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ABSTRACT: Simulation provides an opportunity for a trainee to practice skills in an interactive and reactive virtual 
environment.  We present a technique for social and cultural leader training through simulation based on a 
combination of interactive synthetic agents and intelligent scenario direction and adaptation. Social simulation 
through synthetic characters provides an engaging and believable experience for the trainee.  In addition, the trainee 
is exposed to a sequence of relevant learning situations where the trainee can practice problem-solving under 
particular conditions.  An Automated Scenario Director provides high-level guidance to semi-autonomous character 
agents to coerce the trainee’s experience to conform to a given scenario.  When the trainee performs actions in the 
virtual world that cause the simulation state to deviate from the scenario, the Automated Scenario Director adapts the 
scenario to resolve any unexpected inconsistencies, thereby preserving the trainee’s perception of self control while 
still retaining any relevant learning situations.   
 
1. Introduction 

Research on leadership development shows that 
expertise is gained through experience and by taking 
the time to reflect on the lessons learned from an 
episode.  The problem with learning by experience in a 
military context, however, is that some decisions and 
behaviors can have devastating or fatal consequences 
if mistakes are made, making such lessons very 
expensive.  One way that one can learn from 
experience without “being there” is by playing a role 
in a game or interactive simulation.  While a 
simulation may provide an excellent opportunity for a 
trainee to practice skills in an interactive and reactive 
virtual environment, evidence suggests that “guided 
discovery” is a powerful method of learning (vanLehn, 
1996).  Consequently, we believe the capability to 
manage the experience of a trainee in a virtual 
simulation may enhance the effectiveness of virtual 
training environments by increasing the likelihood 
that the trainee will be exposed to a specified sequence 
of relevant learning situations in which lessons can be 
learned and/or skills can be practiced. 

While live training exercises are an essential part of 
military leader training, such exercises are primarily 

used to train procedural skills well defined by doctrine 
and best practices.  In the current operating 
environment, however, there is a downward migration 
of leadership tasks (McCausland and Martin, 2001) 
such that the decisions and actions of small unit 
leaders and soldiers can take on strategic significance.  
For example, a small unit leader may be placed in a 
situation where he or she must interact with civilians 
and non-government organizations while deployed to 
foreign lands.  In the research we present here, we are 
working in the domain of leader training in social and 
cultural awareness contexts.  In such a domain, the 
trainee needs to experience scenarios in which he or 
she is forced to interact with foreign cultures and make 
local decisions with strategic and 2nd and 3rd order 
effects.  The emphasis is not as much on procedural 
learning objectives, but on placing the trainee in 
situations where difficult decisions must be made.   

We believe that effective social and cultural leadership 
training can be tackled by a combination of reactive 
social simulation and automated scenario direction.  
The domain of social and cultural leadership training 
naturally places the trainee in situations in which he or 
she must interact with other people.  In a computer 
simulation that supports this domain, it is beneficial to 



have synthetic humanoid agents that personify 
characters – friendly or otherwise – capable of 
interacting with the trainee through natural language 
and gesture (Swartout et al., 2001).  Our approach 
uses intelligent semi-autonomous character agents that 
are designed to be interactive and believable.  A 
believable agent is one that possesses behavioral traits 
that facilitate one’s suspension of disbelief that the 
agent is a real person (Bates, 1992).   

While social simulation is sufficient for an engaging 
experience we wish for the trainee’s experience to be 
structured.  We require the non-player characters 
(NPCs) to enact a scenario, particularly one that 
possesses one or more relevant learning situations.  To 
accomplish structuring over the trainee’s experience, 
an Automated Scenario Director provides high-level 
guidance to the social agents that inhabit the 
simulation.  The Automated Scenario Director ensures 
a coherent progression towards relevant learning 
situations.  When necessary the Automated Scenario 
Director can adapt the scenario to protect the 
coherence of the trainee’s experience. 

Our approach to managing the experience of a trainee 
in a social and cultural simulation is not dissimilar to 
the role of an Observer/Controller (O/C) in a live 
training exercise.  However, our approach affords a 
greater degree of flexibility and adaptability than 
typically seen in exercises based around learning 
objectives. 

2. Example Scenario 

To motivate the problem, we present the following 
simple training scenario in which a trainee takes the 
role of a leader placed in a situation in which he or she 
must interact socially and culturally with a foreign 
population.  The background is that the trainee is part 
of a peacekeeping mission deployed to a foreign 
country.  As a measure of good will, the peacekeeping 
forces have set up a new marketplace that is modern 
and secure from insurgent attacks.  The trainee plays 
the role of a captain in charge of maintaining the 
security of civilian merchants and buyers in the new 
marketplace. 

The scenario is expected to unfold as follows.  While 
the trainee is engaged in daily procedures concerning 
the new marketplace, a heated argument breaks out 
between two merchants that do business near each 
other.  One merchant, named Saleh, is accusing the 
other, named Mohammed, of luring away his 
customers.  Afterwards, Saleh approaches the trainee 
and complains that the presence of the peacekeeping 
troops is impinging on his ability to do business in the 
marketplace.  He makes a dire prognostication that 

violence could ensue.  Mohammed, in contrast appears 
to be nothing but friendly.  Later that day, Mohammed 
slips away from the marketplace and returns 
concealing an improvised explosive device 
(presumably acquired from his insurgent conspirator).  
When Saleh steps away from his place of business, 
Mohammed plants the bomb there.  Shortly 
afterwards, the bomb goes off.  Fortunately for all 
involved, the bomb is a dud, but the marketplace is 
nonetheless left in a state of chaos, panic, and 
confusion. 

