
Automatic speech recognition using articulatory
features from subject-independent
acoustic-to-articulatory inversion

Prasanta Kumar Ghosha) and Shrikanth Narayanan
Signal Analysis and Interpretation Laboratory, Department of Electrical Engineering,

University of Southern California, Los Angeles, California 90089
prasantg@usc.edu, shri@sipi.usc.edu

Abstract: An automatic speech recognition approach is presented
which uses articulatory features estimated by a subject-independent
acoustic-to-articulatory inversion. The inversion allows estimation of
articulatory features from any talker’s speech acoustics using only an
exemplary subject’s articulatory-to-acoustic map. Results are reported
on a broad class phonetic classification experiment on speech from Eng-
lish talkers using data from three distinct English talkers as exemplars
for inversion. Results indicate that the inclusion of the articulatory in-
formation improves classification accuracy but the improvement is
more significant when the speaking style of the exemplar and the talker
are matched compared to when they are mismatched.
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1. Introduction

The role of articulatory features in automatic speech recognition has been investigated
for several decades. One straightforward approach to improve recognition using articu-
latory features would be to access direct articulatory measurements from the talker
and use them in addition to the acoustic speech features. For example, Frankel et al.1

showed improvement in speech recognition accuracy by combining acoustic and articu-
latory features from a talker. However, it is not practical to assume the availability of
direct articulatory measurements from a talker in real-world speech recognition scenar-
ios. To address this challenge, a number of techniques have been proposed2–4 where
instead of relying on features from direct articulatory measurements, abstracted articu-
latory knowledge is incorporated in designing models [e.g., dynamic Bayesian network
(DBN), hidden Markov model (HMM)] which can be gainfully used for automatic
speech recognition. A summary of such techniques can be found in McDermott and
Nakamura (2006).5 Multi-steam architectures6 have been also proposed as an alterna-
tive approach where linguistically derived articulatory (or more generally, phonetic)
features are estimated from the acoustic speech signal, typically using artificial neural
networks (ANN), and then used to either replace or augment acoustic observations in
an existing HMM based speech recognition system.

In the context of articulatory data-driven approaches for speech recognition,
acoustic-to- articulatory inversion offers a promising venue.7–9 The goal of acoustic-to-
articulatory inversion is to estimate the vocal tract shape or articulatory trajectories
from a talker’s speech; the estimated articulatory information can in turn be used for
improving speech recognition. However, estimating articulatory trajectories for an arbi-
trary talker is quite challenging without having access to parallel articulatory-acoustic
training data from that talker. This is because the shape and size of the vocal tract and
articulators vary across subjects and so do their speaking styles. The requirement of
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talker-specific training data for inversion in fact has been a major impediment in devel-
oping automatic speech recognizers that can exploit such estimated articulatory
features. Recently we proposed a subject-independent approach to inversion,10 where
parallel articulatory-acoustic training data from one exemplary subject (we refer here
as “exemplar”) can be used to estimate articulatory features from any arbitrary talker’s
speech. It was shown that the resulting estimated trajectories are significantly corre-
lated to the measured articulatory trajectories from the talker. Thus, the subject-
independent inversion offers us a potential way to develop an articulatory-data based
approach for speech recognition. It should be noted that when the talker and exemplar
are different, acoustic adaption techniques11 can be used to normalize the talker’s and
exemplar’s acoustic differences before performing acoustic-to-articulatory inversion.
However, adaptation may not be a feasible option when a single utterance from the
talker is available for recognition because one utterance may not provide sufficient
acoustic data for adapting exemplar’s acoustic model.

The goal in this paper is to experimentally study the effectiveness of using
articulatory features estimated through subject-independent inversion for speech recog-
nition. The experiments are performed using parallel acoustic and articulatory data
from three native speakers of English from two distinct databases. Automatic speech
recognition experiments using both acoustic-only speech features and joint acoustic-
articulatory features are performed for each subject (talker) separately. To experimen-
tally explore the effect of using estimates derived from different articulatory-acoustic
maps (i.e., exemplars), we cross-test each exemplar-based model against the data of the
others. Thus for each subject in our study, we have three different estimates of the
articulatory features (using two other subjects and the talker itself as exemplars) as
well as the original articulatory features—overall, four different versions of the articu-
latory features for each subject. We investigate the nature of acoustic-articulatory rec-
ognition accuracy compared to acoustic-only recognition accuracy for the different
versions of the articulatory features. The availability of direct articulatory data allows
us to investigate the extent and nature of the recognition benefit we can obtain when
we replace the original articulatory features by the estimated ones. We next describe
the articulatory datasets used in this work.

