

To appear in Proceedings of the 10th International Conference on Cognitive Modeling, 2010. 1

 Combining Procedural and Declarative Knowledge in a Graphical Architecture

Paul S. Rosenbloom (Rosenbloom@USC.Edu)
Department of Computer Science and Institute for Creative Technologies, 13274 Fiji Way

Marina del Rey, CA 90292 USA

Abstract

A prototypical cognitive architecture defines a memory
architecture embodying forms of both procedural and
declarative memory, plus their interaction. Reengineering
such a dual architecture on a common foundation of graphical
models enables a better understanding of both the substantial
commonalities between procedural and declarative memory
and the subtle differences that endow each with its own
special character. It also opens the way towards blended
capabilities that go beyond existing architectural memories.

Keywords:

Cognitive architecture; memory; graphical models;
procedural; declarative; semantic; episodic; rules; constraints.

The distinction between procedural and declarative
knowledge plays a central role in many cognitive
architectures. ACT-R has long embodied distinct rule-based
procedural and fact-based declarative long-term memories
(Anderson, 1993). Early work with Soar instead leveraged a
single rule-based long-term memory to support both
procedural and declarative knowledge, with rules directly
encoding procedures while also providing access paths to
facts stored in their actions (Rosenbloom, Newell & Laird,
1991). Yet, Soar 9 has now followed ACT-R’s lead, and in
fact gone beyond it with distinct declarative memories for
semantic and episodic knowledge (Laird, 2008). CLARION
embodies the distinction in two different manners (Sun,
2006). It has a procedural Action Control System for
controlling action and a declarative Non-Action Control
System for general knowledge, but it also has a crosscutting
distinction between explicit and implicit knowledge that
applies to both of these modules and the whole architecture.

As part of an effort to investigate whether the potential of
graphical models (Koller & Friedman, 2009) to unify signal,
probability and symbol processing will enable development
of simpler yet broader architectures than are seen today
(Rosenbloom, 2009a), a new memory architecture with both
procedural and declarative memories – but as yet without
learning – has been implemented via a common graphical
substrate. Guided by the functionality embodied in ACT-
R’s and Soar 9’s long-term memories, the hopes for this
implementation were to (1) achieve a straightforward
mapping of these disparate memories onto the substrate,
resulting in (2) a simpler and more uniform memory
architecture, (3) embodying a blended functionality that can
(4) exceed existing memory capabilities. The goal was not
to model specific results from human memory research, but
to understand the implications of graphical implementation
and unification on such memory architectures.

Results to date have yielded a new blended memory
architecture that is of interest for both the commonality
among these memories that it leverages and the subtle
differences among them that it exposes. The differences get
at some of the most fundamental distinctions between
procedural and declarative knowledge while continuing to
drive research on their further unification. The next three
sections describe the implemented memory architecture
along with the commonalities it leverages; the differences
this architecture reveals between procedural and declarative
memory, as well as, as a bonus, those among different
flavors of declarative memory; and what has been yielded so
far in terms of blended functionality and new capability.
The final section summarizes and looks to the future.

Memory Architecture
ACT-R and Soar 9 each embodies a procedural memory for
rules plus a declarative (semantic) memory for facts. Soar 9
also goes a step further, implementing a second distinct
declarative (episodic) memory for past history. Although
ACT-R does not implement a separate episodic memory,
there is work on how its existing mechanisms can yield
comparable behavior (Sims & Gray, 2004). The focus here
is on uniformly implementing all three of these long-term
memory functionalities – one procedural and two
declarative – via a common graphical substrate.

The memory architecture is built on top of a graph layer
based on factor graphs and the summary product algorithm
(Kschischang, Frey & Loeliger, 2001). Factor graphs are
varieties of graphical models, like Bayesian networks, but
enabling efficient computation with arbitrary multivariate
functions by decomposing them into products of simpler
subfunctions when suitable forms of independence exist;
e.g., F(a,b,c) might decompose to F1(a,b)F2(b,c). The
reduced computation then maps to a bipartite graph in which
there are variable nodes for variables and factor nodes for
subfunctions (Figure 1). A variable node is linked to a factor
node when the former’s variable is used by the latter’s
function. The summary product algorithm passes messages
along these links until quiescence is reached, with each
message providing information about the possible values of
the variable on the link. Each node computes its output
messages by combining its incoming messages, plus its
function if it is a factor node. The result is an inherently
local computational model that can compute global results

Figure 1: Factor graph for F(a,b,c)=F1(a,b)F2(b,c).

