platform SmartBody
and we present several visualization renderings that provide a window
for gleaning insights into the underlying pros and cons of each method
in an intuitive way.

1 Introduction

Motion blending, also known as motion interpolation, is widely used in interac-
tive applications such as in 3D computer games and virtual reality systems. It
relies on a set of example motions built either by key-framing animation or mo-
tion capture, and represents a popular approach for modifying and controlling
high level characteristics in the motions. In essence, similar motion examples
are blended according to blending weights, achieving parameterizations able to
generate new motions similar to the existing examples and providing control of
high level characteristics of interest to the user.

Although several different methods have been proposed in previous works,
there is yet to be a one-solves-all method that works best in all scenario. Each
method has its own advantages and disadvantages. The preferred motion pa-
rameterization for an application highly depends on the application type and
required constraints. For locomotion animation, it is more important to ensure
the weights vary smoothly as the parameterization generates them, in order to
ensure visually pleasing results. On the other hand, a reaching motion forms a
non-linear parameter space and requires precise goal-attainment for grasping.
Therefore methods with less parametric error are preferred for accuracy. The
goal of this work is to throughly analyze several existing methods for motion
parameterization and to provide both visual and numerical metrics for discrim-
inating different methods.

2

We present in this paper an detailed analysis among 4 popular motion blend-
ing methods implemented on our character animation platform SmartBody, in-
cluding Barycentric interpolation, Radial Basis Function (RBF) interpolation,
K-Nearest Neighbors (KNN) interpolation, and Inverse Blending (InvBld) opti-
mization [7]. A motion capture dataset was carefully built containing 5 different
type of motions, and comparison metrics were designed to measure the perfor-
mance on different motion categories using criteria including parametrization ac-
curacy of constraint enforcement, computation time and smoothness of the final
synthesis. Comparison results are intuitively visualized through dense sampling
inside the parametrization (blending) space, which is formulated using the cor-
responding motion parameters. We believe our results provide valuable insights
into the underlying advantages and disadvantages of each blending method.

2 Related Work

Several blending methods have been proposed in the literature to produce flexi-
ble character animation from motion examples. Different approaches have been
explored, such as: parameterization using Fourier coefficients [20], hierarchical
filtering [2] and stochastic sampling [21]. The use of Radial Basis Functions
(RBFs) for building parameterized motions was pioneered by Rose et al. [16] in
the Verbs and Adverbs system, and follow-up improvements have been proposed
[17,15]. RBFs can smoothly interpolate given motion examples, and the types
and shapes of the basis functions can be fine tuned to better satisfy constraints
for different dataset. The method assigns a function for each blending weight that
is the sum of a linear polynomial and a set of radial basis functions, with one
radial basis function for each example. If the requested parameters are far from
the examples, blending weights will largely rely on the linear polynomial term.
We have selected the Verbs and Adverbs formulation as the RBF interpolation
method used in the presented comparisons.

Another method for interpolating poses and motions is KNN interpolation.
It relies on interpolating the k nearest examples measured in the parametriza-
tion space. The motion synthesis quality can be further improved by adaptively
adding pseudo-examples in order to better cover the continuous space of the
constraint [10]. This random sampling approach however requires significant
computation and storage in order to well meet constraints in terms of accu-
racy, and can require too many examples to well handle problems with multiple
constraints.

In all these blending methods spatial constraints are only handled as part of
the employed motion blending scheme. One way to solve the blending problem
with the objective to well satisfy spatial constraints is to use an Inverse Blending
optimization procedure [7], which directly optimizes the blending weights until
the constraints are best satisfied. However, a series of smooth variation inside the
parametrization space may generate non-smooth variations in the weight space,
which lead to undesired jitter artifacts in the final synthesis. Another possible

3

technique sometimes employed is to apply Inverse Kinematics solvers in addition
to blending [4], however risking to penalize the obtained realism.