2. Datasets and features

The present study uses articulatory-acoustic data drawn from two different sources. The
first one is from the multichannel articulatory (MOCHA) database12 that contains elec-
tromagnetic articulography (EMA) data for 460 utterances (�20 min) read by a male
and a female talker of British English. We refer to these subjects as EN_RD_MALE
and EN_RD_FEMALE, respectively. The EMA data consist of trajectories of sensors
placed in the midsagittal plane of the subject on upper lip (UL), lower lip (LL), jaw
(LI), tongue tip (TT), tongue body (TB), tongue dorsum (TD), and velum (V).

The second source of parallel articulatory-acoustic data comes from the EMA
data collected at the University of Southern California (USC) from a male talker of
American English (EN_SP_MALE) as a part of the Multi-University Research Initia-
tive (MURI) project.13 In contrast to the read speech in the MOCHA database, the
articulatory data in the MURI database were collected when the subject was engaged
in a spontaneous conversation (�50 min) with an interlocutor. Unlike MOCHA, the
second corpus has articulatory position data only for UL, LL, LI, TT, TB, and TD.
The articulatory data from the MURI corpus are preprocessed, in a manner similar to
that used for the MOCHA database, to obtain a frame rate of 100 Hz.

To specify articulatory features, we have used the tract variable (TV) defini-
tion14 motivated by the basic role of constriction formation during speech production in
articulatory phonology.15 The data from the three subjects we have considered in this
study do not correspond to identical set of articulators; thus, for consistency, we have
chosen five TV features for each subject, namely, lip aperture (LA), lip protrusion
(PRO), jaw opening (JAW_OPEN), tongue tip constriction degree (TTCD), and tongue
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body constriction degree (TBCD). These TV features are illustrated in Fig. 1 and are
computed from the raw position values of the sensors using the definitions given by
Ghosh et al.10 We use 13-dimensional mel frequency cepstral co-efficients (MFCCs) as
speech acoustic features at a frame rate (100 Hz) identical to the rate of the articulatory
features.

The implementation of subject-independent inversion10 requires a generic
acoustic model, the design of which requires a large acoustic speech corpus. For this
purpose, we have considered the speech data from the TIMIT16 corpus. Because
TIMIT is a phonetically balanced database of English and our experiments are limited
to English talkers, we assume the TIMIT training corpus adequately represents all var-
iabilities in acoustic space required for subject-independent inversion.

3. Subject-independent inversion

In subject-independent acoustic-to-articulatory inversion,10 the articulatory-to-acoustic
map of an “exemplar” is used to estimate the articulatory trajectory corresponding to
any arbitrary talker’s speech. The inversion scheme itself is based on the generalized
smoothness criterion based approach recently proposed.17 Because the acoustics of the
“exemplar” and the talker can be, in general, different, the basic idea of enabling
subject-independent inversion10 is to normalize this inter-subject acoustic variability by
computing the likelihood of the acoustic features for both the exemplar and the target
talker using a general acoustic model and predict the articulatory position values based
on the closeness between likelihood scores. Because the articulatory configuration of the
“exemplar” is in general different from that of the talker, it was shown in Ref. 10 that
the range and values of the estimated articulatory trajectories correspond to those of the
exemplar’s articulatory trajectories as if the exemplar spoke the target utterance spoken
by the talker.

To examine the correlation values between the original (x) and estimated TV
features (x̂), we report the average correlation coefficients (q) in Table 1 computed over
all utterances calculated by considering in turn each of the three subjects in our data set
as an exemplar and the others two as the talker. For each exemplar and talker combina-
tion, we also performed a linear regression analysis x̂ ¼ axþ bþ e; e � N 0; r2

� �
and a

hypothesis test on the slope a (H0: a¼ 0, Ha: a= 0) for each TV feature. We found that
the estimated feature values have a significant correlation (P value¼ 10–5) with the origi-
nal ones (i.e., there is sufficient evidence to reject the null hypothesis H0). To investigate

Fig. 1. Illustration of the TV features in the midsagittal plane.
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the potential benefit of these estimated articulatory feature to automatic speech recogni-
tion, we performed experiments using the estimated TV features and compared the
results with those obtained by using the measured (original) TV features.

