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ABSTRACT: This paper presents automated methods for facilitating after action review in team training exercises. Much of 
the learning from team training arises from frank after-the-fact discussions of the exercise, combining individual attributions 
of blame or credit into a more objective view of what transpired.  These individual attributions are social judgments involv-
ing not only causality but also explanations of individual responsibility, free will and mitigating circumstances. Such judg-
ments are a key aspect of social intelligence and underlie social planning, social learning, natural language pragmatics and 
computational models of emotion. Here we introduce a computational model of this judgment process based on psychologi-
cal Attribution Theory and discuss its potential to facilitate after action review in team training.  

 

1 Introduction 

This paper addresses an important issue in team training: 
the problem of giving credit where credit is due when 
multiple parties are involved in a training exercise. Many 
training applications such as military training or urban 
disaster simulations involve distributed decision-making 
and distributed knowledge.  No one individual has com-
plete authority or complete access to information. The 
shared nature of group training considerably complicates 
the problem of generating feedback to individuals on 
where they are performing well, where they need im-
provement, and whether perceived failures are actually 
outside the individual’s control.  In this article we intro-

duce automated techniques that facilitate credit assign-
ment in team training simulations. 

Team training simulations provide individual procedural 
training during the course of the exercise, but much of the 
learning occurs after the fact, through the process of after 
action review (AAR).  This is an after-the-fact discussion 
of an exercise where participants can discuss events from 
multiple perspectives and come to an individual under-
standing of what happened, why, and how to sustain 
strengths and improve weaknesses.  Bring together con-
trasting explanations is often the key element in AAR.  In a 
team exercise, individuals view success and failure through 
the lens of their individual perceptions and decisions, but 
given the distributed nature of these exercises, an individ-



ual’s perspective is frequently biased or misleading.  For 
example, what seems like a bad decision from the perspec-
tive of a subordinate might make more sense if he were 
placed in his commander’s shoes.  By collectively discuss-
ing events after the fact, decision makers can come to a 
truer understanding of who did what, why, and how they 
can do better the next time.  

Underlying AAR is the problem of forming social explana-
tions. In reflecting on an exercise, individuals must form 
judgments not only of causality but individual responsibil-
ity, free will and mitigating circumstances.  Did an indi-
vidual choice cause a significant outcome?  Were they 
simply following orders? Did they agree with the orders 
and, if not, was this disagreement communicated to their 
superiors?  By eliciting such social explanations, individu-
als can move beyond their gut feelings about the exercise 
and contrast and compare the factors underlying these at-
tributions.   

Facilitating an effective AAR is an art and it is particu-
larly difficult in large training simulations. Effective 
AAR demands an expert facilitator that has a sense of the 
key events in the exercise and can guide and focus the 
discussion.  It also demands that participants can reflect 
on their individual attributions of blame and credit and 
relate the underlying factors that led to them.  Neither 
demand is easily met. For example in military exercises 
such as the Simulated Theater of War (STOW), thou-
sands of entities involved. Decisions are being made at 
multiple levels in the command hierarchy, and many de-
cision-makers are autonomous or semi-autonomous 
agents with opaque reasoning processes.  In such exer-
cises, facilitators can be easily overwhelmed by the com-
plexity of the exercise and many of the key decision-

makers (e.g. the autonomous agents) are incapable of 
participating in the AAR process.  

This paper lies out a preliminary computational approach 
to forming social explanations based on psychological 
attribution theory. We see several immediate applications 
of this model. Here we focus on its potential to facilitate 
the after action review process.  We see two complemen-
tary vectors to apply this technology to AAR.  First, these 
techniques can assist an AAR facilitator by analyzing 
features of a simulation and communication between in-
dividual decision-makers, and identifying key decision 
events where a different decision or better information 
may have led to a better outcome. Second, by incorporat-
ing social credit attributions into autonomous agents, 
these agents can form social judgments from their own 
perspective and potentially participate in the AAR proc-
ess, for instance, by answering questions on whom they 
blame and why. 