Spatial properties such as hand placements or feet sliding still pose chal-
lenges to the previously mentioned blending methods. Such problems are better
addressed by the geo-statistical interpolation method [14], which computes op-
timal interpolation kernels in accordance with statistical observations correlat-
ing the control parameters and the motion samples. When applied to locomo-
tion systems, this method reduces feet sliding problems but still cannot guar-
antee to eliminate them. The scaled Gaussian Process Latent Variable Model
(sGPLVM)[5] provides a more specific framework targeting similar problems
with optimization of interpolation kernels specifically for generating plausible
poses from constrained curves such as hand trajectories. The approach however
focuses on maintaining constraints described by the optimized latent spaces. Al-
though good results were demonstrated with both methods, they remain less seen
in animation systems partly because they are less straightforward to implement.

We also analyze the performance of selected blending methods for locomotion
parametrization, which is a key problem in character animation. Many blending-
based methods have been proposed in the literature for [12,11,8], for interactive
navigations with user input [12,1], for reaching specified targets or dodging ob-
stacles during locomotion [18,6], and also for space-time constraints [9,19,13].
Here in this paper we investigate in comparing how well each selected popular
blending method works for locomotion sequence synthesis.

In conclusion, diverse techniques based on motion blending are available and
several of these methods are already extensively used in commercial animation
pipelines for different purposes. In this work we present valuable experimental
results uncovering the advantages and disadvantages of four motion blending
techniques. The rest of this paper is organized as follows: In Section 3 and 4 we
briefly review each blending method and then describe the setup of our exper-
iments and selected metrics for analysis. Section 5 present detailed comparison
results, and Section 6 concludes this paper.

3 Motion Parameterization Methods

In general, a motion parameterization method works as a black box that maps
desired motion parameters to blending weights for motion interpolation. We have
selected four methods (Barycentric, RBF, KNN, and InvBld) for our analysis.
This work focuses on comparing the methods that are most widely used in
practice due to their simplicity in implementation, but we plan as future work
to also include other methods like [5] and [14]. Below is a brief review of the 4
methods selected. Each motion Mi being blended is represented as a sequence
of poses with a discrete time (or frame) parameterization t. A pose is a vector
which encodes the root joint position and the rotations of all the joints of the
character. Rotations are encoded as quaternions but other representations for
rotations can also be used. Our interpolation scheme computes the final blended

4

motion M(w) =
∑k

i=1 wiMi, with w = {w1, . . . , wk} being the blending weights
generated by each of the methods.

Barycentric interpolation is the most basic form for motion parameteriza-
tion. It assumes that motion parametrization can be linearly mapped to blending
weights. While the assumption may not hold for all cases, in many situations
this simple approximation does achieve good results. Without loss of general-
ity, we assume a 3D motion parameter space with a set of example motions Mi

(i = 1 . . . n). As the dimension of parametric space goes from 1D to n-D, linear inter-
polation becomes Barycentric interpolation. Specifically for a 3D parametric space, we
construct the tetrahedralization V = {T1, T2, . . . Tv} to connect these motion examples
Mi in space, which can be done either manually or automatically using Delaunay tri-
angulation. Therefore, given a new motion parameter p’ in 3D space, we can search for
a tetrahedron Tj that encloses p’. The motion blending weights w = {w1, w2, w3, w4}
are given as the barycentric coordinates of p’ inside Tj . Similar formulations can be
derived for 2-D and n-D cases by replacing a tetrahedron with a triangle or a n-D
simplex respectively. The motion parameterization p’ is not limited to a 3D workspace
but can also be defined in other abstract parameterization spaces, with limited ability
for extrapolation outside the convex hull.

Radial Basis Function (RBF) is widely used for data interpolation since first
introduced in [16]. In this paper we implement the method by placing a set of basis
functions in parameter space to approximate the desired parameter function f(p) =
w for generating the blend weights. Specifically, given a set of parameter examples
p1, p2, . . . pn, f(p) = w1, w2, . . . wn is defined as sum of a linear approximation g(p) =∑d

l=0
alAl(p) and a weighted combination of radial basis function R(p). The function

for generating the weight wi is defined as :

wi(p) =

n∑
j=1

ri,jRj(p) +

d∑
l=0

ai,lAl(p)

where Rj(p) = φ(‖p − pj‖) is the radial basis function, and Al(p) is the linear basis.
Here the linear coefficients ai,l are obtained by fitting a hyperplane in parameter space
where gi(pj) = δi,j is one at i-th parameter point and zero at other parameter points.
The RBF coefficients ri,j are then obtained by solving the following linear equation
from linear approximation to fit the residue error ei,j = δi,j − gi(pj).R1(p1) R1(p2) . . .