4. Automatic speech recognition experiments

Our experiment focuses on a frame-based broad-class phonetic classification using
GMM classifiers using data from each of the three subjects. Because we do not have
sufficient data to train a full fledged HMM-based automatic speech recognition system,
we assume the frame- based phonetic classification accuracy to be indicative of the rec-
ognition performance. The phone boundaries were obtained using the forced-alignment
module in the SONIC recognizer18 using an acoustic model set of 51 phones. Because
the total number of frames corresponding to some phones was too few in our data to
build individual GMMs for them, we grouped the data into five broad phone classes,
namely, vowel, fricative, stops, nasal, and silence. Ninety percent of each subject’s
data (acoustic as well as articulatory) was used for training, and the remaining 10%
was used as test set in a ten-fold cross validation setup. Note that in addition to origi-
nal articulatory features, we also have three different estimates of the articulatory fea-
tures for each subject from subject-independent acoustic-to-articulatory inversion by
using the remaining two subjects as well as the talker himself as exemplars. When the
talker is used as exemplar, the parallel acoustic-articulatory data in the training set for
each fold is used as the training set for acoustic-to-articulatory inversion and the artic-
ulatory features for the utterances in the test set are estimated.

The feature space corresponding to each broad phone class is modeled using
GMMs with four mixtures, and each mixture is modeled with multivariate Gaussian
distribution with full co-variance matrices. The GMM parameters were estimated using
the expectation maximization (EM) algorithm.19 Each test frame is classified as one of
the five broad phonetic categories using a max-a posteriori (MAP) rule. Table 2 shows
the acoustic and acoustic-articulatory feature (using both original and estimated articu-
latory features) based phonetic classification accuracies for each English talker sepa-
rately. Average classification accuracy using just acoustic features (MFCC) over 10-fold
cross validation is reported in Table 2.20 In addition, average accuracies for each talker
are reported when estimated articulatory features are used to augment acoustic feature
vectors. This allows us to compare the classification performance for the different exem-
plar choices. Table 2 also shows the average accuracy when the acoustic feature vector
is augmented with the directly measured (original) articulatory features. We perform
the Wilcoxon test21 between acoustic-only and acoustic-articulatory feature based classi-
fication to investigate whether there is any significant improvement for including articu-
latory features. The P value resulting from the Wilcoxon test is reported next to the av-
erage accuracy. A lower P value indicates more significant improvement in the
classification accuracy. In Table 2, we mark the accuracies by “bold” when the average
classification accuracy using acoustic-articulatory feature is significantly better at 95%

Table 1. Average correlation coefficient (q) between original and estimated TV features for different talker and
exemplar combinations.

q for different TV features

Test subject Exemplar LA PRO JAW_OPEN TTCD TBCD

EN_RD_MALE EN_RD_FEMALE 0.45 0.20 0.58 0.60 0.63
EN_SP_MALE 0.50 0.29 0.59 0.59 0.62

EN_RD_FEMALE EN_RD_MALE 0.45 0.16 0.63 0.69 0.65
EN_SP_MALE 0.60 0.15 0.66 0.73 0.59

EN_SP_MALE EN_RD_FEMALE 0.55 0.28 0.52 0.70 0.62
EN_RD_MALE 0.36 0.29 0.44 0.65 0.64
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significance level than just with the acoustic feature. We also mark the highest acoustic-
articulatory phonetic classification accuracy for individual subject by “underline.”

