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Abstract 
The architectural approach to AI focuses on the fixed 
structure underlying intelligence.  Applying it to statistical 
relational AI should further stimulate the application of 
statistical relational techniques across AI, while focusing 
research on their commonalities, (in)compatibilities and 
integration.  It could also yield new architectures that are 
simpler yet more comprehensive than today’s best. 
 
 

One fundamental approach to fostering sharing, cross-
pollination and integration across the diverse subfields of 
AI is the pursuit of architectures that embody hypotheses 
about the fixed structure underlying intelligent behavior 
(Langley, Laird and Rogers 2009). At a minimum, 
architectures typically comprise mechanisms for memory, 
learning, interaction, and decisions. Each of these 
mechanisms may be simple and uniform or complex and 
varied.  Decisions, for example, could simply be based on 
a preference-based or decision-theoretic choice algorithm, 
or may involve more complex forms of planning and 
reasoning.  Depending on the intended architectural scope, 
other mechanisms may also be included, for example, in 
support of perception, motor control, reflection, 
motivations and emotions. Such architectures may be 
known as cognitive architectures, architectures for human-
level AI or intelligent agent architectures. 
 When knowledge and goals are added, architectures 
yield behavior that is intended to model human behavior 
and/or yield artificially intelligent behavior.  Architectures 
define languages and provide tools for developing 
intelligent systems, but they aren’t simply languages or 
toolkits.  Because architectures embody hypotheses about 
intelligent behavior, issues of necessity (minimality) and 
sufficiency (completeness) become relevant.  Because 
these hypotheses include assumptions about how 
intelligent behavior is and/or should be generated – 
constraining both what kinds of behaviors are possible and 
how these behaviors can be produced – they embody 
claims about the scope of intelligent behavior.  Because 
they combine a range of capabilities in support of a 

diversity of intelligent behaviors, they focus research on 
what is common across capabilities and behaviors rather 
than on what distinguishes them, and on how mechanisms 
integrate together to yield a system that is more than the 
sum of its parts rather than on how mechanisms may be 
optimized in isolation.  In general, architectures must 
integrate together a sufficient set of high-enough level 
mechanisms to automatically yield appropriate behavior 
given goals and knowledge.  They must also sufficiently 
constrain these mechanisms and their interactions so as to 
eschew inappropriately dysfunctional behavior. 
 Although statistical relational AI – the combination of 
logic (or, at least, symbolic relations) and probabilities in 
artificial intelligence – has been explored in the context of 
individual mechanisms within architectures, such as in 
(Iklé and Goertzel 2008), the larger potential of 
architectures in stimulating the exploration of statistical 
relational AI remains largely untapped, as does the 
potential impact of statistical relational AI on the evolution 
of architectures.  Consider what might be expected from an 
effort to build architectures based entirely on statistical 
relational techniques.  It would force examination of the 
techniques’ applicability across all areas of AI and across a 
wide range of task domains.  It would encourage 
understanding the commonalities and (in)compatibilities 
among the resulting mechanisms and applications in aid of 
combining them within individual architectures.  It would 
also raise the possibility of radically new architectures that 
are significantly more functional than today’s best. 
 One important step in this direction has been the 
development of languages and toolkits for statistical 
relational AI, such as Alchemy (Domingos and Dowd 
2009) and BLOG (Milch et al. 2007).  Such systems 
provide a broadly applicable, although generally low-level, 
functionality that can encourage exploration of statistical 
relational mechanisms across a wide range of intelligent 
capabilities and tasks.  They may also facilitate developing 
and integrating higher-level architectural mechanisms (as 
in Domingos and Dowd’s discussion of an interface layer 
for AI).  However, they still fall short of what architectures 
provide in forcing explorations across the full scope of AI, 



in providing and constraining the requisite higher-level 
mechanisms and their integration, and in encouraging a 
focus on commonality and compatibility. 
 Over the past couple of years I have been rethinking 
architectures from the ground up based on graphical 
models (Koller and Friedman 2009). Graphical models are 
particularly intriguing from an architectural perspective 
because they can produce state-of-the-art algorithms across 
symbol, probability and signal processing from a single 
representation and inference algorithm (summary product).  
While other significant approaches to graphical inference 
do exist – such as sampling algorithms – even without 
them we get state-of-the-art algorithms such as the Rete 
production match algorithm (symbol processing), loopy 
belief propagation in Bayesian networks (probability 
processing), and Kalman filters and the forward-backward 
algorithm in hidden Markov models (signal processing).  
More broadly, graphical models have become the standard 
paradigm in both probability and signal processing, and 
may potentially become so in symbol processing as well. 
 The goals behind this rethinking have been to evaluate 
graphical models as a uniform implementation level for 
exploring the space of architectures, reconstructing and 
better understanding existing architectures, and developing 
new architectures that are both simpler and more functional 
than existing ones (Rosenbloom 2009).  Progress to date 
has focused on the implementation of a hybrid (discrete 
and continuous) mixed (Boolean and Bayesian) memory 
architecture that provides the kinds of memories embodied 
in two leading cognitive architectures – ACT-R (Anderson 
2007) and Soar 9 (Laird 2008) – while also going beyond 
them in significant ways.  This work is based on factor 
graphs in which both factor functions and messages are 
represented as general N dimensional continuous functions 
(approximated as piecewise linear functions over 
rectilinear regions).  The domains of these functions can be 
discretized and the ranges Booleanized to support discrete 
distributions and symbols.  From this uniform base, a 
working memory is defined along with multiple long-term 
memories: classical procedural (rule) and declarative 
(semantic and episodic) memories plus a constraint 
memory.  Interaction among the memories is also 
grounded in the shared graphical implementation level. 
 The ultimate goal of this work is to develop complete 
architectures that are simpler yet more comprehensive than 
today’s state of the art, combining their current strengths 
with tightly integrated probability and signal processing, 
and breaking down the traditional wall between (symbolic) 
central cognition and (continuous) peripheral perception 
and motor control.  This will help force the development of 
graphical mechanisms across AI, while adding a strong 
focus on their integration. Initial thought has already, for 
example, gone into how to extend the implemented 
memory architecture with capabilities for decisions, 
reflection, imagery, perception, theory of mind, and 
learning.  Beyond just developing graphical approaches to 
these capabilities, much of the effort goes into the 
discovery and leveraging of commonalities across them, 

and understanding and working through incompatibilities 
among them.  To mention just one example, uniformly 
implementing and combining together procedural and 
declarative memories has revealed several subtle 
inconsistencies requiring resolution, such as the closed 
world assumption embodied in rules versus the open world 
assumption at the heart of retrieval from semantic memory. 
 The focus of this rethinking has not been strictly on the 
combinations of logic and probability that are the norm in 
statistical relational AI; e.g., rules underlie symbol 
processing here rather than logic.  Yet there is much in 
common, such as the centrality of graphical models in 
implementing mixed (and hybrid) processing.  More 
broadly, the potential utility of an architectural approach is 
independent of the details of symbol processing.  An 
architectural approach, with its emphasis on breadth and 
integration, should in general have much to offer the study 
of statistical relational AI, just as its study also appears to 
have much to offer architectures. 
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