R2(p1)
...

 r = e

RBF can generally interpolate the example data smoothly, though it usually re-
quires some tuning in the types and shapes of basis function to achieve good results
for a specific data set. The parameterization space could also be defined on an abstract
space like motion styles [16], with the ability to extrapolate outside the convex hull
of example dataset. However the motion quality from such extrapolation may not be
guaranteed, especially when p travels further outside the convex hull.

K-Nearest Neighbors (KNN) interpolation finds the k-closest examples from
an input parameter point and compute the blending weights based on the distance
between the parameter point and nearby examples. Specifically, given a set of param-
eter examples p1, p2, . . . pn and a parameter point p′, the method first find example

5

points pn1 , pn2 , . . . pnk that are closest to p′. Then the i-th blending weight for pni are
computed as :

wi =
1

‖p− pni‖
− 1

‖p− pnk‖
The blending weights are then normalized so that w1 + w2 + . . .+ wk = 1. The KNN
method is easy to implement and works well with a dense set of examples in parameter
space. However, the result may be inaccurate when the example points are sparse.
To alleviate this problem, pseudo-examples are usually generated to fill up the gap in
parameter space [10]. A pseudo-example is basically a weighted combination of existing
examples and can be generated by randomly sampling the blend weights space. Once
a dense set of pseudo-examples are generated, a k-D tree can be constructed for fast
proximity query at run-time.

Inverse Blending (InvBld) was designed for precise enforcement of user-specified
constraints in the workspace [7]. Each constraint C is modeled with function e =
fC(M), which returns the error evaluation e quantifying how far away the given motion
is from satisfying constraint C under the given motion parametrization p′. First, the
k motions {M1, . . . ,Mk} best satisfying the constraints being solved are selected from
the dataset, for example, in a typical reaching task, the k motion examples having
the hand joint closest to the target will be selected. An initial set of blending weights
wj (j = {1, . . . , k}) are then initialized with a radial basis kernel output of the input
ej = fC(Mj). Any kernel function that guarantee smoothness can be used, as for

example kernels in the form of exp−‖e‖
2/σ2

. Weights are constrained inside [0, 1] in
order to stay in a meaningful interpolation range, they are also normalized to sum
to 1. The initial weights w are then optimized with the goal to minimize the error
associated with constraint C:

e∗ = minwj∈[0,1]f
C

(
k∑
j=1

wjMj

)
.

Multiple constraints can be accounted by introducing two coefficients ni and ci
for each constraint Ci, i = {1, . . . , n}, and then solve the multi-objective optimization
problem that minimizes a new error metric composed of the weighted sum of all con-
straints’ errors: f(M(w)) =

∑n

i=1

(
ci ni f

Ci (M(w))
)

, where ci is used to prioritize
Ci, and ni to balance the magnitude of the different errors.

4 Experiments Setup

We have captured five different categories of motion examples of the following actions:
reach, jump, punch kick and locomotion. Corresponding feature is formulated for each
motion category to define a parameterization space. We further defined three metrics to
be used in our evaluation: computation time, parameterization accuracy (or parametric
error) and smoothness. The table and figures in Fig 1 gives an overview of the datasets.

4.1 Performance Metrics

The main application of motion parameterization is to synthesize new motions inter-
actively based on input parameters. In order to numerically compare the methods, we
defined three metrics: computation time, parametrization accuracy and smoothness.

6

category
number of

examples
parametrization

joint

paramtrized
note

Reach 24 p=(x,y,z) wrist full body reaching with bending down and turning around

Punch 20 p=(x,y,z) wrist start and end with fighting stance; targets are mostly in front

Kick 20 p=(x,y,z) ankle start and end with fighting stance; p is ankle position at kick apex

Jump 20 p=(d, θ,h) base d: jump distance; θ: jump direction; h: max height during jump

Locomotion 20 p=(v f ,ω,v s) base v f : walk forward speed; ω: turning rate; v s : walk sideways speed

Fig. 1. An overview of the motion capture dataset used for our analysis, from left to
right: reach, punch, kick, jump and locomotion.