2 Motivating Example 
We have been developing these techniques in the context 
of an Army leadership-training simulator [Rickel et al., 
2002], and an example from this system illustrates the so-
cial factors involved in judgments of blame and credit. The 
Mission Rehearsal Exercise (MRE) is a virtual reality 
training environment designed to teach decision-making 
skills in high-stakes social situations. Intelligent agents 
control characters (virtual humans) in the virtual environ-
ment, playing the roles of locals, friendly and hostile 
forces, and other mission team members.  The goal is to 
support realistic face-to-face interactions, requiring an em-
phasis on creating “broad agents” that integrate motor 
skills, problem solving, emotion, gestures, facial expres-
sions, and language. The virtual humans engage in task-
oriented reasoning, and communicate through verbal and 
non-verbal behavior, including emotional responses.  The 
goal is to support training the social and human-centered 
aspects of command decision making. 

Although the MRE has currently focused on small unit 
operations, it embodies essential features of many group 
decision-making problems, including the fact that author-
ity, decision-making responsibility, and perception are 
distributed across a group of individuals. In the simula-
tion, the trainee is placed in command of an infantry pla-
toon, Eagle 2-6, supporting peacekeeping operations near 
the Bosnian city of Celic. The trainee’s mission is to rein-
force another unit, Eagle 1-6.  In route, one of his vehi-
cles seriously injures a civilian, and the international 
press is already on scene. The trainee must balance 
whether to continue the mission or render aid. Many de-
cisions and outcomes are possible. In the following ex-
ample, the trainee decides to split his forces, ordering his 
sergeant to send half of his squads to aid the other unit. 
His sergeant responds that this is a bad idea; it will allo-

Figure 1: Interaction between the trainee and autonomous 
characters in the Mission Rehearsal Exercise 



cate insufficient forces to either goal, and instead, one 
squad should be sent ahead to scout the route. The trainee 
overrules this recommendation, restating the original or-
der. In the end, the trainee finds he has insufficient re-
sources to render aid in a timely manner, a fact that is 
duly noted in the nightly news. The central question ad-
dressed here is to assess who, if anyone deserves blame 
for this unfortunate outcome.  Did the trainee truly have a 
more effective alternative?  Did he have sufficient infor-
mation to make an effective decision? Was the problem 
with the order or how it was carried out?  

Individuals may differ in whom they praise or blame in a 
specific situation, but psychologists agree on the broad 
features individuals use to make such judgments. Did the 
agent cause the outcome? Did he/she intend the act? Did 
he/she know the consequence? Did he/she have choice or 
was he/she coerced by another agent? In the example, we 
may infer from the conversation that there were alterna-
tives and the sergeant was coerced by the trainee to fol-
low an undesirable course of action. We can further sur-
mise that the trainee must have known the consequence 
since his sergeant said so. Baring unknown mitigating 
factors (e.g. the sergeant always gave bad advice in the 
past), we would likely conclude that the trainee is to 
blame for the delay and negative press. This example 
shows that proper assignment of credit or blame in a so-
cial setting must not only consider the actions (both 
physical acts and speech acts) and knowledge state of 
different actors, but also need to make use of information 
available to reason about key attributions that contribute 
to the judgment process. 

3 Attribution Theory for Social Judgment 
The assignment of social credit or blame has been studied 
extensively in philosophy, law, and social psychology. As 
our primary goal is to inform the design of training simula-
tions that model human behavior [Gratch et al., 2002], our 
models focus on descriptive rather than proscriptive mod-
els (i.e., what people do rather than what they should do).  
In contrast, much of the related work on AI has focused on 
trying to identify "ideal" principles of responsibility (e.g. 
the legal code or philosophical principles) and ideal 
mechanisms to reason about these, typically contradictory 
principles (e.g., non-monotonic or case-based reasoning) 
[McCarty, 1997].  

In modeling the assignment of social credit, we build on 
psychological attribution theory, specifically the work of 
Weiner [1995] and Shaver [1985] as they are readily 
adapted to artificial intelligence knowledge representa-
tion and reasoning methods. Shaver’s model is illustrated 
in Figure 2. In these models, the assignment of 
credit/blame is a multi-step process that is initiated by 
events with positive or negative consequences. First one 
assesses causality, distinguishing between personal ver-
sus impersonal causality (i.e. whether the consequence is 
caused by a human or by environmental factors). If 
caused by a human, judgment proceeds by assessing key 
factors: was it the actor’s intention to produce the out-
come; did the actor foresee its occurrence; was the actor 
forced under coercion (e.g., was the actor acting under 
orders)? As the last step of the process, proper degree of 
credit/blame is assigned to the responsible agent. Causal-

 



ity, intention and foreseeability map to standard concepts 
in agent-based systems, particularly frameworks that ex-
plicitly represent beliefs, desires and intentions [Bratman, 
1987; Pollack, 1990; Grosz and Kraus, 1996]. Coercion 
requires some representation of social relationships and 
some understanding of the extent to which the coercion 
limits one’s range of options.  For example, one may be 
ordered to carry out a task but to satisfy the order, there 
may be many alternative ways that vary blame or credit-
worthiness.   

