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Abstract. We describe a system for animating virtual characters that
encompasses many important aspects of character modeling for simu-
lations and games. These include locomotion, facial animation, speech
synthesis, reaching/grabbing, and various automated non-verbal behav-
iors, such as nodding, gesturing and eye saccades. Our system implements
aspects of character animation from the research community that yield
high levels of realism and control.
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1 Motivation

Animating virtual humans is a complex task. Many different aspects of human
behavior needs to be modeled in order to generate a convincing result. The be-
havior and appearance of a virtual characters needs to be recognizably human
in expression, although photorealism is not necessary. People are adept at recog-
nizing movement and human-like behavior, so the actions and appearance of a
virtual character must match the expectations of the human viewer. This means
that not only must the character’s movements be natural, but they must be
contextually appropriate, such as responding with the appropriate reaction and
in the proper time frame to stimuli. Research has been done on various aspects
of character animation, such as locomotion and facial animation. However, the
integration of all these aspects leads to complexities. For example, coordinat-
ing locomotion with path finding, or coordinating reaching with gazing. At first
glance, it appears that modeling an entire animated character can be achieved
by combining individual areas, and then reassembling the final character as a
combination of each individual part. For example, locomotion can be combined
with a lip sync animation. This combination works since there is little rela-
tionship between locomotion and the movement of a character’s lips and face.
Serious problems arrive when the areas overlap and directory or indirectly im-
pact each other. For example, performing a manipulation with your hands while
simultaneously looking at another object in the virtual world. The looking be-
havior might engage parts of the character’s body that disrupt the manipulation.
Thus, although manipulation and gazing are distinct problem areas in animation
research, they can interact with each other in unexpected ways.
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1.1 Goals

We aim to synthesize a highly realistic, interactive character, which will likely re-
quire high-quality and possibly expensive methods. Many game engines provide
robust solutions to many real time simulation problems such as mesh rendering,
lighting, particle effects and so forth. However, game engines generally do not
handle complex character animation. They often provide a general framework for
replaying animations on a hierarchical skeleton, as well as a providing mechanism
for blending between animations or looping an animation. However, the intricate
and specific motion commonly associated with humans must be constructed by
the game engine programmer and designer. One of the goals of this project is to
develop a character animation system allows the realization of common behaviors
that are used in real time games and simulations. These behaviors include: syn-
thesizing speech, responding to speech, moving, touching, grabbing, gesturing,
gazing, breathing, emotional expression and other non-verbal behavior.

The system is not intended to be a framework for the development of char-
acter animation via a well-defined interface or with pluggable animation blocks.
Such well-defined interfaces are effective for well-defined and understood prob-
lems. However, animating a virtual character to a high level of realism has a
number of complexities that are not well understood, and thus don’t benefit
greatly from such simple architectures. Such designs can either under specify
the interface, leaving too much work to the game designers and programmers,
or overly simplifying the system, restricting it’s capabilities.

2 System Summary

The animation system [10] is designed around a hierarchical, controller-based
architecture [3]. The state of the character is manipulated by series of controllers,
with the output of one passed as the input to another. Each controller can either
override, modify or ignore the state of the virtual character. The controllers know
the state of the character during the last step, as well as the state of the character
during the evaluation phase. The controller stack, which controls the state data
flow, is listed in Table 2 in the order of execution.
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Order Controller Comments

1 World offset Global orientation and position
2 Idle motion Underlying idle pose
3 Locomotion Overrides idle pose during locomotion phases, ig-

nored during idle states
4 Animation Non-locomotive animations, can encompass entire

body or just upper body during locomotion.
5 Reach Allows reaching and pointing using arms
6 Grab Hand control for touching, grabbing, and picking up

objects
7 Gaze Looking with eyes, head, shoulders and waist
8 Breathing Chest and diaphragm control, mostly independent

from rest of skeleton hierarchy
9 Constraint Allows constraints that may have been violated due

to impact of preceding controllers (i.e. keeping char-
acter’s hands on a table while turning to look at an-
other object

10 Eye saccades Fast movements for eyes, blended with results from
gaze

11 Blink Periodic blinking control
12 Head Controls head movements; nods, shakes, tilts,

backchanneling
13 Face Determines activation for blend shapes or bone acti-

vations when using joint-driven faces, excluding eyes
14 General parameters Generic controller for transferring non-skeleton data

to the rendering engine, such as blushing, tears, GPU
shader values, etc.