Parametrization Accuracy: While each motion parameterization method can
generate a unique set of blending weights given some input parameters, there is no
guarantee that the blended motion will satisfy the input parameters. We define the
parametric error as the squared difference between the desired input parameter and
the actual motion parameter derived from the blended motion. Depending on the type
of applications, this error may be of less importance: for application that requires
precise end-effector control such as reaching, punching and kicking a given target, the
parameter error would directly determine whether the result is valid for a given task;
for abstract motion parameterization space such as emotion (happy walk v.s. sad walk)
or style (walk forward v.s. walk sideways) control, only qualitative aspects of motion
are of interest.

Computation Time is divided into pre-computation phase and run-time com-
putation phase. Pre-computation time is the amount of time taken for a method to
build the necessary structures and required information to be used in the run-time
phase. While this may usually be negligible for Inverse Blending or Barycentric, it may
require significant amount of time for KNN and RBF depending on the number of
pseudo examples or size of the dataset. A method require little to no pre-computation
is more flexible in changing the example data on-the-fly, which can be beneficial for
applications that require on-line building and adjusting motion examples [3]. Run-time
computation phase is the time required for the method to compute the blending weights
based on given input parameters, which reflects the real-time performance.

Smoothness determines whether the blending weights would change smoothly
when motion parametrization varies. This metric is of more importance when parame-
ters are changed frequently during motion synthesis. Specifically speaking, smoothness
may be less required for motions like reach, kick and punch where parametrization usu-
ally stays constant during each action execution. However it is critical for other motion
parametrization such as locomotion where parameters may need to be changed continu-
ously even within each locomotion gait. And for such applications, jitter artifacts would
occur and degrade the quality of synthesized motions if smoothness can not be guaran-
teed. We numerically define the smoothness of blending weights as curvature of blending
weights wx,y over a m×m surface grid G = {p = (x, y)|(0 ≤ x ≤ m, 0 ≤ y ≤ m)}. For

7

given grid G, we compute the curvature κx,y at each grid vertex p = (x, y) as :

κx,y =
1

8
‖

1∑
a=−1

1∑
b=−1

(wx,y − wx+a,y+b)‖

This curvature is computed over several grids to uniformly sample the volume within
the 3D parametric space and use the average curvature κ̄ as the smoothness metric.

We also propose visualizing the smoothness (visual quality) of the final synthesis
with motion vector flows: each vector denotes the absolute movement of a particular
skeleton joint as it traverses the 3D workspace between two consecutive motion frames.
Distinguishable colors are assigned to the vectors representing sudden change in vector
length compared against local average of the length computed with a sliding window,
thus highlighting the abnormal speed-ups (warm color) and slowdowns (cool color)
caused by jitters and such. Fig 6 shows the motion vector flow from 150-frame locomo-
tion sequences generated by 4 blending methods, each showing a character transitioning
from slow walk to jogging over the same course of variations inside parametrization
space. Motion frames are selectively plotted with stick figures on top of the vector flow.

5 Results and Discussions

Fig. 2. Parametric space
for reaching dataset.

We uniformly sampled inside the parametric space of each
method and measured the obtained errors. Since the para-
metric space for reach, punch and kick naturally coincides
with the 3D workspace, we sample the parameter point
p = (x, y, z) over a spherical surface and compute the error
as the euclidean distance between the target p and where
the wrist/ankle actually reaches, see Fig 2. For jump and
locomotion where the parametric space represents abstract
values such as turning angle and speed, we sample the pa-
rameter point on a rectangular grid.