A system to support the AAR process based on attribu-
tion theory must be able to rapidly scan a trace of simula-
tion events to assess instances of causality, intentionality, 
foreknowledge and coercion. In a standard AAR process, 
this knowledge comes from asking people to elicit their 
mental state at the time of certain simulation events.  
When a simulation involves computer-generated decision 
makers, it may be possible to encode such information 
directly in the simulation trace [Johnson, 1994].  In gen-
eral, however, we would like to model the process that 
people generally use in attributing credit/blame, rather 
than assume the perceiving agent has privileged access to 
other’s mental state.   In human social interactions, such 
attributions are gleaned from a variety of sources: from 
observation of behavior, from statements made through 
natural language, from knowledge and models built up 
through past interactions, stereotypes, and cultural norms. 
We show how to infer such information by analyzing 
communication traces between entities and by making 
use of agents’ knowledge of actions and consequences 
and commonsense intuition. 
3.1 Representation 
Automated techniques to inform social judgments must 
have some representation of the team exercise including 
task knowledge (e.g., tasks, their effects, alternative 
courses of actions), state knowledge (e.g., information 
from sensors and communication events) and social 
knowledge (e.g., power relationships between individuals 
and social obligations).  We build on standard representa-
tions that have been developed by planning and communi-
cation researchers. 

Tasks consist of a set of steps, each of which is either a 
primitive action (e.g., a physical or sensing action in the 
virtual world) or an abstract action.  Abstract actions may 
be decomposed hierarchically in multiple ways and each 
decomposition consists of a sequence of abstract or 
primitive sub-actions. Interdependencies among steps are 
represented as a set of causal links and threat relations. 
Each causal link specifies that an effect of a step achieves 
a particular goal that is a precondition for another step.  
For example, marking a landing zone with smoke 
achieves the goal of visually identifying the landing zone 
for the helicopter, which is a precondition for landing it. 

Threat relations specify that an effect of a step threatens a 
causal link by making the goal unachievable before it is 
needed.  For example, extinguishing the smoke before the 
helicopter arrives threatens its ability to land.   

In addition to understanding the structure of tasks, agents 
must understand the roles of each team member.  Each 
task step is associated with the team member that per-
forms it, the performer.  In addition, each task step may 
be annotated with the teammate who has authority over 
its execution: the performer of a task step cannot execute 
it until authorization is given by the specified teammate 
with authority.  This requires modeling hierarchical or-
ganizational structure of social teams, such as in the mili-
tary. 

Finally, we must model the impact of communication 
events between entities in the simulation. We follow the 
Trindi project approach to communication management 
[Larsson and Traum, 2000]. This approach maintains an 
explicit information state that is updated by dialogue 
moves.  For example, an assertion by a speaker is a dia-
logue move that has the effect of establishing a commit-
ment by the speaker that the assertion is true. Orders, on 
the other hand, can only be issued by a superior to a sub-
ordinate in the social structure and have as their effect a 
social obligation for the subordinate to perform the con-
tent of the action.  

3.2 From theory to computational approach 
Given the representation, we can now revisit the question 
of representing the core conceptual variables underlying 
Shaver and Weiner’s attribution theories.  

Causality: Causal knowledge is encoded via hierarchical 
task representation. Each action consists of a set of pre-
conditions and effects. The desirability of action effects 
(i.e. effects having positive/negative significance to an 
agent) is represented by utility values [Blythe, 1999].  

