

Audio Engineering Society

Convention Paper
Presented at the 129th Convention

2010 November 4–7 San Francisco, CA, USA

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer
reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance
manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents.
Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New
York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof,
is not permitted without direct permission from the Journal of the Audio Engineering Society.

Automatic Parallelism for Dataflow Graphs
Ramy Sadek

University of Southern California Institute for Creative Technologies, 12015 Waterfront
Drive, Playa Vista, CA, 90094, USA

Sadek@ict.usc.edu

ABSTRACT

This paper presents a novel algorithm to automate high-level parallelization from graph-based data structures
representing data flow. This automatic optimization yields large performance improvements for multi-core machines
running host-based applications. Results of these advances are shown through their incorporation into the audio
processing engine Application Rendering Immersive Audio (ARIA) presented at AES 117. Although the ARIA
system is the target framework, the contributions presented in this paper are generic and therefore applicable in a
variety of software such as Pure Data and Max/MSP, game audio engines, non-linear editors and related systems.
Additionally, the parallel execution paths extracted are shown to give effectively optimal cache performance,
yielding significant speedup for such host-based applications.

1. BACKGROUND AND MOTIVATION

Graph-based data structures have become popular
representations within audio processing software,
especially in visual dataflow programming systems such
as Pure Data [1], Max/MSP [2] and third-party APIs and
libraries like Sonic Flow [3]. This paper presents an
algorithm for efficient automated extraction of
parallelism from dataflow graphs. As the trend toward
multiple-core processors replaces the former trend
toward ever-greater processor clock rates,
computational efficiency increasingly relies on parallel

processing. This is especially true for host-based
processing software common in application areas
ranging from game audio to non-linear editing, and
from effects processing to room correction software.
Audio software stands to benefit significantly from
parallelism provided by algorithms that leverage
multiple cores. Yet parallel programming presents many
challenges and pitfalls for the programmer. These
pitfalls are detrimental to efficiency. Developers with
expertise in audio development are rarely the same ones
with expertise in concurrent programming, and vice
versa.

!"#

SADEK AUTOMATIC PARALLEL DATAFLOW GRAPHS

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7

Page 2 of 7

This paper presents an algorithm to automate
parallelization such that the parallel code need only be
written once, allowing concurrency to be abstracted
away from the audio programmer. Thus, developers
with differing expertise (i.e. systems and concurrent
programming vs. DSP and filter design) focus on their
areas of specialty without conflating these separate
issues.

This division of labor is especially useful in software
such as game systems, APIs, nonlinear editors, and end-
user applications where high-level tasks can be run in
parallel (tracks, effects, etc.). These sorts of applications
commonly use buffer sizes ranging from as many as
2048 samples per buffer, to as few as 6 samples in low
latency applications. With these relatively small buffer
sizes, the cost of dividing buffers and reassembling the
solution often outweighs the potential speedup of
parallelization. Instead, these applications use very large
numbers of buffers internally that are processed
separately as atomic chunks.

 This computation model holds for interactive
applications such as game audio, digital audio
workstations, immersive audio systems, and many
computer music applications, to name a few. Therefore
our focus is on these types of applications. Our
approach remains valid for large parallel problems that
can be modeled in a dataflow graph.

1.1. Graph Representation

Formally, a graph is a set of nodes that are connected by
edges. See Figure 1 for a simple example. Note that the
edges in the figure have arrows. These arrows indicate
that the graph is directed. That is, there is a direction
associated with each connection between nodes. For
example, in Figure 1 there is an edge that goes from
Node A to Node C, but there is no edge from Node C to
Node A.

Figure 1 A simple directed graph containing a cycle.

A path through the graph is a sequential series of
connected nodes. A path that returns to its starting point
is called a cycle. The graph in Figure 1 contains a cycle
formed by the edges connecting nodes B, C and D.
Graphs that contain no cycles are acyclic. Directed
graphs with no cycles are called Directed Acyclic
Graphs (DAGs).

In the context of audio processing, graph nodes
represent processes while edges represent signal routing
or dataflow. As such, the simple example in Figure 2
implements high-pass filtered noise.

