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Abstract 
Desiderata for cognitive architectures that are to support the 
extent of human-level intelligence required in virtual 
humans imply the need to bridge a range of dichotomies 
faced by such architectures. The focus here is first on two 
general approaches to building such bridges – addition and 
reduction – and then on a pair of general tools – graphical 
models and piecewise continuous functions – that exploit the 
second approach towards developing such an architecture.  
Evaluation is in terms of the architecture’s demonstrated 
ability and future potential for bridging the dichotomies. 

 Introduction   
Virtual humans combine human-like cognition with virtual 
human bodies in interactive games and simulations for 
education, training and entertainment.  The concern here is 
how to build cognitive architectures for such virtual 
humans that are: (1) broad spectrum, (2) tightly integrated, 
and (3) functionally elegant.  A broad-spectrum 
architecture makes creating simple virtual humans simple, 
often by leveraging statistical techniques over large data 
sets, while still enabling construction of the most 
sophisticated ones – capable of symbolic reasoning over 
complex models – and being incrementally extendable to 
points in between.  A tightly integrated architecture closely 
couples capabilities both within the central cognitive 
system and between it and the perceptuomotor system, 
enabling effective sharing of information and uncertainty 
across capabilities plus the creation of capability 
combinations that are much more than just the sum of their 
parts. A functionally elegant architecture yields systems 
with the broad functionality implicated by human-level 
intelligence while remaining theoretically simple, 
maintainable and extendible. 
 When considering the related goal of achieving human-
level intelligence in cognitive systems, the same desiderata 
still matter, but the arguments are not always identical, and 
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there is less agreement about some aspects.   Tight 
integration remains just as critical. With respect to broad 
spectrum, the ability to construct simple statistical systems 
may no longer be essential, but combining statistical and 
symbolic techniques is still likely important.  While 
functionality remains central, there is little consensus as to 
whether it is either possible or desirable to combine it with 
simplicity and elegance.  However, earlier work on the 
diversity dilemma – of how to combine broad functionality, 
which usually implies a large number of specialized 
architectural mechanisms, with simplicity and elegance, 
which typically implies a small number of general 
mechanisms – does explore the hypothesis that functional 
elegance is possible, while simultaneously arguing for its 
desirability (Rosenbloom 2011a). 
 While the diversity dilemma can be seen as a variant of 
functional elegance, it can also be seen as just one 
dichotomy – uniform vs. diverse – out of many that must 
be resolved to enable cognitive architectures that satisfy 
the full set of desiderata.  A broad-spectrum architecture, 
for example, may require bridging the logical vs. 
probabilistic and data-driven vs. model-based dichotomies.  
Tight integration may require bridging such dichotomies as 
procedural vs. declarative, reactive vs. deliberative, 
discrete vs. continuous and central vs. peripheral.  Other 
dichotomies that may also need bridging include symbolic 
vs. subsymbolic/neural, explicit vs. implicit, hard vs. soft 
constraints and goal vs. utility based.  These dichotomies 
are not all necessarily independent of each other, with 
some mapped onto others by particular theoretical stances, 
but there are discernable differences among all of them. 
 Individual architectures all take some stance on each 
such dichotomy, either opting for one side or the other – 
based on theoretical and/or pragmatic reasons – or bridging 
the dichotomy to provide both in some form.  Choosing 
one alternative is generally the simplest approach, and it 
can often work, at least until the challenges faced by the 
architecture become too diverse.  Yet it is inadequate for 
most dichotomies over the long run, particularly given the 
need for virtual humans to approach human-level 