A non-decision node is an abstract action that can only be 
decomposed in one way. A decision node, on the other 
hand, can be decomposed in more than one way. In a 
decision node, an agent needs to make a decision and 
select among different choices. If a decision node A can 
be decomposed in different ways a1, a2, …, an, we call a1, 
a2, …, an choices of action A, and a1, a2, …, an are called 
alternatives of each other. Clearly, a primitive action is a 
non-decision node, while an abstract action can be either 
a non-decision node or a decision node.  

Consequences or outcomes (we use these two terms 
equally in this paper) of actions are represented as a set of 
primitive action effects. The consequence set of an action 
A can be defined recursively from leaf nodes (i.e. primi-
tive actions) in plan structure to action A as follows. Con-



sequences of a primitive action are those effects with 
non-zero utility. For an abstract action, if the abstract 
action is a non-decision node, then the consequence set of 
the abstract action is the aggregation of the consequences 
of its sub-actions. If the abstract action is a decision node, 
we need to differentiate two kinds of consequences. If 
consequence p occurs among all the choices of a decision 
node, we call p a common consequence of the decision 
node; otherwise p is a non-common consequence of the 
decision node. Consequence set of a decision node is 
defined as the set of its common consequences. 

Foreseeability refers to an agent’s foreknowledge about 
actions and consequences. We use know and bring-about 
to express foreseeability. If an agent knows an action A 
brings about a consequence p before the execution of A, 
then the agent foresees A brings about p.  

Intentionality: Intention is generally conceived as a 
commitment to work toward a certain act or outcome. A 
key question of credit assignment is distinguishing 
whether an entity intends an act (act intent) versus 
whether it intends specific consequences of the action 
(outcome intent). Most theories argue that outcome intent 
rather than act intent is the key factor in determining 
credit/blame. This is illustrated by the package deal prob-
lem [Bratman, 1990]. Say military planners wish to bomb 
a weapons factory but a school is placed within the fac-
tory.  One might assume the planners intend the act of 
bombing and intend the outcome of destroying the fac-
tory but not intend the outcome of destroying the school. 

Following the notations in [Grosz and Kraus, 1996], we 
use intend-to and intend-that to distinguish act intention 
and outcome intention. But since our work is applied to 
richer social context, we extend the meaning of intend-to 
to include indirect cases. One case is that an agent may 
intend to act, but may not be the actor himself/herself 
(e.g. by ordering another agent to act). Another case is 
that an agent may intend to act but is coerced to do so. 
Intend-that, on the contrary, is used in a more restricted 
manner. Because of the nature of our problem, we always 
specify intending an outcome of which action. 

Coercion: Similar difference exists in act coercion and 
outcome coercion. An agent may be coerced to act yet 
not be necessarily coerced to achieve any specific out-
come assuming if there are multiple ways to achieve the 
task. It is important to differentiate being coerced to act 
and being coerced to achieve consequence(s) of the ac-
tion, because it is the latter that actually influence our 
judgment of behavior, and is used to determine praise-
worthy/blameworthy agent. We use coerced-to and co-
erced-that to distinguish coerced actions and coerced 
consequences. In the case of outcome coercion (i.e. co-
erced-that is true), the responsible agent for a conse-

quence is the performer of an action or the entity that has 
authority over the action, but the action may not be the 
primitive one that directly leads to the outcome.  

3.3 The Attribution Process 
Social credit attributions are always from a perceiver’s 
perspective. For the purposes of AAR, this could be a 
global perspective with access to all simulation events and 
communications if the goal is to inform an exercise con-
troller.  Or it could be from the perspective of a key deci-
sion maker if the goal is to allow an autonomous agent to 
answer questions during the AAR process. Since different 
perceivers may have different goals, different observations, 
and different knowledge about the world, it may well be 
the case that for the same situation, different perceivers 
form different judgments. For example, an agent may not 
think himself/herself is blameworthy, but the perceiver 
thinks the agent is.  

Nevertheless, the attribution process is general, and ap-
plied uniformly to different perceivers. If an action per-
formed by an agent brings about positive/negative conse-
quence, and the agent is not coerced to achieve the con-
sequence, then credit/blame is assigned to the performer 
of the action. Otherwise, assign credit/blame to the au-
thority. If the authority is in turn coerced, the process 
needs to trace further up the hierarchy to find the respon-
sible agent for the consequence.  