This paradigm is known as the dataflow programming
model because paths through the graph represent the
flow of data through processing steps.

Figure 2 A simple dataflow example of high-pass
filtered noise.

2. ALGORITHM

2.1. Overview

Our algorithm recursively searches for dependency
paths through the graph. By dependency we mean a path
upon which other paths depend to execute. For example
in Figure 2 the high pass filter must wait for the output
of the noise generator before it can filter that output. In
this sense a dependency path is a set of nodes and edges
whose corresponding outputs are required as inputs to
other nodes.

SADEK AUTOMATIC PARALLEL DATAFLOW GRAPHS

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7

Page 3 of 7

Starting with source nodes (those with input valence 0),
each source node

!

ni is stored and appended to the
execution list of its parent (if it exists). Nodes with
multiple parents are added to the execution list of the
final parent to be processed, ensuring that nodes are
only executed after all their inputs are available. Finally,
the source nodes and their associated output edges are
removed and the algorithm repeats (recursively) until
there are no nodes remaining.

The output is a set of N execution lists that can be
processed in parallel, where

!

N is the number of source
nodes without dependencies found during the search
step. These lists can be concatenated if

!

N is greater
than the number of processors to avoid thread
contention and improve performance. Below is a
synopsized pseudocode of the algorithm:

Let G be an input directed acyclic graph.
Let ni be the ith node in G
LetVi be the input valence of ni
Flow(G)
 //find all source nodes at current recursion level
 {ni} = all Nodes in G with Vi = 0
 //append ni to appropriate execution list
 Process({ni})
 //store data paths
 Copy Outputs({ni}) to Inputs(Children({ni}))
 //remove sources and recurse
 Return Flow(!G = Remove({ni} from G))

This psuedocode assumes existence of a few simple
functions:

• Outputs(n) takes as input a node and returns a
set of output edges that correspond to the
node’s outputs.

• Inputs(n) takes in a node and returns its input
edges.

• Process(n) checks to see if the input node has a
parent in an existing execution list. If not, it
creates a new execution list for that node. If it
has more than one parent, it attaches it to the
last parent.

The notation {ni} is shorthand to indicate iteration
over a set of nodes here when used in an assignment or
function call.

Once this algorithm completes, the graph

!

G has been
converted into a set of execution lists, ordered by
dependency, so that sources complete before the nodes
that require their output. It is worth noting that the
algorithm is similar to the depth-first-search and
topological sort algorithms [4] in computer science;
however, those algorithms do not solve the problem of
extracting parallel paths posed here.

2.2. Handling Details

As specified thus far, the algorithm is guaranteed to give
correct output, but not optimal output. The ordering of
the graph traversal is important. Fortunately, ensuring
optimal behavior requires only two sorting steps.

In a given recursion level when we find a set of source
nodes, certain orderings may be preferable to others. For
example, it makes sense to process the node with the
largest number of dependencies first, so that it does not
delay other execution lists.

In the case of multiple source nodes with the same
number of dependencies, we sort again by length of
execution list, to maintain cache coherence early in the
computations, so that branching dependencies are
handled optimally.

Figure 3 Example of complex dataflow program running
multiple spatial audio systems with safety off switch

(dotted line).

The algorithm assumes a directed acyclic graph.
However, to implement a feedback process generally

SADEK AUTOMATIC PARALLEL DATAFLOW GRAPHS

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7

Page 4 of 7

requires graph cycles. We can extend the algorithm to
allow feedback with some user input. If the edges that
create feedback cycles are marked as such, the
algorithm can ignore them during graph traversal. Once
the execution lists are constructed, adding appropriate
copies of input and output buffers to the nodes of the
execution lists reinstates the feedback. This step also
ensures that feedback happens only once per buffer, and
no infinite loops form as a result.

The algorithm allows for node processes to be defined
as graphs themselves, requiring only in-place expansion
at runtime to ensure fully parallelized output.

