

Believable Agents and Intelligent Scenario Direction for Social and Cultural

Leadership Training

Mark O. Riedl

Institute for Creative Technologies
13274 Fiji Way, Marina del Rey, CA 90292

riedl@ict.usc.edu

Andrew Stern
Procedural Arts LLC

Portland, OR
andrew@proceduralarts.com

Keywords:

Automated Scenario Direction; Believable Agents; Leadership Training; Interactive Storytelling

ABSTRACT: Simulation provides an opportunity for a trainee to practice skills in an interactive and reactive virtual
environment. We present a technique for social and cultural leader training through simulation based on a
combination of interactive synthetic agents and intelligent scenario direction and adaptation. Social simulation
through synthetic characters provides an engaging and believable experience for the trainee. In addition, the trainee
is exposed to a sequence of relevant learning situations where the trainee can practice problem-solving under
particular conditions. An Automated Scenario Director provides high-level guidance to semi-autonomous character
agents to coerce the trainee’s experience to conform to a given scenario. When the trainee performs actions in the
virtual world that cause the simulation state to deviate from the scenario, the Automated Scenario Director adapts the
scenario to resolve any unexpected inconsistencies, thereby preserving the trainee’s perception of self control while
still retaining any relevant learning situations.

1. Introduction

Research on leadership development shows that
expertise is gained through experience and by taking
the time to reflect on the lessons learned from an
episode. The problem with learning by experience in a
military context, however, is that some decisions and
behaviors can have devastating or fatal consequences
if mistakes are made, making such lessons very
expensive. One way that one can learn from
experience without “being there” is by playing a role
in a game or interactive simulation. While a
simulation may provide an excellent opportunity for a
trainee to practice skills in an interactive and reactive
virtual environment, evidence suggests that “guided
discovery” is a powerful method of learning (vanLehn,
1996). Consequently, we believe the capability to
manage the experience of a trainee in a virtual
simulation may enhance the effectiveness of virtual
training environments by increasing the likelihood
that the trainee will be exposed to a specified sequence
of relevant learning situations in which lessons can be
learned and/or skills can be practiced.

While live training exercises are an essential part of
military leader training, such exercises are primarily

used to train procedural skills well defined by doctrine
and best practices. In the current operating
environment, however, there is a downward migration
of leadership tasks (McCausland and Martin, 2001)
such that the decisions and actions of small unit
leaders and soldiers can take on strategic significance.
For example, a small unit leader may be placed in a
situation where he or she must interact with civilians
and non-government organizations while deployed to
foreign lands. In the research we present here, we are
working in the domain of leader training in social and
cultural awareness contexts. In such a domain, the
trainee needs to experience scenarios in which he or
she is forced to interact with foreign cultures and make
local decisions with strategic and 2nd and 3rd order
effects. The emphasis is not as much on procedural
learning objectives, but on placing the trainee in
situations where difficult decisions must be made.

We believe that effective social and cultural leadership
training can be tackled by a combination of reactive
social simulation and automated scenario direction.
The domain of social and cultural leadership training
naturally places the trainee in situations in which he or
she must interact with other people. In a computer
simulation that supports this domain, it is beneficial to

have synthetic humanoid agents that personify
characters – friendly or otherwise – capable of
interacting with the trainee through natural language
and gesture (Swartout et al., 2001). Our approach
uses intelligent semi-autonomous character agents that
are designed to be interactive and believable. A
believable agent is one that possesses behavioral traits
that facilitate one’s suspension of disbelief that the
agent is a real person (Bates, 1992).

While social simulation is sufficient for an engaging
experience we wish for the trainee’s experience to be
structured. We require the non-player characters
(NPCs) to enact a scenario, particularly one that
possesses one or more relevant learning situations. To
accomplish structuring over the trainee’s experience,
an Automated Scenario Director provides high-level
guidance to the social agents that inhabit the
simulation. The Automated Scenario Director ensures
a coherent progression towards relevant learning
situations. When necessary the Automated Scenario
Director can adapt the scenario to protect the
coherence of the trainee’s experience.

Our approach to managing the experience of a trainee
in a social and cultural simulation is not dissimilar to
the role of an Observer/Controller (O/C) in a live
training exercise. However, our approach affords a
greater degree of flexibility and adaptability than
typically seen in exercises based around learning
objectives.

2. Example Scenario

To motivate the problem, we present the following
simple training scenario in which a trainee takes the
role of a leader placed in a situation in which he or she
must interact socially and culturally with a foreign
population. The background is that the trainee is part
of a peacekeeping mission deployed to a foreign
country. As a measure of good will, the peacekeeping
forces have set up a new marketplace that is modern
and secure from insurgent attacks. The trainee plays
the role of a captain in charge of maintaining the
security of civilian merchants and buyers in the new
marketplace.

The scenario is expected to unfold as follows. While
the trainee is engaged in daily procedures concerning
the new marketplace, a heated argument breaks out
between two merchants that do business near each
other. One merchant, named Saleh, is accusing the
other, named Mohammed, of luring away his
customers. Afterwards, Saleh approaches the trainee
and complains that the presence of the peacekeeping
troops is impinging on his ability to do business in the
marketplace. He makes a dire prognostication that

violence could ensue. Mohammed, in contrast appears
to be nothing but friendly. Later that day, Mohammed
slips away from the marketplace and returns
concealing an improvised explosive device
(presumably acquired from his insurgent conspirator).
When Saleh steps away from his place of business,
Mohammed plants the bomb there. Shortly
afterwards, the bomb goes off. Fortunately for all
involved, the bomb is a dud, but the marketplace is
nonetheless left in a state of chaos, panic, and
confusion.