Coercion is used to determine the praisewor-
thy/blameworthy agent, while intention and foreseeability 
are used in assigning the degree of praiseworthiness/ 
blameworthiness. We use a simple categorical model of 
intensity assignment, though one could readily extend the 
model to a numeric intensity value by incorporating 
probabilistic rules of inference. If the responsible agent 
intends a consequence while acting, the intensity assigned 
is high. If the responsible agent does not foresee the con-
sequence, the intensity is low. 

4 Inference from Communication and Plans 
Judgments of causality, forseeablity, intentionality and 
coercion are informed by evidence extracted from commu-
nication events and from task knowledge.  We have devel-
oped a number of commonsense rules that allow an auto-
mated system to make inferences based on this evidence.  

4.1 Inferring from Communication Events 
Group simulations often explicitly represent communica-
tion events between entities and considerable attribution-
relevant information can be extracted from this communi-
cation.  For example, languages like CCSIL [Salisbury, 
1995] or KQML [Finin et al., 1994] represent communica-
tion between entities in terms of abstract speech acts [Aus-
tin, 1962; Searle, 1969].  When a simulation involves natu-
ral language communication between human participants, 



underlying speech acts can be acquire using natural lan-
guage processing technology.  

We assume communication between agents is grounded 
[Traum, 1994] and agents communicate sincerely and 
relevantly in conversation [Grice’s maxims, 1975]. Back-
ground information (e.g. agents’ social roles, relationship, 
etc) is also important, for example, an order can be suc-
cessfully issued only to subordinates; but a request can be 
made of any agent.  

When a speech act is performed, a perceiving agent ob-
serves the conversation and makes inferences based on 
his/her beliefs. As the conversation proceeds, the per-
ceiver acquires new beliefs and updates inferences ac-
cordingly. 

For our purpose, we are interested in analyzing speech 
acts that help infer agents’ desires, intentions, foreknowl-
edge and choices in acting. We consider the following 
speech acts (x and y are different agents. A and B are ac-
tions. p is a proposition and t is a time stamp): 

inform(x, y, p, t): x informs y that p at time t. 
order(x, y, A, t): x orders y to do A at time t. 
request(x, y, A, t): x requests y to do A at time t. 
accept(x, A, t): x accepts to do A at time t. 
reject(x, A, t): x rejects to do A at time t. 
counterpropose(x, A, B, y, t): x counters A and proposes B to y at time t. 

We have identified several commonsense inference rules 
that allow perceiving agents to form inferences from 
communication patterns.  These rules are general, so can 
be combined flexibly and applied to variable communica-
tion sequences of multiple participants. Here we illustrate 
two to give a flavor of the approach. 

An order or a request gives evidence that the speaker 
desires the listener to act: 

order(y, z, A, t1) ∧ t1<t2 ∧ ¬(∃t3)(t1<t3<t2 ∧ believe(x, ¬want(y, 
do(z, A)), t3)) => believe(x, want(y, do(z, A)), t2) 
request(y, z, A, t1) ∧ t1<t2 ∧ ¬(∃t3)(t1<t3<t2 ∧ believe(x, ¬want(y, 
do(z, A)), t3)) => believe(x, want(y, do(z, A)), t2) 

The listener may accept, reject or counter-propose an 
order/request. Various inferences can be made depending 
on the response and the power relationship between the 
speaker and the listener. For instance, if the listener ac-
cepts an act wanted by a superior, there is evidence of 
coercion, and the speaker is viewed as the coercing agent 
of the action.  

believe(x, want(y, do(z, A)), t1) ∧ accept(z, A, t2) ∧ t1<t2<t3 ∧ 
¬(∃t4)(t2<t4<t3 ∧ believe(x, ¬intend-to(z, A), t4)) => believe(x, in-
tend-to(z, A), t3) 
believe(x, want(y, do(z, A)), t1) ∧ accept(z, A, t2) ∧ superior(y, z) ∧ 
t1<t2<t3 ∧ ¬(∃t4)(t2<t4<t3 ∧ believe(x, ¬coerced-to(z, A), t4)) => be-
lieve(x, coerced-to(z, A), t3) 

Because being coerced to act implies intending to act, the 
two forms of the rule are consistent. The second form is 
more specific and thus overrides the first one if both are 
activated. 