3. CACHE PERFORMANCE

3.1. A little about CPU cache

Cache performance of the CPU is often the key limiting
performance factor in host-based audio processing.
While a complete discussion of CPU cache is beyond
the scope of this paper, a brief and overview of the
subject follows. For more information on CPU cache
see [4].

A CPU cache is the small amount of extremely high
speed memory located near the main processing units.
This type of memory is much faster than main memory.
Ideally, if we could fit our entire software program and
its associated data into this high-speed memory, our
programs would run very fast. However, such high-
speed memory is extremely expensive, so CPUs
generally use only a small amount of high-speed
memory for the cache.

Data is read from main memory and stored in the cache
before being used in CPU calculations. Results are also
stored in the cache and written back to main memory.
Operations to read or write main memory are very slow
compared to CPU calculations and cache operations.
Minimizing main memory reads and writes is a major
component of software speed optimization. Therefore,
an algorithm with good cache behavior is crucial for
high performance.

The cache is used to store recently used data on the
assumption that it will be used again shortly. Some
caching schemes pull in memory from areas nearby
requested locations in the hopes of pre-loading data that
will be requested soon, improving cache performance
and speed. This is called prefetching.

3.2. Algorithm Cache behavior

Because each buffer travels immediately from parent to
child, our algorithm affords excellent cache locality by
processing each buffer as far down the execution path as
possible. Cache locality improves performance by
reducing the number of fetches from memory and often
allows vector instructions to process multiple samples
simultaneously. Streaming data represents the worst
case for cache locality because as data is used the
stream replaces it with the next chunk. Thus, the best
case scenario for an audio buffer is to have processes
applied consecutively, rather than applying each process
to consecutive buffers. This is exactly the ordering that
our algorithm produces.

In the case of buffered audio applications, it is the
number of internal voices, or total buffers processed per
unit time that defines performance. Given this metric we
can show that our algorithm offers effectively optimal
performance1. We examine the efficacy of our cache
performance by comparing it with perfect performance.
Perfect performance assumes that whenever a datum is
needed, it is already in cache. We can then compare this
efficacy with the improvement offered by perfect
performance to see if it affords another internal voice. If
it does not, the effective difference between optimal
performance and our algorithm difference is zero.

Since in practice the cache is always much smaller than
the audio data set, we know that the complete audio data
will not fit into cache. We also expect data pre-fetching
to consistently load buffers into cache before they are
requested because of the random-access nature of audio
applications (looping, midi controllers, sequencing,
etc.). In the practical sense, optimal cache performance
will mean that each buffer is loaded fetched from
memory the minimum possible number of times.

The best case for our algorithm is a set of independent
execution lists that do not send data to each another. It is
easy to see that this achieves optimal cache behavior:
each buffer is fetched once, fits into cache through the
duration of processing until it is output. But in practice
most interesting dataflow graphs will involve some
dependencies between execution paths.

1 The general cache performance optimization problem
is NP-complete, which means finding a globally optimal
is not feasible. However, the simpler problem of
optimality for buffered audio is solvable with this
simpler performance metric.

SADEK AUTOMATIC PARALLEL DATAFLOW GRAPHS

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7

Page 5 of 6

Dependencies create two problems. First, when a thread
reaches a node that does not have all its inputs ready, it
has to wait on those inputs. The second problem is that
the thread computing those inputs may be working at
optimal cache efficiency, but on a different core from
the first thread. So the cached data will have to be
written to main memory or a (slower) shared cache,
possibly thus undermining the performance benefits of
our algorithms excellent cache performance up to that
point.

Unfortunately there is no silver bullet to solve this
problem; we can always find a pathological case.
Consider the (unlikely in practice) case of a node that
takes hundreds of inputs. This node’s input data set will
not fit into cache, so processing the node requires many
memory reads. Optimizing the order of reads reduces to
the intractable cache optimization problem.

The good news is that in practice the pathological cases
are almost as unlikely as the optimal case above. The
dependency sorting discussed in section 2.2 ameliorates
the problem. Sorting paths by number and length of
dependencies (i.e. effectively the number of nodes
waiting on each source) means that paths in great
demand execute early, minimizing the wait time of
other threads.