15 Override Allows overriding of state values. Useful when taking
control of character from other input devices, such as
the Kinect

2.1 Problems with Generalization/Specialization Hierarchy

Some controllers can hide the impact of earlier controllers by overriding the state
values. For example, the face controllers (13) overwrites the face state originally
generated by the idle motion controller (2). This scheme will work for these
two controllers, since the face control can be thought of as a specialization of
the more generic idle pose. However, the locomotion controller (3) must entirely
replace the effects of the idle motion controller (2) during a certain behaviors,
such as walking. Thus, while the hierarchy implies a generalization-specialization
scheme, in practice, many controllers have effects that overlaps, extend or replace
the effects of earlier one. As another example, the gaze controller can engage
the entire spine during a gaze behavior when orienting a character’s entire body
towards a gaze target. However, this will disrupt an animation of, say, a character
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whose hands have been placed on a table by the animation controller (4). To
restore these implicit constraints, the constraint controller (9) is activated to
reposition the character’s hands according to the constraints.

This controller scheme for managing character state requires many additional
rules to effectively control the entire character. Also, certain controllers, such
as the blink and saccade controllers (10 and 11) can work independently from
the face (13), thus strict ordering is not necessary. Better models need to be
developed for controlling character state that more closely match the interaction
of different character behaviors with each other.

2.2 Platforms

The system is written almost entirely in C++, and has been ported to run on
both Linux, OsX. At the time of this writing, we are in the process of porting
to the mobile platforms, Android and iOs. The system is licensed under LGPL
and is available for download at: http://sourceforge.net/projects/smartbody/

2.3 Locomotion

We have implemented and experimented with two different locomotion systems;
a semi-procedural system based on [2], and an example-based system.

The semi-procedural locomotion algorithm uses two example motions; a for-
ward walk and a strafe (sideways walk). The procedural nature of the algorithm
allows the use of inverse kinematics to place the feet at the desired position as
well as control the angle of the foot on uneven terrain. Since only two example
motions are used algorithm, the motion can be parameterized along two axes,
each representing either forward or sideways movement. Turning is controlled by
setting step targets and orienting the body in line with the footsteps.

The drawbacks to using such this semi-procedural system is the lack of ability
of the algorithm to allow for differing styles of movement. Because the foot
placement is established by using inverse kinematics, the nuances of the leg
movement from the animation data are replaced with the results from the IK
algorithm. Thus, many different styles of walking on different characters tend to
look very similar below the character’s waist. In addition, the use of foot steps
makes the motion appear to be clomping, or hard stepping, as compared with
motion captured or hand-animated motion.

The example-based locomotion shown in Figure 2 includes 19 different an-
imations to control forward, turning and lateral movement. This locomotion
engine does not use IK, and relies almost entirely on blending the motion data,
notwithstanding the offset of the character in world space. The example-based
locomotion currently uses 5 animations for different speeds of forward movement,
5 different animations for turning left at various speeds, 5 animations for turning
right at different speeds. The forward movement animations consist of two walk-
ing or running cycles, and the turning animations consist of a character turning
around at various speeds; turning in place, turning in a tight circle while walk-
ing, turning in a tight circle while running and so forth. The size of the turning
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circle limits the amount that a character can turn while moving at a given ve-
locity. The animations are parameterized in three dimensions; forward velocity,
turning angle, and sideways velocity. Thus, it is possible to emulate any number
of foot positions through a combination the various parametric animations. The
parameter space of these dimensions can be modeled using tetrahedrons. The
parameter values are automatically extracted from the example motions, such
as determining the average forward velocity of a motion.