The scenario is not contingent on the trainee
completing any particular learning objective, but
instead is designed to expose the trainee to certain
relevant learning situations in which the trainee can
practice certain skills (possibly associated with
learning objectives) or practice decision-making and
problem-solving. The primary relevant learning
situation occurs at the end of the scenario when the
dud explosion plunges the marketplace into chaos and
uncertainty. It is the trainee’s job to restore order,
provide assurances to the people doing business there,
assess blame, and possibly even make arrests. Given
the expectations created by the scenario, it would
justifiable if the trainee were to suspect Saleh of
instigating the attack. Consequently, the lead up to
this situation is just as important as the situation.
Otherwise, the training simulation could start at the
point of the explosion. The assumption is that if the
trainee is engaged socially and culturally and comes to
be familiar with the primary characters in the
marketplace, the trainee may be able to recognize that
Mohammed has a deep-rooted animosity towards the
peacekeeping force and that Saleh is merely an
outspoken but harmless detractor. Indeed, with
initiative, the trainee may even be able to prevent the
attack.

Note that if the trainee succeeds in preventing the
attack by catching Mohammed with the explosive
device then it will be impossible for Mohammed to
plant the bomb and therefore impossible for the bomb
to go off and establish the primary relevant learning
situation. How would an Observer/Controller handle
this dilemma in a live exercise? The O/C could do the
realistic thing, removing the bombing from the
scenario at the risk of eliminating an important
learning situation. The O/C could alternatively
“cheat” by changing the simulation to have the
explosive device magically planted at the risk of
making the trainee feel as if his or her actions were
irrelevant.

In the remainder of the paper, we describe a novel
technique for trainee experience management that is

designed to excel at such social and cultural
simulation scenarios as that described above. The key
is the ability to automatically recognize dilemmas like
the one described here and handle them without
clobbering relevant learning objectives or cheating.

3. Believable Characters

Social simulation is achieved through a collection of
non-player characters (NPCs) that are reactive and
appear intelligent, motivated, and reactive. Our
agents are partly composed of a broad, general
collection of local autonomous behaviors that are
designed to afford suspension of disbelief. Local
autonomous behaviors (LABs) such as working,
running errands, shopping, etc. supply agents with a
"rich inner life." The objective is not to have agents
that are competent reasoning agents, but agents that
appear to be intelligent, motivated, emotional, and
consequently believable. This emphasis on appearance
is referred to as a “broad but shallow” approach to
agents (Bates, 1992). That is, agents can perform a
wide repertoire of behaviors in a convincing manner
but without performing “deep” reasoning. For our
domain, this is sufficient because social and cultural
interaction involves routine behavior and simple
problem-solving instead of novel or complex cognitive
tasks. In that sense, agent knowledge can be compiled
into reactive behavior selection mechanisms.

For pedagogical reasons, it is important that NPCs are
capable of acting to bring about a specific scenario.
Scenario-specific interactive events such as
confronting the player and acquiring, planting, and
detonating an explosive device, are carried out by
narrative directive behaviors (NDBs). Narrative
directive behaviors are incorporated into the agents’
behavior repertoires before run-time and triggered by
high-level narrative direction from the Automated
Scenario Director (see Section 4). These scenario-
specific behaviors are designed to modulate, mix with,
and/or override local autonomous behaviors.

3.1. Agent Architecture

To achieve the desired life-like qualities we
implemented our agents using the reactive planning
language ABL (A Behavior Language) (Mateas and
Stern, 2004) using a behavioral infrastructure licensed
from the Procedural Arts Behavior Library (PABL).
The ABL language and PABL infrastructure were
initially created for the interactive drama, Façade
(Mateas and Stern, 2005). ABL is based on the Oz
Project (Bates, 1992) believable agent language Hap
(Loyall, 1997). ABL and its parent language Hap are
designed to support the detailed expression of
artistically-chosen personality, automatic control of

real-time interactive animation, and architectural
support for many of the requirements of believable
agents (Loyall, 1997).

In ABL, an activity (e.g., walking to the user, or
speaking a line of dialog) is represented as a goal, and
each goal is supplied with one or more behaviors to
accomplish its task. An active goal chooses one of its
behaviors to try. A behavior is a series of steps, that
can occur sequentially or in parallel, that accomplish a
goal. Preconditions are used to determine behavior
applicability by matching against working memory
elements (WMEs) that make up the agent’s subjective
knowledge about the world. A behavior may itself
have one or more subgoals.

Figure 3.1 shows a simple example of ABL behavior
specifications that cause an agent to walk to the
player’s location and then simultaneously speak a line
of text while gesturing. The precondition of the
Foreshadow_Bomb behavior matches the behavior
against the agent’s knowledge of the world to see if the
behavior is applicable. The precondition clause
searches the agent’s working memory for two working
memory elements that signify that the agent knows (a)
it is at location my_booth and (b) the player is not. If
applicable, this behavior sequentially tries to achieve
the two subgoals in the given order. The
Stage_To_Player behavior moves the agent to the
player’s location and orients it for conversation. The
Speak_Bomb_Dialogue behavior is a parallel
behavior, meaning the agent will simultaneously

sequential behavior Foreshadow_Bomb ()
{
 precondition { (LocationWME
 agent == me
 location == my_booth)
 (LocationWME
 agent == player
 location != my_booth) }
 subgoal Stage_To_Player();
 subgoal Speak_Bomb_Dialogue();
}

parallel behavior Speak_Bomb_Dialogue ()
{
 subgoal Speak_Dialog(“I wish someone
 would blow this place up”);
 subgoal Gesture_Agitated();
}

sequential behavior Gesture_Agitated ()
{
 precondition { ... }
 act Play_Gesture(3);
}

sequential behavior Gesture_Agitated ()
{
 precondition { ... }
 act Play_Gesture(5);
}

 Figure 3.1: Example ABL behaviors

attempt to achieve the given subgoals: speaking a line
of dialogue and gesturing agitatedly. Note that there
may be many appropriate behaviors for gesturing, of
which the agent picks the most applicable behavior.
In this case, the preconditions help the agent pick the
most appropriate alternative given the specific context.
The subgoaling encapsulates this decision so that the
parent behavior doesn’t have to encode the logic of
determining which gesture to perform for all possible
conditions. The Gesture_Agitated behaviors
specify acts, which, unlike subgoals, invoke function
calls to the low-level graphics and animation engine
controlling the agent’s avatar, in this case playing a
pre-specified indexed gesture animation.

