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ABSTRACT 

This paper presents a novel algorithm to automate high-level parallelization from graph-based data structures 
representing data flow. This automatic optimization yields large performance improvements for multi-core machines 
running host-based applications. Results of these advances are shown through their incorporation into the audio 
processing engine Application Rendering Immersive Audio (ARIA) presented at AES 117. Although the ARIA 
system is the target framework, the contributions presented in this paper are generic and therefore applicable in a 
variety of software such as Pure Data and Max/MSP, game audio engines, non-linear editors and related systems. 
Additionally, the parallel execution paths extracted are shown to give effectively optimal cache performance, 
yielding significant speedup for such host-based applications.  

 

1. BACKGROUND AND MOTIVATION 

Graph-based data structures have become popular 
representations within audio processing software, 
especially in visual dataflow programming systems such 
as Pure Data [1], Max/MSP [2] and third-party APIs and 
libraries like Sonic Flow [3]. This paper presents an 
algorithm for efficient automated extraction of 
parallelism from dataflow graphs. As the trend toward 
multiple-core processors replaces the former trend 
toward ever-greater processor clock rates, 
computational efficiency increasingly relies on parallel 

processing. This is especially true for host-based 
processing software common in application areas 
ranging from game audio to non-linear editing, and 
from effects processing to room correction software. 
Audio software stands to benefit significantly from 
parallelism provided by algorithms that leverage 
multiple cores. Yet parallel programming presents many 
challenges and pitfalls for the programmer. These 
pitfalls are detrimental to efficiency. Developers with 
expertise in audio development are rarely the same ones 
with expertise in concurrent programming, and vice 
versa.  
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This paper presents an algorithm to automate 
parallelization such that the parallel code need only be 
written once, allowing concurrency to be abstracted 
away from the audio programmer. Thus, developers 
with differing expertise (i.e. systems and concurrent 
programming vs. DSP and filter design) focus on their 
areas of specialty without conflating these separate 
issues. 

This division of labor is especially useful in software 
such as game systems, APIs, nonlinear editors, and end-
user applications where high-level tasks can be run in 
parallel (tracks, effects, etc.). These sorts of applications 
commonly use buffer sizes ranging from as many as 
2048 samples per buffer, to as few as 6 samples in low 
latency applications. With these relatively small buffer 
sizes, the cost of dividing buffers and reassembling the 
solution often outweighs the potential speedup of 
parallelization. Instead, these applications use very large 
numbers of buffers internally that are processed 
separately as atomic chunks. 

 This computation model holds for interactive 
applications such as game audio, digital audio 
workstations, immersive audio systems, and many 
computer music applications, to name a few. Therefore 
our focus is on these types of applications. Our 
approach remains valid for large parallel problems that 
can be modeled in a dataflow graph.  

1.1. Graph Representation 

Formally, a graph is a set of nodes that are connected by 
edges. See Figure 1 for a simple example. Note that the 
edges in the figure have arrows. These arrows indicate 
that the graph is directed. That is, there is a direction 
associated with each connection between nodes. For 
example, in Figure 1 there is an edge that goes from 
Node A to Node C, but there is no edge from Node C to 
Node A.  

 

Figure 1 A simple directed graph containing a cycle. 

A path through the graph is a sequential series of 
connected nodes. A path that returns to its starting point 
is called a cycle. The graph in Figure 1 contains a cycle 
formed by the edges connecting nodes B, C and D. 
Graphs that contain no cycles are acyclic. Directed 
graphs with no cycles are called Directed Acyclic 
Graphs (DAGs).    

In the context of audio processing, graph nodes 
represent processes while edges represent signal routing 
or dataflow. As such, the simple example in Figure 2 
implements high-pass filtered noise.  

This paradigm is known as the dataflow programming 
model because paths through the graph represent the 
flow of data through processing steps.  
 

 

Figure 2 A simple dataflow example of high-pass 
filtered noise.  

2. ALGORITHM  

2.1. Overview 

Our algorithm recursively searches for dependency 
paths through the graph. By dependency we mean a path 
upon which other paths depend to execute. For example 
in Figure 2 the high pass filter must wait for the output 
of the noise generator before it can filter that output. In 
this sense a dependency path is a set of nodes and edges 
whose corresponding outputs are required as inputs to 
other nodes.  
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Starting with source nodes (those with input valence 0), 
each source node 

! 

ni is stored and appended to the 
execution list of its parent (if it exists). Nodes with 
multiple parents are added to the execution list of the 
final parent to be processed, ensuring that nodes are 
only executed after all their inputs are available. Finally, 
the source nodes and their associated output edges are 
removed and the algorithm repeats (recursively) until 
there are no nodes remaining. 

The output is a set of N  execution lists that can be 
processed in parallel, where 

! 

N  is the number of source 
nodes without dependencies found during the search 
step. These lists can be concatenated if 

! 