The scenario is not contingent on the trainee 
completing any particular learning objective, but 
instead is designed to expose the trainee to certain 
relevant learning situations in which the trainee can 
practice certain skills (possibly associated with 
learning objectives) or practice decision-making and 
problem-solving.  The primary relevant learning 
situation occurs at the end of the scenario when the 
dud explosion plunges the marketplace into chaos and 
uncertainty.  It is the trainee’s job to restore order, 
provide assurances to the people doing business there, 
assess blame, and possibly even make arrests.  Given 
the expectations created by the scenario, it would 
justifiable if the trainee were to suspect Saleh of 
instigating the attack.  Consequently, the lead up to 
this situation is just as important as the situation.  
Otherwise, the training simulation could start at the 
point of the explosion.  The assumption is that if the 
trainee is engaged socially and culturally and comes to 
be familiar with the primary characters in the 
marketplace, the trainee may be able to recognize that 
Mohammed has a deep-rooted animosity towards the 
peacekeeping force and that Saleh is merely an 
outspoken but harmless detractor.  Indeed, with 
initiative, the trainee may even be able to prevent the 
attack. 

Note that if the trainee succeeds in preventing the 
attack by catching Mohammed with the explosive 
device then it will be impossible for Mohammed to 
plant the bomb and therefore impossible for the bomb 
to go off and establish the primary relevant learning 
situation.  How would an Observer/Controller handle 
this dilemma in a live exercise?  The O/C could do the 
realistic thing, removing the bombing from the 
scenario at the risk of eliminating an important 
learning situation.  The O/C could alternatively 
“cheat” by changing the simulation to have the 
explosive device magically planted at the risk of 
making the trainee feel as if his or her actions were 
irrelevant. 

In the remainder of the paper, we describe a novel 
technique for trainee experience management that is 



designed to excel at such social and cultural 
simulation scenarios as that described above.  The key 
is the ability to automatically recognize dilemmas like 
the one described here and handle them without 
clobbering relevant learning objectives or cheating. 

3. Believable Characters  

Social simulation is achieved through a collection of 
non-player characters (NPCs) that are reactive and 
appear intelligent, motivated, and reactive.  Our 
agents are partly composed of a broad, general 
collection of local autonomous behaviors that are 
designed to afford suspension of disbelief.  Local 
autonomous behaviors (LABs) such as working, 
running errands, shopping, etc. supply agents with a 
"rich inner life." The objective is not to have agents 
that are competent reasoning agents, but agents that 
appear to be intelligent, motivated, emotional, and 
consequently believable.  This emphasis on appearance 
is referred to as a “broad but shallow” approach to 
agents (Bates, 1992).  That is, agents can perform a 
wide repertoire of behaviors in a convincing manner 
but without performing “deep” reasoning.  For our 
domain, this is sufficient because social and cultural 
interaction involves routine behavior and simple 
problem-solving instead of novel or complex cognitive 
tasks.  In that sense, agent knowledge can be compiled 
into reactive behavior selection mechanisms.   

For pedagogical reasons, it is important that NPCs are 
capable of acting to bring about a specific scenario.  
Scenario-specific interactive events such as 
confronting the player and acquiring, planting, and 
detonating an explosive device, are carried out by 
narrative directive behaviors (NDBs).  Narrative 
directive behaviors are incorporated into the agents’ 
behavior repertoires before run-time and triggered by 
high-level narrative direction from the Automated 
Scenario Director (see Section 4).  These scenario-
specific behaviors are designed to modulate, mix with, 
and/or override local autonomous behaviors. 

3.1. Agent Architecture 

To achieve the desired life-like qualities we 
implemented our agents using the reactive planning 
language ABL (A Behavior Language) (Mateas and 
Stern, 2004) using a behavioral infrastructure licensed 
from the Procedural Arts Behavior Library (PABL).  
The ABL language and PABL infrastructure were 
initially created for the interactive drama, Façade 
(Mateas and Stern, 2005).  ABL is based on the Oz 
Project (Bates, 1992) believable agent language Hap 
(Loyall, 1997).  ABL and its parent language Hap are 
designed to support the detailed expression of 
artistically-chosen personality, automatic control of 

real-time interactive animation, and architectural 
support for many of the requirements of believable 
agents (Loyall, 1997). 

In ABL, an activity (e.g., walking to the user, or 
speaking a line of dialog) is represented as a goal, and 
each goal is supplied with one or more behaviors to 
accomplish its task. An active goal chooses one of its 
behaviors to try. A behavior is a series of steps, that 
can occur sequentially or in parallel, that accomplish a 
goal. Preconditions are used to determine behavior 
applicability by matching against working memory 
elements (WMEs) that make up the agent’s subjective 
knowledge about the world.  A behavior may itself 
have one or more subgoals.   

