

In Proceedings of the AAAI Fall Symposium on Advances in Cognitive Systems, 2011.

Bridging Dichotomies in Cognitive Architectures for Virtual Humans

Paul S. Rosenbloom
Department of Computer Science & Institute for Creative Technologies

University of Southern California
12015 Waterfront Drive, Playa Vista, CA 90094

rosenbloom@usc.edu

Abstract
Desiderata for cognitive architectures that are to support the
extent of human-level intelligence required in virtual
humans imply the need to bridge a range of dichotomies
faced by such architectures. The focus here is first on two
general approaches to building such bridges – addition and
reduction – and then on a pair of general tools – graphical
models and piecewise continuous functions – that exploit the
second approach towards developing such an architecture.
Evaluation is in terms of the architecture’s demonstrated
ability and future potential for bridging the dichotomies.

 Introduction
Virtual humans combine human-like cognition with virtual
human bodies in interactive games and simulations for
education, training and entertainment. The concern here is
how to build cognitive architectures for such virtual
humans that are: (1) broad spectrum, (2) tightly integrated,
and (3) functionally elegant. A broad-spectrum
architecture makes creating simple virtual humans simple,
often by leveraging statistical techniques over large data
sets, while still enabling construction of the most
sophisticated ones – capable of symbolic reasoning over
complex models – and being incrementally extendable to
points in between. A tightly integrated architecture closely
couples capabilities both within the central cognitive
system and between it and the perceptuomotor system,
enabling effective sharing of information and uncertainty
across capabilities plus the creation of capability
combinations that are much more than just the sum of their
parts. A functionally elegant architecture yields systems
with the broad functionality implicated by human-level
intelligence while remaining theoretically simple,
maintainable and extendible.
 When considering the related goal of achieving human-
level intelligence in cognitive systems, the same desiderata
still matter, but the arguments are not always identical, and

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

there is less agreement about some aspects. Tight
integration remains just as critical. With respect to broad
spectrum, the ability to construct simple statistical systems
may no longer be essential, but combining statistical and
symbolic techniques is still likely important. While
functionality remains central, there is little consensus as to
whether it is either possible or desirable to combine it with
simplicity and elegance. However, earlier work on the
diversity dilemma – of how to combine broad functionality,
which usually implies a large number of specialized
architectural mechanisms, with simplicity and elegance,
which typically implies a small number of general
mechanisms – does explore the hypothesis that functional
elegance is possible, while simultaneously arguing for its
desirability (Rosenbloom 2011a).
 While the diversity dilemma can be seen as a variant of
functional elegance, it can also be seen as just one
dichotomy – uniform vs. diverse – out of many that must
be resolved to enable cognitive architectures that satisfy
the full set of desiderata. A broad-spectrum architecture,
for example, may require bridging the logical vs.
probabilistic and data-driven vs. model-based dichotomies.
Tight integration may require bridging such dichotomies as
procedural vs. declarative, reactive vs. deliberative,
discrete vs. continuous and central vs. peripheral. Other
dichotomies that may also need bridging include symbolic
vs. subsymbolic/neural, explicit vs. implicit, hard vs. soft
constraints and goal vs. utility based. These dichotomies
are not all necessarily independent of each other, with
some mapped onto others by particular theoretical stances,
but there are discernable differences among all of them.
 Individual architectures all take some stance on each
such dichotomy, either opting for one side or the other –
based on theoretical and/or pragmatic reasons – or bridging
the dichotomy to provide both in some form. Choosing
one alternative is generally the simplest approach, and it
can often work, at least until the challenges faced by the
architecture become too diverse. Yet it is inadequate for
most dichotomies over the long run, particularly given the
need for virtual humans to approach human-level

intelligence in a broad sociophysical context. Here the
question of how to bridge the dichotomies must be faced.
 This article begins with two general approaches for
bridging such dichotomies – addition and reduction – and
then discusses two general tools – graphical models
(Koller and Friedman 2009) and piecewise continuous
functions – that exploit the reduction approach towards
developing a graphical architecture that bridges many of
the listed dichotomies. Graphical models were central to
the earlier work on the diversity dilemma, but will be
treated in an abbreviated manner here. Instead, piecewise
continuous functions – which have heretofore been lurking
in the background – are brought to the fore as a major idea
in their own right. It is these piecewise functions that
define the elementary cognitive structures in the
architecture, yielding a representational primitive that is
key in bridging many dichotomies. The graphical models
then specify how these basic units are combined into
complex mental structures and processed, completing the
bridges and yielding sophisticated cognitive capabilities.
Results to date, in conjunction with future prospects
already within view, demonstrate how these tools leverage
reduction to bridge many of the dichotomies central to
developing architectures for virtual humans (and human-
level cognitive systems).