intelligence in a broad sociophysical context.  Here the 
question of how to bridge the dichotomies must be faced. 
 This article begins with two general approaches for 
bridging such dichotomies – addition and reduction – and 
then discusses two general tools – graphical models 
(Koller and Friedman 2009) and piecewise continuous 
functions – that exploit the reduction approach towards 
developing a graphical architecture that bridges many of 
the listed dichotomies.  Graphical models were central to 
the earlier work on the diversity dilemma, but will be 
treated in an abbreviated manner here.  Instead, piecewise 
continuous functions – which have heretofore been lurking 
in the background – are brought to the fore as a major idea 
in their own right.  It is these piecewise functions that 
define the elementary cognitive structures in the 
architecture, yielding a representational primitive that is 
key in bridging many dichotomies. The graphical models 
then specify how these basic units are combined into 
complex mental structures and processed, completing the 
bridges and yielding sophisticated cognitive capabilities. 
Results to date, in conjunction with future prospects 
already within view, demonstrate how these tools leverage 
reduction to bridge many of the dichotomies central to 
developing architectures for virtual humans (and human-
level cognitive systems). 

Two Approaches to Bridging Dichotomies 
The most obvious approach to bridging a dichotomy is 
addition of a module for each alternative.  ACT-R, for 
example, includes distinct procedural and declarative 
memories (Anderson et al. 2004); and Soar 9 goes further, 
reifying a subsidiary dichotomy between semantic and 
episodic knowledge (Laird 2008).  Clarion also embodies 
distinct procedural and declarative systems, but with both 
explicit and implicit implementations of each (Sun 2006).  
The 3T architecture includes modules for reactive and 
deliberative control (Bonasso et al. 1997).  EPIC has a 
central cognitive module plus multiple peripheral modules 
(Kieras and Meyer 1997).  Addition can broadly contribute 
to the functional side of functional elegance, while yielding 
multiple points on a spectrum of capabilities.  It doesn’t, 
however, yield either a full capability spectrum or 
elegance; at worst producing a combinatoric proliferation 
of mechanisms, when bridging N dichotomies engenders 
2N rather than 2N components (as with Clarion for the two 
dichotomies mentioned).  Addition is neutral in general 
about how to achieve tight integration. 
 Reduction instead leverages whatever commonality 
exists across a dichotomy to bridge it via a single module 
that is little more complex than what is necessary for just 
one side.  In the purest cases, the commonality captures all 
that matters of both sides of the dichotomy.  However, 

there may be residual differences that require further 
attention or a functional compromise may be required on 
one or both sides to maximize the commonality.  Whether 
or not such additional complexities do occur, there are at 
least three distinct forms of commonality that can be 
identified: (1) a generalization that directly subsumes both 
sides of the dichotomy; (2) one side of the dichotomy 
implementing the other; or (3) a generalization beneath the 
dichotomy that implements both sides of it. 
 Markov logic (Domingos and Lowd 2009) provides a 
canonical example of the first form of reduction, with its 
generalization over first order logic and probabilities.  It 
also bridges other related dichotomies as well; such as 
data-driven vs. model-based, where statistical learning over 
large bodies of data provides the robust breadth 
characteristic of data-driven processing and first-order 
logic provides the robust depth characteristic of model-
based processing.  Rule-based architectures, at least as 
applied in classical shallow expert systems, can also be 
seen as a subsumption-based generalization reduction of 
the data-driven vs. model-based dichotomy, with breadth 
stemming from large numbers of shallow rules and depth 
from the first-order generalizations yielded by variables 
and combinatoric match.  However, this is an attenuated 
generalization that imposes compromises on both sides of 
the dichotomy.  It sacrifices both breadth and depth with 
respect to the pure alternatives, while requiring a double 
sacrifice on robustness – the lack of both statistics over 
large datasets and combinatoric search over comprehensive 
models leads to the classic problem of rule fragility.  What 
is gained in return is efficiency (and simplicity). 
 Work on Soar has provided several examples of the 
second form of reduction, some positive and others not.  
On the positive side, to bridge reactivity vs. deliberation, 
Soar’s reactive component – parallel rules – provides an 
associative memory that implements much of deliberation 
(Laird and Rosenbloom 1990).  A decision procedure is 
also needed for deliberation, but this is a minor addition in 
comparison.  More problematically, bridging the 
procedural vs. declarative dichotomy by implementing a 
declarative capability on top of the architecture’s 
procedural learning (chunking) and memory (rules) yielded 
an awkward result that integrated poorly with the rest of 
the system (Rosenbloom, Laird and Newell 1987).  
Ultimately this led to adopting the addition approach for 
this dichotomy in Soar 9.  In general, introducing a level 
difference between the two sides of a dichotomy – with the 
lower implementing the upper – implies an order-of 
magnitude difference in time scale, and integration that is 
not among peers.  When this works, as for reactivity vs. 
deliberation, this form of reduction can be effective.  When 
it doesn’t, the result can be awkward and poorly integrated. 
 The graphical architecture illustrates the third form of 
reduction.  For example, a general implementation level 



