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Abstract

Prosody is an important cue for identifying dialog acts. In this paper, we show that modeling the sequence of acoustic–
prosodic values as n-gram features with a maximum entropy model for dialog act (DA) tagging can perform better than
conventional approaches that use coarse representation of the prosodic contour through summative statistics of the pro-
sodic contour. The proposed scheme for exploiting prosody results in an absolute improvement of 8.7% over the use of
most other widely used representations of acoustic correlates of prosody. The proposed scheme is discriminative and
exploits context in the form of lexical, syntactic and prosodic cues from preceding discourse segments. Such a decoding
scheme facilitates online DA tagging and offers robustness in the decoding process, unlike greedy decoding schemes that
can potentially propagate errors. Our approach is different from traditional DA systems that use the entire conversation
for offline dialog act decoding with the aid of a discourse model. In contrast, we use only static features and approximate
the previous dialog act tags in terms of lexical, syntactic and prosodic information extracted from previous utterances.
Experiments on the Switchboard-DAMSL corpus, using only lexical, syntactic and prosodic cues from three previous
utterances, yield a DA tagging accuracy of 72% compared to the best case scenario with accurate knowledge of previous
DA tags (oracle), which results in 74% accuracy.
! 2009 Elsevier Ltd. All rights reserved.

Keywords: Dialog act tagging; Prosodic cues; Acoustic correlates of prosody; Maximum entropy modeling; Discourse context

1. Introduction

In both human-to-human and human–computer speech communication, identifying whether an utterance
is a statement, question, greeting, etc., is integral to producing, sustaining and understanding natural dialogs.
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Dialog act tags (Austin, 1962) are labels that are used to represent these surface level communicative acts in a
conversation or dialog. While they may not provide a deep understanding of discourse structure, dialog acts
(DAs) can serve as intermediate representations that can be useful in several speech and language processing
applications. For example, in human–machine dialogs, constraining automatic speech recognition hypotheses
by using a model of likely DAs to be expected at a dialog turn has been shown to improve the recognition
accuracy (Stolcke et al., 2000; Taylor et al., 2000). Dialog acts have also found to be useful in spoken language
understanding (Shriberg et al., 1998) and, more recently, in the annotation of archived conversations and
meetings (Ang et al., 2005; Zimmermann et al., 2005), which in turn can help improve speech summarization
(Murray et al., 2006) and retrieval. Incorporating DAs in speech-to-speech (s2s) translation (Lavie et al., 1996;
Reithinger et al., 1996) was useful in the resolution of ambiguous communication.

Conceptually, the process of designing an automatic DA prediction system can be seen as comprising two
steps:

! Identifying the lexical, syntactic and acoustic cues that are most useful in distinguishing among the various
DAs.

! Combining the multiple cues in an algorithmic framework to implement their accurate recognition.

Methods for automatic cue-based identification of dialog acts typically exploit multiple knowledge sources in
the form of lexical (Jurafsky et al., 1998; Stolcke et al., 2000), syntactic (Bangalore et al., 2006), prosodic (Shri-
berg et al., 1998; Taylor et al., 2000) and discourse structure (Jurafsky et al., 1997) cues. These cues have been
modeled using a variety of methods including Hidden Markov models (Jurafsky et al., 1998), neural networks
(Ries, 1999), fuzzy systems (Wu et al., 2002) and maximum entropy models (Bangalore et al., 2006; Rangarajan
Sridhar et al., 2007a). Conventional dialog act tagging systems rely on the words and syntax of utterances (Hir-
schberg and Litman, 1993). However, in most applications that require transcriptions from an automatic speech
recognizer, the lexical information obtained is typically noisy due to recognition errors. Moreover, some utter-
ances are inherently ambiguous based on just lexical information. For example, an utterance such as ‘‘okay” can
be used in the context of a statement, question or acknowledgment (Gravano et al., 2007).