Two Approaches to Bridging Dichotomies
The most obvious approach to bridging a dichotomy is
addition of a module for each alternative. ACT-R, for
example, includes distinct procedural and declarative
memories (Anderson et al. 2004); and Soar 9 goes further,
reifying a subsidiary dichotomy between semantic and
episodic knowledge (Laird 2008). Clarion also embodies
distinct procedural and declarative systems, but with both
explicit and implicit implementations of each (Sun 2006).
The 3T architecture includes modules for reactive and
deliberative control (Bonasso et al. 1997). EPIC has a
central cognitive module plus multiple peripheral modules
(Kieras and Meyer 1997). Addition can broadly contribute
to the functional side of functional elegance, while yielding
multiple points on a spectrum of capabilities. It doesn’t,
however, yield either a full capability spectrum or
elegance; at worst producing a combinatoric proliferation
of mechanisms, when bridging N dichotomies engenders
2N rather than 2N components (as with Clarion for the two
dichotomies mentioned). Addition is neutral in general
about how to achieve tight integration.
 Reduction instead leverages whatever commonality
exists across a dichotomy to bridge it via a single module
that is little more complex than what is necessary for just
one side. In the purest cases, the commonality captures all
that matters of both sides of the dichotomy. However,

there may be residual differences that require further
attention or a functional compromise may be required on
one or both sides to maximize the commonality. Whether
or not such additional complexities do occur, there are at
least three distinct forms of commonality that can be
identified: (1) a generalization that directly subsumes both
sides of the dichotomy; (2) one side of the dichotomy
implementing the other; or (3) a generalization beneath the
dichotomy that implements both sides of it.
 Markov logic (Domingos and Lowd 2009) provides a
canonical example of the first form of reduction, with its
generalization over first order logic and probabilities. It
also bridges other related dichotomies as well; such as
data-driven vs. model-based, where statistical learning over
large bodies of data provides the robust breadth
characteristic of data-driven processing and first-order
logic provides the robust depth characteristic of model-
based processing. Rule-based architectures, at least as
applied in classical shallow expert systems, can also be
seen as a subsumption-based generalization reduction of
the data-driven vs. model-based dichotomy, with breadth
stemming from large numbers of shallow rules and depth
from the first-order generalizations yielded by variables
and combinatoric match. However, this is an attenuated
generalization that imposes compromises on both sides of
the dichotomy. It sacrifices both breadth and depth with
respect to the pure alternatives, while requiring a double
sacrifice on robustness – the lack of both statistics over
large datasets and combinatoric search over comprehensive
models leads to the classic problem of rule fragility. What
is gained in return is efficiency (and simplicity).
 Work on Soar has provided several examples of the
second form of reduction, some positive and others not.
On the positive side, to bridge reactivity vs. deliberation,
Soar’s reactive component – parallel rules – provides an
associative memory that implements much of deliberation
(Laird and Rosenbloom 1990). A decision procedure is
also needed for deliberation, but this is a minor addition in
comparison. More problematically, bridging the
procedural vs. declarative dichotomy by implementing a
declarative capability on top of the architecture’s
procedural learning (chunking) and memory (rules) yielded
an awkward result that integrated poorly with the rest of
the system (Rosenbloom, Laird and Newell 1987).
Ultimately this led to adopting the addition approach for
this dichotomy in Soar 9. In general, introducing a level
difference between the two sides of a dichotomy – with the
lower implementing the upper – implies an order-of
magnitude difference in time scale, and integration that is
not among peers. When this works, as for reactivity vs.
deliberation, this form of reduction can be effective. When
it doesn’t, the result can be awkward and poorly integrated.
 The graphical architecture illustrates the third form of
reduction. For example, a general implementation level