To keep track of all the active goals and behaviors and
subgoal relationships, ABL maintains an active
behavior tree (ABT) and working memory. The ABT
is a tree rather than a stack because some behaviors
execute their steps in parallel, thus introducing
parallel lines of expansion in the program state. The
agent’s working memory contains WMEs that are
updated dynamically and continuously through sensor
routines engaged with the virtual world. The
architecture of an ABL agent appears in Figure 3.2.
Typically, once a behavior completes all of its steps,
the behavior and the goal that spawned it succeed.
However if any of the behavior’s steps fail, then the
behavior itself fails and the goal attempts to find a
different behavior to accomplish its task, finally failing
if no such alternative behavior can be found.

Further, to harness the dramatic power of multi-agent
teams of characters, ABL supports authoring of joint
goals and behaviors (Mateas and Stern, 2004). When
a goal is marked as joint, ABL enforces coordinated
entry into and exit from the team members' behaviors
chosen to accomplish the goal. This coordination is
transparent to the programmer and analogous to the
STEAM multi-agent coordination framework (Tambe,

1997). The driving design goal of joint behaviors is to
combine rich semantics for individual expressive
behavior with support for the automatic
synchronization of behavior across multiple agents.

In contrast to standard imperative languages one
might use to control agents (e.g. C++, Java), in ABL
an author can, in relatively few lines of code, specify
collections of goals and behaviors that can cleanly
intermix solo and/or joint character actions, modulate
their execution based on the continuously sensed state
of the world, and perform local, context-specific
reactions to a user’s actions. While ABL serves a
similar purpose to other reactive planners such as Soar
and RAPS (Firby, 1989), the automated management
of joint goals and the ability for an agent to perform
parallel behaviors makes it particularly flexible for
life-like agents. Additionally, ABL gives behaviors
reflective access to the current state of the ABT,
supporting the authoring of meta-behaviors that match
on patterns in the ABT and dynamically modify other
running behaviors. This is particularly useful for
creating behaviors that can react immediately to the
user. Supported ABT modifications include
succeeding, failing or suspending a goal or behavior,
and modifying the annotations of a subgoal step, such
as changing the persistence or priority.

3.2. Behavior Authoring

There are two broad categories of agent behaviors that
must be authored: local autonomous behaviors and
narrative directive behaviors. Local autonomous
behaviors (LABs) are the somewhat generic, re-usable
“inner life” activities such as working, running
errands, shopping, etc. Narrative directive behaviors
(NDBs) are scenario-specific and are triggered by the
Automated Scenario Director.

Local Autonomous Behaviors. Local autonomous
behaviors (LABs) are implemented as a loosely
structured collections of sub-behaviors called “LAB
goals”, that depend on and assert simple events in
episodic memory. For example, the opening the store
LAB may involve the agent unlocking the store,
unpacking boxes, chatting with assistant, and
displaying new goods. Each of these parts is
implemented as its own simple LAB goal. Displaying
new goods may depend on unlocking the store having
been completed. Note that there can be partial
ordering such that chatting with assistant is just as
likely to occur after unlocking the store as unpacking
boxes. Or, in such a case, chatting may end up getting
skipped altogether since no other LAB goals depend
on it. User interactions, should they occur, can easily
get inserted during or in between the loosely organized
LAB goals.

Figure 3.2: ABL runtime architecture (Mateas and
Stern, 2004)

Each individual agent is responsible for selecting and
sequencing their local autonomous behaviors. LABs
manage their own sequencing. Whenever a new LAB
needs to run, either upon start-up or once the previous
LAB completes, each LAB may make a bid for how
important it is to run next. Bids are numeric values
calibrated in a range from low importance to
extremely urgent. A LAB chooses a bid strength
depending upon current world conditions, such as time
of day, and episodic memory as needed; if the LAB
does not care to run, it does not bid at all. A simple
arbitration behavior makes a weighted probability
choice among the bids, and the chosen LAB begins
executing.

Narrative Directive Behaviors. By contrast,
narrative directive behaviors (NDBs) are more tightly
structured collections of sub-behaviors, intended to
perform more important and more sophisticated parts
of the scenario. Further, user interaction afforded in
NDBs usually needs to be richer and more responsive
than in LABs. The collection of sub-behaviors that
constitute an NDB are organized around the dramatic
beat (Mateas and Stern, 2005), a component of the
PABL infrastructure. In the theory of dramatic
writing, the beat is the smallest unit of dramatic action
(McKee, 1997). A beat is a ~60-second-long dramatic
interaction between characters such as a shared
experience (e.g., witnessing a bombing), or a brief
conflict about a topic (e.g., the user questioning an
agent), or the revelation of an important secret. Beats
are organized around a collection of “beat goal”
behaviors, the dramatic content that the beat is
designed to communicate to the user through animated
performance.