4.2 Inferring from Plans 
Conversational dialogs and Speech acts provide informa-
tion about agents’ intentions and choices in acting, i.e. in-
tend-to and coerced-to, but the attribution process actually 
uses intend-that and coerced-that for judgment. So we 
need to solve the problem of inferring outcome intention 
and outcome coercion from act intention and act coercion. 

Different agent may have access to different plans in 
memory. While plans are specific to certain domain, the 
structure of plans can be described using domain-
independent terms such as action types, alternatives and 
action effects. To solve the problem in a general way, we 
make use of the hierarchical task structures, by differenti-
ating action types, comparing consequences of alterna-
tives, and separating common consequences of an action 
from its non-common ones. 

Inferring Outcome Intents from Act Intents 
A key question in assigning blame is distinguishing 
whether an entity intends an act (act intent) and whether 
the entity intends certain consequences and side effects of 
that action (outcome intent).  A number of rules of evi-
dence can assess these distinctions by considering the task 
structure.  For example, if an entity intends to perform an 
act, the entity must intend to achieve (at least) one conse-
quence of the action. If the action has only one conse-
quence, then the entity must intend that consequence. In 
more general cases, when an action has multiple conse-
quences, to infer an entity’s intention in achieving a par-
ticular outcome, a perceiver may examine alternative acts 
the agent intends and does not intend, and compare the 
consequences of intended and unintended alternatives.   

We have developed a number of rules of evidence to dis-
tinguish intend-to from intend-that.  For example, con-
sider the case illustrated in Figure 4 where there are two 
alternatives ways to decompose an act (one-squad-
forward or two-squads-forward).  From the sergeant’s 
perspective, these alternatives have similar consequences 
with the exception that two squads-forward has an addi-
tional consequence that the sergeant considers bad.  If in 
particular, there is only one non-shared consequence p of 
A that does not occur in the consequence set of B, the 
agent must intend p. 

believe(x, intend-to(y, A)) ∧ believe(x, ¬coerced-to(y, A)) ∧ believe(x, 
¬intend-to(y, B)) ∧ believe(x, alternative(A, B)) ∧ believe(x, conse-
quence(B)⊂consequence(A)) => ∃p(believe(x, p∈consequence(A)) ∧ 
believe(x, p∉consequence(B)) ∧ believe(x, intend-that(y, p, A))) 



As one makes such inference, solutions to inferring out-
come intents are partial depending on the information 
available and comparative features of consequence sets of 
alternatives. 

Inferring Outcome Coercion from Act Coercion 
In a non-decision node, if an agent is coerced to act, the 
agent is also coerced to achieve the consequence of subse-
quent actions, for the agent has no other choice.  

believe(x, coerced-to(y, A)) ∧ believe(x, non-decision-node(A)) ∧ be-
lieve(x, p∈consequence(A)) => believe(x, coerced-that(y, p, A)) 

In a decision node, however, an agent must make deci-
sion amongst multiple choices. Even if an agent is co-
erced to act, it does not follow that the agent is coerced to 
achieve certain consequence of the subsequent actions. In 
order to infer coerced-that from coerced-to in a decision 
node, we can examine the choices of the decision node. If 
an outcome is a common consequence of the node, then it 
is unavoidable: coerced-that is true. Otherwise, if an out-
come is a non-common consequence of the node, which 
means the agent has option to choose the alternative that 
avoids this outcome, then coerced-that is false. Our defi-
nition of consequence set ensures the consistency when 
the rules are applied to the nodes of different levels in 
plan structure. 

Back-Tracing Algorithm 
Judgment of attributions is made after the fact (i.e. actions 
have been executed and the consequence has occurred). 
The evaluation process starts from the primitive action that 
directly causes a consequence with positive or negative 
utility. Since coercion may occur in more than one level in 
hierarchical plan structure, the process must trace from the 
primitive action to the higher-level actions. We use a back-
tracing algorithm to determine the responsible agent. The 
algorithm takes as input some desirable or undesirable 
consequence of a primitive action and works up the task 
hierarchy. During each pass through the main loop the 
algorithm uses dialogue and plan evidence rules to assign 

attributions at the current level (2.3). If there is evidence 
that the performer was coerced to act (2.4), rules of evi-
dence also assess outcome coercion (2.5). If there is out-
come coercion (2.6), the authority is deemed responsible 
(2.7). If current action is not the root node in plan struc-
ture and outcome coercion is true, the algorithm enters 
next loop and evaluates the next level up in the task hier-
archy.  