beneath the architecture – based on factor graphs and the
summary product algorithm (Kschischang, Frey and
Loeliger 2001) – bridged the procedural vs. declarative
dichotomy by implementing both kinds of memories, with
just three residual differences: whether message passing
was unidirectional vs. bidirectional, whether working
memory was closed vs. open world, and whether variable
binding concerned all legal values vs. only the single best
value (Rosenbloom 2010). Choices concerning these
differences could all be made independently, engendering a
larger space of possible memories, including a constraint
memory that blends procedural and declarative aspects.
 By uncovering and exploiting a deeper commonality
between the alternatives, the reduction approach can yield:
simpler systems, proffering the elegance side of functional
elegance; insight into how to integrate the alternatives,
through what is shared; and deep scientific results that are
of interest in their own right. When reduction is based on
generalization, it is also possible to go beyond just bridging
a pair of alternatives, to yield a full spectrum of options.

Piecewise Continuous Functions
Piecewise continuous functions are simple in their basic
conception, but complex in their full implications.
Consider first a general form for arbitrary (non-piecewise)
multivariate functions: f(x1, …, xn). This provides an
extreme variant of the first form of reduction, subsuming
many varieties of basic representational units. A Boolean
function of two discrete variables yields, for example, a
template for 2D occupancy grids. A real-valued function
of three continuous variables yields a template for state
functions over the spatial dimensions of the physical
universe: f(x, y, z). Addition of a fourth continuous
variable (t) enables representing the dynamics of such
states over time. On the other hand, a Boolean function –
where false and true map onto values of 0 and 1 – over
symbolic variables yields a template for logical predicates
and n-ary relations – such as Color(object, hue) – while
real-valued functions restricted to the closed interval [0, 1]
yield a template for probability distributions, such as P(x,
y) and P(x | y), when defined over discrete variables.
 Other kinds of functions, such as utility functions, can
also be represented in comparable ways, but these
examples should be sufficient to make the case. The
overall qualitative space of variation covers the number of
independent variables (N), the nature of the domains of the
individual variables, and the restrictions imposed on the
range of the function. Within each point in this qualitative
space, many distinct functions can then be defined in
support of many different representations. The problem
though with building architectures around such a
representation is that specifying and computing with them

can be all over the map, as well as arbitrarily difficult. In
the graphical architecture, it is necessary to compute: (1)
whether two functions are equal; (2) the pointwise product
or sum of two functions; (3) the effect of integrating or
maximizing over a variable; and (4) changes in a
function’s value over an arbitrary segment of its domain.
 Piecewise continuous functions provide an alternative
generalization that compromises on expressibility in
exchange for radical improvements in simplicity and
efficiency. The essence is to view a function’s variables as
defining a multidimensional continuous space, with one
dimension per variable, and then to decompose this space
into regions, each with a simpler function defined on it.
Regionalization introduces an aspect of discreteness into
the functional form, while enabling a trade off – by varying
the sizes of the regions – between the degree to which an
arbitrary continuous function can be approximated and the
cost of representing and processing it.
 The simplest variety of
piecewise continuous functions
limits regions to hypercubes – N
dimensional generalizations of
squares and cubes – of uniform
size, and restricts region
functions to be constant (Figure
1). In one dimension this yields
a step function whose value can
change at fixed intervals. In two
dimensions it supports pixels and
in three dimensions we get voxels. Piecewise constant
functions also subsume both logical predicates and discrete
probability distributions. For predicates, symbols are
mapped onto unit intervals along individual dimensions
and constant values are limited to 0/1 (for False/True) over
combinations of these dimensions. For distributions, unit
intervals are assigned constant values in [0, 1]. Although
some overhead is introduced in representing predicates and
discrete distributions in this uniform manner, as long as it
remains a small constant factor it should not be an issue.
 Representation via piecewise constant functions can
directly support limited forms of continuous functions –
step functions – while approximating arbitrary ones as
closely as desired; although the size of the representation
for continuous functions grows by 2N as the interval widths
are halved. Still, the important point is that this
subsumption-based generalization reduction provides the
same representational interface for continuous functions as
for logical predicates and discrete probability distributions,
opening up the possibility – which can be exploited by
graphical models – of providing uniform processing
algorithms over these disparate forms of data.
 The basic representational aspects of both sides of
many of the dichotomies mentioned in the introduction can
be handled by these simple piecewise functions. The

Figure 1: Piecewise
constant function over
2D hypercubes (squares).