Parametric Error Comparison: The parametriza-
tion accuracy visualizations for each method are shown in
Fig 3. The first 3 rows showing the result for reach, punch
and kick respectively, and the surface we used to sample p is to fix parameter z (dis-
tance from the character) in mid-range of the dataset coverage. Similarly for jump and
locomotion (row 4 and 5), jump height h and sideways speed vs (see Section 4) are
chosen respectively in mid-range. InvBld by comparison tends to be the most accu-
rate as it relies on numerical optimization to find blend weights that yield minimal
errors. KNN also performs relatively well as it populates the gap in parametric space
with pseudo examples to effectively reduce the error. Thus for applications that re-
quire high parametrization accuracy such as reaching synthesis, it is preferred to apply
either InvBld or KNN with dense data. On the other hand Barycentric and RBF nu-
merically tend to generate less accurate results, however this does not necessarily mean
the motions generated are of poor quality. In fact, as human eyes are more sensitive to
high frequency changes than to low frequency errors, Barycentric and RBF are able to
produce reasonable motions for locomotion and jumping, which are parameterized in
the abstract space. The table and chart in Fig 5 (left side) lists the average parametric
error using results from a more densely sampled parametrization space (60 × 60 × 5
samples on average).

8

Fig. 3. Parametrization accuracy visualizations for 4 blending methods on different
motion dataset. From top row to bottom are reach, punch, kick, jump and locomotion;
from left column to right are: Barycentric, KNN, InvBld and RBF.

Smoothness Comparison: Although InvBld outperforms in parametrization ac-
curacy, it falls behind in terms of smoothness, which can be observed both visually
(Fig 4) and numerically (Fig 5 right side). By comparing the error and smoothness
maps with other methods, we observe that there are several semi-structural regions
with both high errors and discontinuity in smoothness. Depending on the initial con-
dition, InvBld optimization procedure may get trapped in local minimal at certain re-
gions in parametric space, which results in high error and discontinuous regions shown
in column 3 of Fig 4 and 3. KNN also suffers from similar smoothness problems (Fig 4
column 2), and since KNN requires a dense set of pseudo examples to reduce paramet-
ric errors, the resulting parametric space tends to be noisier than others. Moreover, for
KNN and InvBld, there can be sudden jumps in blending weights due to changes in
the nearest neighbors as the parametrization changes, leading to the irregular patterns
in the smoothness visualizations (Fig 4).

Barycentric produces a smoother parameterization as the blending weights only
change linearly within one tetrahedron at any given time. However obvious discontinu-
ities occur when moving across the boundaries between adjacent tetrahedra. Note that
although both KNN and Barycentric interpolation have similar numerical smoothness
in certain cases, the resulting motions from Barycentric usually look more visually

9

Fig. 4. Smoothness visualizations for 4 blending methods on different motion dataset.
From top row to bottom are reach, punch, kick, jump and locomotion; from left column
to right are: Barycentric, KNN, InvBld and RBF.

pleasing. This is because the weight discontinuity is only visible when moving between
different tetrahedra for Barycentric, while for KNN the irregular blending weights could
cause constant jitters in the resulting motions. Finally, RBF tends to generate the
smoothest result visually and numerically, which may be a desirable trade-off for its
high parametric error in certain applications. Low performance in numerical smooth-
ness corresponds to low visual quality of the final synthesis, as shown in Fig 6 and also
the accompanied video where more jitters and discontinuities can be observed.

Computation Time Comparison: KNN requires more pre-computation time
than other methods for populating the parametric space with pseudo-examples as well
as constructing a k-D tree to accelerate run-time efficiency. Moreover, whenever a new
motion example is added, it needs to re-build both pseudo examples and k-D tree since
it is difficult to incrementally update the structures. This makes KNN less desirable
for applications that require on-line reconstruction of new parametric space when new
motion examples are added. RBF on the other hand can usually be efficient in dealing
with a small number of examples, however the cost of solving linear equations increases
as dataset gets larger. Barycentric requires the tetrahedra to be either manually pre-
specified or automatically computed, and may become less flexible for high dimension

10

parametric space. InvBld by comparison is more flexible since it requires very little
pre-computation by moving the computational cost to run-time.

For run-time performance, all methods can perform at interactive rate, see last col-
umn of the table in Fig 5. However, InvBld is significantly more expensive than other
methods as it requires many numerical iterations with kinematic chain updates to
obtain optimal results. Also, the computation time greatly depends on the initial esti-
mation of the blending weight and therefore may have large variations across different
optimization sessions, posing big challenges on its real-time performance for multi-
characters simulations. The other methods require only a fixed number of operations
(well under 1 millisecond) and are much more efficient for real-time applications.