Figure 3.1 shows a simple example of ABL behavior 
specifications that cause an agent to walk to the 
player’s location and then simultaneously speak a line 
of text while gesturing.  The precondition of the 
Foreshadow_Bomb behavior matches the behavior 
against the agent’s knowledge of the world to see if the 
behavior is applicable.  The precondition clause 
searches the agent’s working memory for two working 
memory elements that signify that the agent knows (a) 
it is at location my_booth and (b) the player is not.  If 
applicable, this behavior sequentially tries to achieve 
the two subgoals in the given order.  The 
Stage_To_Player behavior moves the agent to the 
player’s location and orients it for conversation.  The 
Speak_Bomb_Dialogue behavior is a parallel 
behavior, meaning the agent will simultaneously 

sequential behavior Foreshadow_Bomb ()  
{ 
  precondition { (LocationWME  
                      agent == me             
                      location == my_booth) 
                 (LocationWME  
                      agent == player 
                      location != my_booth) }
  subgoal Stage_To_Player(); 
  subgoal Speak_Bomb_Dialogue(); 
} 
 
parallel behavior Speak_Bomb_Dialogue ()  
{ 
  subgoal Speak_Dialog(“I wish someone  
                  would blow this place up”);
  subgoal Gesture_Agitated(); 
} 
 
sequential behavior Gesture_Agitated () 
{ 
  precondition { ... } 
  act Play_Gesture(3); 
} 
 
sequential behavior Gesture_Agitated () 
{ 
  precondition { ... } 
  act Play_Gesture(5); 
} 

 Figure 3.1: Example ABL behaviors 
 



attempt to achieve the given subgoals: speaking a line 
of dialogue and gesturing agitatedly.  Note that there 
may be many appropriate behaviors for gesturing, of 
which the agent picks the most applicable behavior.  
In this case, the preconditions help the agent pick the 
most appropriate alternative given the specific context.  
The subgoaling encapsulates this decision so that the 
parent behavior doesn’t have to encode the logic of 
determining which gesture to perform for all possible 
conditions.  The Gesture_Agitated behaviors 
specify acts, which, unlike subgoals, invoke function 
calls to the low-level graphics and animation engine 
controlling the agent’s avatar, in this case playing a 
pre-specified indexed gesture animation. 

To keep track of all the active goals and behaviors and 
subgoal relationships, ABL maintains an active 
behavior tree (ABT) and working memory.  The ABT 
is a tree rather than a stack because some behaviors 
execute their steps in parallel, thus introducing 
parallel lines of expansion in the program state.  The 
agent’s working memory contains WMEs that are 
updated dynamically and continuously through sensor 
routines engaged with the virtual world.  The 
architecture of an ABL agent appears in Figure 3.2.  
Typically, once a behavior completes all of its steps, 
the behavior and the goal that spawned it succeed.  
However if any of the behavior’s steps fail, then the 
behavior itself fails and the goal attempts to find a 
different behavior to accomplish its task, finally failing 
if no such alternative behavior can be found.   

Further, to harness the dramatic power of multi-agent 
teams of characters, ABL supports authoring of joint 
goals and behaviors (Mateas and Stern, 2004).  When 
a goal is marked as joint, ABL enforces coordinated 
entry into and exit from the team members' behaviors 
chosen to accomplish the goal.  This coordination is 
transparent to the programmer and analogous to the 
STEAM multi-agent coordination framework (Tambe, 

1997).  The driving design goal of joint behaviors is to 
combine rich semantics for individual expressive 
behavior with support for the automatic 
synchronization of behavior across multiple agents. 

In contrast to standard imperative languages one 
might use to control agents (e.g. C++, Java), in ABL 
an author can, in relatively few lines of code, specify 
collections of goals and behaviors that can cleanly 
intermix solo and/or joint character actions, modulate 
their execution based on the continuously sensed state 
of the world, and perform local, context-specific 
reactions to a user’s actions.  While ABL serves a 
similar purpose to other reactive planners such as Soar 
and RAPS (Firby, 1989), the automated management 
of joint goals and the ability for an agent to perform 
parallel behaviors makes it particularly flexible for 
life-like agents.  Additionally, ABL gives behaviors 
reflective access to the current state of the ABT, 
supporting the authoring of meta-behaviors that match 
on patterns in the ABT and dynamically modify other 
running behaviors. This is particularly useful for 
creating behaviors that can react immediately to the 
user.  Supported ABT modifications include 
succeeding, failing or suspending a goal or behavior, 
and modifying the annotations of a subgoal step, such 
as changing the persistence or priority. 

3.2. Behavior Authoring 

There are two broad categories of agent behaviors that 
must be authored: local autonomous behaviors and 
narrative directive behaviors.  Local autonomous 
behaviors (LABs) are the somewhat generic, re-usable 
“inner life” activities such as working, running 
errands, shopping, etc.  Narrative directive behaviors 
(NDBs) are scenario-specific and are triggered by the 
Automated Scenario Director. 

Local Autonomous Behaviors.  Local autonomous 
behaviors (LABs) are implemented as a loosely 
structured collections of sub-behaviors called  “LAB 
goals”, that depend on and assert simple events in 
episodic memory.  For example, the  opening the store 
LAB may involve the agent unlocking the store, 
unpacking boxes, chatting with assistant, and 
displaying new goods.  Each of these parts is 
implemented as its own simple LAB goal.  Displaying 
new goods may depend on unlocking the store having 
been completed.  Note that there can be partial 
ordering such that chatting with assistant is just as 
likely to occur after unlocking the store as unpacking 
boxes.  Or, in such a case, chatting may end up getting 
skipped altogether since no other LAB goals depend 
on it.  User interactions, should they occur, can easily 
get inserted during or in between the loosely organized 
LAB goals. 