0

0 0

0

1

1

.2

5

.2 .4

2

4 7

.3

.6

3

uniform vs. diverse dichotomy is handled by the overall
generalization that enables a diversity of elementary
representational units to all be subsumed by a single
representation. Boolean function ranges being a special
case of real ones handles the logical vs. probabilistic
dichotomy. The representational aspects of many
additional dichotomies are then handled by how this
generalization covers both symbolic/relational and
continuous data. This bridges in particular much of the
explicit vs. implicit, symbolic vs. subsymbolic, hard vs.
soft constraints, central vs. peripheral, discrete vs.
continuous, and goal-based vs. utility-based dichotomies.
 To make this more concrete, we’ll examine how the
graphical architecture currently exploits a slightly more
sophisticated form of piecewise continuous function to
address four rather different representational challenges
found in cognitive architectures: (1) working memory, (2)
mental imagery, (3) probability distributions, and (4)
episodic memory. We’ll then look at potential
enhancements for strengthening, in particular, the bridges
between discrete vs. continuous, symbolic vs. subsymbolic
and central vs. peripheral.
 The graphical architecture extends the piecewise
constant hypercube representation to piecewise linear
functions over hyperrectangles, or orthotopes (Figure 2).
Linear region functions enable exact representation of a
broader range of continuous
functions plus more compact
approximations of many others.
They do introduce additional
complexity, including the need for
reapproximation in cases where
computations over linear functions
yield nonlinear functions – such as
when the product of two linear
functions yields a quadratic
function – yet the computations
remain relatively simple overall.
 Shifting from an array of hypercubes to one of
hyperrectangles enables region widths to vary across
segments of a single dimension, as well as between
dimensions, while still retaining the simplification that the
borders between regions align into slices that span the
function. Whenever an entire region no longer has the
same linear function, slices are automatically added to
partition the region into smaller, functionally homogeneous
ones. Similarly, whenever all pairs of regions straddling a
slice use the same linear function, the slice is removed to
minimize the representation. Function-wide slices imply
more fragmentation than is logically necessary, but in
exchange they maintain the function as an array of regions,
enabling function traversal (for computational purposes) to
remain systematic and straightforward.

Working Memory
In a symbolic architecture such as Soar, working memory
(WM) consists of object-attribute-value triples, defining a
graph of symbolic relations. Using piecewise functions, the
graphical architecture can represent such a WM, while
simultaneously extending it for continuous information. A
set of predicates is first defined, each over a fixed number
of typed arguments. A variable’s type determines the
extent of the underlying dimension, whether the dimension
is continuous or discrete (implying all slices are at integral
values), and the mapping of symbols onto the discrete
domain (if the dimension is symbolic). With a symbolic
object-attribute-value triple – such as might encode the
color of an object – the attribute (color) defines the
predicate, and two symbolic arguments range over the
objects and the colors: Color(object, color).
 It is important to note that although type distinctions
enable compiling a diversity of knowledge into the
representation, their processing remains unaware of these
differences. As far as the graphical models are concerned,
all dimensions are continuous. For each predicate, a
Boolean WM function with a dimension for each argument
is created to represent which regions of the predicate are in
WM. Active regions have a functional value of 1 while
inactive regions are 0, as illustrated in Figure 3.

 By keeping the regions in this function as large as
possible within the expressibility of the piecewise function
used, significant compactness can be maintained. Even
more importantly, regionalization enables an infinite
number of continuous values to be represented implicitly
within a region. The result is a hybrid WM that represents
both discrete/symbolic and continuous information, and
that can mix them freely across the variables/dimensions of
predicates. For example, an Eight Puzzle board (Figure 4)
can be defined via a hybrid
Board(x, y, tile) predicate,
where x and y are continuous
with extent [0, 3), and tile is
discrete with extent 0-9
(Rosenbloom 2011b).
Combinations of predicates
then afford richly structured
networks of relations in WM.

0

x+.3y

0

1

.5y

6x

x-­‐y

1

Figure 2: Array of
piecewise linear
functions over axially
aligned 2D orthotopes.

 Red Green Yellow Blue
O1 0 1 0 0
O2

0 0 1 0 O3
O4 1 0 0 0

Figure 3: Partial Boolean WM function with Color(O1,Green),
Color(O2,Yellow), Color(O3,Yellow), Color(O4,Red) active.

Figure 4: Eight Puzzle board.

