
BARISTA: A FRAMEWORK FOR CONCURRENT SPEECH PROCESSING BY USC-SAIL

Doğan Can, James Gibson, Colin Vaz, Panayiotis G. Georgiou, Shrikanth S. Narayanan

Signal Analysis and Interpretation Lab, University of Southern California, CA 90089
dogancan@usc.edu, jjgibson@usc.edu, cvaz@usc.edu, georgiou@sipi.usc.edu, shri@sipi.usc.edu

ABSTRACT

We present Barista, an open-source framework for concur-

rent speech processing based on the Kaldi speech recognition

toolkit and the libcppa actor library. With Barista, we aim to

provide an easy-to-use, extensible framework for construct-

ing highly customizable concurrent (and/or distributed) net-

works for a variety of speech processing tasks. Each Barista

network specifies a flow of data between simple actors, con-

current entities communicating by message passing, modeled

after Kaldi tools. Leveraging the fast and reliable concurrency

and distribution mechanisms provided by libcppa, Barista lets

demanding speech processing tasks, such as real-time speech

recognizers and complex training workflows, to be sched-

uled and executed on parallel (and/or distributed) hardware.

Barista is released under the Apache License v2.0.

Index Terms— open source, C++, actor model, concur-

rency and distribution, real-time speech recognition

1. INTRODUCTION

Modern speech research relies on parallel and distributed

hardware for fast and efficient computation, and develop-

ing speech processing workflows that can leverage available

computational resources is a priority. Barista1 is a step in

this direction. It is an open source framework for concur-

rent speech processing written in C++ and licensed under

the Apache License v2.0. The aim is to provide an easy-to-

use, extensible concurrency (and distribution) framework for

speech research and applications. An early release of Barista,

including example setups, is available on GitHub at the ad-

dress http://github.com/usc-sail/barista. Barista

targets both multi-core/processor machines and networked

clusters. With Barista, it is possible to schedule and execute

different stages of complex speech processing workflows on

different threads/cores/processors of a single host machine or

on different nodes of a networked cluster.

Barista development started from a need to develop inde-

pendent software modules that can be painlessly plugged into

This work was funded by NSF, ONR and DARPA.
1Playing on the coffee meme of the Kaldi speech recognition toolkit, we

call our contribution “Barista” as it enables the users to mix the ingredients

of their ASR systems in a flexible and customizable way.

dsp_reader

mfcc_extractor cmvn_applier1 delta_adder1

plp_extractor cmvn_applier2 delta_adder2

gmm_decoder1

gmm_decoder2

gmm_decoder4

gmm_decoder3

rover

Fig. 1: Example ASR workflow. Modules are developed in-

dependently and can be connected as desired by the user for

the task. The system is real-time, online, and can be executed

on multiple local or distributed cores.

a larger concurrent speech processing workflow. We wanted

these workflows to be fully specified by simple configura-

tion files that define both the parameters for each module and

the input/output relationships between them. We had several

goals for our system including:

• supporting real-time and online workflows

• easing collaborative development by allowing indepen-

dent module creation

• utilizing modern hardware, including multi-threaded

and distributed systems

• allowing for run time changes in network topology

• remaining compatible with the Kaldi toolkit [1]

• minimizing delay and computational overhead

Figure 1 shows an example ASR workflow. Barista aims to

ease deployment of such complex workflows through simple

network definitions.

Barista is based on the well-known actor model [2] for

concurrent and distributed programming. In this model,

actors are independent, self-contained modules open to com-

munication with other components through asynchronous

messages [3, 4]. Each actor can send/receive messages

to/from other actors, create new actors, or destroy existing

actors. There is no implicit state sharing between actors

and all sharing is done through an explicit message passing

mechanism. Since actors do not share states or mutable re-

sources, race conditions are avoided by design in the actor

model, unlike other models of concurrent computation that

rely on shared state and some form of locking (e.g. mutexes,

semaphores, etc.) for coordination. Furthermore, since mes-

sage passing can readily support network transparency, the

actor model applies both to concurrency in the case of paral-

lel threads/processes running on a single multi core/processor

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3306

machine and to distribution when actors run on different

nodes connected through the network. Most signal process-

ing tasks can be seen as successive independent operations

applied on some input data, and this compositional struc-

ture is a great match to the actor model at an abstract level,

where actors correspond to operations and the flow of data

is achieved through message passing. Barista inherits its

concurrent and distributed abilities from libcppa, a modern,

standards compliant implementation of the actor model in

pure C++ [5].

Barista relies on Kaldi [1], an open source speech recog-

nition toolkit, for most of the speech processing functionality.