To appear in Proceedings of the 10th International Conference on Cognitive Modeling, 2010. 2

across the cycles of message passing leading to quiescence,
and that leverages independence for efficiency. It bears a
relationship to neural networks, but combines additional
breadth in some areas with more constraint in others.

The summary product algorithm is most often used to
compute variable marginals, integrating information from
across the graph to determine which values are legal, and
what weights or probabilities are associated with them.
When computing marginals, the algorithm typically uses
sum for summarization, yielding the sum-product variant.
When it is preferable to compute the maximum a posteriori
(MAP) estimation – that is, the single most likely
combination of values over all of the variables – max is used
instead, yielding max-product. The graph layer here
defaults to marginals (and sum), but can also compute MAP
estimations and employ max when appropriate.

This graph layer is a reimplementation of the one
developed in (Rosenbloom, 2009a) for rule match, with
improvements in functionality, generality, and efficiency.
The biggest change generalizes the representation for factor
functions and messages from N dimensional Boolean arrays
to N dimensional continuous functions (approximated as
piecewise linear functions over rectilinear regions, as in
Figure 2). Instead of just supporting symbol processing,
this representation has the potential to support: continuous
information for perception, imagery, and motor control;
discrete distributions for uncertain information; and symbols
for general reasoning. Starting from the continuous base,
discrete distributions require discretizing variable domains;
for example, breaking up the real line into unit segments,
one per integer. Symbols then arise when the ranges of
discrete variables are restricted to 0/1. A symbol table has
also been added to map between unit segments and arbitrary
symbols, but it is only for ease of programming and has no
effect on the workings of the summary product algorithm.

y\x [0,10> [10,25> [25,50>

[0,5> 0 .2y 0

[5,15> .5x 1 .1+.2x+.4y

Figure 2: Example (2D) piecewise linear function.

To implement the memory architecture, a memory layer

was built on top of the graph layer that reifies a distinction
between long-term and working memory, as in both ACT-R
and Soar 9. Long-term memory structures compile into
subgraphs that both store and access the knowledge.
Working memory compiles into functions in peripheral
factor nodes that remain fixed within a single cycle of
memory access – i.e., within a single settling of the graph –
but can be altered between cycles.

Long-term memory structures are specified at the memory
layer as conditionals, generalized rules combining patterns

and a function. Each pattern has a predicate plus one or
more arguments specifiable as constants or variables; e.g.,
Object(s,O1) is a pattern with predicate Object plus
the variable s (for states) and the constant O1 (an object) as
arguments. A pattern compiles into a linear graph structure
that has a working-memory node at one end, a variable node
at the other (for legal values of the pattern’s variables), and
factors that test pattern constants in between. This fragment
corresponds to part of an alpha network in the Rete match
algorithm, with the variable node acting as an alpha memory
(Forgy, 1982). The big difference though is that in Rete
messages always flow from working memory to the alpha
memory. Here, messages can flow in either or both
directions. As in Rete, the flow is away from working
memory for conditions (Figure 3), but the flow is towards
working memory for actions. Condacts – a neologism for
conditions and actions – are patterns for which the flow is
bidirectional. A single conditional can have any
combination of conditions, actions and condacts.

Patterns are combined into conditionals by a network of
factor nodes that test equality of variable binding across
patterns, plus variable nodes that represent combinations of
variables across patterns. This portion of the factor graph
corresponds to Rete’s beta network, in which partial
instantiations are joined to yield full rule matches.
However, here the beta network connects conditions,
actions, and condacts though bidirectional message flow.

Functions, when included, are defined over condact
variables, and lead to new factor nodes that link with these
variables. Functions can represent probability distributions
over the cross products of the domains of condact variables,
as is typical in many graphical models, but they also can
represent other numeric and Boolean functions.

The conditional in Figure 4 uses a condition, a condact,
and a function to define a prior distribution over the concept
associated with object O1 in the current state. Object O1
can be a walker, a table, a dog or a person, each with its own
prior probability. The variable in square brackets (α1) is a
pattern variable. When multiple patterns, possibly across
multiple conditionals, share a pattern variable, they compile
to the same variable node within the graph. This enables
chaining and local bidirectional communication among

Figure 4: Concept prior over object O1.

CONDITIONAL ConditionPrior
 Condition: Object(s,O1)
 Condact: Concept(O1,c) [α1]
Walker Table Dog Human

.1 .3 .5 .1

Figure 3: Alpha network for condition Object(s,O1).