Reach Punch Kick Jump Locomotion Reach Punch Kick Jump Locomotion

Barycentric 0.2060188 0.2351264 0.4723036 0.3499212 1.3287728 0.0377356 0.0248206 0.0224772 0.0157104 0.0212154 0.625 ms

KNN 0.1676776 0.177986 0.3386378 0.1629752 1.0714436 0.0376208 0.0318934 0.0291025 0.0241884 0.0182888 0.221 ms

InvBld 0.1511574 0.17205 0.3217224 0.0756766 1.2572206 0.0698706 0.0785622 0.0801812 0.0609856 0.0602558 4.394 ms*

RBF 0.241626 0.325049 0.5883928 0.3816458 1.7279502 0.0035818 0.0023684 0.0021972 0.001998 0.0012648 0.228 ms

 evaluation

methods

average parametrization accuracy average smoothness average

compute time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Reach Punch Kick Jump Locomotion

av
er

ag
e

er
ro

r

Parametrization Accuracy Comparison

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Reach Punch Kick Jump Locomotion

av
er

ag
e

sm
o

o
th

n
es

s
Smoothness Comparison

Baryce
ntric

KNN

InvBld

RBF

Fig. 5. Parametrization accuracy and smoothness comparison chart across four blend-
ing methods on different motion sets. ∗ Computation time measured with Quad Core 3.2GHz running
on single core. InvBld can expect 2 ∼ 3X speed-up with optimized code on kinematic chain updates [7].param. smoothnessruntime speed fast pre-comp. visual quality accuracy

Barycenteric 4 4 2 4 3

KNN 3 5 1 4 4

Inverse Blending 2 1 5 3 5

RBF 5 5 2 5 1

Performance Overview of Different Blending Methods of Interest

param. smoothness

runtime speed

fast pre-comp. visual quality

accuracy

Barycenteric
KNN
Inverse Blending
RBF

Fig. 7. Performance overview across four
blending methods. Measurements are not to scale.

The overall performance for each
blending method is summarized in Fig-
ure 7. In terms of parametric error and
smoothness, InvBld has the most pre-
cision results but is poor in smooth-
ness. On the opposite end, RBF produces
the smoothest parametric space but is
the least accurate method as a trade-
off. KNN and Barycentric fall in between
with KNN slightly more accurate and
less smooth than Barycentric. In terms
of computation time, KNN requires most
pre-computation while InvBld requires
none. RBF and Barycentric require some pre-computation and may also require user
input to setup tetrahedra connectivity or fine tune the radial basis kernel. Therefore
InvBld is most suitable for on-line update of motion examples, with the trade-off being
most expensive for run-time computation while the other methods are all very efficient
at run-time.

These performance results suggest that there is no method that works well for all
metrics. To gain advantages in some metrics, a method would need to compromise in

11

Fig. 6. Motion vector flow visualization of a 150-frame locomotion sequence tran-
sitioning from slow walk to jogging. Color segments indicates jitters and unnatural
movements during the sequence. By comparison results from InvBld and KNN (top
row) contain more jitters than Barycentric and RBF (bottom row).

other metrics. InvBld and RBF show a good example of such compromise that are in
the opposite ends of the spectrum. Overall, for applications that do not require high
accuracy in parametric errors, RBF is usually a good choice since it is mostly smooth,
easy to implement, and relatively efficient both at pre-computation and run-time. On
the other hand, if parametric accuracy is very important for the application, InvBld
provides the best accuracy at the cost of smoothness in parametric space. KNN and
Barycentric fall in-between the two ends, with Barycentric being smoother and KNN
being more accurate. Note that KNN may require much more pre-computation time
than other methods depending on how dense the pseudo-examples are generated, which
may hurt its applicability in certain interactive applications.

6 Conclusion

We present in this paper an in-depth analysis among four different motion blending
methods. The results show that there is no one-solves-all method for all the appli-
cations and compromises need to be made between accuracy and smoothness. This
analysis provides a high level guidance for developers and researchers in choosing suit-
able methods for character animation applications. The metrics defined in this paper
would also be useful for testing and validating new blending methods. As future work
we plan to bring in more motion blending schemes for comparison analysis. A new
motion blending method that satisfy or make better compromise at both parametric
error and smoothness would be desirable for a wide range of applications.