Mental Imagery
Mental imagery involves a multidimensional
representation of space and its contents, plus the ability to
transform such a representation. Piecewise continuous
functions are well suited to this. One continuous
dimension is required for each spatial dimension, plus an
additional dimension for objects within this space. For
example, two spatial dimensions can be combined with a
color dimension to define a three-argument predicate
capable of representing a color map over a surface. Or,
three spatial dimensions can be combined with an object
dimension to define a four-argument predicate that
represents a 3D occupancy grid.
 The Eight Puzzle board, with its two continuous spatial
dimensions and one discrete tile dimension, provides a
concrete example in Figure 5. When combined with the
implementation of a translation operation in the graphical
model, plus additional knowledge about how to select and
apply operators, a working version of the Eight Puzzle has
been demonstrated that maintains a continuous mental
image of the board (Rosenbloom 2011c).

 The Eight
Puzzle is
limited to
square objects,
which fit
neatly within

rectangular
regions, but it
is also
possible to

approximate
more complex
2D shapes via
multiple such
regions. The
quality of the
approximation
depends on the
size of the
regions into

which it is decomposed, and thus also on the number of
regions, inducing a tradeoff between the accuracy of the
shape representation and its cost.
 Just as the representation of a single object can involve
multiple regions within an imagery function, the
representation of different attributes of an object may
require multiple imagery functions. For example, shape
and color in a 2D image could each be represented as a
distinct 3D Boolean function, rather than as a single 4D
function. Such a representation encodes each attribute in a
separate channel, as is found in primate vision
(Livingstone and Hubel 1987), implicitly embodying the

assumption that shape and color are conditionally
independent given the location, and greatly reducing the
combinatorics of the resulting representation. Yet, whether
or not imagery is decomposed in this fashion, its
representation is just a special case of the generalized,
piecewise continuous representation used for WM,
implying that distinct WMs should not be required for
symbolic and spatial information.

Probability Distributions
Probability distributions require a step beyond the hybrid
representation used for WM and mental imagery. Instead
of Boolean functions, their functional values must range
continuously over the interval [0,1]. A prior probability
distribution over a single random variable requires only
one dimension. The domain of the random variable is
represented along the dimension, with the functional values
at any point specifying its probability. The same approach
also works directly for probability density functions over
continuous variables; the single dimension is simply
continuous rather than discrete and the function specifies
densities rather than probabilities (Figure 6). For a
conditional probability distribution, two dimensions are
used, one for each random variable, with the functional
value now specifying the conditional probability of one
given the other.
 Symbolic WM
elements can be
represented exactly by
piecewise linear
functions. Mental
imagery, in contrast,
requires approximations
because of the orthotopic restriction on region boundaries.
Probability functions in their turn require approximations
because of the linear restriction on region functions. A
Gaussian, or normal, distribution could be approximated as
a constant function with one region, as a pyramid with two
regions (Figure 6), or as accurately as desired with enough
sufficiently small regions. This approximation thus also
involves an implicit tradeoff between accuracy and cost.
 With probability distributions added to general symbolic
processing we see a bridging of the logical vs. probabilistic
and data-driven vs. model-based dichotomies. These
bridges are key to the implementation of semantic memory
within the graphical architecture, and to work in progress
that uses this memory in natural language tasks. They are
also crucial to work in progress on bridging the central vs.
peripheral dichotomy. Both of these variants of work in
progress will be discussed in a bit more detail in the
section on graphical models.

Figure 5: Partial visualization of the hybrid
Eight Puzzle representation, with two
continuous spatial dimensions (x and y) and
one discrete dimension for tiles (tile 0 is the
blank). The x,y region in which tiles sit are
set to 1 (grey), while all others are 0 (clear).
Only the blank and tile 1 are shown.

Figure 6: Two-region pyramidal
probability density function.

0 4

1

.5

Episodic Memory
Episodic memory (EM) can be viewed as a sequence of
temporally indexed instances of WM (Nuxoll and Laird
2007). In the graphical architecture there is one EM
function per predicate. These EM functions are just like
WM functions, but with an additional dimension for time.
Regions in EM thus have a temporal extent, spanning any
length of time over which the same linear function applies.
Figure 7 shows the EM function learned for the selected
operator in a typical run of the Eight Puzzle after 5
decisions, each of which defines one time step.