beneath the architecture – based on factor graphs and the 
summary product algorithm (Kschischang, Frey and 
Loeliger 2001) – bridged the procedural vs. declarative 
dichotomy by implementing both kinds of memories, with 
just three residual differences: whether message passing 
was unidirectional vs. bidirectional, whether working 
memory was closed vs. open world, and whether variable 
binding concerned all legal values vs. only the single best 
value (Rosenbloom 2010).  Choices concerning these 
differences could all be made independently, engendering a 
larger space of possible memories, including a constraint 
memory that blends procedural and declarative aspects. 
 By uncovering and exploiting a deeper commonality 
between the alternatives, the reduction approach can yield: 
simpler systems, proffering the elegance side of functional 
elegance; insight into how to integrate the alternatives, 
through what is shared; and deep scientific results that are 
of interest in their own right.  When reduction is based on 
generalization, it is also possible to go beyond just bridging 
a pair of alternatives, to yield a full spectrum of options. 

Piecewise Continuous Functions 
Piecewise continuous functions are simple in their basic 
conception, but complex in their full implications.  
Consider first a general form for arbitrary (non-piecewise) 
multivariate functions: f(x1, …, xn).  This provides an 
extreme variant of the first form of reduction, subsuming 
many varieties of basic representational units.  A Boolean 
function of two discrete variables yields, for example, a 
template for 2D occupancy grids.  A real-valued function 
of three continuous variables yields a template for state 
functions over the spatial dimensions of the physical 
universe: f(x, y, z).  Addition of a fourth continuous 
variable (t) enables representing the dynamics of such 
states over time.  On the other hand, a Boolean function – 
where false and true map onto values of 0 and 1 – over 
symbolic variables yields a template for logical predicates 
and n-ary relations – such as Color(object, hue) – while 
real-valued functions restricted to the closed interval [0, 1] 
yield a template for probability distributions, such as P(x, 
y) and P(x | y), when defined over discrete variables. 
 Other kinds of functions, such as utility functions, can 
also be represented in comparable ways, but these 
examples should be sufficient to make the case.  The 
overall qualitative space of variation covers the number of 
independent variables (N), the nature of the domains of the 
individual variables, and the restrictions imposed on the 
range of the function.  Within each point in this qualitative 
space, many distinct functions can then be defined in 
support of many different representations.  The problem 
though with building architectures around such a 
representation is that specifying and computing with them 