After the execution of the algorithm, the responsible 
agent for the outcome is determined. The algorithm may 
also acquire values of act intention and foreknowledge 
meanwhile. Then rules for inferring outcome intents can 
be applied to further determine the responsible agent’s 
intention in achieving the evaluated consequence. 

5 Illustration 
We illustrate the process of credit assignment through the 
MRE example introduced above. We focus on three social 
actors, the lieutenant, the sergeant and the squad leader, 
who work as a team in task performance. The lieutenant is 
a human trainee and acts as authority over the sergeant. 
The squad leader acts as a subordinate of the sergeant. 
Communications between agents are represented via 
speech acts and a conversation history as in the MRE.  

Take the sergeant’s perspective as an example. The ser-
geant perceives the conversation between the actors and 
task execution. Conversation history includes the follow-
ing acts, ordered by the time speakers addressed them. lt, 
sgt and sld stand for the lieutenant, the sergeant and the 
squad leader. t1<t2<…<t6.  

1. order(lt, sgt, two-squads-fwd, t1) 
2. inform(sgt, lt, bring-about(two-squads-fwd, unit-fractured, t2) 
3. counter-propose(sgt, lt, two-squads-fwd, one-squad-fwd, t3) 
4. order(lt, sgt, two-squads-fwd, t4) 
5. accept(sgt, two-squads-fwd, t5) 
6. order(sgt, sld, 1st-and-4th-forward, t6) 

··· ··· 

Figure 4 illustrates a partial plan the sergeant has access to. 
One squad forward and two squads forward are two 
choices of action support Eagle 1-6. One squad forward is 
composed of two primitive actions, 4th squad recon (for-
ward) and remaining (squads) forward. Two squads for-
ward consists of 1st and 4th (squads) forward and 2nd and 
3rd (squads) forward. Effects of primitive actions are 
shown under the graph. Assume two effects are salient to 
the sergeant. 1-6 supported is a desirable team goal. The 
sergeant assigns negative utility to unit fractured and that 
this consequence serves as input to the back-tracing algo-
rithm. We illustrate how to find the blameworthy agent 
given the sergeant’s knowledge and observations of com-
munication events and task execution. 
Loop 1: The algorithm starts from primitive action 1st-and-
4th-fwd, of which unit fractured is an effect. The sergeant 
perceived the action was executed by the squad leader.  

Algorithm (consequence, plan): 
1. parent=A, where effect of action A is consequence 
2. DO  

2.1 node=parent 
2.2 coerced-to(performer(node), node)=unknown 

coerced-that(performer(node),consequence, node)=unknown 
responsible(consequence)=performer(node) 

2.3 Search dialog history on node and apply dialog rules 
2.4 IF  coerced-to(performer(node), node) 
2.5 THEN  apply inference rules on node 
2.6 IF  coerced-that(performer(node), consequence, node) 
2.7 THEN  responsible(consequence)=authority(node) 
2.8 parent=P, where P is parent of node in plan 
WHILE parent≠root of plan AND coerced-that(performer(node), 

consequence, node) is true 
3. RETURN responsible(consequence), node 

Figure 3. Back-Tracing Algorithm 
 



Step 2.2: By default, coercd-to(sld, 1st-and-4th-fwd) is 
unknown, coerced-that(sld, unit-fractured, 1st-and-4th-
fwd) is unknown. Assign the squad leader to the respon-
sible agent. 

Step 2.3: Relevant conversation history is act 6. Since the 
sergeant ordered the squad leader the action, through in-
ference rules the algorithm infers that the sergeant be-
lieves that he wants the squad leader to act. Since the 
squad leader accepted by executing the action and the 
sergeant is the superior, the algorithm infers that the ser-
geant believes that he coerced the squad leader to act. 

Step 2.4−2.5: Since coerced-to is true and the primitive 
action is a non-decision node, then through the applica-
tion of an inference rule, the sergeant believes he coerced 
the squad leader to fracture the unit. 

Step 2.6−2.7: Since coerced-that is true, assign the coerc-
ing agent to the responsible agent. The sergeant believes 
he is responsible for unit-fractured. 