5. Discussion of the experimental results

The results of Table 2 show that the frame-based phonetic classification accuracy for all
the English talkers significantly improves when the measured (original) TV features are
used to augment the acoustic features. When the original TV features are replaced with
the estimated TV features, the nature of improvement obtained depends on the charac-
teristics of the “exemplar” used to estimate the TV features. We also observe that the
benefit due to original articulatory features is more compared to that due to estimated
articulatory features for each talker considered in this experiment. This observation sug-
gests that the better estimates of the articulatory features could lead to better phonetic
classification accuracy. The selection of “exemplar” also plays a crucial role in deter-
mining the quality of the articulatory estimates and, hence, the recognition benefit. For
example, when we consider EN_RD_MALE or EN_RD_FEMALE as talker, the
improvement in classification due to EN_RD_FEMALE and EN_RD_MALE as exem-
plars is more than that due to EN_SP_MALE as exemplar. This could be due to the
fact that EN_RD_MALE and EN_RD_FEMALE are British English talkers and
EN_SP_MALE an American English talker. Furthermore the MOCHA TIMIT repre-
sents read speech while the USC MURI database, spontaneous speech, and this could
contribute to poor estimates due to increased talker-exemplar speaking style mismatch.
It is also interesting to observe that the EN_SP_MALE exemplar and EN_RD_MALE
talker are of the same gender, yet an exemplar of a different gender (EN_RD_FE-
MALE) provided more phonetic classification accuracy for EN_RD_MALE talker.
When we consider the American English talker (EN_SP_MALE), we find the classifica-
tion improvement obtained using British English subjects as exemplars is not statisti-
cally significant. This means that the general acoustic space in subject-independent
inversion could account for gender differences more effectively compared to speaking
dialectal and style differences between the talker and the exemplar.

Finally, frame-based phonetic classification experiments with articulatory fea-
tures estimated using identical exemplar-talker combination were performed to exam-
ine the extent of improvement in classification when the talker’s articulatory-to-acous-
tic map itself is used for subject-independent inversion. For every training-test set
combination of individual talkers, the parallel articulatory and acoustic data of the
training set are used to estimate the articulatory features for the test sentences. It
appears that the use of identical talker and exemplar does not always guarantee the
maximum improvement in phonetic classification among different exemplars. This may
reflect the data limitations in deriving articulatory–acoustic maps that can cover the
range of expected test feature variability. For example, when EN_RD_MALE is con-
sidered as talker, the exemplar EN_RD_FEMALE of similar speaking style resulted in

Table 2. Average phonetic classification accuracy using acoustic and acoustic-articulatory (both measured and
estimated) features separately for each English subject. P values indicate the significance in the change of classi-
fication accuracy from the acoustic to acoustic-articulatory feature based phonetic classification.

Acoustic-articulatory accuracy (P value)

Using exemplar (%)

Talker
Acoustic only
accuracy (%)

Using original TV
features (%) EN_RD_MALE EN_RD_FEMALE EN_SP_MALE

EN_RD_MALE 76.79 79.05 (0.002) 77.37 (0.002) 77.99 (0.002) 77.23 (0.020)
EN_RD_FEMALE 79.10 81.28 (0.002) 80.25 (0.002) 80.16 (0.002) 79.75 (0.010)
EN_SP_MALE 74.84 76.29 (0.002) 74.87 (0.084) 74.97 (0.131) 75.17 (0.002)
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more benefit compared to that using identical talker-exemplar scenario. This also holds
for EN_RD_FEMALE talker and EN_RD_MALE exemplar. However, for EN_SP_-
MALE talker, the identical talker-exemplar combination provides the highest improve-
ment in phonetic classification among other exemplars.

Thus, the choice of “exemplar” plays a critical role to improve the recognition
for a given talker. Our results suggest that when the “exemplar” is chosen to have
same speaking style as that of the talker, there is a significant benefit in using estimated
articulatory features in addition to the acoustic features to improve speech recognition.

6. Conclusions

We investigated the potential of using articulatory features estimated through acoustic-
articulatory inversion in automatic speech recognition. We conducted subject-specific
broad- class phonetic classification experiments using data from three different native
English speaking subjects. We find that the selection of “exemplar” for the subject-
independent acoustic-to- articulatory inversion has a critical impact on the quality of
the articulatory feature estimates and, hence, the final phonetic classification accuracy.
In particular, our experimental results suggest that when the talker and the “exemplar”
characteristics are matched in their speaking styles, the improvement in classification
due to estimated articulatory features is significant.
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