
An Enhanced Steering Algorithm for Redirected Walking in Virtual
Environments

Mahdi Azmandian∗ Rhys Yahata∗ Mark Bolas∗† Evan Suma∗

∗USC Institute for Creative Technologies †USC School of Cinematic Arts

ABSTRACT

Redirected walking techniques enable natural locomotion through
immersive virtual environments that are considerably larger than
the available real world walking space. However, the most effec-
tive strategy for steering the user remains an open question, as most
previously presented algorithms simply redirect toward the center
of the physical space. In this work, we present a theoretical frame-
work that plans a walking path through a virtual environment and
calculates the parameters for combining translation, rotation, and
curvature gains such that the user can traverse a series of defined
waypoints efficiently based on a utility function. This function min-
imizes the number of overt reorientations to avoid introducing po-
tential breaks in presence. A notable advantage of this approach is
that it leverages knowledge of the layout of both the physical and
virtual environments to enhance the steering strategy.

Index Terms: H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems—Artificial, augmented,
and virtual realities; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual reality

1 INTRODUCTION

For many applications of immersive virtual environments, it is de-
sirable to support interactions that allow users to move their bodies
naturally, similar to the way people move in the real world. How-
ever, supporting walking is often not feasible because the dimen-
sions of the physical tracked space will ultimately limit the size
of the virtual world that may be navigated through natural body
movement. To address this problem, researchers have developed
redirected walking, a technique that manipulates the mapping be-
tween physical and virtual motions to steer the user away from the
boundaries of the physical space [2].

While redirection introduces a conflict between visual motion
and vestibular sensation, these manipulations will ideally remain
imperceptible to users so long as they do not exceed human sen-
sitivity thresholds, which previous researchers have measured em-
pirically [3]. Though previous researchers have attempted to make
resetting techniques less intrusive by introducing distractors, these
techniques typically require a temporary interruption of the user’s
exploration, which may break presence in the virtual world. There-
fore, it is generally advisable to apply redirected walking as effi-
ciently as possible in order to minimize the number of resets re-
quired to handle failure cases.

To optimize redirected walking algorithms, recent work
has examined different strategies for steering the user during
redirection[1][4]. However, these algorithms all rely upon a sin-
gle general heuristic based on the location of the steering target in
physical space. We suggest that a more sophisticated approach con-
sidering the architectural layout of the virtual environment would
∗e-mail: {mazmandian, ryahata, bolas, suma}@ict.usc.edu

g
c
> 0

g
r
> 0

g
t
> 0

waypoint

walk

turn

user

Figure 1: Influence of gains on waypoint translation in physical space
during one time step. As the user steps forward, the waypoint rotates
due to gc, moves towards the user due to gt , and rotates due to gr.
The dashed lines show the user’s change in orientation to correct for
the waypoint’s rotation.

yield an improvement over previous strategies. In this work, we
present a method for planning a path through a virtual environment
and calculating redirection parameters such that the user can visit
a set of defined waypoints with a minimal number of resets. This
work may be immediately applicable for applications where these
navigation waypoints are known in advance, such as a virtual tour,
and may also be extended in the future to determine waypoints dy-
namically.

2 METHOD

Background. Three different types of self-motion gains have been
identified in the literature: (1) translation gains, (2) rotation gains,
and (3) curvature gains. Translation gains involve repositioning the
virtual model towards (positive) or away (negative) from the user,
increasing or decreasing the perceived displacement in the virtual
world. Rotation gains involve rotating the virtual model about the
user during head rotation, effectively increasing or decreasing the
perceived rotation in the virtual world.[2] Curvature gains also in-
volve rotating the virtual model about the user, but are instead ap-
plied during translation. This is normally applied as a user walks
forward towards a point in the virtual world, resulting in a curved
path towards the target while perceiving a straight walking path.
Problem. Given a virtual environment M and a physical tracking
space S, construct a path consisting of a sequence of waypoints
{wi}n

i=0 in M such that if the user traverses the path he shall remain
in S. We expect that the user will navigate to each waypoint in the
planned path consecutively. Each segment of the path will use ap-
propriate translation, rotation and curvature gains to constrain the
user’s path to the bounds of S. If the user is about to leave S, the
user’s orientation may be reset. We first address how the posi-
tion and the rotation of the user and the model change when a user
moves toward a waypoint. As the user moves through S, the model
may be translated and rotated around the user in response to trans-
lation, rotation and curvature gains.
Waypath Prediction. Given the user position Pu, user rotation Ru,
the model’s position and rotation, and the next waypoint’s position,
calculate the user’s and model’s position and rotation when the user
reaches the waypoint. Assume translation gain gt , rotation gain gr

65

IEEE Virtual Reality 2014
29 March - 2 April, Minneapolis, Minnesota, USA
978-1-4799-2871-2/14/$31.00 ©2014 IEEE

Figure 2: Configuration class representatives in consecutive itera-
tions. The top row represents the input configurations. Each circle is
a representative of a configuration class. After the tree is expanded,
only the best representative leaf node for each output configuration
class is retained for the next iteration.

and curvature gain gc are applied (gc is expressed in unit of angle
per unit of length) as shown in Figure 1. To address this problem,
we derived a closed-form solution that handles resets.