We have found that the example-based animation produces a more realistic
result, although this method can be susceptible to foot skating if the motion
data is not consistent.

Fig. 1. Visualization of the example-based locomotion. Yellow dots on the red axis
indicate moving forward (walking, jogging, running, etc.) Yellow dots along the green
axis indicate turning motions. Yellow dots along the blue axis represent strafing, or
sideways movement.

2.4 Path Finding

The system uses SteerSuite [8] to handle path finding. The separation of loco-
motion from path finding allows for the development of each area separately. For
example, we have connected the SteerSuite path finding to one of three locomo-
tion engines; the semi-procedural and example-based system as described in the
section above, as well as to a simple offset engine that alters the global position
of the character without changing it’s pose. The simple engine is used to test the
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Fig. 2. Example-based locomotion and path.

viability of the path planning engine. The more complex engines produce more
realistic-looking motion.

The benefits of separating the two problem areas has a consequence; with-
out knowing the limits of locomotion capabilities, the path planner sometimes
requires movements that are sometimes unrealistically fast, and sometimes visu-
ally unappealing. For example, the path planner might decide to suddenly switch
direction to avoid an obstacle faster than the locomotion system can realistically
move the character, thus causing a discrepancy between the planned path and
the actual path.

We noticed that many path planners handle large scale movement, such as
traversing long distances are large objects, and very few path planners handle
intricate movement in small areas and indoors.

2.5 Reaching and Grabbing

Our system utilizes an example-based approach for reaching. From a standing
position, we use 32 different reaching motions to allow a character to most objects
within arms-length. Each arm uses 16 example motions from four elevations
(high, mid-high, mid-low, low). Motions created for one hand can be mirrored to
the other hand in order to reduce the number of examples needed. We interpolate
the reach examples to generate pseudo-examples [4], as shown in Figure 3. Our
reaching algorithm first finds closest sets of examples, and interpolates and time
warps the motion to produce the final motion. Inverse kinematics is then used
to achieve the exact desired location, similar to [1].

Because of this reaching technique is based on examples, a different example
set is required for each type of reaching motion. For example, a series of reaching
tasks performed while sitting requires a different set than the standing reaching
set, as in Figure 3. Reaching during walking or running would require another
example set. Although it is also possible to overlay the reaching examples on
the upper body while animating the lower body, this will cause a loss of realism,
since the body will not preserve its movement dynamics. Currently, this reaching
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system does not handle collisions; it assumes a clear path of movement for the
reaching. In addition, the reaching examples are synthesized from the starting
position, to the target, then back to the original position. The ability to reach one
target, then switch to another without returning to the original pose is outside
of the capabilities of the original examples. For such cases, we blend between
the pose targets, resulting in passable, but not high quality, reaching animation
between targets.

For grabbing, we use heuristic that determines the orientation of the hand
that is needed to grab an object. For example, the grab controller will rotate
the hand in order to reach around the thinnest axis of the target object. A long,
narrow object will cause the hand to reorient so that the long axis is parallel to
the palm, allowing the fingers and thumb to close around the object. Near end of
reach behavior, the hand will blend between the current hand pose and a specific
grabbing pose, which can be modified for larger or smaller objects. Collision
spheres are placed on the fingers that allow detection of contact between them
and the target object. Individual fingers are represented as IK chains, and will
stop blending between the original hand pose and the grabbing hand pose once
contact is detected with the object. Each finger IK chain reacts to the collisions
independently. Thus, the hand can be seen to wrap around the target object.

The synthesize reaching and grabbing motion produces a more convincing
result when appropriately timed gazing is added to the motion. The virtual
character can be timed to look at the object before reaching is started, and
maintained through the grabbing motion.