Kaldi’s highly modular design is an excellent fit for the actor

model. Most Barista actors are straightforward adaptations of

Kaldi tools, often with identical or very similar functionality.

It is in fact possible to emulate many Kaldi tools using their

Barista counterparts. One of the design goals of Barista is to

support non-blocking concurrent processing of input data. To

that end, Barista provides online alternatives for various Kaldi

operations, such as feature extraction/transformation that can

handle input in an incremental fashion without changing the

output. Such exact online implementations are not possible

for all Kaldi operations though. For operations which require

non-causal processing, such as speaker/utterance normaliza-

tion, Barista provides approximate online implementations.

A motivating use case for Barista is the real time speech

recognition problem, which consists of audio acquisition, sev-

eral stages of feature extraction, normalization, and transfor-

mation, followed by an online decoder. In Barista, each stage

of the speech recognition pipeline is implemented as a non-

blocking online actor and input data flows through this simple

linear network, going through various transformations until it

produces a sequence of hypothesis words. Since there are no

blocking calls on the network, this network, when scheduled

concurrently on a capable multi-core machine, starts to pro-

duce partial hypotheses as soon as audio acquisition starts.

On top of that, it calculates the final hypothesis with minimal

delay because it would have completed most of the decoding

by the time it processes the final audio samples. What is more

exciting is the possibility of distributing the processing work

between a low resource client and a server machine without

any change in implementation, leveraging the network trans-

parency provided by libcppa. For instance, a smartphone can

run early stages of the recognition pipeline, such as audio ac-

quisition and feature extraction, while a remote server does

the processor-intensive decoding [6].

2. SYSTEM DESIGN
At its core, Barista is a collection of libcppa actors adapted

from Kaldi tools, along with the utilities to construct and run

a network of these actors on parallel and distributed hardware.

The user specifies the network topology and the parameters

for each actor, and Barista implements the network at run-

time. Maybe more importantly, it is easy to implement and

add new actors to the Barista framework. Our primary design

goal was to develop a simple, reliable, and extensible frame-

work. In this section we will outline aspects of libcppa and

Kaldi that are pertinent to Barista and explain the design and

implementation choices we made along the way and mention

the limitations of the current implementation.

2.1. Barista Modules
In Barista, modules are in a publisher/subscriber relationship,

i.e. subscribers listen to the messages of publishers, which

is maintained by way of a subscribers list for each module.

Each Barista module (or actor) is a C++ class which derives

from a common base class ModuleBase. ModuleBase is a

bare bones libcppa actor whose only functionality is to keep a

pointer to a subscriber list and provide a configuration mech-

anism for setting parameters and updating the subscriber list.

Each module can publish and receive a variety of messages

of possibly different types. Typically, each module processes

a particular type of data message but also listens to various

other synchronization, configuration, and execution messages

flowing through the network. For instance, a feature extrac-

tion module might primarily listen for vectors of integers rep-

resenting audio samples while at the same time handle prede-

fined textual messages signaling utterance boundaries or end

of operation. In essence, each Barista module can be thought

of as a set of message handlers, one for each type of message

it listens to. Continuing with the feature extraction example,

one handler might define what to do with a new batch of audio

samples while another one defines how to finalize feature ex-

traction for the current utterance when an utterance boundary

message is received.

2.2. Communication and Message Processing
Actors communicate with each other using mailbox-based

messaging, which was introduced in the original actor model

described in [3]. In simple terms, a mailbox is exactly like its

physical equivalent. It is owned by an actor and it holds the

messages addressed to this actor. More precisely, a mailbox

is a FIFO-ordered message buffer. Any actor can enqueue

(send) a new message but only the owner can dequeue (read)

one. The mailbox is the sole means of communication be-

tween actors. In libcppa, each actor processes incoming

messages by iterating over its mailbox. Every time the actor

decides to process the messages in its mailbox, it starts with

the first one but is free to skip messages. The actor dequeues

the first message it can handle and performs any operations

specified by the message. A message remains in the mailbox

until it is processed. Other actor systems based on this type

of message processing include Erlang [7] and Scala Actors

library [8].

