

Building a Life-Size Automultiscopic Display Using Consumer Hardware Andrew Jones, Jonas Unger*, Koki Nagano, Jay Busch, Xueming Yu, Hsuan-Yueh Peng, Oleg Alexander, Paul Debevec

USC Institute for Creative Technologies
*Linköping University

Automutiscopic

How do we capture, render, display automultiscopic content?

Anisotropic screen

$1^{\text {st }}$ prototype
Focus on face
$2^{\text {nd }}$ prototype
Full-size bodies

custom vertex shader

Image-based Light Fields custom pixel shader

Bandwidth

$1920 \times 1080 \times 60 \mathrm{fps} \times 360^{\circ} \times 24$ bit $=134 \mathrm{~GB} / \mathrm{sec}$

Large number of output streams
 Data transfer to GPU

Our Approach

- Distribute rendering across multiple GPUs and computers
- Scalable, additional projectors increases field of view

Takanori Okoshi, Three-Dimensional Imaging Techniques, Academic Press 1976 Fig. 5.5(b), "projection-type three-dimensional display", p. 131

Anisotropic Projector Arrays

Projector Array

- 72 TI DLP Pico
- 480×320 Resolution
- Mini HDMI input
- 1.66° Angular Resolution
- 110° Field of View

Anisotropic Screen

- 40 lines per inch Lenticular screen from Microlens Inc.
- 1° horizontal x 60° vertical diffuser from Luminit Co.

Graphics Cards

AMD Radeon 7870 graphics cards,
4×6 Mini DisplayPort outputs = total 24 outputs
DisplayFusion (nView, Ultramon)

Video Splitters

24 Matrox TripleHeadToGo video splitters

- 1 DisplayPort input, 3 DisplayPort outputs each

DisplayPort 1.2

- Multi-Stream Transport (MST)
- Appear as separate displays
- Each display can have different resolution/refresh rate etc
- Each graphics card still has upper bound for total number of streams

Multiple-center of projection

Every pixel rendered from different viewpoint

Vertex projection

- For each vertex, find corresponding viewer
- Project back onto screen from view point

Vertex projection possible
 projection viewers

current projector
screen

Multiple viewers

- Sum of weighted Gaussians
- Can revert back to default height and distance
- Falloff distance \approx width of shoulders

Anisotropic Projector Arrays

Jones et al. "Interpolating Vertical Parallax for an Autostereoscopic 3D Projector Array". SPIE Stereoscopic Displays and Applications 2014

Vivitek Qumi projectors

- 1280×800 pixels
- LED light source
- 300 Lumens
- Low power, small size
- ~\$300 each

The Anisotropic Screen 1° horizontal $\times 60^{\circ}$ vertical diffuser from Luminit Co

The Anisotropic Screen

 Light from each projector is scattered as a vertical stripe
The Anisotropic Screen

Light from each projector is scattered as a vertical stripe

The Anisotropic

 ScreenEach view is composed of multiple projector stripes

The Anisotropic Screen

Each view is composed of multiple projector stripes

Light Field Sampling

0.625 degrees between projectors

Light Field Sampling

1.75 degrees between eyes at 2 meters

Light Field Sampling

6 degrees between cameras

View Interpolation

Camera 1
Camera 2

Virtual View

View Interpolation

LINEAR BLENDING -

Geometry Reconstruction

- Visual hulls, stereo reconstruction
- Relatively slow
- AGlsoft - 40 minutes per frame with 30 cameras

Image-Based Visual Hulls
Matusik et al., SIGGRAPH '00

Free-viewpoint Video of Humans Carranza et al., SIGGRAPH '03

M. Werlberger, T. Pock, and H. Bischof: Motion Estimation with Non-Local Total Variation Regularization, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, June 2010.

View Interpolation

Camera 1
Camera 2

Virtual View

View Interpolation

Camera 1
Camera 2

Virtual View

;

VIEW INTERPOLATION USING OPTICAL FLOW

VIEW INTERPOLATION ON DISPLAY

Video Decoding

- 11 source videos, 20 optical flow videos per GPU
- CPU decoding FFMPEG (multi-core)
- GPU MPEG video decoding (NVCUVID)

Distributed rendering

Windows 7 Default:

 commands sent to most single GPU and blitted acrossCurrent solution: New instance of application per GPU
Next step: OS/Vendor specfic extensions to assign resources to GPUs (ie WGL_NV_gpu_affinity)

Shalini Venkataraman, "Programming Multi-GPUs for Scalable Rendering" GTC 2012

Ongoing Work

- Incorporate natural language processing / artificial intelligence
- Extend up to 30+ hours of interview

Arstein et al. "Time-Offset Interaction with a Holocaust Survivor",
Proceedings of International Conference On Intelligent User Interfaces (IUI), 2014

Conclusions

- Simple techniques for rendering geometry and light fields for automultiscopic displays
- Limited by GPU bandwidth
- Need new tools to exploit redundancy, and distribute resources across views

Questions

Thanks to CNN, Morgan Spurlock, Inside Man Productions, Shoah Foundation, Pinchas Gutter, Julia Campbell, Bill Swartout, Randall Hill, Randolph Hall, U.S. Air Force DURIP, and U.S. Army RDECOM

http://gl.ict.usc.edu/

GPU IEAHOLOOT