The PABL authoring strategy for handling user
interaction within a beat is to specify the “canonical”
beat goal behavior logic (i.e., what dramatic
performance the author intends the beat to
accomplish), as well as a collection of beat-specific
handler behaviors that modify this default logic in
response to user interaction. In order to modify the
default logic, the handler behaviors make use of meta-
ABL functionality to modify the ABT state. While
handler behaviors can in principle arbitrarily modify
the ABT state, most fall into one of two general
classes: mix-in handler behaviors that add an
additional beat goal behavior in the middle of a beat
while keeping the rest of the sequencing the same, and
re-sequencing handler behaviors that more radically
reorganize the beat goal sequence. The ability to factor
behavior into sequences that achieve longer-term
temporal structures, and meta-behaviors that modify
these longer-term temporal structures, is a powerful
idiom enabled by ABL’s support for reflection.

Each interaction handler behavior is a demon that
waits for some particular type of user interaction and
“handles” it accordingly. User interaction includes
dialogue interaction (the user can speak to the
characters at any time by entering discourse acts, e.g.
"disagree Saleh") and physical interaction (e.g. the
user takes action such as "arrest Saleh"). Every NDB
specifies some beat-specific handlers; additionally,
there are more generic LAB handlers for handling
interactions for which there are no beat-specific
responses supplied by the current beat.

4. The Automated Scenario Director

There is a trade-off between scenario coherence and
the trainee’s perception of self-control (Riedl, Saretto,
and Young, 2003). On one hand, instructional
designers will want to ensure a coherent progression of
scenario events that lead the trainee through a
sequence of relevant learning situations. On the other
hand, in a training simulation, the trainee needs to
observe a realistic, populated social environment and
be able to problem-solve – to perform actions and
make decisions. In our system, the trainee is allowed
to perform any of a wide repertoire of communicative
and physical actions at any time. Simulation with
social agents alone, however, is not enough to ensure
that the trainee is exposed to relevant learning
situations in an appropriate and contextual order.

To ensure that the trainee’s experience is managed
and that the appropriate sequence of relevant learning
situations occur, an agent called the Automated
Scenario Director acts as an unseen over-mind to
coerce the trainee’s experience to conform to a given
scenario. Specifically, the Automated Scenario
Director maintains a representation of the expected
sequence of events that make up the scenario. From
this representation, the scenario director derives and
distributes directives to the NPCs to achieve certain
conditions necessary to drive the scenario forward.
For example, the Automated Scenario Director would
direct the agent representing the Saleh character (from
the example in Section 2) to establish the condition
that the trainee distrusts the character – something
that that agent might not choose to do if left to it’s
own devices.

Consistent with the design decision that the trainee
can perform any of a wide repertoire of actions at any
time, the automated scenario director has a second
responsibility: to monitor the simulation environment,
detect inconsistencies between the simulation state and
the expected scenario, and to reconcile any
inconsistencies. This is essential in balancing the
trade-off between scenario coherence and trainee self-

control because the trainee may perform actions that
make it impossible for the scenario director to progress
towards the desired relevant learning situations. For
example, the trainee could decide to apprehend
Mohammed before he plants the improvised explosive
device in the marketplace. In this instance, the trainee
has created an inconsistency between the simulation
state (e.g. Mohammed is detained) and the expected
scenario representation (e.g. it must not be the case
that Mohammed is detained for the bomb to be
planted). When inconsistencies arise, the scenario is
adapted to reconcile the inconsistencies.

4.1. Computational Representation of Scenario

Scenario adaptation requires that the scenario be
represented computationally in a way that can be
reasoned over by an artificial intelligence system.
Following (Riedl, Saretto, and Young, 2003), we
represent scenarios as partially-ordered plans. A plan
contains steps – events that change the state of the
world – and annotations that explicitly mark the
temporal and causal relationships between all steps in
the plan, defining a partial order indicating the steps’
order of execution (Weld, 1994).

Figure 4.1 shows un-instantiated operators from a
domain operator library that could be used in the
example scenario. The parameters are variables that
will be bound as appropriate to such things as
character or object instances. Preconditions are
conditions in the world that must be true for the
operator to be applicable. Effects are conditions in the
world that become true after successful execution of
the instantiated operator. The first operator in Figure
4.1 describes an action where a character plants a
bomb. Preconditions state that that character must
have the bomb in his or her possession and not be
detained. The effects of the operator are that the bomb
is planted and armed and that the character no longer
has the bomb in his or her possession. The second
operator in Figure 4.1 describes an action whereby one
character acquires an object from another character.

Preconditions state that one character, the owner has
the object and that both characters are not detained.
The effects of the operator are that the acquiring
character has the object and the original owner no
longer has the object.

Other annotations, called causal links, are used to
mark all causal relationships between the steps in the
plan. In a plan, a causal link relates the effect of one
plan step to a precondition of another plan step that is
temporally constrained to occur later than the first
operator. Specifically, a causal link connects two plan
steps s1 and s2 via condition e (written s1 e s2) when
s1 establishes the condition e in the world needed by
subsequent action s2 in order for s2 to execute (Weld,
1994). A plan is not considered complete unless every
precondition of every plan step is satisfied by a causal
link.

Causal dependency planning (Weld, 1994) operates in
a backward chaining fashion as a process of flaw
repair. A flaw is an annotation on an incomplete plan
that specifies how the plan will fail to execute. One
type of flaw is an open condition, where a plan step
has a precondition that is not causally satisfied by a
preceding step or the initial world state. Open
conditions are repaired by extending a causal link
from a preceding step in the plan that has an effect
that unifies with the open condition. If an applicable
step does not exist, a new step is instantiated from a
library of operators.

