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Abstract 

A prototypical cognitive architecture defines a memory 
architecture embodying forms of both procedural and 
declarative memory, plus their interaction.  Reengineering 
such a dual architecture on a common foundation of graphical 
models enables a better understanding of both the substantial 
commonalities between procedural and declarative memory 
and the subtle differences that endow each with its own 
special character.  It also opens the way towards blended 
capabilities that go beyond existing architectural memories. 
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The distinction between procedural and declarative 
knowledge plays a central role in many cognitive 
architectures.  ACT-R has long embodied distinct rule-based 
procedural and fact-based declarative long-term memories 
(Anderson, 1993).  Early work with Soar instead leveraged a 
single rule-based long-term memory to support both 
procedural and declarative knowledge, with rules directly 
encoding procedures while also providing access paths to 
facts stored in their actions (Rosenbloom, Newell & Laird, 
1991).  Yet, Soar 9 has now followed ACT-R’s lead, and in 
fact gone beyond it with distinct declarative memories for 
semantic and episodic knowledge (Laird, 2008). CLARION 
embodies the distinction in two different manners (Sun, 
2006). It has a procedural Action Control System for 
controlling action and a declarative Non-Action Control 
System for general knowledge, but it also has a crosscutting 
distinction between explicit and implicit knowledge that 
applies to both of these modules and the whole architecture. 

As part of an effort to investigate whether the potential of 
graphical models (Koller & Friedman, 2009) to unify signal, 
probability and symbol processing will enable development 
of simpler yet broader architectures than are seen today 
(Rosenbloom, 2009a), a new memory architecture with both 
procedural and declarative memories – but as yet without 
learning – has been implemented via a common graphical 
substrate.  Guided by the functionality embodied in ACT-
R’s and Soar 9’s long-term memories, the hopes for this 
implementation were to (1) achieve a straightforward 
mapping of these disparate memories onto the substrate, 
resulting in (2) a simpler and more uniform memory 
architecture, (3) embodying a blended functionality that can 
(4) exceed existing memory capabilities.  The goal was not 
to model specific results from human memory research, but 
to understand the implications of graphical implementation 
and unification on such memory architectures. 

Results to date have yielded a new blended memory 
architecture that is of interest for both the commonality 
among these memories that it leverages and the subtle 
differences among them that it exposes.  The differences get 
at some of the most fundamental distinctions between 
procedural and declarative knowledge while continuing to 
drive research on their further unification.  The next three 
sections describe the implemented memory architecture 
along with the commonalities it leverages; the differences 
this architecture reveals between procedural and declarative 
memory, as well as, as a bonus, those among different 
flavors of declarative memory; and what has been yielded so 
far in terms of blended functionality and new capability.  
The final section summarizes and looks to the future. 

Memory Architecture 
ACT-R and Soar 9 each embodies a procedural memory for 
rules plus a declarative (semantic) memory for facts.  Soar 9 
also goes a step further, implementing a second distinct 
declarative (episodic) memory for past history. Although 
ACT-R does not implement a separate episodic memory, 
there is work on how its existing mechanisms can yield 
comparable behavior (Sims & Gray, 2004).  The focus here 
is on uniformly implementing all three of these long-term 
memory functionalities – one procedural and two 
declarative – via a common graphical substrate. 

The memory architecture is built on top of a graph layer 
based on factor graphs and the summary product algorithm 
(Kschischang, Frey & Loeliger, 2001).  Factor graphs are 
varieties of graphical models, like Bayesian networks, but 
enabling efficient computation with arbitrary multivariate 
functions by decomposing them into products of simpler 
subfunctions when suitable forms of independence exist; 
e.g., F(a,b,c) might decompose to F1(a,b)F2(b,c).  The 
reduced computation then maps to a bipartite graph in which 
there are variable nodes for variables and factor nodes for 
subfunctions (Figure 1). A variable node is linked to a factor 
node when the former’s variable is used by the latter’s 
function.  The summary product algorithm passes messages 
along these links until quiescence is reached, with each 
message providing information about the possible values of 
the variable on the link.  Each node computes its output 
messages by combining its incoming messages, plus its 
function if it is a factor node.  The result is an inherently 
local computational model that can compute global results 

Figure 1: Factor graph for F(a,b,c)=F1(a,b)F2(b,c). 
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across the cycles of message passing leading to quiescence, 
and that leverages independence for efficiency.  It bears a 
relationship to neural networks, but combines additional 
breadth in some areas with more constraint in others. 

