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Bark Frequency Transform Using an
Arbitrary Order Allpass Filter
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Abstract—We propose an arbitrary order stable allpass filter
structure for frequency transformation from Hertz to Bark scale.
According to the proposed filter structure, the first order allpass
filter is causal, but the second and higher order allpass filters are
non-causal. We find that the accuracy of the transformation sig-
nificantly improves when a second or higher order allpass filter is
designed compared to a first order allpass filter. We also find that
the RMS error of the transformation monotonically decreases by
increasing the order of the allpass filter.

Index Terms—Allpass filter, bark scale.

I. INTRODUCTION

A NALYSIS and modeling of signal spectra over the Bark
frequency scale is widely adopted in speech and audio

signal processing. The Bark frequency scale closely resembles
the frequency analysis scale in the human ear. It ranges from 1 to
24 Barks, corresponding to the first 24 critical bands of hearing
[1]. The published Bark band edge frequencies (in Hertz) are 0,
100, 200, 300, 400, 510, 630, 770, 920, 1080, 1270, 1480, 1720,
2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500,
12 000, 15 500. Let us denote them by .

For discrete-time signal processing with sampling frequency
(say , the Bark band edges corre-

spond to points on the unit circle
placed non-uniformly from 0 to . Thus a proper frequency
transformation is required to convert the linear frequency scale
to the Bark scale. The use of a first-order allpass filter
in place of a unit delay is a common approach [2], [3] to
map uniformly spaced points on the unit circle to nonuniformly
spaced points on the unit circle.

(1)

where is the free parameter of the allpass filter. When
, a unit delay. By varying ,

one gets various types of warping on the unit circle [3]. Smith
et al. [4] have shown that by properly selecting , such a first-
order allpass transformation provides a good match to the Bark
frequency scale. For kHz, the Bark transformation and
the best first-order allpass transformation obtained by Smith et
al. [4] are shown in Fig. 1.
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Fig. 1. Bark and allpass frequency warping at a sampling rate of 31 kHz. The
parameter for the allpass warping is 0.707806 as reported by Smith et al. [4].
The allpass warping function is symmetric w.r.t. the line .

and in Fig. 1 correspond to original fre-
quency and warped frequency scales respectively. It is easy to
show [3] that,

(2)

Thus the relation between and in a first-order allpass map
is linear in their tangent (illustrated in Fig. 1 for kHz
and ). It is important to note that the relation
between and using a first-order allpass transformation is
symmetric with respect to the line . This can be easily
shown by replacing and by and , respectively,
in (2) and observing that the equation remains identical. On the
other hand, the Bark frequency transformation does not have
such symmetry property.

Here we propose an arbitrary order allpass filter structure; the
first order allpass filter is a special case of the proposed filter
structure. We find that by increasing the order of the allpass
map, we can approximate the asymmetric Bark transformation
better compared to a first-order allpass transformation. Higher
order allpass transformations have been used to convert low-
pass or highpass prototype filters into multiple bandpass/band-
stop filters [5]. However, to the best of our knowledge, there
has not been any previous work to design high-order allpass
transformation to approximate the Bark scale. There are two is-
sues in using high-order allpass transformation [4]: 1) an all-
pass transformation of order maps the unit circle to
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traversals of the unit circle, hence, the mapping does not
remain one-to-one anymore, 2) optimizing free parameters

becomes a nonlinear optimization problem in
general and may suffer from local minima issues, which may not
guarantee the stability of the allpass filter. Our proposed allpass
filter overcomes the first problem at the cost of its non-causality.
To overcome the second problem we use an appropriate initial-
ization strategy for solving the optimization problem such that
the designed allpass transformation is stable. Time-domain im-
plementation of our proposed allpass filter (of order ) requires
a look-ahead of samples. Thus in practice, one needs to
trade-off between the accuracy of the Bark scale transformation
desired and the amount of delay permitted in a specific applica-
tion.