Besides satisfying open conditions, the planner also
resolves causal threats. A causal threat occurs when
the effect of some step, st, negates condition e of a
causal link relating two steps, s1 and s2. s1 establishes
some condition e in the world which s2 relies on for
execution. But after s1 occurs and before s2 occurs,
step st may occur, causing e to become false in the
world and jeopardizing s2’s ability to succeed. Causal
threats are repaired by temporally ordering st before s1
or after s2.

4.2. Anticipating Necessary Scenario Adaptations

Using planning structures to model scenarios is
advantageous because a plan can be analyzed for
points in which failure can occur due to unpredictable
and interactive behaviors performed by the trainee.
We use a technique similar to that described in (Riedl,
Saretto, and Young, 2003) to analyze the causal
structure of the scenario to determine all possible
inconsistencies between plan and simulation state that
can occur during the entire duration of the scenario.
For every possible inconsistency that can arise that
threatens a causal link in the plan, an alternative
scenario plan is generated. We have modified the

(operator Plant-Bomb
 :parameters (?character ?bomb)
 :precondition ((has ?character ?bomb)
 (:not (detained ?character))
 :effect ((armed ?bomb) (planted ?bomb)
 (:not (has ?character ?bomb))))

(operator Acquire-Object
 :parameters (?acquirer ?object ?owner)
 :precondition ((has ?owner ?object)
 (:not (detained ?acquirer))
 (:not (detained ?owner)))
 :effect ((has ?acquirer ?object)
 (:not (has ?owner ?object))))

Figure 4.1: Example planning operators

original algorithm to use a tiered replanning approach.
For each potential inconsistency that can arise, first
the system attempts to repair the causal link that is
threatened by the inconsistency. Barring that, the
system attempts to remove any events that were
dependent on the threatened causal link and then
repair the plan by filling in events required to restore
causal coherence. Finally, if all else fails, the system
attempts to select new goals and relevant learning
situations and rebuild the scenario plan.

Scenario replanning can be performed offline to avoid
delays due to computation (Riedl, Saretto, and Young,
2003). The result of this process is a tree of
contingency plans in which each plan represents a
complete scenario starting at the initial world state or
at the point in which an inconsistency can occur (Riedl
and Young, 2006). If the user performs an action that
causes an inconsistency that threatens the scenario
plan, the system looks up the appropriate branch in the
tree of contingencies and seamlessly begins directing
the believable agents based on the new scenario plan.

4.3. Example of Scenario Adaptation

Continuing the example scenario from Section 2,
suppose the training system is instantiated with a pre-
constructed plan (shown in the upper left-hand corner
of Figure 4.2). Except for the plan steps and causal
links in the original scenario plan, everything in the
tree of contingency plans is automatically generated,

including the potential inconsistency annotations of
the original scenario itself. For the purposes of this
discussion we have simplified the scenario further into
the following steps:

1. Mohammed acquires bomb1
2. Mohammed plants bomb1 in the marketplace
3. bomb1 goes off as a dud.

The directed connections between steps are causal
links indicating what must be true for a step to be
applicable and which preceding step establishes that
condition. This plan represents the scenario that will
execute if the trainee does not inadvertently (or
intentionally) cause an inconsistency between the
simulation state and the plan structure. The plan is
annotated with two intervals in which inconsistencies
will threaten the causal coherence of the plan:

• Mohammed is detained before he completes the
planting of bomb1

• bomb1 is disarmed before it goes off.
The former can occur if the trainee has Mohammed
arrested. The latter can occur if the trainee finds the
bomb and calls in a bomb squad.

Each potential inconsistency annotation links to a
contingency plan that repairs the inconsistency, should
it occur. The detainment of Mohammed links to a
plan (upper right of Figure 4.2) that is repaired by the
addition of a step that releases Mohammed from
custody, ostensibly because he has not committed a
crime. If the trainee searches Mohammed and

1: Acquire (M, bomb1)

Initial State

2: Plant (M, bomb1)

3: Dud (bomb1)

Outcome

¬(detained M)

(has M bomb1)

 (armed bomb1)
 (planted bomb1)

¬(detained M)

(detained M)

¬(armed bomb1)

1: Acquire (M, bomb1)

Intermediate State

2: Plant (M, bomb1)

3: Dud (bomb1)

Outcome

(detained M)

(has M bomb1)

 (armed bomb1)
 (planted bomb1)

¬(detained M)

(detained M)

¬(armed bomb1)

4: Release (M)
¬(detained M)

(criminal M)

6: Riot-Protest (crowd, M)

Outcome

(detained M)
(detained C)

Intermediate State

4: Plant (C, bomb2)

5: Dud (bomb2)

Outcome

¬(detained C)

 (armed bomb2)
 (planted bomb2)

(detained C)

¬(armed bomb2)

…

…

…

…

…

Figure 4.2: Portion of the generated branching scenario plan

Key:
M = Mohammed
C = Insurgent Conspirator

¬(criminal M)

Intermediate State

5: Agitate (C, crowd, M)
(agitated crowd)

(detained M)
¬(detained C)

Mohammed in fact has bomb1 in his possession, he
will be marked as a criminal. This does not cause an
inconsistency that threatens the original plan. But
once detained, if Mohammed is marked as a criminal,
he cannot be released, instantly causing a second
transition to the plan in the lower right of Figure 4.2.

The plan in the lower left of Figure 4.2 represents the
scenario in which bomb1 is found and disarmed by the
trainee. In this case, the outcome of the original
scenario cannot be achieved. This plan repairs the
original scenario by having an insurgent conspirator
step in and complete the attack on the marketplace
with a second bomb.