To appear in Proceedings of the 10th International Conference on Cognitive Modeling, 2010. 3

conditionals within a single cycle of memory access, for,
among other things, correct probabilistic reasoning. The
factor graph for this conditional can be seen in Figure 5.
Messages spread out from all nodes in this graph, following
the directionality of the arrows. The primary constraint on
this computation stems from local factor node functions, but
as messages propagate, these constraints propagate as well.

If a conditional just has conditions and actions, it is a rule,
and can form the basis for a traditional procedural long-term
memory. Figure 6 shows a conditional defining a simple
rule that performs a transitive computation. As with the
earlier graph
layer, match
time per rule
here has a
worst-case
bound that is
exponential in
the treewidth of
the rule rather than the number of conditions.

If a conditional only has condacts, we have symmetric
flow among all of its patterns, and the basis for a declarative
memory. Figure 7 shows a conditional (including part of
the function) for a distribution over the weight of object O1
given its concept. The Concept condact compiles to the
same graph node created for it in conditional
ConditionPrior (Figure 4). The function partitions the
weight (in pounds) into a finite number of classes and
assigns a linear function to each rectangular region defined
by the cross product of the weight class and the concept.

A rule-based procedural memory consists of condition-
action conditionals, such as the one in Figure 6. Given just
this rule, the graph contains 7 factor nodes and 9 variable
nodes. Match requires 47 messages to complete irrespective
of the number of matching elements, since each message
includes information about all matches. However, more
matches may mean more calculation per message, yielding 5
ms elapsed time for one match and 16 ms for two.

A semantic memory implemented along the lines of
Anderson’s (1990) analysis of categorization and feature
prediction includes conditionals for prior probabilities of
concepts – such as the one in Figure 4 (although possibly
without the condition) – and conditional probabilities of
object attributes given concepts, as in Figure 7. By linking
these conditionals through the concept’s pattern variable, an
object’s cued features can yield a posterior distribution over
its concept – based on conditional probabilities of cued

features plus the prior probability of the concept – and this
posterior concept distribution can then combine with the
conditional probabilities of uncued features to generate
probabilistic predictions of their values, all within a single
memory cycle. In the particular example used, in addition
to the continuous weight feature, there is one discrete
numeric feature (legs) plus three symbolic features (color,
alive, mobile). The graph comprises 47 factor nodes and 47
variable nodes. Given the cue that the color is silver,
quiescence is reached after 634 messages, requiring 100 ms.
It predicts that the concept is walker because almost all
walkers are silver while only a small fraction of dogs and
tables are. It also predicts that the cued object is mobile, not
alive, has four legs and weighs 10 pounds.

In Soar 9, episodic memory retrieves the most recent
episode that best matches the cue, effectively acting as a
temporal instance-based semantic memory. This can be
implemented much like semantic memory, but with
alterations for recency and for retrieving the single best
episode given a cue rather than predicting the most likely
features given the cue. For recency, a discrete temporal
variable replaces the concept variable, with a prior
distribution that tails off exponentially into the past (Figure
8). To retrieve the single best episode, each feature
conditional specifies the conditional probability of its values
over the past history, and shares the Time condact with the
temporal prior (Figure 9). The implemented example uses
the same features as the semantic memory, but stores an
object instance at each time step. The graph has 46 factor
nodes and 46 variable nodes. Given the cue that the concept
is human, it takes 433 messages, over 35 ms, to select the
more recent of the two humans seen (at time step 3).

The straightforward implementation of these three
varieties of long-term memory via the memory layer goes a
long way towards realizing the first hope stated up front. In

Figure 5: Factor graph for conditional in Figure 4, with a condition (Object), a condact (Concept), and a function.

Figure 6: Transitive rule.

CONDITIONAL Transitive
 Condition: Next(a,b)
 Next(b,c)
 Action: Next(a,c)

CONDITIONAL ConceptWeight
 Condact: Concept(O1,c)[α1]
 Weight(O1,w)[α2]

w\c Walker Table …
[1,10> .01w .001w …
[10,20> .2-.01w “ …
[20,50> 0 .025-

.00025w
…

[50,100> “ “ …

Figure 7: Conditional probability of weight given concept.