One design choice we made early in the development

of Barista was to simplify the management of asynchronous

messages flowing through the network by limiting inter-

module communication to subscription lists. This way,

Barista modules do not need to worry about where to send

3307

digraph {
file_list_reader -> pcm_reader -> mfcc_extractor -> cmvn_applier -> delta_adder;
delta_adder -> gmm_decoder_wsj;
delta_adder -> gmm_decoder_hub4;
delta_adder -> gmm_decoder_icsi;
}

[file_list_reader]
actor_type = FileListReader
file_list = pcm.list
[pcm_reader]
actor_type = PCMReader
samples_per_chunk = 2000
bits_per_sample = 16
[mfcc_extractor]
actor_type = ComputeMFCCFeats
use_energy = false
vtln_warp_local = 1
[mfcc_writer]
actor_type = MatrixWriter
sink_file = mfcc.txt
[plp_extractor]
actor_type = ComputePLPFeats
[plp_writer]
actor_type = MatrixWriter
sink_file = plp.txt
[cmvn_applier]
actor_type = ApplyCMVN
norm_vars = false
context_size = 200
[delta_adder]
actor_type = AddDeltas
[gmm_decoder]
actor_type = GMMDecodeFasterOnline
beam = 13.0
model_rxfilename = model/final.mdl
fst_rxfilename = model/HCLG.fst
word_syms_filename = model/words.txt
words_wspecifier = ark,t:wrd-out.txt

digraph {
 file_list_reader -> pcm_reader;
 pcm_reader -> mfcc_extractor;
 mfcc_extractor -> cmvn_applier;
 cmvn_applier -> delta_adder;
 delta_adder -> gmm_decoder;
}

digraph {
 file_list_reader -> pcm_reader;
 pcm_reader -> plp_extractor;
 pcm_reader -> mfcc_extractor;
 plp_extractor -> plp_writer;
 mfcc_extractor -> mfcc_writer;
}

mfcc_extractor

plp_extractor

mfcc_writer

plp_writer

file_list_reader mfcc_extractor cmvn_applier delta_adder gmm_decoder

(a)

(c)

(b)

pcm_readerfile_list_reader

file_list_reader mfcc_extractor cmvn_applier delta_adder

gmm_decoder_wsj

gmm_decoder_hub4

gmm_decoder_icsi(d)

pcm_reader

pcm_reader

Fig. 2: Example Barista networks. (a) The topography of a feature extraction network and the corresponding network specifi-

cation file. (b) The topography of a decoding network and the corresponding network specification file. (c) The configuration

file shared between networks (a) and (b). (d) The network used in the second case study (see section 3.2).

their messages. All messages are distributed through sub-

scriber lists and all subscribers receive all published mes-

sages. Unfortunately, sending separate messages to different

subscribers is not directly supported by the Barista framework

because of the subscriber lists scheme. Nonetheless, this is

not a shortcoming of libcppa and such functionality can be

implemented on a per actor basis if needed.

The message passing implementation of libcppa uses tu-

ples with the call-by-value semantic following the “no shared

state” mantra that is at the core of the actor model. This im-

plementation keeps the programming model clean and easy

to understand, and simplifies development since there is no

need to track the lifetime of messages [5]. However, it is com-

mon to send the same message to multiple actors, which re-

quires multiple copies of the message with the call-by-value

semantic. To avoid unnecessary copying overhead and race

conditions, libcppa uses a copy-on-write tuple implementa-

tion where a tuple is shared among any number of actors as

long as none of the actors tries to overwrite it. If an actor tries

to overwrite a tuple, a copy is automatically provided. With

this implementation, race conditions are avoided by design

and tuples are copied only if necessary.

Since libcppa provides a fully network transparent mes-

saging system, all messages have to be serialized and de-

serialized to standardize messaging over various network

protocols. While libcppa can handle most message types

without any extra effort, user defined data types in messages

have to be explicitly announced to the system by providing

implementations for serialization and deserialization of these

types. Barista provides such implementations for Kaldi’s

custom Vector and Matrix types.

2.3. Network Specification
Barista network topologies are specified as directed acyclic

graphs in GraphViz DOT format [9]. Each node of the net-

work represents a module and directed edges represent the

flow of data between modules. In addition to the network

specification, Barista requires a configuration file which spec-

ifies the module type and parameters for each node in the net-

work. It is okay to have extra nodes, which are not part of

the network, listed in this configuration file. However, each

node in the network needs to have a corresponding entry in the

configuration file. This setup facilitates experimenting with

different network topologies; a single configuration file can

be shared by multiple Barista setups, with each setup pick-

ing only the nodes specified by its network. Figure 2 gives

example network specifications and the accompanying con-

figuration file.

2.4. Network Construction
At run-time, Barista spawns each actor in the network spec-

ification file and sets each actor’s parameters defined in the

configuration file. It also sets up the subscription list for each

actor defined by the directed edges in the network specifica-

tion file. Another early design choice was to make network

construction a run-time operation to avoid rebuilding the ex-

ecutable every time the network layout changes. Run-time

network construction significantly simplifies experimentation

and system building since changing the network topology is

as simple as editing the network specification file. Another

3308

advantage of this design choice is the possibility of making

changes to the network at run-time. We expect this function-

ality to be an asset both in interactive workflows and in dis-

tributed workflows that can scale dynamically with the avail-

able hardware resources that we plan to support in the future.