Figure 3.2: ABL runtime architecture (Mateas and 
Stern, 2004) 

 



Each individual agent is responsible for selecting and 
sequencing their local autonomous behaviors.  LABs 
manage their own sequencing.  Whenever a new LAB 
needs to run, either upon start-up or once the previous 
LAB completes, each LAB may make a bid for how 
important it is to run next.  Bids are numeric values 
calibrated in a range from low importance to 
extremely urgent. A LAB chooses a bid strength 
depending upon current world conditions, such as time 
of day, and episodic memory as needed; if the LAB 
does not care to run, it does not bid at all.  A simple 
arbitration behavior makes a weighted probability 
choice among the bids, and the chosen LAB begins 
executing. 

Narrative Directive Behaviors.  By contrast, 
narrative directive behaviors (NDBs) are more tightly 
structured collections of sub-behaviors, intended to 
perform more important and more sophisticated parts 
of the scenario.  Further, user interaction afforded in 
NDBs usually needs to be richer and more responsive 
than in LABs.  The collection of sub-behaviors that 
constitute an NDB are organized around the dramatic 
beat (Mateas and Stern, 2005), a component of the 
PABL infrastructure.  In the theory of dramatic 
writing, the beat is the smallest unit of dramatic action 
(McKee, 1997).  A beat is a ~60-second-long dramatic 
interaction between characters such as a shared 
experience (e.g., witnessing a bombing), or a brief 
conflict about a topic (e.g., the user questioning an 
agent), or the revelation of an important secret.  Beats 
are organized around a collection of “beat goal” 
behaviors, the dramatic content that the beat is 
designed to communicate to the user through animated 
performance.  

The PABL authoring strategy for handling user 
interaction within a beat is to specify the “canonical” 
beat goal behavior logic (i.e., what dramatic 
performance the author intends the beat to 
accomplish), as well as a collection of beat-specific 
handler behaviors that modify this default logic in 
response to user interaction. In order to modify the 
default logic, the handler behaviors make use of meta-
ABL functionality to modify the ABT state.  While 
handler behaviors can in principle arbitrarily modify 
the ABT state, most fall into one of two general 
classes: mix-in handler behaviors that add an 
additional beat goal behavior in the middle of a beat 
while keeping the rest of the sequencing the same, and 
re-sequencing handler behaviors that more radically 
reorganize the beat goal sequence. The ability to factor 
behavior into sequences that achieve longer-term 
temporal structures, and meta-behaviors that modify 
these longer-term temporal structures, is a powerful 
idiom enabled by ABL’s support for reflection. 

Each interaction handler behavior is a demon that 
waits for some particular type of user interaction and 
“handles” it accordingly. User interaction includes 
dialogue interaction (the user can speak to the 
characters at any time by entering discourse acts, e.g. 
"disagree Saleh") and physical interaction (e.g. the 
user takes action such as "arrest Saleh").  Every NDB  
specifies some beat-specific handlers; additionally, 
there are more generic LAB handlers for handling 
interactions for which there are no beat-specific 
responses supplied by the current beat. 

4. The Automated Scenario Director 

There is a trade-off between scenario coherence and 
the trainee’s perception of self-control (Riedl, Saretto, 
and Young, 2003).  On one hand, instructional 
designers will want to ensure a coherent progression of 
scenario events that lead the trainee through a 
sequence of relevant learning situations.  On the other 
hand, in a training simulation, the trainee needs to 
observe a realistic, populated social environment and 
be able to problem-solve – to perform actions and 
make decisions.  In our system, the trainee is allowed 
to perform any of a wide repertoire of communicative 
and physical actions at any time.  Simulation with 
social agents alone, however, is not enough to ensure 
that the trainee is exposed to relevant learning 
situations in an appropriate and contextual order.     

To ensure that the trainee’s experience is managed 
and that the appropriate sequence of relevant learning 
situations occur, an agent called the Automated 
Scenario Director acts as an unseen over-mind to 
coerce the trainee’s experience to conform to a given 
scenario.  Specifically, the Automated Scenario 
Director maintains a representation of the expected 
sequence of events that make up the scenario.  From 
this representation, the scenario director derives and 
distributes directives to the NPCs to achieve certain 
conditions necessary to drive the scenario forward.  
For example, the Automated Scenario Director would 
direct the agent representing the Saleh character (from 
the example in Section 2) to establish the condition 
that the trainee distrusts the character – something 
that that agent might not choose to do if left to it’s 
own devices.   

Consistent with the design decision that the trainee 
can perform any of a wide repertoire of actions at any 
time, the automated scenario director has a second 
responsibility: to monitor the simulation environment, 
detect inconsistencies between the simulation state and 
the expected scenario, and to reconcile any 
inconsistencies.  This is essential in balancing the 
trade-off between scenario coherence and trainee self-



control because the trainee may perform actions that 
make it impossible for the scenario director to progress 
towards the desired relevant learning situations.  For 
example, the trainee could decide to apprehend 
Mohammed before he plants the improvised explosive 
device in the marketplace.  In this instance, the trainee 
has created an inconsistency between the simulation 
state (e.g. Mohammed is detained) and the expected 
scenario representation (e.g. it must not be the case 
that Mohammed is detained for the bomb to be 
planted).  When inconsistencies arise, the scenario is 
adapted to reconcile the inconsistencies.  