can be all over the map, as well as arbitrarily difficult.  In 
the graphical architecture, it is necessary to compute: (1) 
whether two functions are equal; (2) the pointwise product 
or sum of two functions; (3) the effect of integrating or 
maximizing over a variable; and (4) changes in a 
function’s value over an arbitrary segment of its domain. 
 Piecewise continuous functions provide an alternative 
generalization that compromises on expressibility in 
exchange for radical improvements in simplicity and 
efficiency.  The essence is to view a function’s variables as 
defining a multidimensional continuous space, with one 
dimension per variable, and then to decompose this space 
into regions, each with a simpler function defined on it.  
Regionalization introduces an aspect of discreteness into 
the functional form, while enabling a trade off – by varying 
the sizes of the regions – between the degree to which an 
arbitrary continuous function can be approximated and the 
cost of representing and processing it.  
 The simplest variety of 
piecewise continuous functions 
limits regions to hypercubes – N 
dimensional generalizations of 
squares and cubes – of uniform 
size, and restricts region 
functions to be constant (Figure 
1).  In one dimension this yields 
a step function whose value can 
change at fixed intervals. In two 
dimensions it supports pixels and 
in three dimensions we get voxels.  Piecewise constant 
functions also subsume both logical predicates and discrete 
probability distributions.  For predicates, symbols are 
mapped onto unit intervals along individual dimensions 
and constant values are limited to 0/1 (for False/True) over 
combinations of these dimensions.  For distributions, unit 
intervals are assigned constant values in [0, 1].  Although 
some overhead is introduced in representing predicates and 
discrete distributions in this uniform manner, as long as it 
remains a small constant factor it should not be an issue. 
 Representation via piecewise constant functions can 
directly support limited forms of continuous functions – 
step functions – while approximating arbitrary ones as 
closely as desired; although the size of the representation 
for continuous functions grows by 2N as the interval widths 
are halved.  Still, the important point is that this 
subsumption-based generalization reduction provides the 
same representational interface for continuous functions as 
for logical predicates and discrete probability distributions, 
opening up the possibility – which can be exploited by 
graphical models – of providing uniform processing 
algorithms over these disparate forms of data.   
  The basic representational aspects of both sides of 
many of the dichotomies mentioned in the introduction can 
be handled by these simple piecewise functions.  The 

Figure 1: Piecewise 
constant function over 
2D hypercubes (squares). 
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uniform vs. diverse dichotomy is handled by the overall 
generalization that enables a diversity of elementary 
representational units to all be subsumed by a single 
representation.  Boolean function ranges being a special 
case of real ones handles the logical vs. probabilistic 
dichotomy.  The representational aspects of many 
additional dichotomies are then handled by how this 
generalization covers both symbolic/relational and 
continuous data. This bridges in particular much of the 
explicit vs. implicit, symbolic vs. subsymbolic, hard vs. 
soft constraints, central vs. peripheral, discrete vs. 
continuous, and goal-based vs. utility-based dichotomies. 
 To make this more concrete, we’ll examine how the 
graphical architecture currently exploits a slightly more 
sophisticated form of piecewise continuous function to 
address four rather different representational challenges 
found in cognitive architectures: (1) working memory, (2) 
mental imagery, (3) probability distributions, and (4) 
episodic memory.  We’ll then look at potential 
enhancements for strengthening, in particular, the bridges 
between discrete vs. continuous, symbolic vs. subsymbolic 
and central vs. peripheral. 
 The graphical architecture extends the piecewise 
constant hypercube representation to piecewise linear 
functions over hyperrectangles, or orthotopes (Figure 2).  
Linear region functions enable exact representation of a 
broader range of continuous 
functions plus more compact 
approximations of many others.  
They do introduce additional 
complexity, including the need for 
reapproximation in cases where 
computations over linear functions 
yield nonlinear functions – such as 
when the product of two linear 
functions yields a quadratic 
function – yet the computations 
remain relatively simple overall. 
 Shifting from an array of hypercubes to one of 
hyperrectangles enables region widths to vary across 
segments of a single dimension, as well as between 
dimensions, while still retaining the simplification that the 
borders between regions align into slices that span the 
function.  Whenever an entire region no longer has the 
same linear function, slices are automatically added to 
partition the region into smaller, functionally homogeneous 
ones.  Similarly, whenever all pairs of regions straddling a 
slice use the same linear function, the slice is removed to 
minimize the representation.  Function-wide slices imply 
more fragmentation than is logically necessary, but in 
exchange they maintain the function as an array of regions, 
enabling function traversal (for computational purposes) to 
remain systematic and straightforward.  