With only a few execution paths, it is easy to create
pathological cases where all worker threads are waiting
on a single slow input or where the needed buffer is
always in the wrong cache. But as the number of
execution paths grows large (the very reason we are
exploring automated parallelism) these cases become
less likely and less detrimental to performance.

4. FINDINGS

We tested this algorithm for performance improvement
on an 8-core x86 processor system. Our standard test
subgraph is shown in Figure 4.

To test performance, we repeatedly add this subgraph to
the global graph2 until ARIA detects buffer under-run.
The 10-Channel panner uses the Speaker-Placement
Correction Amplitude Panning algorithm [6]. This node

2 Note that the mixer node and the output channels are
global, new instances are not created with each addition
of the subgraph, but they are included in the figure for
clarity.

always outputs ten channels from each mono input, so
each addition of the subgraph to the global graph adds
10 internal voices. We tested the algorithm on a 2007
8-core x86 family CPU. Performance peaked at 511
subgraphs (roughly 5100 internal voices) with only five
worker threads. Although the CPU had eight cores,
increasing the number of worker threads beyond five
created a bottleneck at the mixer, which increased
thread contention and decreased efficiency

Figure 4 Our performance testing subgraph.

In an attempt to alleviate the bottleneck, we
implemented an asynchronous multithreaded mixer.
This mixer used a predetermined number of worker
threads to sum its inputs, computed mixed its own
output even while the worker threads generated input
for it. This alleviated thread contention, but memory
consumption at 500 subgraphs was so large that the
cache performance suffered, the mixer had poor
locality, and performance remained largely unchanged.

This outcome exemplifies the unintuitive performance
tradeoffs inherent in concurrent programming and
demonstrates the need to abstract (or automate) issues of
concurrency from those of audio-specific programming.

5. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for automatic
extraction of parallelism in dataflow graphs. This
automation allows for the separation of software
development tasks between audio and concurrent
programming specialists, and abstracts details of
concurrency by leveraging dataflow programming. In

SADEK AUTOMATIC PARALLEL DATAFLOW GRAPHS

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7

Page 6 of 6

our tests the algorithm exhibited excellent parallelism
and cache performance.

We hope in the near future to stress test this algorithm
by eliminating the bottlenecks at the mixing and output
stage described above. We believe peak performance
will occur when the number of worker threads is at or
near the number of available cores. It will be interesting
to gather empirical data as the number of cores available
on a single system grows from a handful to dozens.

Similarly we hope to explore the questions of efficient
concurrency and cache performance on architectures
other than x86. For example CPUs such as the Itanium,
Power6 intended for mainframes and servers generally
offer advanced vector instruction support and
significantly larger caches than their consumer-oriented
counterparts. Though these CPUs generally offer lower
clock rates than the x86 familiar to most users, it may
well be the case that they offer the highest performance
for audio processing in the future.

Finally we plan to investigate annotating graphs with
timing information. We hope to explore whether
knowledge of nodes’ prior execution times will allow
for improved scheduling.

6. ACKNOWLEDGEMENTS

The project or effort described here has been sponsored
by the U.S. Army Research, Development, and
Engineering Command (RDECOM). Statements and
opinions expressed do not necessarily reflect the
position n or the policy of the United States
Government, and no official endorsement should be
inferred.

7. REFERENCES

[1] http://puredata.info

[2] http://cycling74.com

[3] http://sonicflow.sourceforge.net

[4] Hennessy, J. L., D. A. Patterson, et al. (2007).
Computer architecture : a quantitative approach.
Boston, Morgan Kaufmann.

[5] Sadek, R. "A Host-Based Real-Time Multichannel
Immersive Sound Playback and Processing
System". AES 117th Convention, New York, 2004.

[6] Sadek, R and Kyriakakis, C. "A Novel
Multichannel Panning Method for Standard and
Arbitrary Loudspeaker Configurations". AES 117th
Convention, New York, 2004.

[7] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and
Stein, C. 2009 Introduction to Algorithms, Third
Edition. The MIT Press.