4.1. Computational Representation of Scenario 

Scenario adaptation requires that the scenario be 
represented computationally in a way that can be 
reasoned over by an artificial intelligence system.  
Following (Riedl, Saretto, and Young, 2003), we 
represent scenarios as partially-ordered plans.  A plan 
contains steps – events that change the state of the 
world – and annotations that explicitly mark the 
temporal and causal relationships between all steps in 
the plan, defining a partial order indicating the steps’ 
order of execution (Weld, 1994).   

Figure 4.1 shows un-instantiated operators from a 
domain operator library that could be used in the 
example scenario.  The parameters are variables that 
will be bound as appropriate to such things as 
character or object instances.  Preconditions are 
conditions in the world that must be true for the 
operator to be applicable.  Effects are conditions in the 
world that become true after successful execution of 
the instantiated operator. The first operator in Figure 
4.1 describes an action where a character plants a 
bomb.  Preconditions state that that character must 
have the bomb in his or her possession and not be 
detained.  The effects of the operator are that the bomb 
is planted and armed and that the character no longer 
has the bomb in his or her possession.  The second 
operator in Figure 4.1 describes an action whereby one 
character acquires an object from another character.  

Preconditions state that one character, the owner has 
the object and that both characters are not detained.  
The effects of the operator are that the acquiring 
character has the object and the original owner no 
longer has the object.  

Other annotations, called causal links, are used to 
mark all causal relationships between the steps in the 
plan.  In a plan, a causal link relates the effect of one 
plan step to a precondition of another plan step that is 
temporally constrained to occur later than the first 
operator.  Specifically, a causal link connects two plan 
steps s1 and s2 via condition e (written s1 e s2) when 
s1 establishes the condition e in the world needed by 
subsequent action s2 in order for s2 to execute (Weld, 
1994).  A plan is not considered complete unless every 
precondition of every plan step is satisfied by a causal 
link. 

Causal dependency planning (Weld, 1994) operates in 
a backward chaining fashion as a process of flaw 
repair.  A flaw is an annotation on an incomplete plan 
that specifies how the plan will fail to execute.  One 
type of flaw is an open condition, where a plan step 
has a precondition that is not causally satisfied by a 
preceding step or the initial world state.  Open 
conditions are repaired by extending a causal link 
from a preceding step in the plan that has an effect 
that unifies with the open condition.  If an applicable 
step does not exist, a new step is instantiated from a 
library of operators.   

Besides satisfying open conditions, the planner also 
resolves causal threats.  A causal threat occurs when 
the effect of some step, st, negates condition e of a 
causal link relating two steps, s1 and s2.  s1 establishes 
some condition e in the world which s2 relies on for 
execution.  But after s1 occurs and before s2 occurs, 
step st may occur, causing e to become false in the 
world and jeopardizing s2’s ability to succeed.  Causal 
threats are repaired by temporally ordering st before s1 
or after s2. 

4.2. Anticipating Necessary Scenario Adaptations 

Using planning structures to model scenarios is 
advantageous because a plan can be analyzed for 
points in which failure can occur due to unpredictable 
and interactive behaviors performed by the trainee.  
We use a technique similar to that described in (Riedl, 
Saretto, and Young, 2003) to analyze the causal 
structure of the scenario to determine all possible 
inconsistencies between plan and simulation state that 
can occur during the entire duration of the scenario.  
For every possible inconsistency that can arise that 
threatens a causal link in the plan, an alternative 
scenario plan is generated.  We have modified the 

(operator Plant-Bomb 
  :parameters (?character ?bomb) 
  :precondition ((has ?character ?bomb) 
                 (:not (detained ?character))
  :effect ((armed ?bomb) (planted ?bomb) 
           (:not (has ?character ?bomb)))) 
 
(operator Acquire-Object 
  :parameters (?acquirer ?object ?owner) 
  :precondition ((has ?owner ?object) 
                 (:not (detained ?acquirer)) 
                 (:not (detained ?owner))) 
  :effect ((has ?acquirer ?object) 
           (:not (has ?owner ?object)))) 

Figure 4.1: Example planning operators 



original algorithm to use a tiered replanning approach.   
For each potential inconsistency that can arise, first 
the system attempts to repair the causal link that is 
threatened by the inconsistency.  Barring that, the 
system attempts to remove any events that were 
dependent on the threatened causal link and then 
repair the plan by filling in events required to restore 
causal coherence.  Finally, if all else fails, the system 
attempts to select new goals and relevant learning 
situations and rebuild the scenario plan.   

Scenario replanning can be performed offline to avoid 
delays due to computation (Riedl, Saretto, and Young, 
2003).  The result of this process is a tree of 
contingency plans in which each plan represents a 
complete scenario starting at the initial world state or 
at the point in which an inconsistency can occur (Riedl 
and Young, 2006).  If the user performs an action that 
causes an inconsistency that threatens the scenario 
plan, the system looks up the appropriate branch in the 
tree of contingencies and seamlessly begins directing 
the believable agents based on the new scenario plan. 