Since parent node is not the root in plan structure and co-
erced-that is true, the algorithm enters next loop. We leave 
the executions of subsequent loops to the reader. The main 
results are given below. 

Loop 2: The action is two-squads-fwd, performed by the 
sergeant. Relevant conversation history is sequence 1−5. 
A variety of beliefs can be inferred from commonsense 
rules by analyzing the task structure and communication 
history. 

believe(sgt, want(lt, do(sgt, two-squads-fwd)))                                        
believe(sgt, know(lt, bring-about(two-squads-fwd, unit-fractured)))         
believe(sgt, know(lt, alternative(one-squad-fwd, two-squads-fwd)))          
believe(sgt, intend-to(lt, two-squads-fwd))                                              
believe(sgt, ¬intend-to(lt, one-squad-fwd))                                               
believe(sgt, coerced-to(sgt, two-squads-fwd))                                             
believe(sgt, coerced-that(sgt, unit-fractured, two-squads-fwd))                   

After loop 2, the sergeant believes the lieutenant coerced 
him to fracture the unit. So the lieutenant is responsible 
for the outcome. 
Loop 3: The action is support-Eagle 1-6, performed by the 
lieutenant. There is no relevant conversation in history. 
The values of coerced-to, coerced-that and responsible 
agent are default. There is no clear evidence of coercion, so 
the sergeant believes that the lieutenant is the responsible 
agent. Parent node is the root in plan structure. The algo-
rithm terminates.  

Now the sergeant also has the belief that the student in-
tended to send two squads forward and did not intend to 
send one squad forward (acquired in loop 2). Since the 
consequence set of one-squad-fwd (i.e. 1-6-supported) is 

 
Support Eagle 1-6
Authority: lt
Performer: lt

One Squad Forward
Authority: lt
Performer: sgt

4th Squad Recon
Authority: sgt
Performer: sld

Remaining Fwd
Authority: sgt
Performer: sld

Two squads Forward
Authority: lt
Performer: sgt

1st & 4th Fwd
Authority: sgt
Performer: sld

2nd & 3rd Fwd
Authority: sgt
Performer: sld

AND AND

OR

Route Secure 1-6 supported

Unit fractured

1-6 supported Not fractured

Figure 4: Team Plan from Sergeant’s Perspective
 



subset of the consequence set of two-squads-fwd (i.e. 1-6-
supported and unit-fractured), through inference rules the 
algorithm determines the sergeant believes that the lieu-
tenant intended unit-fractured. So the lieutenant is to 
blame with high intensity. 

6 Conclusions 
A key element of the after action review process is to form 
social explanations of blame or credit and to allow various 
individuals to compare and contrast their individual expla-
nations in order to arrive at a more objective understanding 
of the group exercise.  In this article we present a prelimi-
nary computational approach to automate this social credit 
assignment process.  Two obvious applications of this 
model for AAR are in allowing synthetic agents to partici-
pate in the AAR process (by forming and relating their 
own social attributions) and by assisting a human AAR 
facilitator by automatically processing a global simulation 
trace and identifying key events or decisions that need dis-
cussion. 

The problem of social credit assignment is central in so-
cial psychology and social cognition. With the develop-
ment of human-like agent systems, it is increasingly im-
portant for computer-based systems to model this human-
centric form of social inference. Our work attempts to 
help bridge between psychological accounts and compu-
tational models by means of AI methods. Rather than 
impose arbitrary rules on judgment process, our work 
relies on commonsense heuristics of human inference 
from communication events and plans as knowledge 
states of agents. Our treatments are domain-independent, 
thus can be used as a general approach to the problem. 

In the future, we must incorporate probabilistic reasoning 
to deal with uncertainty in observations and judgment 
process. For modeling more complex multi-agent team-
work, we need to consider joint responsibility and sharing 
responsibility among teammates (the current model as-
sumes one agent has sole responsibility). The inferences 
related to foreseeability are too restrictive and need to 
make better use of plan knowledge, specifically consider-
ing how actions may be coerced not just directly through 
orders, but indirectly due to the effects of actions of other 
entities.  For example, an action taken by one entity may, 
with foreknowledge, coerce another entity to pursue a 
less desirable option. As our task representations already 
encode information about action preconditions and ef-
fects, this type of inference is a natural extension of our 
existing methods. 
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