Working Memory 
In a symbolic architecture such as Soar, working memory 
(WM) consists of object-attribute-value triples, defining a 
graph of symbolic relations. Using piecewise functions, the 
graphical architecture can represent such a WM, while 
simultaneously extending it for continuous information.  A 
set of predicates is first defined, each over a fixed number 
of typed arguments.  A variable’s type determines the 
extent of the underlying dimension, whether the dimension 
is continuous or discrete (implying all slices are at integral 
values), and the mapping of symbols onto the discrete 
domain (if the dimension is symbolic).  With a symbolic 
object-attribute-value triple – such as might encode the 
color of an object – the attribute (color) defines the 
predicate, and two symbolic arguments range over the 
objects and the colors: Color(object, color). 
 It is important to note that although type distinctions 
enable compiling a diversity of knowledge into the 
representation, their processing remains unaware of these 
differences.  As far as the graphical models are concerned, 
all dimensions are continuous.  For each predicate, a 
Boolean WM function with a dimension for each argument 
is created to represent which regions of the predicate are in 
WM.  Active regions have a functional value of 1 while 
inactive regions are 0, as illustrated in Figure 3.  

 By keeping the regions in this function as large as 
possible within the expressibility of the piecewise function 
used, significant compactness can be maintained.  Even 
more importantly, regionalization enables an infinite 
number of continuous values to be represented implicitly 
within a region.  The result is a hybrid WM that represents 
both discrete/symbolic and continuous information, and 
that can mix them freely across the variables/dimensions of 
predicates.  For example, an Eight Puzzle board (Figure 4) 
can be defined via a hybrid 
Board(x, y, tile) predicate, 
where x and y are continuous 
with extent [0, 3), and tile is 
discrete with extent 0-9 
(Rosenbloom 2011b). 
Combinations of predicates 
then afford richly structured 
networks of relations in WM.  
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Figure 2: Array of 
piecewise linear 
functions over axially 
aligned 2D orthotopes. 

 Red Green Yellow Blue 
O1 0 1 0 0 
O2 

0 0 1 0 O3 
O4 1 0 0 0 

 
Figure 3: Partial Boolean WM function with Color(O1,Green), 
Color(O2,Yellow), Color(O3,Yellow), Color(O4,Red) active. 

Figure 4: Eight Puzzle board. 



Mental Imagery 
Mental imagery involves a multidimensional 
representation of space and its contents, plus the ability to 
transform such a representation.  Piecewise continuous 
functions are well suited to this.  One continuous 
dimension is required for each spatial dimension, plus an 
additional dimension for objects within this space.  For 
example, two spatial dimensions can be combined with a 
color dimension to define a three-argument predicate 
capable of representing a color map over a surface.  Or, 
three spatial dimensions can be combined with an object 
dimension to define a four-argument predicate that 
represents a 3D occupancy grid. 
 The Eight Puzzle board, with its two continuous spatial 
dimensions and one discrete tile dimension, provides a 
concrete example in Figure 5.  When combined with the 
implementation of a translation operation in the graphical 
model, plus additional knowledge about how to select and 
apply operators, a working version of the Eight Puzzle has 
been demonstrated that maintains a continuous mental 
image of the board (Rosenbloom 2011c).  

 The Eight 
Puzzle is 
limited to 
square objects, 
which fit 
neatly within 

rectangular 
regions, but it 
is also 
possible to 

approximate 
more complex 
2D shapes via 
multiple such 
regions.  The 
quality of the 
approximation 
depends on the 
size of the 
regions into 

which it is decomposed, and thus also on the number of 
regions, inducing a tradeoff between the accuracy of the 
shape representation and its cost. 
 Just as the representation of a single object can involve 
multiple regions within an imagery function, the 
representation of different attributes of an object may 
require multiple imagery functions.  For example, shape 
and color in a 2D image could each be represented as a 
distinct 3D Boolean function, rather than as a single 4D 
function.  Such a representation encodes each attribute in a 
separate channel, as is found in primate vision 
(Livingstone and Hubel 1987), implicitly embodying the 

assumption that shape and color are conditionally 
independent given the location, and greatly reducing the 
combinatorics of the resulting representation.  Yet, whether 
or not imagery is decomposed in this fashion, its 
representation is just a special case of the generalized, 
piecewise continuous representation used for WM, 
implying that distinct WMs should not be required for 
symbolic and spatial information. 