The downside of this decision is the added complexity stem-

ming from the need to schedule, execute, and control a dy-

namic network of actors as opposed to a static one defined at

the compilation time.

2.5. Concurrency and Distribution
libcppa supports a variety of actor scheduling strategies. The

default is a user-space cooperative scheduling strategy, i.e.

executing actors in a thread pool, where each actor’s context

switches back to the scheduler whenever it tries to process

a new message. With this strategy, an actor is not allowed

to block while its mailbox is empty and starve other actors

by occupying valuable system resources. Instead, the actor is

rescheduled again after a new message arrives in its mailbox.

Cooperative scheduling is the recommended strategy for most

actors, which do not call blocking functions. Blocking actors,

e.g. actors responsible for blocking I/O operations, can be

executed on their own threads using libcppa to avoid the pos-

sibility of starving other actors scheduled cooperatively in a

thread pool. Most Barista modules are non-blocking and can

be scheduled cooperatively. Resource-hungry modules, such

as decoders, or modules that make blocking function calls,

such as I/O or network modules, are scheduled on their own

threads.

2.6. Fault Propagation
libcppa adopts Erlang’s well-established error propagation

model [7] based on monitoring, which has been proven to

be very effective and reliable in practice [10]. Whenever an

actor fails, an exit message is sent to all actors that monitor it,

and these messages propagate in the network unless they are

trapped and handled. Based on this model, it is possible to

build fault-tolerant distributed systems, where failing actors

are re-created by dedicated actors monitoring them. The cur-

rent Barista implementation uses fault propagation to make

sure that all modules are either alive or have collectively

failed.

3. EVALUATION

We conducted two case studies with the Barista system. These

case studies were designed to evaluate the computational effi-

ciency and accuracy of Barista and demonstrate the simplicity

of configuring Barista for performing complex tasks. In the

first case study, we set up a Barista network and a standard

Kaldi pipeline and compared the runtimes and word error

rates (WER) of the two systems. In the second case study, we

investigated the amount of labor needed to configure Barista

to run multiple decoders in parallel. The setups for these case

studies are on our GitHub repository under the egs directory.

3.1. Case Study I
We evaluated the nominal computational overhead of using

Barista compared to a standard Kaldi pipeline by measur-

ing the runtimes for a simple decoding task. Both systems

read the audio from file, extracted MFCCs, applied cepstral

mean normalization, added delta and delta-delta features, and

performed decoding. Figure 2(b) illustrates these processing

steps. The models were trained using the Wall Street Jour-

nal (WSJ) corpus [11]. Both systems use the CIRS-I test set

from WSJ for testing. The difference in runtime2 was less

than 1 second on average (5:20.75 for Kaldi vs. 5:20.09 for

Barista) and there was no difference in WER (14.46% for both

systems). Thus, Barista did not introduce latency or errors to

a standard ASR pipeline. These results are significant because

they show that a user can take advantage of the flexibility of-

fered by Barista without sacrificing speed or accuracy.

3.2. Case Study II
The second case study demonstrated the ease of building com-

plex systems with Barista. In this case study, three decoders,

each using a different decoding model, shared a single fea-

ture extraction stream. The three models were trained on the

WSJ corpus, the ICSI meeting corpus [12], and the HUB4

broadcast news corpus [13]. Building this multiple decoder

system required only two simple changes to the decoding net-

work from Case Study I. The first change required the feature

extraction stream, defined in the network specification file,

to be directed to three decoders instead of one. The second

change needed the three decoders to be declared in the actors

configuration file, with each decoder actor using one of the

three models. The network configuration is shown in Figure

2(d). Because the decoders shared the same feature extrac-

tion module, Barista performed concurrent processing with-

out introducing the computational overhead of multiple fea-

ture extraction streams. The computational savings offered

by Barista can help streamline ASR processing and facilitate

research in ASR, such as fusing decisions of multiple ASR

decoding outputs [14, 15].

4. CONCLUSION
We described Barista, an open source framework for concur-

rent and distributed speech processing based on Kaldi and

libcppa. Barista currently supports concurrent scheduling and

execution of independent actors adapted from Kaldi tools on a

single host as well as distributed processing via independently

executed remote actors. Barista is under active development.