4.3. Example of Scenario Adaptation 

Continuing the example scenario from Section 2, 
suppose the training system is instantiated with a pre-
constructed plan (shown in the upper left-hand corner 
of Figure 4.2).  Except for the plan steps and causal 
links in the original scenario plan, everything in the 
tree of contingency plans is automatically generated, 

including the potential inconsistency annotations of 
the original scenario itself.  For the purposes of this 
discussion we have simplified the scenario further into 
the following steps: 

1. Mohammed acquires bomb1 
2. Mohammed plants bomb1 in the marketplace 
3. bomb1 goes off as a dud. 

The directed connections between steps are causal 
links indicating what must be true for a step to be 
applicable and which preceding step establishes that 
condition.  This plan represents the scenario that will 
execute if the trainee does not inadvertently (or 
intentionally) cause an inconsistency between the 
simulation state and the plan structure.  The plan is 
annotated with two intervals in which inconsistencies 
will threaten the causal coherence of the plan:  

• Mohammed is detained before he completes the 
planting of bomb1 

• bomb1 is disarmed before it goes off. 
The former can occur if the trainee has Mohammed 
arrested.  The latter can occur if the trainee finds the 
bomb and calls in a bomb squad.  

Each potential inconsistency annotation links to a 
contingency plan that repairs the inconsistency, should 
it occur.  The detainment of Mohammed links to a 
plan (upper right of Figure 4.2) that is repaired by the 
addition of a step that releases Mohammed from 
custody, ostensibly because he has not committed a 
crime.  If the trainee searches Mohammed and 

1: Acquire (M, bomb1) 

Initial State 

2: Plant (M, bomb1) 

3: Dud (bomb1) 

Outcome 

¬(detained M) 

(has M bomb1) 

 (armed bomb1) 
 (planted bomb1) 

¬(detained M) 

(detained M) 

¬(armed bomb1) 
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2: Plant (M, bomb1) 
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 (planted bomb1) 

¬(detained M) 

(detained M) 

¬(armed bomb1) 

4: Release (M) 
¬(detained M) 

(criminal M) 

6: Riot-Protest (crowd, M) 

Outcome 

(detained M) 
(detained C) 

Intermediate State 

4: Plant (C, bomb2) 

5: Dud (bomb2) 

Outcome 

¬(detained C) 

 (armed bomb2) 
 (planted bomb2) 

(detained C) 

¬(armed bomb2) 

… 

… 

… 

… 

… 

Figure 4.2: Portion of the generated branching scenario plan 
 

Key: 
M = Mohammed 
C = Insurgent Conspirator 

¬(criminal M) 

Intermediate State 

5: Agitate (C, crowd, M) 
(agitated crowd) 

(detained M) 
¬(detained C) 



Mohammed in fact has bomb1 in his possession, he 
will be marked as a criminal.  This does not cause an 
inconsistency that threatens the original plan.  But 
once detained, if Mohammed is marked as a criminal, 
he cannot be released, instantly causing a second 
transition to the plan in the lower right of Figure 4.2.   

The plan in the lower left of Figure 4.2 represents the 
scenario in which bomb1 is found and disarmed by the 
trainee.  In this case, the outcome of the original 
scenario cannot be achieved.  This plan repairs the 
original scenario by having an insurgent conspirator 
step in and complete the attack on the marketplace 
with a second bomb. 

The plan in the lower right of Figure 4.2 represents 
the scenario in which Mohammed is caught with a 
bomb and permanently detained.  Like the previously 
described contingency, the outcome of the original 
scenario can still be achieved by having an insurgent 
conspirator complete the attack with a second bomb.  
However the planner can find a more appealing 
variation.  The insurgent conspirator uses the 
detention of Mohammed to agitate a crowd.  The 
crowd then riots in protest of the player’s actions. 

5. Putting it all Together 

Believable character agents, the Automated Scenario 
Director, and a variant of the example scenario from 
Section 2 have been combined into a prototype called 
IN-TALE (the Interactive Narrative Tacit Adaptive 
Leader Experience).  The system is built on top of a 
3D computer game engine.  Figure 5.1 shows a 
screenshot of the trainee (central avatar) being 
confronted by an NPC.  A set of believable social 
agents are implemented as semi-autonomous, 
intelligent agents in ABL.  Each ABL agent controls a 
single virtual avatar in the game engine.  The 
Automated Scenario Director receives state updates 

from the game engine via an interface described in 
(Riedl, 2005).   

5.1. High-Level Direction 

As dictated by the scenario plan, the Automated 
Scenario Director sends high-level directives to the 
ABL agents in one of two forms: 

• Direction to achieve some world state. 
• Direction to avoid causing states that are 

inconsistent with the scenario plan. 
Both types of direction are essential.  The first type of 
direction is the primary mechanism through which the 
automated director pushes a scenario forward and is 
necessary because the NPCs cannot be relied on to 
autonomously make decisions that are always 
favorable to the automated director.  The second type 
of direction is important because the autonomy of 
NPCs means that, without constraints, NPCs could 
perform behaviors that create inconsistencies between 
the simulation state and the scenario plan.  The ability 
to perform actions that cause such inconsistencies is a 
privilege of the trainee only. 