The summary product algorithm is most often used to 
compute variable marginals, integrating information from 
across the graph to determine which values are legal, and 
what weights or probabilities are associated with them. 
When computing marginals, the algorithm typically uses 
sum for summarization, yielding the sum-product variant.  
When it is preferable to compute the maximum a posteriori 
(MAP) estimation – that is, the single most likely 
combination of values over all of the variables – max is used 
instead, yielding max-product.  The graph layer here 
defaults to marginals (and sum), but can also compute MAP 
estimations and employ max when appropriate. 

This graph layer is a reimplementation of the one 
developed in (Rosenbloom, 2009a) for rule match, with 
improvements in functionality, generality, and efficiency.  
The biggest change generalizes the representation for factor 
functions and messages from N dimensional Boolean arrays 
to N dimensional continuous functions (approximated as 
piecewise linear functions over rectilinear regions, as in 
Figure 2).  Instead of just supporting symbol processing, 
this representation has the potential to support: continuous 
information for perception, imagery, and motor control; 
discrete distributions for uncertain information; and symbols 
for general reasoning. Starting from the continuous base, 
discrete distributions require discretizing variable domains; 
for example, breaking up the real line into unit segments, 
one per integer.  Symbols then arise when the ranges of 
discrete variables are restricted to 0/1.  A symbol table has 
also been added to map between unit segments and arbitrary 
symbols, but it is only for ease of programming and has no 
effect on the workings of the summary product algorithm. 

 
y\x [0,10> [10,25> [25,50> 

[0,5> 0 .2y 0 

[5,15> .5x 1 .1+.2x+.4y 

 
Figure 2: Example (2D) piecewise linear function. 

 
To implement the memory architecture, a memory layer 

was built on top of the graph layer that reifies a distinction 
between long-term and working memory, as in both ACT-R 
and Soar 9.  Long-term memory structures compile into 
subgraphs that both store and access the knowledge.   
Working memory compiles into functions in peripheral 
factor nodes that remain fixed within a single cycle of 
memory access – i.e., within a single settling of the graph – 
but can be altered between cycles. 

Long-term memory structures are specified at the memory 
layer as conditionals, generalized rules combining patterns 

and a function. Each pattern has a predicate plus one or 
more arguments specifiable as constants or variables; e.g., 
Object(s,O1) is a pattern with predicate Object plus 
the variable s (for states) and the constant O1 (an object) as 
arguments.  A pattern compiles into a linear graph structure 
that has a working-memory node at one end, a variable node 
at the other (for legal values of the pattern’s variables), and 
factors that test pattern constants in between.  This fragment 
corresponds to part of an alpha network in the Rete match 
algorithm, with the variable node acting as an alpha memory 
(Forgy, 1982).  The big difference though is that in Rete 
messages always flow from working memory to the alpha 
memory.  Here, messages can flow in either or both 
directions.  As in Rete, the flow is away from working 
memory for conditions (Figure 3), but the flow is towards 
working memory for actions.  Condacts – a neologism for 
conditions and actions – are patterns for which the flow is 
bidirectional. A single conditional can have any 
combination of conditions, actions and condacts. 

Patterns are combined into conditionals by a network of 
factor nodes that test equality of variable binding across 
patterns, plus variable nodes that represent combinations of 
variables across patterns.  This portion of the factor graph 
corresponds to Rete’s beta network, in which partial 
instantiations are joined to yield full rule matches.  
However, here the beta network connects conditions, 
actions, and condacts though bidirectional message flow. 

Functions, when included, are defined over condact 
variables, and lead to new factor nodes that link with these 
variables. Functions can represent probability distributions 
over the cross products of the domains of condact variables, 
as is typical in many graphical models, but they also can 
represent other numeric and Boolean functions. 