2.1 Tree Search
Knowing how the reorientation techniques affect the model and
user, we must decide how to effectively combine them. We now
determine what value within the acceptable range each parameter
must take to create an “effective” path. The efficacy of a path is
gauged by a utility function U . U is defined as the additive inverse
of the number of resets triggered along that path, u(δ) =−δ . This
utility function could be refined by including other factors such as
number of times each redirection technique was applied.

An exhaustive search is performed to find the most effective so-
lution. In order to constrain the branching factor, we limit each
redirection parameter to a finite subset of values within empirically
determined thresholds [3]. When a boundary is reached, a reset is
triggered, and the reset angle is limited to a finite set of possible val-
ues. We construct a tree with the root as the initial configuration.
Child nodes are generated based on different options for the gain
parameters and reset angles. Each root to leaf path corresponds to a
possible solution. By performing a graph search algorithm such as
BFS or DFS we can visit the leaf nodes and determine the optimal
solution.

If the number of options for translation, rotation and curvature
gain and reset angles are ot , or, oc, and od respectively, the depth of
the tree will be in the order of max{otoroc,od}n+δmax where δmax
is the maximum number of resets triggered. To limit the search
space, we define a Configuration as the pair (Pu,Ru). Although
there are infinite Pu and Ru within the model space, not all are “sub-
stantially” different. Our approach discretizes the space of possible
configurations.

2.2 Configuration Classification
An exhaustive search of the tree expands similar subtrees thus in-
creases memory overhead. To control this, our approach uses con-
figurations as metric with which to prune the tree. A configuration
is a discrete position and bearing of the user in S. S is divided into
cp equal-sized cells. Rotations are divided into cr equal intervals in
the range (−π,π]. Two nodes are in the same configuration class if
they share the same position cell and rotation interval.

The pruning algorithm groups nodes of the same configuration
class and only retains the one with the highest efficacy value based
on a utility function (Figure 2). We apply this prune when the tree
expansion depth has reached a multiple of the pruning index ip. By
pruning, we guarantee that at every ip-th level of the tree there will
be no more than cc = crcp nodes.

2.3 Leveraging Architecture
We define a tour of a virtual world as a sequence of waypoints in
virtual world space manually defined by the developer. An advan-
tage of this manual approach is that architectural limitations are

(a) Path in virtual world (b) Path in real world

Figure 3: Optimized path found in the virtual world and its corre-
sponding path in the real world (tracking area).

taken into consideration, and it is unnecessary to computationally
verify that the path does not pass through walls in the virtual envi-
ronment. For each room in the virtual environment, we define hard
waypoints (points that must be visited) and soft waypoints (optional
points), and illegal pairs (waypoint pairs that cannot be reached in
succession due to path obstruction). We now construct all sub-paths
beginning from the room entrance waypoint and ending with the
exit waypoint. Each subpath must contain all hard waypoints, a
subset of soft waypoints, and no illegal pairs. To incorporate these
sub-paths in the search, we create multiple instances of the graph
search and merge the results once the sub-paths converge via the
same classification technique.

3 DISCUSSION AND CONCLUSION

In this paper, we describe a theoretical framework that defines a
walking path through a virtual environment and calculates the pa-
rameters for applying redirected walking based on a utility function
that minimizes potential breaks in presence from overt reorienta-
tions. While we have yet to perform formal studies, we have con-
ducted informal tests using a virtual model of a large real world
building shown in Figure 3. In doing so, we have observed that
combining individual redirection techniques (rotation, curvature,
and translation gains) affect each other’s behavior in non-trivial
ways. For example, the experienced curvature radius is affected
by rotation gain, and is no longer strictly dependent on the cur-
vature gain parameter alone. Furthermore, it may drop below the
threshold defined in [3], which may cause the redirection to be no-
ticeable. Additionally, to avoid manual defining of waypoints, we
can explore automatic path generation techniques. The framework
as implemented currently functions as an offline search algorithm
and does not dynamically correct for unexpected user behavior. Our
broader goal is to extend this work as part of a system that can dy-
namically optimize virtual and physical paths, while correcting for
deviation during run time. Such a solution could also support non-
static environments.

REFERENCES

[1] E. Hodgson and E. Bachmann. Comparing four approaches to gener-
alized redirected walking: simulation and live user data. IEEE Trans-
actions on Visualization and Computer Graphics, 19(4):634–643, Apr.
2013.

[2] S. Razzaque, Z. Kohn, and M. C. Whitton. Redirected Walking. In
Eurographics (Short Presentation), 2001.

[3] F. Steinicke, G. Bruder, J. Jerald, H. Frenz, and M. Lappe. Estimation
of detection thresholds for redirected walking techniques. IEEE Trans-
actions on Visualization and Computer Graphics, 16(1):17–27, 2010.

[4] J. Su. Motion Compression for Telepresence Locomotion. Presence:
Teleoperators and Virtual Environments, 16(4):385–398, Aug. 2007.

66