To appear in Proceedings of the 10th International Conference on Cognitive Modeling, 2010. 4

comparison to the earlier implementation of just a rule-
based procedural memory, there is additional complexity
here in extending rules to conditionals, and in moving from
symbolic to continuous values, but then very little more is
needed to implement these particular variants of procedural,
semantic and episodic memories. With respect to the
second hope’s appeal to simplicity and uniformity, there is
indeed much in common across the implementations of
these three memories: they all build on the distinction
between working memory and long-term memory; long-
term memory is uniformly represented as conditionals that
compile into factor graphs, while working memory is
encoded as evidence in peripheral factor nodes; and memory
access is cued by working memory through the application
of the summary product algorithm to the resulting graph.

One difference of note between this implementation and
Soar 9 arises from Soar’s ability to perform multiple cycles
of procedural (rule) access within a single decision cycle,
but only one cycle of declarative (semantic or episodic)
access. The memory architecture here is instead limited to
just one cycle of memory access per decision cycle for both
declarative and procedural knowledge. In (Rosenbloom,
2009b), early experiments with graphical models led to the
hypothesis that global computation in Soar should only
happen over a full decision cycle rather than once per rule
cycle, and that Soar was thus inconsistent in allowing global
access to working memory each rule cycle. The current
implementation abides by this constraint; however, using
pattern variables still allows chaining of rules within a
decision cycle, but now based on local communication
between actions of earlier rules and conditions of later ones.

Differences
The most obvious difference between the implementations
of procedural and declarative memory is the use of
conditions and actions in procedural memory versus

condacts in declarative memory. At the graph level this
reduces simply to the directionality of information flow in
the alpha networks, but it does yield a qualitative difference
at the memory level. With unidirectional information flow,
rules predefine what are to be the cues for retrieval
(conditions) and what is to be retrieved (actions). This is
particularly effective for procedures as it enables directional
if-then programming. In contrast, with bidirectional
information flow, both varieties of declarative memory
dynamically determine at access time what aspects of an
object are cues and therefore what aspects are to be
retrieved (i.e., those aspects not cued). This significantly
enhances the flexibility of access, but eliminates the
directionality that is exploited in procedural programming.

A more subtle difference is whether a closed world or
open world assumption occurs with respect to working
memory. Rule-based systems use the former, assuming that
anything not in working memory is false. The use of
negated conditions depends on this assumption, as does the
ability to keep working memory small and focused. On the
other hand, declarative memories – and most logical and
probabilistic models – use an open world assumption, that
the truth of anything not explicitly in evidence is unknown.
This enables values that are unknown prior to memory
access to be retrieved/predicted by condacts during such
access. With a closed-world assumption, this becomes
impossible because any values not explicitly true prior to
access would be set to false, leading to a conflict with any
attempt to make a positive predication during access. Rules
avoid this problem because their retrievals/predictions occur
non-monotonically at the end of the access cycle, by actions
that don’t examine working memory during the cycle.

This difference is realized in the graph layer by declaring
individual predicates to be closed or open world when they
are defined; an idea adopted, along with the use of
predicates, from earlier experiments with Markov logic
(Domingos & Lowd, 2009) as a general implementation
level for architectures (Rosenbloom, 2009b). Closed-world
predicates are primarily used in conditions and actions and
open-world predicates in condacts.

A third difference concerns whether memory access
retrieves all cued results or only the best result. In Soar 9’s
rule-based procedural memory, all combinations of bindings
of condition variables to working memory constants yield
rule instantiations that fire in parallel. In contrast, cuing of
either semantic or episodic memory should return only the
best result. At the graph layer, this difference is interpreted
in terms of distinct types of variable domains. When only
the best result is desired, the variable’s domain is declared
unique, and messages about it are normalized to sum to 1.
This yields a distribution over the variable’s domain
elements for the probabilities that they are to be retrieved.
When all results are to be returned, the variable domain is
declared to be multiple, and its messages are not normalized.
In such cases, each domain element acts roughly as its own
Boolean variable, with a value of 1 if it is to be retrieved
and 0 otherwise; thus encoding all bindings of the variable

CONDITIONAL TimePrior
 Condact: Time(t) [α3]

0 1 2 3 4
0 .032 .087 .237 .644

Figure 8: Exponentially decaying, discrete, temporal prior.

CONDITIONAL TimeConcept
 Condact: Time(t) [α3]
 Concept(O1,c)

t\c Walker Table Dog Human
1 1 0 0 0
2 0 0 0 1
3 0 0 0 1
4 0 0 1 0

Figure 9: Conditional probability of concept given time.

To appear in Proceedings of the 10th International Conference on Cognitive Modeling, 2010. 5

in each message. The summary product implementation
then uses max to summarize over multiple variables, even
when marginalizing, bounding the result above by 1.