The directives from the Automated Scenario Director 
to the NPCs are not detailed instructions.  Directives 
are goals the NPC must adopt, in terms of declarative 
world state change.  Character agents are left to 
determine the best way to achieve the directives, 
barring any behavior case world states explicitly 
prohibited by the Director.  This gives the agents the 
leeway to engage in behaviors that are believable, 
achieve scenario goals, and take full advantage of the 
current world situation, e.g. executing one or more 
NDBs as described in Section 3.  

The paradigm of high-level directives and low-level 
agent autonomy opens up the possibility of an agent 
selecting joint behaviors.  A joint behavior is a method 
– one of many methods known to the agent for 
achieving a goal – that co-opts the participation of 
other NPCs in the world for close coordination of 
activity and/or dramatic effect. For example, if the 
agent representing the Mohammed character is 
directed to acquire an explosive device (e.g. (has 
Mohammed bomb1)), that character might not be able 
to do so while the trainee is in close proximity.  
Assume there is a directive that (knows player 
(has Mohammed bomb1)) should never become 
true.  The agent may select a joint behavior – one of 
many known methods for acquiring an object – that in 
conjunction with another agent, possibly a bystander, 
creates a diversion.  The joint behavior provides 
coordination so that Mohammed knows to slip off 
while the player is distracted. 

Figure 5.1: Screenshot of trainee (central avatar) 
confronting a non-player character (right) 



5.2. Mixing Autonomy and Scenario Directives 

To avoid the appearance of agents that 
schizophrenically switch between goals (Sengers, 
2003) – in this case goals autonomously selected for 
believability and goals demanded by the Scenario 
Director – behaviors selected to achieve the 
appearance of believability (LABs) and behaviors that 
achieve scenario goals (NDBs) must mix seamlessly.  
Local autonomous behaviors can run in parallel and/or 
interleave with behaviors selected to achieve scenario 
goals.  “Real life” behaviors can be modulated to 
believably blend with the high-level scenario behaviors 
imposed on them.  Modulations of LABs include: 
timing alteration to accommodate the needs of the 
scenario; reducing the number of physical resources 
required to avoid conflicts with scenario-driven 
behaviors; and avoiding actions that would violate 
overall believability in any way. 

Mixing NDBs with LABs involves annotating NDBs 
and LABs with the resources they require: location 
requirements, object requirements, emotional state 
requirements and so on.  When an NDB prepares for 
execution in order to fulfill a directive from the 
Automated Scenario Director, the NDB announces its 
resource requirements.  LABs are coded with behavior 
variations in order to gracefully degrade their 
performance to accommodate the needs of the more 
important NDBs, while still behaving believably.  
When a LAB is required to interrupt or even abort its 
execution to serve the NDB’s needs, it selects from a 
variety of short transition-out sub-behaviors to 
believably “glue”, i.e., explain why.  For example, if a 
cleaning the store LAB needs to be truncated or 
aborted in order for the agent to participate in NDBs to 
acquire and plant a bomb, the agent may choose to 
insert some dialog to the effect of, “Hmmm, the store 
is pretty clean today… I think sweeping can wait till 
tomorrow”.  Similarly, whatever LAB begins after the 
NDB ends can select from transition-in sub-behaviors 
similarly “gluing” the agent’s behavior back into its 
daily routine.   

6. Authoring 

One advantage of the generative scenario adaptation 
technique described in Section 4 is that only a single 
exemplar scenario plan must be authored.  The system 
in an offline process analyzes the causal dependencies 
of events in the scenario plan determines all ways in 
which trainee actions can conflict with the scenario 
and generates contingency scenarios.  The result is 
analogous to a branching story (Riedl and Young, 
2006). Pre-scripted branching stories such as those 
used in computer games typically have either few 

decision points or low branching factors (the number 
of alternatives in any given decision point).  One 
reason for this is the combinatorial complexity of 
authoring branching stories (Bruckman 1990); as the 
number of decision points grows, the amount of story 
content that must be authored grows exponentially.  
The generative planning approach used here mitigates 
this effort by taking the effort scenario adaptation out 
of the hands of the system designers. 

The planner used to re-plan scenarios however cannot 
operate in a vacuum – it requires knowledge about the 
virtual world in which the scenario is set.  The more 
knowledge the planner has, the greater the number of 
content variations can be generated.  The planner 
requires a library of plan operators and schemata 
(referred to as a domain theory).  A domain theory 
describes in abstract terms all actions that are possible 
for story world characters to perform.  It may be the 
case that the amount of knowledge required by the 
system is greater than the length of the plan generated.  
However, the advantage is that the same knowledge is 
used recursively over and over as each branch in the 
tree of scenario contingencies is generated.  For 
branching narratives that are long and/or have a high 
branching factor, the amount of generated content can 
quickly exceed the size of the world domain authoring 
effort. 

How hard is it to author the initial exemplar scenario?  
It is not trivial because the scenario must be 
represented as a plan with causal links.  However, 
tools that link into the planner’s domain theory 
knowledge-base can ease the process.  Furthermore, by 
hooking into the planning algorithm itself, the 
authoring process could in the future be a mixed-
initiative human-computer process (Burstein and 
McDermott, 1996) where the human author expresses 
creative intent and an intelligent authoring tool fills in 
the technical details, including causal links.  
Unfortunately, no such tool has been developed for this 
specific system. 