II. PROPOSED HIGHER-ORDER ALLPASS TRANSFORMATION

We propose an allpass transformation of order be-
tween the original frequency and the warped frequency as
follows:

(3)

where are free parameters. Note that if
, then is a first-order allpass filter. Let

. Using (2), it is easy to show that

where,

(4)

Under such an allpass transformation, the relation between
and is . Note that and .
It can be easily shown that the “winding number” of the mapping
is only one, which is the difference between number of poles
and zeros inside the unit circle. Also due to the factor in

, the time domain implementation of requires a
look-ahead of samples to compute the output at the current
sample index. This means that is non-causal.

III. DETERMINATION OF ALLPASS

TRANSFORMATION PARAMETERS

Let us consider . We want to minimize
the error in frequency transformation in the discrete frequency
grid corresponding to the Bark band-edges. Formally, we want
to find , such that the following error function is
minimized

(5)

where and
are the normalized Bark band edge frequencies and the corre-
sponding Bark frequencies, respectively. Note that

and .

Let . Since and have an
one-to-one mapping, we can rewrite the optimization problem,
using (4), as follows:

(6)

Once are obtained, can be obtained by
.

Note that the first and last terms in amount to zero and hence
do not contribute to ; these terms correspond to
and . Note also that is a continuous function
of . The differentiation of w.r.t. is as
follows:

(7)

Solving for where requires
the solution of a nonlinear equation. We also have to ensure that
the allpass filter is stable because unstable allpass filters can not
be implemented in time-domain; unstable allpass filters also fail
to preserve stability when mapping a stable digital filter to a
warped frequency scale. The allpass filter will be stable
if and only if . This can only happen if we constrain

.
Let

If and , it is easy to show
that

(8)

Let us denote the hyper-rectangle in the positive hyper-quadrant
by

. Thus,
it is clear from (7) that

(9)
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Fig. 2. (a) vs for kHz. (b) Comparison between and
allpass parameter reported by Smith et al. [4] for different sampling frequencies.

This in turn implies that in decreases as increases. On
the other hand, when .
This means increases as increases beyond . Thus

one or more times for .
Hence, there exist one or more minima of in the posi-

tive hyper-quadrant of the dimensional space .
We use the Nelder–Mead Simplex Method [6], [7] to find the
minima of . This is performed by using the widely available
function in the MATLAB optimization toolbox.
The advantage of the Nelder–Mead Simplex Method is that it
avoids the computation of the derivative of the objective func-
tion [7]. In the following subsections, we describe details about
the optimization process. It should be noted that it is not guar-
anteed that the Nelder–Mead Simplex Method will provide the
global optimum of . But it, surprisingly, turns out that with ap-
propriate initialization, the RMS error in the Bark scale approxi-
mation monotonically decreases for increasing allpass transfor-
mation order , although the allpass parameter may not corre-
spond to the global minimum of for each choice of .

A. Case

corresponds to a first-order allpass filter.
We need to find only one free parameter such that

is mini-
mized. Fig. 2(a) plots as a function of for .

and are indicated in the figure.
It is clear that is monotonically decreasing over

and monotonically increasing for

. We initialize the optimization with which corre-
sponds to , i.e., no warping. Following Nelder–Mead
Simplex optimization, the convergent solution is found to be

, which corresponds to =0.701157, which is
very close to what Smith et al. reported (0.707806) in [4]. In
fact,

although Smith et al. did not directly minimize .
Fig. 2(b) compares for different sampling frequencies with
those reported in [4]. It is clear from Fig. 2 that the best deter-
mined allpass parameters are very close to those obtained by
Smith et al. They differ more at higher sampling frequencies.