Probability Distributions 
Probability distributions require a step beyond the hybrid 
representation used for WM and mental imagery.  Instead 
of Boolean functions, their functional values must range 
continuously over the interval [0,1].  A prior probability 
distribution over a single random variable requires only 
one dimension.  The domain of the random variable is 
represented along the dimension, with the functional values 
at any point specifying its probability.  The same approach 
also works directly for probability density functions over 
continuous variables; the single dimension is simply 
continuous rather than discrete and the function specifies 
densities rather than probabilities (Figure 6).  For a 
conditional probability distribution, two dimensions are 
used, one for each random variable, with the functional 
value now specifying the conditional probability of one 
given the other.  
 Symbolic WM 
elements can be 
represented exactly by 
piecewise linear 
functions.  Mental 
imagery, in contrast, 
requires approximations 
because of the orthotopic restriction on region boundaries.  
Probability functions in their turn require approximations 
because of the linear restriction on region functions.  A 
Gaussian, or normal, distribution could be approximated as 
a constant function with one region, as a pyramid with two 
regions (Figure 6), or as accurately as desired with enough 
sufficiently small regions.  This approximation thus also 
involves an implicit tradeoff between accuracy and cost. 
 With probability distributions added to general symbolic 
processing we see a bridging of the logical vs. probabilistic 
and data-driven vs. model-based dichotomies. These 
bridges are key to the implementation of semantic memory 
within the graphical architecture, and to work in progress 
that uses this memory in natural language tasks.  They are 
also crucial to work in progress on bridging the central vs. 
peripheral dichotomy.  Both of these variants of work in 
progress will be discussed in a bit more detail in the 
section on graphical models. 

Figure 5: Partial visualization of the hybrid 
Eight Puzzle representation, with two 
continuous spatial dimensions (x and y) and 
one discrete dimension for tiles (tile 0 is the 
blank).  The x,y region in which tiles sit are 
set to 1 (grey), while all others are 0 (clear).  
Only the blank and tile 1 are shown. 

Figure 6: Two-region pyramidal 
probability density function. 

0 4 

1 

 

.5 



Episodic Memory 
Episodic memory (EM) can be viewed as a sequence of 
temporally indexed instances of WM (Nuxoll and Laird 
2007).  In the graphical architecture there is one EM 
function per predicate.  These EM functions are just like 
WM functions, but with an additional dimension for time.  
Regions in EM thus have a temporal extent, spanning any 
length of time over which the same linear function applies.  
Figure 7 shows the EM function learned for the selected 
operator in a typical run of the Eight Puzzle after 5 
decisions, each of which defines one time step. 

 In its simplest form, regionality implies that if the WM 
for a particular predicate doesn’t change, then no regions 
need to be added to its EM.  In fact, because the last 
temporal region extends to infinity, the EM need not be 
modified at all under such circumstances.  A temporal 
boundary is only added when the existing final region is 
inadequate for the new content, automatically yielding the 
kind of compact representation that requires special 
purpose optimizations in other systems (Derbinsky and 
Laird 2010).  It also directly enables a simple form of 
extrapolation, where the future is automatically assumed to 
be like the present.  
 Beyond the EM functions themselves, an additional 
aspect of EM that is also represented in a piecewise linear 
manner in the graphical architecture is a temporal decay 
function, encoded as a prior distribution on the temporal 
variable that prefers more recent memories.  Rather than 
memories actually decaying, this temporal prior combines 
with the matching of cues in WM to episodes in EM to 
determine which episode is retrieved.  With a piecewise 
linear representation, it is possible to represent linear decay 
via a single region, or exponential decay via a piecewise 
approximation.  For the Eight Puzzle run above, a 
normalized linear function was used whose slope is 
automatically (re)set each time step to 2/(t2-1), where t is 
the time steps that have so far elapsed. 