 In its simplest form, regionality implies that if the WM
for a particular predicate doesn’t change, then no regions
need to be added to its EM. In fact, because the last
temporal region extends to infinity, the EM need not be
modified at all under such circumstances. A temporal
boundary is only added when the existing final region is
inadequate for the new content, automatically yielding the
kind of compact representation that requires special
purpose optimizations in other systems (Derbinsky and
Laird 2010). It also directly enables a simple form of
extrapolation, where the future is automatically assumed to
be like the present.
 Beyond the EM functions themselves, an additional
aspect of EM that is also represented in a piecewise linear
manner in the graphical architecture is a temporal decay
function, encoded as a prior distribution on the temporal
variable that prefers more recent memories. Rather than
memories actually decaying, this temporal prior combines
with the matching of cues in WM to episodes in EM to
determine which episode is retrieved. With a piecewise
linear representation, it is possible to represent linear decay
via a single region, or exponential decay via a piecewise
approximation. For the Eight Puzzle run above, a
normalized linear function was used whose slope is
automatically (re)set each time step to 2/(t2-1), where t is
the time steps that have so far elapsed.

Potential Enhancements
The manner in which the graphical architecture addresses
these four representational challenges illustrates how a
subsumption-based generalization reduction that embodies
an appropriate compromise between expressiveness and

efficiency can bridge the representational aspects of many
dichotomies. Work in progress is exploring potential
enhancements to both how regions are structured and how
functions are defined on them, which together should
improve the expressiveness and efficiency of the
representation while strengthening the bridges already
constructed for the discrete vs. continuous, symbolic vs.
subsymbolic and central vs. peripheral dichotomies.
 For region structuring, we are beginning with the
elimination of several restrictions on the existing orthotope
representation. Eliminating the restriction that regions
must be axially aligned, and instead allowing orthotopes at
arbitrary orientations, should facilitate mental imagery by:
reducing the number of regions required to represent
objects whose boundaries don’t align with spatial axes,
enabling objects to be rotated in mental imagery without
reslicing them afterwards, and supporting compact
representation of the kinds
of shifted delta functions
that underlie object
translation (Rosenbloom
2011b). It should also
directly support more
general forms of
extrapolation in EM;
enabling, for example,
automatic trajectory
projection for a vehicle
with constant velocity
from an open-ended final
region that lies diagonally
across space-time (Figure
8). Eliminating the restriction that region boundaries must
be part of function-spanning slices should reduce
unnecessary region fragmentation; for example, avoiding
the full horizontal slices between the operators in Figure 7,
to yield Figure 9.

 Eliminating these two restrictions may, however, make
processing more complex. With an array of axially aligned
orthotopes, regions can be traversed systematically for
computing sums, products, etc. Without these restrictions,
region alignment becomes more like the computer graphics
problem of collision detection for bounding boxes. It will
become even more like the graphics problem with the
elimination of the assumption that all regions are explicitly

t

x

Figure 8: Notional 1D (x)
location extrapolation for a
vehicle with a constant velocity
via an angled final space-time
region in episodic memory.

 1 2 3 4 5
Left 1 0 0
Right 0 0 0 Up
Down 0 1 0

Figure 7: Episodic memory for the selected operator after 5
time steps. Left was selected first, Down for the next three
steps, and then nothing (with extrapolation into the future).

 1 2 3 4 5
Left 1

0 0 Right
0 Up

Down 1

Figure 9: What episodic memory from Figure 7 should look
like when slices need no longer span the entire space.

represented, enabling inactive regions – those with a value
of 0 – to be implicit, much as inactive elements in normal
WMs are implicit. This should yield a sparse function
representation of active orthotopes at arbitrary orientations,
greatly reducing the regions that need to be represented
and processed.

 We are also exploring going
beyond orthotopes, to convex
polytopes – N dimensional
generalizations of polygons
(Figure 10). Once
systematicity is lost, and
region borders can run
diagonally across dimensions,
there is little efficiency gain in
staying with orthotopes, and
useful expressivity to be
gained with polytopes.
(Moreover, if active

orthotopes can occur at arbitrary orientations, inactive
segments may, at least implicitly, require decomposition
into polytopes anyway.) Such a shift to polytopes will
make the representation even more like that used in
graphics, facilitating compact descriptions of complex
objects, but also converting alignment into a more complex
form of collision detection.
 In moving beyond the expressivity of linear region
functions, we are considering alternative parametric forms
– such as polynomials and (mixtures of) Gaussians – along
with nonparametric forms. These further broaden the
continuous functions exactly representable while also
yielding more compact and accurate approximations to
other functions. However, they also further increase the
complexity of the processing.