The plan in the lower right of Figure 4.2 represents
the scenario in which Mohammed is caught with a
bomb and permanently detained. Like the previously
described contingency, the outcome of the original
scenario can still be achieved by having an insurgent
conspirator complete the attack with a second bomb.
However the planner can find a more appealing
variation. The insurgent conspirator uses the
detention of Mohammed to agitate a crowd. The
crowd then riots in protest of the player’s actions.

5. Putting it all Together

Believable character agents, the Automated Scenario
Director, and a variant of the example scenario from
Section 2 have been combined into a prototype called
IN-TALE (the Interactive Narrative Tacit Adaptive
Leader Experience). The system is built on top of a
3D computer game engine. Figure 5.1 shows a
screenshot of the trainee (central avatar) being
confronted by an NPC. A set of believable social
agents are implemented as semi-autonomous,
intelligent agents in ABL. Each ABL agent controls a
single virtual avatar in the game engine. The
Automated Scenario Director receives state updates

from the game engine via an interface described in
(Riedl, 2005).

5.1. High-Level Direction

As dictated by the scenario plan, the Automated
Scenario Director sends high-level directives to the
ABL agents in one of two forms:

• Direction to achieve some world state.
• Direction to avoid causing states that are

inconsistent with the scenario plan.
Both types of direction are essential. The first type of
direction is the primary mechanism through which the
automated director pushes a scenario forward and is
necessary because the NPCs cannot be relied on to
autonomously make decisions that are always
favorable to the automated director. The second type
of direction is important because the autonomy of
NPCs means that, without constraints, NPCs could
perform behaviors that create inconsistencies between
the simulation state and the scenario plan. The ability
to perform actions that cause such inconsistencies is a
privilege of the trainee only.

The directives from the Automated Scenario Director
to the NPCs are not detailed instructions. Directives
are goals the NPC must adopt, in terms of declarative
world state change. Character agents are left to
determine the best way to achieve the directives,
barring any behavior case world states explicitly
prohibited by the Director. This gives the agents the
leeway to engage in behaviors that are believable,
achieve scenario goals, and take full advantage of the
current world situation, e.g. executing one or more
NDBs as described in Section 3.

The paradigm of high-level directives and low-level
agent autonomy opens up the possibility of an agent
selecting joint behaviors. A joint behavior is a method
– one of many methods known to the agent for
achieving a goal – that co-opts the participation of
other NPCs in the world for close coordination of
activity and/or dramatic effect. For example, if the
agent representing the Mohammed character is
directed to acquire an explosive device (e.g. (has
Mohammed bomb1)), that character might not be able
to do so while the trainee is in close proximity.
Assume there is a directive that (knows player
(has Mohammed bomb1)) should never become
true. The agent may select a joint behavior – one of
many known methods for acquiring an object – that in
conjunction with another agent, possibly a bystander,
creates a diversion. The joint behavior provides
coordination so that Mohammed knows to slip off
while the player is distracted.

Figure 5.1: Screenshot of trainee (central avatar)
confronting a non-player character (right)

5.2. Mixing Autonomy and Scenario Directives

To avoid the appearance of agents that
schizophrenically switch between goals (Sengers,
2003) – in this case goals autonomously selected for
believability and goals demanded by the Scenario
Director – behaviors selected to achieve the
appearance of believability (LABs) and behaviors that
achieve scenario goals (NDBs) must mix seamlessly.
Local autonomous behaviors can run in parallel and/or
interleave with behaviors selected to achieve scenario
goals. “Real life” behaviors can be modulated to
believably blend with the high-level scenario behaviors
imposed on them. Modulations of LABs include:
timing alteration to accommodate the needs of the
scenario; reducing the number of physical resources
required to avoid conflicts with scenario-driven
behaviors; and avoiding actions that would violate
overall believability in any way.

Mixing NDBs with LABs involves annotating NDBs
and LABs with the resources they require: location
requirements, object requirements, emotional state
requirements and so on. When an NDB prepares for
execution in order to fulfill a directive from the
Automated Scenario Director, the NDB announces its
resource requirements. LABs are coded with behavior
variations in order to gracefully degrade their
performance to accommodate the needs of the more
important NDBs, while still behaving believably.
When a LAB is required to interrupt or even abort its
execution to serve the NDB’s needs, it selects from a
variety of short transition-out sub-behaviors to
believably “glue”, i.e., explain why. For example, if a
cleaning the store LAB needs to be truncated or
aborted in order for the agent to participate in NDBs to
acquire and plant a bomb, the agent may choose to
insert some dialog to the effect of, “Hmmm, the store
is pretty clean today… I think sweeping can wait till
tomorrow”. Similarly, whatever LAB begins after the
NDB ends can select from transition-in sub-behaviors
similarly “gluing” the agent’s behavior back into its
daily routine.

6. Authoring

One advantage of the generative scenario adaptation
technique described in Section 4 is that only a single
exemplar scenario plan must be authored. The system
in an offline process analyzes the causal dependencies
of events in the scenario plan determines all ways in
which trainee actions can conflict with the scenario
and generates contingency scenarios. The result is
analogous to a branching story (Riedl and Young,
2006). Pre-scripted branching stories such as those
used in computer games typically have either few

decision points or low branching factors (the number
of alternatives in any given decision point). One
reason for this is the combinatorial complexity of
authoring branching stories (Bruckman 1990); as the
number of decision points grows, the amount of story
content that must be authored grows exponentially.
The generative planning approach used here mitigates
this effort by taking the effort scenario adaptation out
of the hands of the system designers.