These three differences – (1) the directionality of
information flow in alpha networks, (2) a closed-world
versus open-world assumption, and (3) unique versus
multiple variables – jointly distinguish procedural from
declarative memories in this implementation. Of these, the
first appears to be the most fundamental, to the point where
it justifies an explicit hypothesis that such a difference will
always be found in comparing procedural and declarative
memories. The other two are less clear. It may be possible,
for example, to build an effective procedural memory based
on an open-world assumption. If so, the second difference
would not then be essential. Likewise, if an effective
procedural memory can be based on returning only the best
result – more like how rules work in ACT-R than in Soar 9
– the third difference may not be essential.

In addition to the differences just identified between
procedural and declarative memory, three differences of
note also showed up between the two implemented flavors
of declarative memory: semantic and episodic. First,
semantic memory searches for the most likely value for each
attribute of an object individually – by marginalizing via
sum-product – while episodic memory instead computes
MAP estimation via max-product to retrieve the most
appropriate single episode (where all of an episode’s
attributes jointly contribute to determining its
appropriateness). Second, the probabilities of features in
semantic memory are conditional on the concept while in
episodic memory they are conditional on the time. Third,
semantic memory is based on a general probabilistic
representation of the values of attributes (see Figure 7),
while episodic memory is based on the history of specific
instances actually experienced (see Figure 9).

As with the differences between procedural and
declarative memory, the first difference here appears to be
fundamental, at least given this form of semantic memory.
The other two differences appear less fundamental. It is
possible, for example, to implement an instance-based
semantic memory where the concept is just another feature.
Sum-product can then dynamically compute more general
feature distributions by summarizing over these instances.
Interestingly, when max-product is used instead, the
individual object that best matches the cues is retrieved,
yielding something more like the semantic memory
implemented in Soar 9. One intriguing implication is that
the causative difference between generalization and
analogy/CBR/nearest-neighbor may reduce to whether sum-
product or max-product is used over an instance-based
memory. The former generalizes over all instances, while
the latter retrieves the single best instance.

Blended Functionality and New Capabilities
Beyond the three memories implemented above, the
flexibility of the conditional representation enables blending
of functionality across these memories (hope three) plus

new capabilities beyond them (hope four). Blending arises
from the flexibility with which conditions, actions, condacts
and functions can combine within individual conditionals,
plus the flexibility with which multiple conditionals can
interact within long-term memory.

Conditionals by themselves enable combining procedural
and declarative functionality within individual memory
units. Semantic memory provides a good example. In
addition to condacts and a function, each conditional can
also include a condition that matches multiple objects in
working memory. The prior is then represented by a
conditional similar to the one in Figure 4, but with the
constant O1 replaced by a variable. The individual feature
conditionals then resemble Figure 7, but with the condition
added and the variable substituted (Figure 10). Like Soar 9,
there is still a limit of one cycle of semantic memory
retrieval per cycle of memory access – if quiescence of
message passing in summary product is mapped onto
quiescence of rule firing in Soar 9 – but unlike Soar 9,
features of many objects can be predicted in parallel within
this single cycle of memory access.

Other forms of within-conditional blends are also
possible, such as combining conditions, actions and
functions to yield weighted rules. Beyond this, to blend
functionality across conditionals requires communication
across conditionals that nominally belong to different
memories, either via pattern variables within a single cycle
of memory access or through working memory across
cycles. The rule in Figure 11, for example, uses pattern
variables to access the results of Figure 7’s semantic
retrieval, and generates a new ConceptWeight predicate.
This also exploits within-conditional blending, but here in
service of across-memory interaction.

Further work will be required to fully understand the
range of capabilities this memory architecture might yield,
and what the implications might then be for cognitive
modeling. But at least one major new memory capability –
for constraints – has already become apparent. Constraints
are structures that specify restrictions on values assigned to
variables (Dechter, 2003). Given a set of variables with

CONDITIONAL ConceptWeightRule
 Condition: Object(s,o)[α4]
 Condact: Concept(o,c)[α5]
 Weight(o,w)[α6]
 Action: ConceptWeight(c,w)

Figure 11: Accessing semantic memory results in a rule.

CONDITIONAL ConceptWeightGeneral
 Condition: Object(s,o)[α4]
 Condact: Concept(o,c)[α5]
 Weight(o,w)[α6]

Figure 10: Conditional distribution for semantic memory
with condition to match objects (shown without function).