Graphical Models
Graphical models provide efficiency in computing with
multivariate functions by decomposing them into products
of simpler functions. Bayesian networks do this for joint
probability distributions, yielding products of prior and
conditional distributions. The graphical architecture uses
factor graphs, which are similar to Bayesian networks,
except that they: (1) decompose arbitrary multivariate
functions; (2) utilize bidirectional links; and (3) include
explicit factor nodes in addition to variable nodes to
represent the subfunctions in the decomposition. In using
bidirectional networks able to represent more than just
probabilities, factor graphs are more like Markov networks
(aka Markov random fields) than Bayesian networks, but
they are more general than even the Markov alternative.
 Factor graphs support more complex forms of
representation than are provided directly by piecewise

continuous functions. The piecewise functions define
elementary representational elements, corresponding to
instances of predicates and images, while factor graphs
link them together in a manner that respects any
independence assumptions among them. These more
complex relationships are specified in the graphical
architecture via conditionals that compile down to factor
graphs (Rosenbloom 2010). Each conditional may contain
conditions, actions, condacts and functions. Conditions
and actions are as in standard rule systems; conditions
match to WM to constrain which rules fire and to yield
variable bindings, while actions modify WM. Condacts
meld these functionalities to yield the bidirectional
processing that is crucial in probabilistic graphical models.
Functions in conditionals are specified over subsets of
conditional variables, and compile down to functions in
particular factor nodes within the graph.
 This representation has been shown to be general
enough to handle rules, facts, episodes, and constraints
(Rosenbloom 2010). It also handles factored probabilistic
representations based on products of prior and conditional
probabilities, in support of naïve Bayes classifiers and
other forms of probabilistic reasoning. The classifier that
underlies the semantic memory (of facts) consists of a prior
distribution on the object category plus conditional
distributions on features given the category, enabling it to
predict from arbitrary cued features an object’s category
and any uncued features. This memory has been leveraged
directly for work in progress on question answering in
virtual humans, as in [Leuski and Traum 2008], and word
sense disambiguation. More general combinations of prior
and conditional probabilities are also being used within the
architecture to strengthen the existing bridge across the
central vs. peripheral dichotomy, via work that combines
perception, localization and decision-theoretic decision
making (Chen et al. 2011).
 Inference in factor graphs typically occurs by either
sampling or message passing. The graphical architecture
uses a variant of the summary product algorithm, which
passes messages between variable and factor nodes about
possible values of the variables. Incoming messages are
(pointwise) multiplied together at all nodes, with factor
nodes also including their functions in the product and then
summarizing out all variables not in an output message to a
variable node. When sum/integration is used for
summarization, the graph computes marginals on its
individual variables. When max is used instead, the graph
computes the MAP estimation over all of the variables.
 In the graphical architecture the summary product
algorithm – with integration used for summarization in
place of sum – is applied to the full representational
generality provided by factor graphs and piecewise linear
functions (with the latter specifying factor functions and
messages). The result is a general implementation level

x+.3y

6x

1

x-­‐y

1

Figure 10: Piecewise
linear function over 2D
polytopes, with inactive
regions implicit.

that exemplifies the third form of reduction, providing a
generalization below the architecture able to implement
both sides of such dichotomies as procedural vs.
declarative, logical vs. probabilistic, discrete vs.
continuous, central vs. peripheral and hard vs. soft
constraints. The use of factor graphs and the summary
product algorithm at the implementation level, with the
diversity of capabilities they enable in the architecture
level above it, also exemplifies the second approach to
reduction – where one side implements the other – in
bridging the uniform vs. diverse dichotomy.

Conclusion
The articulation of three general desiderata for cognitive
architectures that are to support virtual humans (and
human-level cognitive systems) has led to a push to bridge
a range of architectural dichotomies they induce. A
strategy based on a pair of general architectural tools –
graphical models and piecewise continuous functions –
that leverage reduction for bridge building has been shown
effective in bridging many of these dichotomies. In the
process a novel path is opened up towards architectures
that take a broad spectrum, tightly integrated, and
functionally elegant approach to human-level intelligence.