The planner used to re-plan scenarios however cannot
operate in a vacuum – it requires knowledge about the
virtual world in which the scenario is set. The more
knowledge the planner has, the greater the number of
content variations can be generated. The planner
requires a library of plan operators and schemata
(referred to as a domain theory). A domain theory
describes in abstract terms all actions that are possible
for story world characters to perform. It may be the
case that the amount of knowledge required by the
system is greater than the length of the plan generated.
However, the advantage is that the same knowledge is
used recursively over and over as each branch in the
tree of scenario contingencies is generated. For
branching narratives that are long and/or have a high
branching factor, the amount of generated content can
quickly exceed the size of the world domain authoring
effort.

How hard is it to author the initial exemplar scenario?
It is not trivial because the scenario must be
represented as a plan with causal links. However,
tools that link into the planner’s domain theory
knowledge-base can ease the process. Furthermore, by
hooking into the planning algorithm itself, the
authoring process could in the future be a mixed-
initiative human-computer process (Burstein and
McDermott, 1996) where the human author expresses
creative intent and an intelligent authoring tool fills in
the technical details, including causal links.
Unfortunately, no such tool has been developed for this
specific system.

Character agent authoring is knowledge-intensive.
However, the “broad, shallow” approach means that
autonomous character behaviors are easy to author.
Knowledge engineers need only focus on the
appearance of correct behavior without regard for
agent reasoning or deep decision making. Local
autonomous behaviors (LABs) can be specific to an
individual NPC in the case that the character expresses
a very unique personality or characteristic. But
mostly, we anticipate that LABs will be general
enough be reused or can be customized from generic
templates. For example, a greeting a customer
behavior could involve the same physical actions from

agent to agent, with only dialog variations customized
to the agent. Further, some low-level behaviors, such
as locomoting, operating a cash register, cleaning the
store and so on, are generic and can be re-used from
agent to agent, with little or no customization per
agent.

Narrative directive behaviors (NDBs) can be
considered a general pre-compiled plan or method for
accomplishing world state change. The challenge of
authoring NDBs is to consider alternative methods for
achieving the same world state condition for a wide
variety of possible circumstances. It is possible that
narrative directive behaviors can be pre-computed by
intelligent agent-based planning systems although we
have yet to explore this possibility in any depth. Once
authored, we anticipate a wide degree of re-use.

7. Related Work

There has been previous work on building systems that
could be described as automated Observer/Controllers.
The Virtual Observer/Controller (Banta et al., 2005)
provides coaching feedback on low-level trainee skill
attempts. The VOC has a limited ability to change the
scenario to take advantage of trainee mistakes to show
the negative consequences of actions. The Advanced
Embedded Training System (AETS) (Zachary et al.,
1999) applies intelligent tutoring to simulation-based
training of air defense radar operators. AETS
monitors the trainee for correct procedural actions
when responding to simulated radar contacts and can
provide feedback but otherwise doesn’t adapt the
scenarios.

Much of the work described here is influenced by
research in the computer game and entertainment
domain. Interactive Storytelling Systems attempt to
tell a story in which the user is able to make decisions
and perform actions that dynamically affect the
direction and/or outcome of the story. In particular,
the Mimesis system (Riedl, Saretto, and Young, 2003;
Young et al., 2004) uses a generative approach to
interactive story. A story plan is generated and
executed by non-autonomous NPCs. When the user
performs an action that threatens to undo a condition
in the story plan, the system dynamically re-plans the
remainder of the story to bring about dramatic goals.
Façade (Mateas and Stern, 2005) uses a reactive
engine to dynamically analyze the current scene
according to dramatic principles and select the next
mini-scene (called a beat) for the NPCs to act out.
Façade uses the ABL behavior specification language
to endow the NPCs with reactivity and believability.
The Interactive Drama Architecture (IDA) (Magerko,
2005) takes human-authored story scripts and uses that

to direct NPCs. IDA uses predictive modeling of the
user to prevent the user from deviating from the
prescribed story.

Interactive Storytelling techniques have been recently
been applied to training and education. The Tactical
Language Training system (Johnson, Marsella, and
Vilhjálmsson, 2004) trains foreign languages through
dramatic, interactive missions. The Interactive
Storytelling Architecture for Training (ISAT)
(Magerko et al., 2005) is based on IDA. Like the work
presented here, ISAT uses a scenario director.
However, the ISAT director agent selects from a pool
of pre-authored scenes according to heuristics based on
dramatic progression and trainee success or failure on
learning objectives. For example, if the trainee fails a
learning objective such as applying a tourniquet, the
scenario director will select the next scene to be one in
which another soldier becomes wounded in a way
requiring a tourniquet.

8. Conclusions

Training cognitive leader skills in social and cultural
domains requires seemingly conflicting requirements:
the need for a virtual world populated by believable,
interactive characters and the need to guide the
trainee’s experience through a sequence of relevant
learning situations. The approach that we demonstrate
in the IN-TALE prototype is to apply artificial
intelligence technologies adopted from entertainment
computing research to computer-based social
simulation. Social simulation is the result of agents
designed to broadly imitate the behaviors of believable
denizens of a virtual world. Pedagogical needs are
handled through intelligent scenario direction and
scenario adaptation.

Our system serves the same conceptual role as an
Observer/Controller in a more conventional exercise.
However, an O/C is more appropriate for exercises
that emphasizes procedural learning objectives. In a
domain such as social and cultural leadership training
that emphasizes problem-solving, deviations from the
scenario script can occur. An O/C has few means for
handling such deviations such as eliminating portions
of the scenario that no longer make sense or
“cheating.” Our approach, using believable agents in
conjunction with an Automated Scenario Director
capable of intelligent scenario replanning can head off
inconsistencies by adapting the scenario to achieve
relevant learning situations in a plausible manner. In
this way, our system achieves the seemingly
conflicting requirements of allowing variability of the
trainee while also maintaining pedagogical validity of
a managed training experience.