The conditional in Figure 4 uses a condition, a condact, 
and a function to define a prior distribution over the concept 
associated with object O1 in the current state.  Object O1 
can be a walker, a table, a dog or a person, each with its own 
prior probability.  The variable in square brackets (α1) is a 
pattern variable.  When multiple patterns, possibly across 
multiple conditionals, share a pattern variable, they compile 
to the same variable node within the graph.  This enables 
chaining and local bidirectional communication among 

Figure 4: Concept prior over object O1. 

CONDITIONAL ConditionPrior 
   Condition: Object(s,O1) 
   Condact: Concept(O1,c) [α1] 
Walker Table Dog Human 

.1 .3 .5 .1 
 

Figure 3: Alpha network for condition Object(s,O1).   
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conditionals within a single cycle of memory access, for, 
among other things, correct probabilistic reasoning.  The 
factor graph for this conditional can be seen in Figure 5. 
Messages spread out from all nodes in this graph, following 
the directionality of the arrows.  The primary constraint on 
this computation stems from local factor node functions, but 
as messages propagate, these constraints propagate as well. 

If a conditional just has conditions and actions, it is a rule, 
and can form the basis for a traditional procedural long-term 
memory.  Figure 6 shows a conditional defining a simple 
rule that performs a transitive computation.  As with the 
earlier graph 
layer, match 
time per rule 
here has a 
worst-case 
bound that is 
exponential in 
the treewidth of 
the rule rather than the number of conditions.  

If a conditional only has condacts, we have symmetric 
flow among all of its patterns, and the basis for a declarative 
memory.  Figure 7 shows a conditional (including part of 
the function) for a distribution over the weight of object O1 
given its concept.  The Concept condact compiles to the 
same graph node created for it in conditional 
ConditionPrior (Figure 4).  The function partitions the 
weight (in pounds) into a finite number of classes and 
assigns a linear function to each rectangular region defined 
by the cross product of the weight class and the concept.   

A rule-based procedural memory consists of condition-
action conditionals, such as the one in Figure 6. Given just 
this rule, the graph contains 7 factor nodes and 9 variable 
nodes.  Match requires 47 messages to complete irrespective 
of the number of matching elements, since each message 
includes information about all matches.  However, more 
matches may mean more calculation per message, yielding 5 
ms elapsed time for one match and 16 ms for two. 

A semantic memory implemented along the lines of 
Anderson’s (1990) analysis of categorization and feature 
prediction includes conditionals for prior probabilities of 
concepts – such as the one in Figure 4 (although possibly 
without the condition) – and conditional probabilities of 
object attributes given concepts, as in Figure 7.  By linking 
these conditionals through the concept’s pattern variable, an 
object’s cued features can yield a posterior distribution over 
its concept – based on conditional probabilities of cued 

features plus the prior probability of the concept – and this 
posterior concept distribution can then combine with the 
conditional probabilities of uncued features to generate 
probabilistic predictions of their values, all within a single 
memory cycle.  In the particular example used, in addition 
to the continuous weight feature, there is one discrete 
numeric feature (legs) plus three symbolic features (color, 
alive, mobile).  The graph comprises 47 factor nodes and 47 
variable nodes.  Given the cue that the color is silver, 
quiescence is reached after 634 messages, requiring 100 ms.  
It predicts that the concept is walker because almost all 
walkers are silver while only a small fraction of dogs and 
tables are.  It also predicts that the cued object is mobile, not 
alive, has four legs and weighs 10 pounds. 

In Soar 9, episodic memory retrieves the most recent 
episode that best matches the cue, effectively acting as a 
temporal instance-based semantic memory.  This can be 
implemented much like semantic memory, but with 
alterations for recency and for retrieving the single best 
episode given a cue rather than predicting the most likely 
features given the cue.  For recency, a discrete temporal 
variable replaces the concept variable, with a prior 
distribution that tails off exponentially into the past (Figure 
8).  To retrieve the single best episode, each feature 
conditional specifies the conditional probability of its values 
over the past history, and shares the Time condact with the 
temporal prior (Figure 9).  The implemented example uses 
the same features as the semantic memory, but stores an 
object instance at each time step.  The graph has 46 factor 
nodes and 46 variable nodes.  Given the cue that the concept 
is human, it takes 433 messages, over 35 ms, to select the 
more recent of the two humans seen (at time step 3). 