N  is greater 
than the number of processors to avoid thread 
contention and improve performance. Below is a 
synopsized pseudocode of the algorithm: 
 
Let G  be an input directed acyclic graph.  
Let ni  be the ith node in G  
LetVi  be the input valence of ni  
Flow(G ) 
   //find all source nodes at current recursion level 
  {ni}  =  all Nodes in G with Vi  = 0    
   //append ni  to appropriate execution list  
   Process({ni} ) 
   //store data paths  
   Copy Outputs({ni} ) to Inputs(Children({ni} ))   
   //remove sources and recurse  
   Return Flow( !G = Remove({ni}  from G )) 

This psuedocode assumes existence of a few simple 
functions:  

• Outputs(n) takes as input a node and returns a 
set of output edges that correspond to the 
node’s outputs. 

•  Inputs(n) takes in a node and returns its input 
edges.  

• Process(n) checks to see if the input node has a 
parent in an existing execution list. If not, it 
creates a new execution list for that node. If it 
has more than one parent, it attaches it to the 
last parent. 

The notation {ni}  is shorthand to indicate iteration 
over a set of nodes here when used in an assignment or 
function call. 

Once this algorithm completes, the graph 

! 

G  has been 
converted into a set of execution lists, ordered by 
dependency, so that sources complete before the nodes 
that require their output. It is worth noting that the 
algorithm is similar to the depth-first-search and 
topological sort algorithms [4] in computer science; 
however, those algorithms do not solve the problem of 
extracting parallel paths posed here. 

2.2. Handling Details 

As specified thus far, the algorithm is guaranteed to give 
correct output, but not optimal output. The ordering of 
the graph traversal is important. Fortunately, ensuring 
optimal behavior requires only two sorting steps.  

In a given recursion level when we find a set of source 
nodes, certain orderings may be preferable to others. For 
example, it makes sense to process the node with the 
largest number of dependencies first, so that it does not 
delay other execution lists.  

In the case of multiple source nodes with the same 
number of dependencies, we sort again by length of 
execution list, to maintain cache coherence early in the 
computations, so that branching dependencies are 
handled optimally.  

Figure 3 Example of complex dataflow program running 
multiple spatial audio systems with safety off switch 

(dotted line). 

The algorithm assumes a directed acyclic graph. 
However, to implement a feedback process generally 
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requires graph cycles. We can extend the algorithm to 
allow feedback with some user input. If the edges that 
create feedback cycles are marked as such, the 
algorithm can ignore them during graph traversal. Once 
the execution lists are constructed, adding appropriate 
copies of input and output buffers to the nodes of the 
execution lists reinstates the feedback. This step also 
ensures that feedback happens only once per buffer, and 
no infinite loops form as a result.  

The algorithm allows for node processes to be defined 
as graphs themselves, requiring only in-place expansion 
at runtime to ensure fully parallelized output.  

3. CACHE PERFORMANCE 

3.1. A little about CPU cache 

Cache performance of the CPU is often the key limiting 
performance factor in host-based audio processing.  
While a complete discussion of CPU cache is beyond 
the scope of this paper, a brief and overview of the 
subject follows. For more information on CPU cache 
see [4].  

A CPU cache is the small amount of extremely high 
speed memory located near the main processing units. 
This type of memory is much faster than main memory. 
Ideally, if we could fit our entire software program and 
its associated data into this high-speed memory, our 
programs would run very fast. However, such high-
speed memory is extremely expensive, so CPUs 
generally use only a small amount of high-speed 
memory for the cache.   

Data is read from main memory and stored in the cache 
before being used in CPU calculations. Results are also 
stored in the cache and written back to main memory. 
Operations to read or write main memory are very slow 
compared to CPU calculations and cache operations. 
Minimizing main memory reads and writes is a major 
component of software speed optimization. Therefore, 
an algorithm with good cache behavior is crucial for 
high performance. 

The cache is used to store recently used data on the 
assumption that it will be used again shortly. Some 
caching schemes pull in memory from areas nearby 
requested locations in the hopes of pre-loading data that 
will be requested soon, improving cache performance 
and speed. This is called prefetching. 

3.2. Algorithm Cache behavior 

Because each buffer travels immediately from parent to 
child, our algorithm affords excellent cache locality by 
processing each buffer as far down the execution path as 
possible. Cache locality improves performance by 
reducing the number of fetches from memory and often 
allows vector instructions to process multiple samples 
simultaneously. Streaming data represents the worst 
case for cache locality because as data is used the 
stream replaces it with the next chunk. Thus, the best 
case scenario for an audio buffer is to have processes 
applied consecutively, rather than applying each process 
to consecutive buffers. This is exactly the ordering that 
our algorithm produces. 

In the case of buffered audio applications, it is the 
number of internal voices, or total buffers processed per 
unit time that defines performance. Given this metric we 
can show that our algorithm offers effectively optimal 
performance1. We examine the efficacy of our cache 
performance by comparing it with perfect performance. 
Perfect performance assumes that whenever a datum is 
needed, it is already in cache. We can then compare this 
efficacy with the improvement offered by perfect 
performance to see if it affords another internal voice. If 
it does not, the effective difference between optimal 
performance and our algorithm difference is zero. 