Acknowledgements
This work has been sponsored by the U.S. Army Research,
Development, and Engineering Command and the Air
Force Office of Scientific Research, Asian Office of
Aerospace Research and Development. Statements and
opinions expressed do not necessarily reflect the position
or the policy of the United States Government, and no
official endorsement should be inferred. Thanks are due to
the following collaborators: Abram Demski on new
function representations; Sanjay Raveendran and Anton
Leuski on question answering; Valay Shah and Abram
Demski on word sense disambiguation; Junda Chen and
Louis-Philippe Morency on perception; Teawon Han on
localization; and Nicole Rafidi and David Pynadath on
decision-theoretic decision making.

References
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere,
C., and Qin, Y. 2004. An integrated theory of the mind.
Psychological Review 111: 1036-1060.
Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D.
P., and Slack, M. G. 1997. Experiences with an architecture for
intelligent, reactive agents. Journal of Experimental &
Theoretical Artificial Intelligence 9: 237 – 256.
Chen, J., Demski, A., Han, T., Morency, L-P., Pynadath, P.,
Rafidi, N. & Rosenbloom, P. S. (2011). Fusing symbolic and

decision-theoretic problem solving + perception in a graphical
cognitive architecture. Submitted to the 2nd International
Conference on Biologically Inspired Cognitive Architectures.
Derbinsky, N. and Laird, J. E. 2009. Efficiently implementing
episodic memory. In Proceedings of the 8th International
Conference on Case-Based Reasoning.
Domingos, P. and Lowd, D. 2009. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan & Claypool.
Kieras, D. E. and Meyer, D. E. 1997. An overview of the EPIC
architecture for cognition and performance with application to
human-computer interaction. Human-Computer Interaction 12:
391-438.
Koller, D. and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA: MIT Press.
Kschischang, F. R., Frey, B. J. and Loeliger, H.-A. 2001. Factor
graphs and the sum-product algorithm. IEEE Transactions on
Information Theory, 47: 498-519.
Laird, J. E. Extending the Soar cognitive architecture. 2008. In
Artificial General Intelligence 2008: Proceedings of the First
AGI Conference. Amsterdam, Netherlands: IOS Press.
Laird, J. E., Newell A. and Rosenbloom, P. S. 1987. Soar: An
architecture for general intelligence. Artificial Intelligence 33: 1-
64.
Laird, J. E. and Rosenbloom, P. S. 1990. Integrating execution,
planning, and learning in Soar for external environments. In
Proceedings of the Eighth National Conference on Artificial
Intelligence, 1022-1029. Cambridge, MA: MIT Press.
Leuski, A., and D. Traum. 2008. A statistical approach for text
processing in virtual humans. In Proceedings of the 26th Army
Science Conference.
Livingstone. M. S. and Hubel, D. H. 1987. Psychophysical
evidence for separate channels for the perception of form, color,
movement, and depth. The Journal of Neuroscience 7: 3416-
3468.
Nuxoll, A. M. and Laird, J. E. 2007. Extending cognitive
architecture with episodic memory. In Proceedings of the 21st
National Conference on Artificial Intelligence.
Rosenbloom, P. S. 2010. Combining procedural and declarative
knowledge in a graphical architecture. In Proceedings of the 10th
International Conference on Cognitive Modeling.
Rosenbloom, P. S. 2011a. Rethinking cognitive architecture via
graphical models. Cognitive Systems Research 12: 198-209.
Rosenbloom, P. S. 2011b. Mental imagery in a graphical
cognitive architecture. In Proceedings of the 2nd International
Conference on Biologically Inspired Cognitive Architectures. In
press.
Rosenbloom, P. S. 2011c. From memory to problem solving:
Mechanism reuse in a graphical cognitive architecture. In
Proceedings of the 4th Conference on Artificial General
Intelligence. In press.
Rosenbloom, P. S., Laird, J. E. and Newell, A. 1987. Knowledge
level learning in Soar. In Proceedings of Sixth National
Conference on Artificial Intelligence, 499-504. Menlo Park, CA:
AAAI.
Sun, R. 2006. The CLARION cognitive architecture: Extending
cognitive modeling to social simulation. In R. Sun (Ed.),
Cognition and Multi-Agent Interaction. New York, NY:
Cambridge University Press.