The straightforward implementation of these three 
varieties of long-term memory via the memory layer goes a 
long way towards realizing the first hope stated up front.  In 

Figure 5: Factor graph for conditional in Figure 4, with a condition (Object), a condact (Concept), and a function. 

Figure 6: Transitive rule. 

CONDITIONAL Transitive 
   Condition: Next(a,b) 
              Next(b,c) 
   Action: Next(a,c) 

CONDITIONAL ConceptWeight 
   Condact: Concept(O1,c)[α1] 
            Weight(O1,w)[α2] 

w\c Walker Table … 
[1,10> .01w .001w … 
[10,20> .2-.01w “ … 
[20,50> 0 .025-

.00025w 
… 

[50,100> “ “ … 
 

Figure 7: Conditional probability of weight given concept.  
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comparison to the earlier implementation of just a rule-
based procedural memory, there is additional complexity 
here in extending rules to conditionals, and in moving from 
symbolic to continuous values, but then very little more is 
needed to implement these particular variants of procedural, 
semantic and episodic memories.  With respect to the 
second hope’s appeal to simplicity and uniformity, there is 
indeed much in common across the implementations of 
these three memories: they all build on the distinction 
between working memory and long-term memory; long-
term memory is uniformly represented as conditionals that 
compile into factor graphs, while working memory is 
encoded as evidence in peripheral factor nodes; and memory 
access is cued by working memory through the application 
of the summary product algorithm to the resulting graph. 

One difference of note between this implementation and 
Soar 9 arises from Soar’s ability to perform multiple cycles 
of procedural (rule) access within a single decision cycle, 
but only one cycle of declarative (semantic or episodic) 
access.  The memory architecture here is instead limited to 
just one cycle of memory access per decision cycle for both 
declarative and procedural knowledge.  In (Rosenbloom, 
2009b), early experiments with graphical models led to the 
hypothesis that global computation in Soar should only 
happen over a full decision cycle rather than once per rule 
cycle, and that Soar was thus inconsistent in allowing global 
access to working memory each rule cycle.  The current 
implementation abides by this constraint; however, using 
pattern variables still allows chaining of rules within a 
decision cycle, but now based on local communication 
between actions of earlier rules and conditions of later ones. 

Differences 
The most obvious difference between the implementations 
of procedural and declarative memory is the use of 
conditions and actions in procedural memory versus 

condacts in declarative memory.  At the graph level this 
reduces simply to the directionality of information flow in 
the alpha networks, but it does yield a qualitative difference 
at the memory level.  With unidirectional information flow, 
rules predefine what are to be the cues for retrieval 
(conditions) and what is to be retrieved (actions).  This is 
particularly effective for procedures as it enables directional 
if-then programming.  In contrast, with bidirectional 
information flow, both varieties of declarative memory 
dynamically determine at access time what aspects of an 
object are cues and therefore what aspects are to be 
retrieved (i.e., those aspects not cued).  This significantly 
enhances the flexibility of access, but eliminates the 
directionality that is exploited in procedural programming. 

A more subtle difference is whether a closed world or 
open world assumption occurs with respect to working 
memory.  Rule-based systems use the former, assuming that 
anything not in working memory is false.  The use of 
negated conditions depends on this assumption, as does the 
ability to keep working memory small and focused.  On the 
other hand, declarative memories – and most logical and 
probabilistic models – use an open world assumption, that 
the truth of anything not explicitly in evidence is unknown.  
This enables values that are unknown prior to memory 
access to be retrieved/predicted by condacts during such 
access.  With a closed-world assumption, this becomes 
impossible because any values not explicitly true prior to 
access would be set to false, leading to a conflict with any 
attempt to make a positive predication during access.  Rules 
avoid this problem because their retrievals/predictions occur 
non-monotonically at the end of the access cycle, by actions 
that don’t examine working memory during the cycle.   

This difference is realized in the graph layer by declaring 
individual predicates to be closed or open world when they 
are defined; an idea adopted, along with the use of 
predicates, from earlier experiments with Markov logic 
(Domingos & Lowd, 2009) as a general implementation 
level for architectures (Rosenbloom, 2009b).  Closed-world 
predicates are primarily used in conditions and actions and 
open-world predicates in condacts. 

