
CaveSL: A Large Format Scalable Multi-display System for 
Social and Scientific Visualization in Second Life 

Kip Haynes*  Eric Chance 
USC’s Institute for Creative Technologies 

 The above described approach provides a well synchro-
nized multi-viewer environment using direct communica-
tion between the clients. However, Second Life consists of 
multiple regions or “sims,” which are sections of land that 
are often controlled by different servers. Initial tests re-
vealed that when the leader crosses a sim boundary, the 
followers remain mapped to the original sim coordinates 
and show the camera positions in the old sim. This is be-
cause the local coordinates of each region or sim in Second 
Life conforms to a square grid of 0 – 255 meters. This 
required a customized message on the native SL scripting 
side, enabling the follower avatars to subtly follow the 
leader around the environment and into the next sim. 
Crossing sim boundaries (switching from one simulation 
server to another) is an elusive and undocumented process 
in SL. To solve this problem, we created a vehicle object 
that the follower avatars could sit on and ride in order to 
follow the leader’s camera around. In order to achieve a 
proper sim crossing, the movement of the leader is always 
cached and used as a trajectory for the follower vehicle to 
be able to cross the sim. In most cases this works well, but 
if the leader zigzags back and forth across a boundary, the 
follower can miscalculate the trajectory. We are currently 
exploring better ways of reporting the current sim to the 
follower nodes. 
  
4.   Limitations 
  
Currently, the system is specifically designed for a large, 
three-screen VR theater and only supports vertical rotation 
of the follower cameras. However, it would be very simple 
to add additional rotations for additional display environ-
ments. Also, due to the rapid prototype of this project, the 
user currently has limited control of some of the native 
Second Life camera functions. This will be made available 
in a future release. 
  

References 
  

[BLZ04] BERGER F., LINDINGER C., ZIEGLER W.: VRizer - 
Using Arbitrary OpenGL Software in the CAVE or other 
Virtual Environments. IEEE Virtual Reality, Workshop 
Proceedings (July 2004)  

  

[Bor08] BOURKE P.D.:Evaluating Second Life as a tool 
for collaborative scientific visualisation. Computer 
Games and Allied Technology (April, 2008) 

   

[HFA*02] HUMPHREYS G., HOUSTON M., FRANK R., 
AHERN R., KIRCHNER S., KLOSOWSKI J.: Chromium: A 
Stream Processing Framework for interactive Rendering 
on Clusters. ACM Transaction on Graphics (SIGGRAPH 
2002 Proceedings) 21,3 (2002) pp. 693-702  

   

1. Introduction 
  
As virtual worlds have become more popular for education 
and socialization, many researchers have begun to utilize 
virtual worlds like Second Life as a novel method for 
viewing scientific data [Bor08]. However, the typical 
means of accessing SL is through a single computer 
screen, which lessens the immersion that is inherent in 
such a rich 3D world. Because of this, the SL virtual world 
is a good candidate for adaptation to large scale immersive 
displays such as a CAVE and other multi projector sys-
tems. CaveSL is a freely available modified SL Viewer we 
developed that allows researchers to utilize large format 
multi-display systems for social and scientific visualiza-
tion. 
  
The goal of CaveSL is to provide a solution that would 
utilize direct communication between SL viewers and have 
minimal dependence on 3rd party libraries or interfere with 
the OpenGL rendering pipeline While there are a few on-
going efforts to adapt SL to a stereoscopic display, there 
are no freely available native adaptations to a CAVE-like 
or other multi-screen environment at the time of this writ-
ing. There are several methods to distribute OpenGL based 
applications onto multiple computers and displays such as 
Chromium, [HFA*02] or VRizer [BLZ04]. However, most 
of these streaming applications either require changes to 
the rendering code or are no longer available or supported. 
  

2.  Approach 
  

Our implementation uses multiple concurrent SL network 
logins across an unlimited number of machines. A client-
server relationship exists between the user’s SL viewer 
client (leader) and the other networked viewers 
(followers). Inside the open source SL viewer, each viewer 
synchronizes whenever updateCamera() is called. Simulta-
neously the leader broadcasts the position, rotation and 
focus of the camera via the message passing interface 
(MPI). 
  

3.   Data and Display Synchronization 
  

The “follower” renderers receive the position of the leader 
camera and synchronization signal.  Each follower reads 
its assigned rotation from a local config file and performs 
the proper translation and rotation. A customized 2D rota-
tion was written to handle the translation and rotation of 
the camera about the X axis.  Some simple real time con-
figuration tools have been added to assist in achieving the 
proper orientation and alignment. Additionally, each node 
reads its own FOV (field of view) info from a local config, 
because the Second Life FOV adjustment is difficult to set 
with any accuracy (slider bar). 

*e-mail: haynes@ict.usc.edu 