9. Acknowledgements

The project or effort described here has been
sponsored by the U.S. Army Research, Development,
and Engineering Command (RDECOM). Statements
and opinions expressed do not necessarily reflect the
position or the policy of the United States
Government, and no official endorsement should be
inferred. Special thanks to Jason Alderman, Don
Dini, and Julia Kim.

10. References

Banta, H.G., Troillet, D.B., Heffernan, N.T.,
Plamondon, B., and Beal, S.A. (2005). The
Virtual Observer/Controller (VOC): Automated
Intelligent Coaching in Dismounted Warrior
Simulations (Research Note 2005-01). U.S.
Army Research Institute.

Bates, J. (1992). Virtual Reality, Art, and
Entertainment. Presence: The Journal of Tele-
operators and Virtual Environments, 1(1).

Bruckman, A. (1990). The Combinatorics of
Storytelling: Mystery Train Interactive.
Unpublished manuscript.

Burstein, M.H. and McDermott, D.V. (1996). Issues in
the Development of Human-Computer Mixed-
Initiative Planning Systems. In B. Gorayska and
J.L. Mey (Eds.) Cognitive Technology: In Search
of a Humane Interface. Elsevier.

Firby, R.J. (1989). Adaptive Execution in Complex
Dynamic Worlds. Ph.D. Dissertation, Yale.

Johnson, W.L., Marsella, S., and Vilhjálmsson, H.
(2004). The DARWARS Tactical Language
Training System. In Proc. of the 2004
Interservice/Industry Training, Simulation, and
Education Conference.

Loyall, A.B. (1997). Believable Agents: Building
Interactive Personalities. Ph.D. Dissertation,
Carnegie Mellon University.

Magerko, B. (2005). Story Representation and
Interactive Drama. In Proc. of the 1st Conf. on AI
and Interactive Digital Entertainment.

Magerko, B., Wray, R.E., Holt, L.S., and Stensrud, B.
(2005). Customizing Interactive Training
Through Individualized Content and Increased
Engagement. In Proc. of the 2005
Interservice/Industry Training, Simulation, and
Education Conference.

Mateas, M. & Stern, A. (2004). A Behavior Language:
Joint Action and Behavior Idioms. In H.
Prendinger & M. Ishizuka (Eds.) Life-like
Characters: Tools, Affective Functions and
Applications. Springer.

Mateas, M. and Stern, A. (2005). Structuring Content
in the Façade Interactive Drama Architecture. In

Proc. of the 1st Conf. on AI and Interactive
Digital Entertainment.

McCausland, J. & Martin, G., (2001). Transforming
Strategic Leader Education for the 21st-Century
Army. Parameters, Autumn 2001.

McKee, R. (1997). Story: Substance, Structure, Style,
and the Principles of Screenwriting. Harper-
Collins.

Riedl, M.O. (2005). Towards Integrating AI Story
Controllers and Game Engines: Reconciling
World State Representations. In Proc. of the
2005 IJCAI Workshop on Reasoning,
Representation and Learning in Computer
Games.

Riedl, M.O, Saretto, C.J., and Young, R.M. (2003).
Managing Interaction Between Users and Agents
in a Multi-Agent Storytelling Environment. In
Proc. of the 2nd Int. Conf. on Autonomous Agents
and Multi Agent Systems.

Riedl, M.O. and Young, R.M. (2006). From Linear
Story Generation to Branching Story Graphs.
IEEE Computer Graphics and Applications, to
appear.

Sengers, P. (2003). Schizophrenia and Narrative in
Artificial Agents. In M. Mateas and P. Sengers
(Eds.) Narrative Intelligence. John Benjamins.

Swartout, W., Hill, R., Gratch, J., Johnson, W.L.,
Kyriakakis, C., LaBore, C., Lindheim, R.,
Marsella, S., Miraglia, D., Moore, B., Morie, J.,
Rickel, J., Thiebaux, M., Tuch, L., Whitney, R.,
& Douglas, J. (2001). Towards the Holodeck:
Integrating Graphics, Sound, Character and
Story. In Proc. of the 5th Int. Conf. on
Autonomous Agents.

Tambe, M. (1997). Towards Flexible Teamwork.
Journal of Artificial Intelligence Research, 7.

vanLehn, K. (1996). Conceptual and Meta Learning
during Coached Problem Solving. In Proc. of the
3rd Int. Conf. on Intelligent Tutoring Systems.

Weld, D. (1994). An Introduction to Least
Commitment Planning. AI Magazine, 15(4).

Young, R.M., Riedl, M.O., Branly, M., Jhala, A.,
Martin, R.J., and Saretto, C.J. (2004). An
Architecture for Integrating Plan-Based Behavior
Generation with Interactive Game Environments.
Journal of Game Development, 1(1), 51-70.

Zachary, W., Cannon-Bowers, J., Bilazarian, P.,
Krecker, D., Lardieri, P., and Burns, J. (1999).
The Advanced Embedded Training System
(AETS): An Intelligent Embedded Tutoring
System for Tactical Team Training.
International Journal of Artificial Intelligence in
Education, 10, 257-277.

Author Biographies

MARK O. RIEDL is a Research Scientist at the ICT.
He completed his Ph.D. in Computer Science at North
Carolina State University in 2004. His research
focuses on automated narrative generation, interactive
narrative, and intelligent virtual agents for
entertainment, education, and training.

ANDREW STERN is a designer, researcher, writer
and engineer of personality-rich, AI-based interactive
characters and stories. Previous to co-developing the
award-winning interactive drama Façade, Andrew
was a lead designer and software engineer of the
Virtual Babyz, Dogz, and Catz from PF.Magic, which
sold over 2 million units worldwide.