Character agent authoring is knowledge-intensive.  
However, the “broad, shallow” approach means that 
autonomous character behaviors are easy to author.  
Knowledge engineers need only focus on the 
appearance of correct behavior without regard for 
agent reasoning or deep decision making.  Local 
autonomous behaviors (LABs) can be specific to an 
individual NPC in the case that the character expresses 
a very unique personality or characteristic.  But 
mostly, we anticipate that LABs will be general 
enough be reused or can be customized from generic 
templates.  For example, a greeting a customer 
behavior could involve the same physical actions from 



agent to agent, with only dialog variations customized 
to the agent.  Further, some low-level behaviors, such 
as locomoting, operating a cash register, cleaning the 
store and so on, are generic and can be re-used from 
agent to agent, with little or no customization per 
agent.   

Narrative directive behaviors (NDBs) can be 
considered a general pre-compiled plan or method for 
accomplishing world state change.  The challenge of 
authoring NDBs is to consider alternative methods for 
achieving the same world state condition for a wide 
variety of possible circumstances.  It is possible that 
narrative directive behaviors can be pre-computed by 
intelligent agent-based planning systems although we 
have yet to explore this possibility in any depth.  Once 
authored, we anticipate a wide degree of re-use.   

7. Related Work 

There has been previous work on building systems that 
could be described as automated Observer/Controllers.  
The Virtual Observer/Controller (Banta et al., 2005) 
provides coaching feedback on low-level trainee skill 
attempts.  The VOC has a limited ability to change the 
scenario to take advantage of trainee mistakes to show 
the negative consequences of actions.  The Advanced 
Embedded Training System (AETS) (Zachary et al., 
1999) applies intelligent tutoring to simulation-based 
training of air defense radar operators.  AETS 
monitors the trainee for correct procedural actions 
when responding to simulated radar contacts and can 
provide feedback but otherwise doesn’t adapt the 
scenarios. 

Much of the work described here is influenced by 
research in the computer game and entertainment 
domain.  Interactive Storytelling Systems attempt to 
tell a story in which the user is able to make decisions 
and perform actions that dynamically affect the 
direction and/or outcome of the story.  In particular, 
the Mimesis system (Riedl, Saretto, and Young, 2003; 
Young et al., 2004) uses a generative approach to 
interactive story.  A story plan is generated and 
executed by non-autonomous NPCs.  When the user 
performs an action that threatens to undo a condition 
in the story plan, the system dynamically re-plans the 
remainder of the story to bring about dramatic goals.  
Façade (Mateas and Stern, 2005) uses a reactive 
engine to dynamically analyze the current scene 
according to dramatic principles and select the next 
mini-scene (called a beat) for the NPCs to act out.  
Façade uses the ABL behavior specification language 
to endow the NPCs with reactivity and believability.  
The Interactive Drama Architecture (IDA) (Magerko, 
2005) takes human-authored story scripts and uses that 

to direct NPCs.  IDA uses predictive modeling of the 
user to prevent the user from deviating from the 
prescribed story. 

Interactive Storytelling techniques have been recently 
been applied to training and education. The Tactical 
Language Training system (Johnson, Marsella, and 
Vilhjálmsson, 2004) trains foreign languages through 
dramatic, interactive missions.  The Interactive 
Storytelling Architecture for Training (ISAT) 
(Magerko et al., 2005) is based on IDA.  Like the work 
presented here, ISAT uses a scenario director.  
However, the ISAT director agent selects from a pool 
of pre-authored scenes according to heuristics based on 
dramatic progression and trainee success or failure on 
learning objectives.  For example, if the trainee fails a 
learning objective such as applying a tourniquet, the 
scenario director will select the next scene to be one in 
which another soldier becomes wounded in a way 
requiring a tourniquet. 

8. Conclusions 

Training cognitive leader skills in social and cultural 
domains requires seemingly conflicting requirements: 
the need for a virtual world populated by believable, 
interactive characters and the need to guide the 
trainee’s experience through a sequence of relevant 
learning situations.  The approach that we demonstrate 
in the IN-TALE prototype is to apply artificial 
intelligence technologies adopted from entertainment 
computing research to computer-based social 
simulation.  Social simulation is the result of agents 
designed to broadly imitate the behaviors of believable 
denizens of a virtual world.  Pedagogical needs are 
handled through intelligent scenario direction and 
scenario adaptation. 

Our system serves the same conceptual role as an 
Observer/Controller in a more conventional exercise.  
However, an O/C is more appropriate for exercises 
that emphasizes procedural learning objectives.  In a 
domain such as social and cultural leadership training 
that emphasizes problem-solving, deviations from the 
scenario script can occur.  An O/C has few means for 
handling such deviations such as eliminating portions 
of the scenario that no longer make sense or 
“cheating.”  Our approach, using believable agents in 
conjunction with an Automated Scenario Director 
capable of intelligent scenario replanning can head off 
inconsistencies by adapting the scenario to achieve 
relevant learning situations in a plausible manner.    In 
this way, our system achieves the seemingly 
conflicting requirements of allowing variability of the 
trainee while also maintaining pedagogical validity of 
a managed training experience. 
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