2.6 Facial Animation and Speech Synthesis

The focus of our animation system is to develop autonomous characters that
can think, react and perform various tasks in a dynamically changing environ-
ment. If the characters needed only to duplicate an actor’s performance, the
greatest amount of realism would come from performance capture coupled with
prerecorded audio. However, since the dialogue of our characters is not always
known in advance, nor is the content, it is important to generate a model that
can produce arbitrary utterances with reasonable-looking facial movements. Our
system uses a set of visemes that are activated by a text-to-speech engine (TTS).
The TTS engine translates an utterance in text format into a series of phonemes
(word sounds) and time markers. These phonemes and then mapped to a smaller
set of visemes (a facial movement that matches a word sound) which are used to
drive the facial animation. Originally, our system used a simple scheme by creat-
ing a one-to-one mapping between phonemes and visemes. Each phoneme would
trigger its corresponding viseme, and be phased-in and phased-out by overlap-
ping the phase-out period of one viseme with the phase-in period of a second
viseme. However, the visual result of many phonemes can be overpowered by
the visual result of other phonemes, such as the combining an ’r’ with an ’o’.
Thus, many phonemes can effectively be ignored when animating the face. In
addition, many phonemes produce similar-looking visemes, so those duplicates
can be represented by a single viseme. In addition, the system incorporates a set
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Fig. 3. (Left) Reaching and grabbing during sitting. Notice that the pinky of the right
hand did not collide with the target object, and thus was allowed to blend into the
grabbing pose, whereas the other fingers collided with the target object, and remain at
the collision surface. (Right) Example-based reaching for right side of body. The blue
spheres represent the original examples, while the green dots are examples interpolated
from the original examples. Note that the character engages his entire body during the
reaching motion.

of the Facial Action Coding System (FACS) units, which can be used to express
emotion and display facial movements unrelated to speech.

Speech synthesis is implemented using a number of text-to-speech systems.
The system can also replay prerecorded audio, when first preprocessed with
viseme and timing information.

2.7 Modeling Eye Movements and Saccades

Eye movement is an important part of conveying emotion and intent when ani-
mating digital characters. Humans frequently shift their focus of attention among
and between objects in the environment, as well as performing eye saccade mo-
tions to reduce cognitive load. However, many simulations involving characters
ignore eye movements, yielding a virtual character that stares blankly for long
periods of time, a behavior not seen in healthy humans.

The eyelid controller regulates the position of the upper and lower eyelids
in relation to the pitch of the eyeball. Thus causing the eyelid to move up or
down relative to the character’s eye gaze direction. The system adds a small
delay to the eyelid tracking speed, in order to visually separate the effect of the
different physical structures of the eyeball and the eyelid. The impact can be
seen in Figure 4.
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For eye movement, we implement an eye saccade model based on [7], which
uses a statistical eye movement model for listening and speaking. In many cases,
the effect of using the saccade model is effective, as it simulates the more com-
plex cognitive processes of the character. However, these statistical models do
not account for the differing context of the speech that is being heard, nor of
the content of the speech being uttered. This can sometimes cause a discrep-
ancy between the speech being uttered and eye movements associated with that
speech, which can lead to a loss of realism, or even propel the characters into the
Uncanny Valley. In addition, these statistical models do not consider the factors
that drive the eye movements, such as objects of interest to the character, or
movements in the visual field that would cause a spark of attention.

To develop a greater sense of realism, we seek to develop an eye movement
model for animated characters based on a study of humans interacting with
an animated character Figure5. Participants listen to a digital character speak
and respond to simple questions about personal information, as well as perform
and mental tasks, such as counting backwards. An eye tracker captures the
location of the eye fixation on the screen containing the animated character. In
addition, a video of the participant responding to the questions is synchronized
with the eye tracker data for reference. The eye fixation data is then analyzed
separately according to whether the participent is listening to, speaking to or
reacting to the animated character. The questions are designed to elicit different
kinds of emotional reactions: boredom, surprise, mental load, recall of simple
information, and so forth. With this model, we hope to generate a more complex
and contextually appropriate set of eye saccade behaviors.