Since in practice the cache is always much smaller than 
the audio data set, we know that the complete audio data 
will not fit into cache. We also expect data pre-fetching 
to consistently load buffers into cache before they are 
requested because of the random-access nature of audio 
applications (looping, midi controllers, sequencing, 
etc.). In the practical sense, optimal cache performance 
will mean that each buffer is loaded fetched from 
memory the minimum possible number of times.  

The best case for our algorithm is a set of independent 
execution lists that do not send data to each another. It is 
easy to see that this achieves optimal cache behavior: 
each buffer is fetched once, fits into cache through the 
duration of processing until it is output. But in practice 
most interesting dataflow graphs will involve some 
dependencies between execution paths.  

                                                
1 The general cache performance optimization problem 
is NP-complete, which means finding a globally optimal 
is not feasible. However, the simpler problem of 
optimality for buffered audio is solvable with this 
simpler performance metric. 
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Dependencies create two problems. First, when a thread 
reaches a node that does not have all its inputs ready, it 
has to wait on those inputs. The second problem is that 
the thread computing those inputs may be working at 
optimal cache efficiency, but on a different core from 
the first thread. So the cached data will have to be 
written to main memory or a (slower) shared cache, 
possibly thus undermining the performance benefits of 
our algorithms excellent cache performance up to that 
point. 

Unfortunately there is no silver bullet to solve this 
problem; we can always find a pathological case. 
Consider the (unlikely in practice) case of a node that 
takes hundreds of inputs. This node’s input data set will 
not fit into cache, so processing the node requires many 
memory reads. Optimizing the order of reads reduces to 
the intractable cache optimization problem.  

The good news is that in practice the pathological cases 
are almost as unlikely as the optimal case above. The 
dependency sorting discussed in section 2.2 ameliorates 
the problem. Sorting paths by number and length of 
dependencies (i.e. effectively the number of nodes 
waiting on each source) means that paths in great 
demand execute early, minimizing the wait time of 
other threads. 

With only a few execution paths, it is easy to create 
pathological cases where all worker threads are waiting 
on a single slow input or where the needed buffer is 
always in the wrong cache. But as the number of 
execution paths grows large (the very reason we are 
exploring automated parallelism) these cases become 
less likely and less detrimental to performance. 

4. FINDINGS 

We tested this algorithm for performance improvement 
on an 8-core x86 processor system. Our standard test 
subgraph is shown in Figure 4. 

To test performance, we repeatedly add this subgraph to 
the global graph2 until ARIA detects buffer under-run. 
The 10-Channel panner uses the Speaker-Placement 
Correction Amplitude Panning algorithm [6]. This node 

                                                
2 Note that the mixer node and the output channels are 
global, new instances are not created with each addition 
of the subgraph, but they are included in the figure for 
clarity. 

always outputs ten channels from each mono input, so 
each addition of the subgraph to the global graph adds 
10 internal voices.  We tested the algorithm on a 2007 
8-core x86 family CPU. Performance peaked at 511 
subgraphs (roughly 5100 internal voices) with only five 
worker threads. Although the CPU had eight cores, 
increasing the number of worker threads beyond five 
created a bottleneck at the mixer, which increased 
thread contention and decreased efficiency 

 

Figure 4 Our performance testing subgraph.   

In an attempt to alleviate the bottleneck, we 
implemented an asynchronous multithreaded mixer. 
This mixer used a predetermined number of worker 
threads to sum its inputs, computed mixed its own 
output even while the worker threads generated input 
for it. This alleviated thread contention, but memory 
consumption at 500 subgraphs was so large that the 
cache performance suffered, the mixer had poor 
locality, and performance remained largely unchanged.  

This outcome exemplifies the unintuitive performance 
tradeoffs inherent in concurrent programming and 
demonstrates the need to abstract (or automate) issues of 
concurrency from those of audio-specific programming. 

5. CONCLUSIONS AND FUTURE WORK  

We have presented an algorithm for automatic 
extraction of parallelism in dataflow graphs. This 
automation allows for the separation of software 
development tasks between audio and concurrent 
programming specialists, and abstracts details of 
concurrency by leveraging dataflow programming. In 
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our tests the algorithm exhibited excellent parallelism 
and cache performance.  

We hope in the near future to stress test this algorithm 
by eliminating the bottlenecks at the mixing and output 
stage described above. We believe peak performance 
will occur when the number of worker threads is at or 
near the number of available cores. It will be interesting 
to gather empirical data as the number of cores available 
on a single system grows from a handful to dozens.  

Similarly we hope to explore the questions of efficient 
concurrency and cache performance on architectures 
other than x86. For example CPUs such as the Itanium, 
Power6 intended for mainframes and servers generally 
offer advanced vector instruction support and 
significantly larger caches than their consumer-oriented 
counterparts. Though these CPUs generally offer lower 
clock rates than the x86 familiar to most users, it may 
well be the case that they offer the highest performance 
for audio processing in the future. 
 
Finally we plan to investigate annotating graphs with 
timing information. We hope to explore whether 
knowledge of nodes’ prior execution times will allow 
for improved scheduling. 
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