Please see our accompanying video at http://people.ict.usc.edu/∼shapiro/mig12/paper10/. LINK

References

1. Abe, Y., Liu, C.K., Popović, Z.: Momentum-based parameterization of dynamic
character motion. In: SCA ’04: 2004 ACM SIGGRAPH/Eurographics symposium

http://people.ict.usc.edu/~shapiro/mig12/paper10/

12

on Computer animation. pp. 173–182. Eurographics Association, Aire-la-Ville,
Switzerland (2004)

2. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH ’95. pp.
97–104. ACM, New York, NY, USA (1995)

3. Camporesi, C., Huang, Y., Kallmann, M.: Interactive motion modeling and pa-
rameterization by direct demonstration. In: Proceedings of the 10th International
Conference on Intelligent Virtual Agents (IVA) (2010)

4. Cooper, S., Hertzmann, A., Popović, Z.: Active learning for real-time motion con-
trollers. ACM Transactions on Graphics (SIGGRAPH 2007) (Aug 2007)

5. Grochow, K., Martin, S., Hertzmann, A., Popović, Z.: Style-based inverse kinemat-
ics. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 23(3), 522–531
(2004)

6. Heck, R., Gleicher, M.: Parametric motion graphs. In: I3D ’07: Proc. of the 2007
symposium on Interactive 3D graphics and games. pp. 129–136. ACM, New York,
NY, USA (2007)

7. Huang, Y., Kallmann, M.: Motion parameterization with inverse blending. In: Pro-
ceedings of the Third International Conference on Motion In Games. Springer,
Berlin (2010)

8. Johansen, R.S.: Automated Semi-Procedural Animation for Character Locomo-
tion. Master’s thesis, Aarhus University, the Netherlands (2009)

9. Kim, M., Hyun, K., Kim, J., Lee, J.: Synchronized multi-character motion editing.
ACM Trans. Graph. 28(3), 79:1–79:9 (Jul 2009)

10. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions
in large data sets. ACM Transaction on Graphics (Proceedings of SIGGRAPH)
23(3), 559–568 (2004)

11. Kovar, L., Gleicher, M., Pighin, F.H.: Motion graphs. Proceedings of SIGGRAPH
21(3), 473–482 (2002)

12. Kwon, T., Shin, S.Y.: Motion modeling for on-line locomotion synthesis. In: SCA
’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation. pp. 29–38. ACM, New York, NY, USA (2005)

13. Levine, S., Lee, Y., Koltun, V., Popović, Z.: Space-time planning with parameter-
ized locomotion controllers. ACM Trans. Graph. 30(3), 23:1–23:11 (May 2011)

14. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. In: ACM SIG-
GRAPH. pp. 1062–1070. ACM, New York, NY, USA (2005)

15. Park, S.I., Shin, H.J., Shin, S.Y.: On-line locomotion generation based on motion
blending. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium
on Computer animation. pp. 105–111. SCA ’02, ACM, New York, NY, USA (2002)

16. Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and adverbs: Multidimensional
motion interpolation. IEEE Computer Graphics and Applications 18, 32–40 (1998)

17. RoseIII, C.F., Sloan, P.P.J., Cohen, M.F.: Artist-directed inverse-kinematics us-
ing radial basis function interpolation. Computer Graphics Forum (Proceedings of
Eurographics) 20(3), 239–250 (September 2001)

18. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated mo-
tion graphs. In: ACM SIGGRAPH ’07. p. 106. ACM, New York, NY, USA (2007)

19. Shapiro, A., Kallmann, M., Faloutsos, P.: Interactive motion correction and object
manipulation. In: ACM SIGGRAPH Symposium on Interactive 3D graphics and
Games (I3D’07). Seattle (April 30 - May 2 2007)

20. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human
figure animation. In: SIGGRAPH ’95. pp. 91–96. ACM, New York, NY, USA (1995)

21. Wiley, D.J., Hahn, J.K.: Interpolation synthesis of articulated figure motion. IEEE
Computer Graphics and Applications 17(6), 39–45 (1997)

	An Analysis of Motion Blending Techniques