Fig. 4. Lowering the lid to the level of the eye. This is achieved by activating the upper
lids in combination with the eye pitch. Although the amount of this effect is small, the
impact on the viewer is large, as the character appears to be in a completely different
emotional state in the two images.

2.8 Head Nods, Head Shakes, and Gazing

Our system has full control of head movements, which can reflect nodding, shak-
ing and various other head movements. Gazing can occur from a hierarchy of
joints, including the eyes, neck, shoulders and waist [9]. A number of parameters
can be used to alter the gazing as well as head nodding and shaking styles, such
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Fig. 5. Visualization of eye movement during listening. The size of the bubble indicates
the length of time spent fixated on the point or area, while the lines indicate the path
travelled. Note that the listener briefly looked at the animated character’s left hand
during a gesture, while remaining mostly fixated on the mouth.

as speed, offset, timing and so forth. In practice, most users of these capabili-
ties tend to vary the default movements only slightly with timing, and generally
do not alter the movement style. This is likely due to the complexity of the
parameters, and that realistic human head and gazing movement cannot easily
be specified using such parameters. In the future, we would like to pursue an
example-based approach to head movements and gazing.

2.9 Breathing

Breathing is controlled my retiming and looping a breathing animation cycle
that functions on a set of joints that model the chest and abdomen of the virtual
character. Although more complex physical models exist [11], such effects can be
simulated kinematically since the effects are often hidden underneath clothing.
The breathing controller can also activate certain facial animations, such as the
flaring of nostrils and the opening of the mouth.

2.10 BML Realizer

The system uses the Behavioral Markup Language (BML) [5] as an interface
for controlling and synchronization speech, gesturing and other aspects of con-
versational modeling. Since the Vienna Draft of BML was originally designed
for conversational agents, it heavily emphasizes such behaviors, with little or
no support for aspects of character animation such as locomotion, reaching and
so forth. Thus, our system enhances the BML with a number of extensions to
support this functionality.

2.11 Non-Verbal Behavior

Designing a character animation system requires the development of a number
of different capabilities for a virtual character. However, the decision to use those



Building a Character Animation System 11

capabilities much be left to the simulation designer, game designer, or agent (AI)
developer. For example, deciding to walk towards a particular object resides in
the domain of the agent, whereas navigating around obstacles should clearly
be part of the motion engine. Some character capabilities fall in between the
clearly defined areas of motion and intention. Aspects such as gesturing during
an utterance or head movement to model awareness of the environment are such
examples. They should be configurable by a designer, but represent unconscious,
natural or repetitive behavior that lies close to the motion-level behavior.

Our solution to this problem is to employ a separate component that handles
non-verbal behavior such as gesturing, head nodding, idle gaze behavior and
facial expression, based on [6]. This component enhances or changes instructions
from the agent before sending them to the motion engine. Thus, a complex
motion that engages many different behaviors at once, such as head nodding
while blinking, speaking and emoting, can be hidden from the agent designer.
This intermediate component will extract syntactical and semantic information
from an utterance, and add additional gestures, head nods, or blinks to the
motion instruction. In addition, this component can trigger idle behaviors, such
as consulting a saliency map that dictates an attention model to allow natural
idle behavior during lull periods of a simulation.

3 Conclusion

One of the goals of our research is to locate, implement and improve techniques
that can produce high quality animation. To that end, we have experimented
with example-based techniques for both locomotion and reaching that yield high-
quality results. We intend to replace other aspects of our system, such as head
nods, shakes and gazing with a similar example-based approach. The tradeoff
for achieving this level of quality comes at the expense of generating a large
number of example motions for differing scenarios, which can be both slow and
expensive, and remains an obstacle to development.
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