Potential Enhancements 
The manner in which the graphical architecture addresses 
these four representational challenges illustrates how a 
subsumption-based generalization reduction that embodies 
an appropriate compromise between expressiveness and 

efficiency can bridge the representational aspects of many 
dichotomies.  Work in progress is exploring potential 
enhancements to both how regions are structured and how 
functions are defined on them, which together should 
improve the expressiveness and efficiency of the 
representation while strengthening the bridges already 
constructed for the discrete vs. continuous, symbolic vs. 
subsymbolic and central vs. peripheral dichotomies. 
 For region structuring, we are beginning with the 
elimination of several restrictions on the existing orthotope 
representation.  Eliminating the restriction that regions 
must be axially aligned, and instead allowing orthotopes at 
arbitrary orientations, should facilitate mental imagery by: 
reducing the number of regions required to represent 
objects whose boundaries don’t align with spatial axes, 
enabling objects to be rotated in mental imagery without 
reslicing them afterwards, and supporting compact 
representation of the kinds 
of shifted delta functions 
that underlie object 
translation (Rosenbloom 
2011b).  It should also 
directly support more 
general forms of 
extrapolation in EM; 
enabling, for example, 
automatic trajectory 
projection for a vehicle 
with constant velocity 
from an open-ended final 
region that lies diagonally 
across space-time (Figure 
8).  Eliminating the restriction that region boundaries must 
be part of function-spanning slices should reduce 
unnecessary region fragmentation; for example, avoiding 
the full horizontal slices between the operators in Figure 7, 
to yield Figure 9.  

 Eliminating these two restrictions may, however, make 
processing more complex.  With an array of axially aligned 
orthotopes, regions can be traversed systematically for 
computing sums, products, etc.  Without these restrictions, 
region alignment becomes more like the computer graphics 
problem of collision detection for bounding boxes.  It will 
become even more like the graphics problem with the 
elimination of the assumption that all regions are explicitly 
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Figure 8: Notional 1D (x) 
location extrapolation for a 
vehicle with a constant velocity 
via an angled final space-time 
region in episodic memory. 

 1 2 3 4 5 
Left 1 0 0 
Right 0 0 0 Up 
Down 0 1 0 

 
Figure 7: Episodic memory for the selected operator after 5 
time steps.  Left was selected first, Down for the next three 
steps, and then nothing (with extrapolation into the future). 

 1 2 3 4 5 
Left 1 

0 0 Right 
0 Up 

Down 1 
 
Figure 9: What episodic memory from Figure 7 should look 
like when slices need no longer span the entire space. 



represented, enabling inactive regions – those with a value 
of 0 – to be implicit, much as inactive elements in normal 
WMs are implicit.  This should yield a sparse function 
representation of active orthotopes at arbitrary orientations, 
greatly reducing the regions that need to be represented 
and processed. 

 We are also exploring going 
beyond orthotopes, to convex 
polytopes – N dimensional 
generalizations of polygons 
(Figure 10).  Once 
systematicity is lost, and 
region borders can run 
diagonally across dimensions, 
there is little efficiency gain in 
staying with orthotopes, and 
useful expressivity to be 
gained with polytopes.  
(Moreover, if active 

orthotopes can occur at arbitrary orientations, inactive 
segments may, at least implicitly, require decomposition 
into polytopes anyway.)  Such a shift to polytopes will 
make the representation even more like that used in 
graphics, facilitating compact descriptions of complex 
objects, but also converting alignment into a more complex 
form of collision detection.  
 In moving beyond the expressivity of linear region 
functions, we are considering alternative parametric forms 
– such as polynomials and (mixtures of) Gaussians – along 
with nonparametric forms.  These further broaden the 
continuous functions exactly representable while also 
yielding more compact and accurate approximations to 
other functions.  However, they also further increase the 
complexity of the processing. 