A third difference concerns whether memory access 
retrieves all cued results or only the best result.  In Soar 9’s 
rule-based procedural memory, all combinations of bindings 
of condition variables to working memory constants yield 
rule instantiations that fire in parallel.  In contrast, cuing of 
either semantic or episodic memory should return only the 
best result.  At the graph layer, this difference is interpreted 
in terms of distinct types of variable domains.  When only 
the best result is desired, the variable’s domain is declared 
unique, and messages about it are normalized to sum to 1.  
This yields a distribution over the variable’s domain 
elements for the probabilities that they are to be retrieved.  
When all results are to be returned, the variable domain is 
declared to be multiple, and its messages are not normalized.  
In such cases, each domain element acts roughly as its own 
Boolean variable, with a value of 1 if it is to be retrieved 
and 0 otherwise; thus encoding all bindings of the variable 

CONDITIONAL TimePrior 
 Condact: Time(t) [α3] 
 

0 1 2 3 4 
0 .032 .087 .237 .644 

 
Figure 8: Exponentially decaying, discrete, temporal prior. 

CONDITIONAL TimeConcept 
 Condact: Time(t) [α3] 
     Concept(O1,c) 
 
t\c Walker Table Dog Human 
1 1 0 0 0 
2 0 0 0 1 
3 0 0 0 1 
4 0 0 1 0 
 

Figure 9: Conditional probability of concept given time. 
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in each message. The summary product implementation 
then uses max to summarize over multiple variables, even 
when marginalizing, bounding the result above by 1. 

These three differences – (1) the directionality of 
information flow in alpha networks, (2) a closed-world 
versus open-world assumption, and (3) unique versus 
multiple variables – jointly distinguish procedural from 
declarative memories in this implementation.  Of these, the 
first appears to be the most fundamental, to the point where 
it justifies an explicit hypothesis that such a difference will 
always be found in comparing procedural and declarative 
memories.  The other two are less clear.  It may be possible, 
for example, to build an effective procedural memory based 
on an open-world assumption.  If so, the second difference 
would not then be essential.  Likewise, if an effective 
procedural memory can be based on returning only the best 
result – more like how rules work in ACT-R than in Soar 9 
– the third difference may not be essential. 

In addition to the differences just identified between 
procedural and declarative memory, three differences of 
note also showed up between the two implemented flavors 
of declarative memory: semantic and episodic.  First, 
semantic memory searches for the most likely value for each 
attribute of an object individually – by marginalizing via 
sum-product – while episodic memory instead computes 
MAP estimation via max-product to retrieve the most 
appropriate single episode (where all of an episode’s 
attributes jointly contribute to determining its 
appropriateness).  Second, the probabilities of features in 
semantic memory are conditional on the concept while in 
episodic memory they are conditional on the time.  Third, 
semantic memory is based on a general probabilistic 
representation of the values of attributes (see Figure 7), 
while episodic memory is based on the history of specific 
instances actually experienced (see Figure 9). 

As with the differences between procedural and 
declarative memory, the first difference here appears to be 
fundamental, at least given this form of semantic memory.  
The other two differences appear less fundamental.  It is 
possible, for example, to implement an instance-based 
semantic memory where the concept is just another feature.  
Sum-product can then dynamically compute more general 
feature distributions by summarizing over these instances. 
Interestingly, when max-product is used instead, the 
individual object that best matches the cues is retrieved, 
yielding something more like the semantic memory 
implemented in Soar 9.  One intriguing implication is that 
the causative difference between generalization and 
analogy/CBR/nearest-neighbor may reduce to whether sum-
product or max-product is used over an instance-based 
memory.  The former generalizes over all instances, while 
the latter retrieves the single best instance. 

Blended Functionality and New Capabilities 
Beyond the three memories implemented above, the 
flexibility of the conditional representation enables blending 
of functionality across these memories (hope three) plus 

new capabilities beyond them (hope four).  Blending arises 
from the flexibility with which conditions, actions, condacts 
and functions can combine within individual conditionals, 
plus the flexibility with which multiple conditionals can 
interact within long-term memory. 