B. Case

corresponds to higher-order allpass transformation.
Thus the solution of the optimization problem (6) lies in

-dimensional space. We need to ensure that the final solution
should be in the positive hyper-quadrant of the dimensional
space for stability of the optimized allpass filter

. For this purpose we solve the optimization problem re-
cursively. This means that we use the available optimal solution
of order to initialize the parameters for the case of order

with new dimension of the parameter vector initialized to 1
corresponding to no warping for the new allpass transformation
factor1. We find that by following such initialization strategy,
the optimal solution using Nelder–Mead Simplex Method al-
ways turns out to be positive , which ensures stability
of the overall allpass transformation . In addition, we
observe that RMS error of the allpass transformation to the Bark
scale monotonically decreases with increasing allpass order

for all sampling frequencies corresponding to the twice the
Bark band edge frequencies. This is illustrated in Fig. 3(a). Let

denotes the squared error for using allpass transformation
of order . Fig. 3(a) plots vs for various
sampling frequencies. Each curve in the figure corresponds
to one sampling frequency. Logarithm of is plotted to
illustrate the small reduction in with increasing .

From Fig. 3(a), it is clear that for
all choices of sampling frequency. The same trend is observed
even for higher values of . Note that the is maximum
always for ; this means the squared error reduces max-
imally when the order of the allpass transformation is changed
from 1 to 2. For , the optimal allpass transformation
does not alter significantly. This is clear from small values
for higher . This also becomes clear by noting the allpass pa-
rameters obtained as a result of optimization for high values of

(in Table I). With higher , most of the turns out to be
close to zero. Thus effectively the allpass transformation does
not change significantly for .

Fig. 3(b) illustrates the RMS error of the allpass transforma-
tion across various . For comparison, the RMS error is plotted
for the best allpass transformation proposed in [4]. It is clear that
our proposed method has lower RMS error at high sampling fre-
quencies compared to that of [4]. It is also clear that the RMS
error decreases as increases from 1 to 2. But choosing an all-
pass transformation of order 3, 4, or 5 does not significantly re-
duce the RMS error compared to that for .

1The Matlab implementation is available for download at http://www-scf.usc.
edu/~prasantg/BarkAllPass.tar.
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Fig. 3. (a) Logarithmic change in the RMS error between all-
pass transformation and the Bark scale for increasing allpass order up to
50 at is the logarithmic difference in RMS error when
increases from to ). Each plot corresponds to a specific sampling fre-
quency. The following sampling frequencies (in Hertz) are used—1540, 1840,
2160, 2540, 2960, 3440, 4000, 4640, 5400, 6300, 7400, 8800, 10600, 12 800,
15 400, 19 000, 24 000, 31 000. decreases as increases. (b) Comparison
of the proposed allpass maps for and the allpass transformation
proposed by Smith et al. [4] in terms of RMS error versus .

TABLE I
ALLPASS TRANSFORMATION PARAMETERS WITH

INCREASING FOR KHZ

Finally, we analyze the relative bandwidth mapping error of
the allpass transformation as defined in [4] for kHz.
Fig. 4(a) compares allpass maps of different orders with the
Bark map. All of these allpass maps appear to have good match
with the Bark frequency scale. However, it appears that with
high order , the relative bandwidth error increases at high
frequency [Fig. 4(b)]. While the maximum relative bandwidth
error is 20% for a first-order allpass transformation, the relative
bandwidth error increases to 44% for the second and fifth order
allpass transformation. This increase in relative bandwidth error

Fig. 4. (a) Visual comparison of the Bark map with the allpass maps proposed
by Smith et al. [4] and obtained by the proposed method. (b) Relative bandwidth
errors for different all-pass maps.

happens only at the highest frequency. Such increase may occur
since we are not explicitly minimizing relative bandwidth error
in our optimization.

IV. CONCLUSION

We proposed a higher-order allpass transformation to approx-
imate the Bark frequency scale of human auditory filters. The
optimization problem to determine the best allpass filter param-
eters used for this purpose turns out to be nonlinear. With our
proposed strategy for initialization, we found that we can design
a high-order allpass transformation which has lower RMS error
of approximation compared to that of a first-order allpass trans-
formation. We also found that a second order allpass
filter is sufficient to provide a good enough approximation to the
Bark scale.
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