Graphical Models 
Graphical models provide efficiency in computing with 
multivariate functions by decomposing them into products 
of simpler functions.  Bayesian networks do this for joint 
probability distributions, yielding products of prior and 
conditional distributions.  The graphical architecture uses 
factor graphs, which are similar to Bayesian networks, 
except that they: (1) decompose arbitrary multivariate 
functions; (2) utilize bidirectional links; and (3) include 
explicit factor nodes in addition to variable nodes to 
represent the subfunctions in the decomposition.  In using 
bidirectional networks able to represent more than just 
probabilities, factor graphs are more like Markov networks 
(aka Markov random fields) than Bayesian networks, but 
they are more general than even the Markov alternative.   
 Factor graphs support more complex forms of 
representation than are provided directly by piecewise 

continuous functions.  The piecewise functions define 
elementary representational elements, corresponding to 
instances of predicates and images, while factor graphs 
link them together in a manner that respects any 
independence assumptions among them.   These more 
complex relationships are specified in the graphical 
architecture via conditionals that compile down to factor 
graphs (Rosenbloom 2010).  Each conditional may contain 
conditions, actions, condacts and functions.  Conditions 
and actions are as in standard rule systems; conditions 
match to WM to constrain which rules fire and to yield 
variable bindings, while actions modify WM.  Condacts 
meld these functionalities to yield the bidirectional 
processing that is crucial in probabilistic graphical models.  
Functions in conditionals are specified over subsets of 
conditional variables, and compile down to functions in 
particular factor nodes within the graph. 
 This representation has been shown to be general 
enough to handle rules, facts, episodes, and constraints 
(Rosenbloom 2010).  It also handles factored probabilistic 
representations based on products of prior and conditional 
probabilities, in support of naïve Bayes classifiers and 
other forms of probabilistic reasoning.  The classifier that 
underlies the semantic memory (of facts) consists of a prior 
distribution on the object category plus conditional 
distributions on features given the category, enabling it to 
predict from arbitrary cued features an object’s category 
and any uncued features.  This memory has been leveraged 
directly for work in progress on question answering in 
virtual humans, as in [Leuski and Traum 2008], and word 
sense disambiguation.  More general combinations of prior 
and conditional probabilities are also being used within the 
architecture to strengthen the existing bridge across the 
central vs. peripheral dichotomy, via work that combines 
perception, localization and decision-theoretic decision 
making (Chen et al. 2011). 
 Inference in factor graphs typically occurs by either 
sampling or message passing.  The graphical architecture 
uses a variant of the summary product algorithm, which 
passes messages between variable and factor nodes about 
possible values of the variables.  Incoming messages are 
(pointwise) multiplied together at all nodes, with factor 
nodes also including their functions in the product and then 
summarizing out all variables not in an output message to a 
variable node.   When sum/integration is used for 
summarization, the graph computes marginals on its 
individual variables.  When max is used instead, the graph 
computes the MAP estimation over all of the variables. 
 In the graphical architecture the summary product 
algorithm – with integration used for summarization in 
place of sum – is applied to the full representational 
generality provided by factor graphs and piecewise linear 
functions (with the latter specifying factor functions and 
messages).  The result is a general implementation level 
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that exemplifies the third form of reduction, providing a 
generalization below the architecture able to implement 
both sides of such dichotomies as procedural vs. 
declarative, logical vs. probabilistic, discrete vs. 
continuous, central vs. peripheral and hard vs. soft 
constraints.  The use of factor graphs and the summary 
product algorithm at the implementation level, with the 
diversity of capabilities they enable in the architecture 
level above it, also exemplifies the second approach to 
reduction – where one side implements the other – in 
bridging the uniform vs. diverse dichotomy. 

Conclusion 
The articulation of three general desiderata for cognitive 
architectures that are to support virtual humans (and 
human-level cognitive systems) has led to a push to bridge 
a range of architectural dichotomies they induce.  A 
strategy based on a pair of general architectural tools – 
graphical models and piecewise continuous functions – 
that leverage reduction for bridge building has been shown 
effective in bridging many of these dichotomies.  In the 
process a novel path is opened up towards architectures 
that take a broad spectrum, tightly integrated, and 
functionally elegant approach to human-level intelligence. 
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