Conditionals by themselves enable combining procedural 
and declarative functionality within individual memory 
units.  Semantic memory provides a good example.  In 
addition to condacts and a function, each conditional can 
also include a condition that matches multiple objects in 
working memory.  The prior is then represented by a 
conditional similar to the one in Figure 4, but with the 
constant O1 replaced by a variable.  The individual feature 
conditionals then resemble Figure 7, but with the condition 
added and the variable substituted (Figure 10).  Like Soar 9, 
there is still a limit of one cycle of semantic memory 
retrieval per cycle of memory access – if quiescence of 
message passing in summary product is mapped onto 
quiescence of rule firing in Soar 9 – but unlike Soar 9, 
features of many objects can be predicted in parallel within 
this single cycle of memory access. 

Other forms of within-conditional blends are also 
possible, such as combining conditions, actions and 
functions to yield weighted rules.  Beyond this, to blend 
functionality across conditionals requires communication 
across conditionals that nominally belong to different 
memories, either via pattern variables within a single cycle 
of memory access or through working memory across 
cycles.  The rule in Figure 11, for example, uses pattern 
variables to access the results of Figure 7’s semantic 
retrieval, and generates a new ConceptWeight predicate.  
This also exploits within-conditional blending, but here in 
service of across-memory interaction. 

Further work will be required to fully understand the 
range of capabilities this memory architecture might yield, 
and what the implications might then be for cognitive 
modeling.  But at least one major new memory capability –
for constraints – has already become apparent.  Constraints 
are structures that specify restrictions on values assigned to 
variables (Dechter, 2003).  Given a set of variables with 

CONDITIONAL ConceptWeightRule 
   Condition: Object(s,o)[α4] 
   Condact: Concept(o,c)[α5] 
            Weight(o,w)[α6] 
   Action: ConceptWeight(c,w) 

Figure 11: Accessing semantic memory results in a rule. 

CONDITIONAL ConceptWeightGeneral 
   Condition: Object(s,o)[α4] 
   Condact: Concept(o,c)[α5] 
            Weight(o,w)[α6] 

Figure 10: Conditional distribution for semantic memory 
with condition to match objects (shown without function). 
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well-defined domains, and a set of constraints over these 
variables, constraint satisfaction determines which 
combinations of domain values are consistent with the 
constraints.  Constraints are like rules in yielding all 
combinations of variable bindings, but like declarative 
memory in their flexibility of access, and thus in their use of 
condacts and an open world assumption.  Figure 12 shows a 
constraint for the two-color problem, implemented via 
condacts and a Boolean function. The pattern variables for 
the two regions are shared with other constraints over those 
regions to enable appropriate propagation over the whole 
network during message passing. Although not a common 
form of long-term memory in cognitive architectures, except 
in neural systems based on “soft” constraints (Ackley, 
Sejnowski & Hinton, 1985), constraints do play a significant 
role in a variety of AI systems and languages. 

Summary 
Basing a memory architecture on the uniform breadth of 
graphical models has enabled straightforward construction 
of four distinct memories: a rule-based procedural memory, 
semantic and episodic declarative memories, and a 
constraint memory that is functionally a hybrid between the 
two.  These implementations reveal significant commonality 
among these memories, but also subtle differences.  Of the 
differences, unidirectional versus bidirectional message 
passing appears to be most fundamental when comparing 
procedural and declarative memories, while marginalization 
versus MAP estimation appears to be most fundamental 
when comparing semantic and episodic memory. 

Implementing memories in this manner also enables 
blending capabilities across memories and creating new 
unanticipated kinds of memories, such as a constraint 
memory.  This general approach holds the promise of 
extending beyond memory architecture to full cognitive 
architectures with mechanisms for decisions, learning, and 
perceptuomotor behavior.  The hopes for this larger effort 
would be to derive a better understanding of: the diverse 
mechanisms involved, including their commonalities and 
differences; how they can and should work together; and 
how to go beyond the kinds of combinations currently seen 
to simpler yet more comprehensive cognitive architectures. 
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CONDITIONAL TwoColorConstraint12 
   Condact: Color(R1,c1)[α7] 
            Color(R2,c2)[α8] 

c1\c2 Red Blue 
Red 0 1 
Blue 1 0 

 
    

Figure 12: Two-color constraint between regions R1 & R2.  