To appear in Proceedings of the 10th International Conference on Cognitive Modeling, 2010. 6

well-defined domains, and a set of constraints over these
variables, constraint satisfaction determines which
combinations of domain values are consistent with the
constraints. Constraints are like rules in yielding all
combinations of variable bindings, but like declarative
memory in their flexibility of access, and thus in their use of
condacts and an open world assumption. Figure 12 shows a
constraint for the two-color problem, implemented via
condacts and a Boolean function. The pattern variables for
the two regions are shared with other constraints over those
regions to enable appropriate propagation over the whole
network during message passing. Although not a common
form of long-term memory in cognitive architectures, except
in neural systems based on “soft” constraints (Ackley,
Sejnowski & Hinton, 1985), constraints do play a significant
role in a variety of AI systems and languages.

Summary
Basing a memory architecture on the uniform breadth of
graphical models has enabled straightforward construction
of four distinct memories: a rule-based procedural memory,
semantic and episodic declarative memories, and a
constraint memory that is functionally a hybrid between the
two. These implementations reveal significant commonality
among these memories, but also subtle differences. Of the
differences, unidirectional versus bidirectional message
passing appears to be most fundamental when comparing
procedural and declarative memories, while marginalization
versus MAP estimation appears to be most fundamental
when comparing semantic and episodic memory.

Implementing memories in this manner also enables
blending capabilities across memories and creating new
unanticipated kinds of memories, such as a constraint
memory. This general approach holds the promise of
extending beyond memory architecture to full cognitive
architectures with mechanisms for decisions, learning, and
perceptuomotor behavior. The hopes for this larger effort
would be to derive a better understanding of: the diverse
mechanisms involved, including their commonalities and
differences; how they can and should work together; and
how to go beyond the kinds of combinations currently seen
to simpler yet more comprehensive cognitive architectures.

Acknowledgements
This effort has been sponsored by the USC Institute for
Creative Technologies and the U.S. Army Research,

Development, and Engineering Command (RDECOM).
Statements and opinions expressed do not necessarily reflect
the position or the policy of the United States Government,
and no official endorsement should be inferred. I would like
to thank Bill Swartout for help in restructuring this work for
publication.

References
Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. (1985). A

learning algorithm for Boltzmann machines. Cognitive
Science, 9, 147-169.

Anderson, J. R. (1990). The Adaptive Character of
Thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R. (1993). Rules of the Mind. Erlbaum.
Dechter, R. 2003. Constraint Processing. San Francisco,

CA: Morgan Kaufmann.
Domingos, P. & Lowd, D. (2009). Markov Logic: An

Interface Layer for Artificial Intelligence. Morgan &
Claypool.

Forgy, C. L. (1982). Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem. Artificial
Intelligence, 19, 17-37.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA:
MIT Press.

Kschischang, F. R., Frey, B. J. & Loeliger, H. (2001).
Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47, 498-519.

Laird, J. E. (2008). Extending the Soar cognitive
architecture. Artificial General Intelligence 2008:
Proceedings of the First AGI Conference. IOS Press.

Rosenbloom, P. S. (2009a). Towards a new cognitive
hourglass: Uniform implementation of cognitive
architecture via factor graphs. Proceedings of the 9th
International Conference on Cognitive Modeling.

Rosenbloom, P. S. (2009b). A graphical rethinking of the
cognitive inner loop. Proceedings of The IJCAI
International Workshop on Graph Structures for
Knowledge Representation and Reasoning.

Rosenbloom, P. S., Newell, A. & Laird, J. E. (1991).
Towards the knowledge level in Soar: The role of the
architecture in the use of knowledge. In K. VanLehn
(Ed.), Architectures for Intelligence. Hillsdale, NJ:
Erlbaum.

Sims, C. R. & Gray, W. D. (2004). Episodic versus
semantic memory: An exploration of models of memory
decay in the serial attention paradigm. Proceedings of the
6th International Conference on Cognitive Modeling (pp.
279-284).

Sun, R. (2006). The CLARION cognitive architecture:
Extending cognitive modeling to social simulation. In R.
Sun (Ed.), Cognition and Multi-Agent Interaction. New
York, NY: Cambridge University Press.

CONDITIONAL TwoColorConstraint12
 Condact: Color(R1,c1)[α7]
 Color(R2,c2)[α8]

c1\c2 Red Blue
Red 0 1
Blue 1 0

Figure 12: Two-color constraint between regions R1 & R2.