The current release should be taken as an early preview of a

subset of the functionality described here. In addition, our

group is actively working on implementing new Kaldi tools,

such as robust feature extraction modules [16, 17] and a mod-

ule for fusion of diverse experts [14, 15], that will be inte-

grated into the Barista framework. We are also looking into

distributed training using the Barista architecture.

2Both setups were run on a MacBook Pro with a 2.3 GHz Intel Core i7

processor.

3309

5. REFERENCES

[1] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas

Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-

nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan

Silovsky, Georg Stemmer, and Karel Vesely, “The Kaldi

Speech Recognition Toolkit,” in IEEE 2011 Workshop
on Automatic Speech Recognition and Understanding.

Dec. 2011, IEEE Signal Processing Society, IEEE Cat-

alog No.: CFP11SRW-USB.

[2] Carl Hewitt, Peter Bishop, and Richard Steiger, “A uni-

versal modular ACTOR formalism for artificial intelli-

gence,” in Proceedings of the 3rd international joint
conference on Artificial intelligence, San Francisco, CA,

USA, 1973, IJCAI’73, pp. 235–245, Morgan Kaufmann

Publishers Inc.

[3] Gul Agha, Actors: a model of concurrent computa-
tion in distributed systems, MIT Press, Cambridge, MA,

USA, 1986.

[4] Gul Agha, Ian A. Mason, Scott Smith, and Carolyn Tal-

cott, “Towards a Theory of Actor Computation,” in

Proceedings of CONCUR ’92, vol 630 of LNCS. 1992,

pp. 565–579, Springer.

[5] Dominik Charousset and Thomas C. Schmidt, “libcppa

- Designing an Actor Semantic for C++11,” in Proc. of
C++Now, 2013.

[6] Naveen Srinivasamurthy, Antonio Ortega, and Shrikanth

Narayanan, “Efficient scalable encoding for distributed

speech recognition,” Speech Communication, vol. 48,

no. 8, pp. 888–902, 2006.

[7] J. Armstrong, Making reliable distributed systems in the
presence of software errors, Ph.D. thesis, KTH, Swe-

den, 2003.

[8] Philipp Haller and Martin Odersky, “Scala actors:

Unifying thread-based and event-based programming,”

Theor. Comput. Sci., vol. 410, no. 2-3, pp. 202–220, Feb.

2009.

[9] Emden R. Gansner and Stephen C. North, “An open

graph visualization system and its applications to soft-

ware engineering,” Software - Practice and Experience,

vol. 30, no. 11, pp. 1203–1233, 2000.

[10] J. H. Nyström, P. W. Trinder, and D. J. King, “Eval-

uating distributed functional languages for telecommu-

nications software,” in Proceedings of the 2003 ACM
SIGPLAN workshop on Erlang, New York, NY, USA,

2003, ERLANG ’03, pp. 1–7, ACM.

[11] Douglas B Paul and Janet M Baker, “The design for the

wall street journal-based csr corpus,” in Proceedings of

the workshop on Speech and Natural Language. Associ-

ation for Computational Linguistics, 1992, pp. 357–362.

[12] Adam Janin, Don Baron, Jane Edwards, Dan Ellis,

David Gelbart, Nelson Morgan, Barbara Peskin, Thilo

Pfau, Elizabeth Shriberg, Andreas Stolcke, et al., “The

icsi meeting corpus,” in Proc. of ICASSP, 2003.

[13] David Graff, Z Wu, R MacIntyre, and M Liberman,

“The 1996 broadcast news speech and language-model

corpus,” in Proceedings of the DARPA Workshop on
Spoken Language technology, 1997.

[14] Kartik Audhkhasi, Andreas Zavou, Panayiotis G. Geor-

giou, and Shrikanth S. Narayanan, “Empirical link be-

tween hypothesis diversity and fusion performance in an

ensemble of automatic speech recognition systems,” in

Proc. of InterSpeech, 2013.

[15] K. Audhkhasi, A. M. Zavou, P. G. Georgiou, and S. S.

Narayanan, “Theoretical analysis of diversity in an

ensemble of automatic speech recognition systems,”

Audio, Speech, and Language Processing, IEEE/ACM
Transactions on, vol. 22, no. 3, pp. 711–726, March

2014.

[16] Maarten Van Segbroeck and Shrikanth S. Narayanan,

“A robust frontend for ASR: combining denoising,

noise masking and feature normalization,” in Proc. of
ICASSP, 2013.

[17] James Gibson, Maarten Van Segbroeck, Antonio

Ortega, Panayiotis G. Georgiou, and Shrikanth S.

Narayanan, “Spectro-Temporal Directional Derivative

Features for Automatic Speech Recognition,” in Proc.
of InterSpeech, 2013.

3310

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