While lexical information is a strong cue to DA identity, the prosodic information contained in the speech
signal can provide a rich source of complementary information. In languages such as English and Spanish,
discourse functions are characterized by distinct intonation patterns (Bolinger, 1978; Cruttenden, 1989). These
intonation patterns can either be final fundamental frequency (f0) contour movements or characteristic global
shapes of the pitch contour. For example, yes–no questions in English typically show a rising f0 contour at the
end and wh- questions typically show a final falling pitch. Modeling the intonation pattern can thus be useful
in discriminating sentence types. Previous work on exploiting intonation for DA tagging has mainly been
through the use of representative statistics of the raw or normalized pitch contour, duration and energy such
as mean, standard deviation, slope, etc. (Stolcke et al., 2000; Shriberg et al., 1998). However, these acoustic
correlates of prosody provide only a coarse summary of the macroscopic prosodic contour and hence may
not exploit the prosodic profile fully. In this work, we model the prosodic contour by extracting n-gram fea-
tures from the acoustic–prosodic sequence. This n-gram feature representation is shown to yield better dialog
act recognition accuracy compared to other methods that use summative statistics of acoustic–prosodic fea-
tures. Further details of prosodic representations are provided in Section 6.

We also present a discriminatively trained maximum entropy modeling framework using the n-gram pro-
sodic features that is suitable for online classification of DAs. Traditional DA taggers typically combine the
lexical and prosodic features in a HMM framework with a Markovian discourse grammar (Stolcke et al.,
2000; Jurafsky et al., 1998). The HMM representation facilitates optimal decoding through the Viterbi algo-
rithm. However, such an approach limits DA classification to offline processing, as it uses the entire conver-
sation during decoding. Even though this drawback can be overcome by using a greedy decoding approach,
the resultant decoding is sensitive to noisy input and may cause error propagation. In contrast, our approach
uses contextual features captured in the form of only lexical and prosodic cues from previous utterances. Such
a scheme is computationally inexpensive and facilitates robust online decoding that can be performed along-
side automatic speech recognition. We evaluate our proposed approach through experiments on the Maptask
(Carletta et al., 1997) and Switchboard-DAMSL (Jurafsky et al., 1998) corpora.
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2. Maximum entropy model for dialog act tagging

We use a maximum entropy sequence tagging model for the purpose of automatic DA tagging. We model
the prediction problem as a classification task: given a sequence of utterances ui in a dialog U ¼ u1; u2; . . . ; un
and a dialog act vocabulary (di!D; j D j¼ K), we need to predict the best dialog act sequence
D# ¼ d1; d2; . . . ; dn

D# ¼ argmax
D

P ðDjUÞ ¼ argmax
d1;...;dn

Pðd1; . . . ; dnju1; . . . ; unÞ: ð1Þ

We approximate the sequence level global classification problem, using conditional independence assump-
tions, to a product of local classification problems as shown in Eq. (3). The classifier is then used to assign to
each word a dialog act label conditioned on a vector of local contextual feature vectors comprising the lexical,
syntactic and acoustic information

D# ¼ argmax
D

P ðDjUÞ; ð2Þ

& argmax
D

Yn

i¼1

PðdijUðui'k; ( ( ( ; uiþlÞÞ ð3Þ

¼ argmax
D

Yn

i¼1

PðdijUðW i'k; ( ( ( ;W iþl; Si'k; ( ( ( ; Siþl;Ai'k; ( ( ( ;AiþlÞÞ ð4Þ

where W i is the word sequence, Si is the syntactic feature sequence and Ai, the acoustic–prosodic observation
belonging to utterances ui. The variables l and k denote the right and left context, respectively.
UðW i'k; . . . ;W iþl; Si'k; . . . ; Siþl;Ai'k; . . . ;AiþlÞ is shortened to U in the rest of the section.

To estimate the conditional distribution P ðd j UÞ we use the general technique of choosing the maximum
entropy (maxent) distribution that estimates the average of each feature over the training data (Berger et al.,
1996). This can be written in terms of the Gibbs distribution parameterized with weights km, where m ranges
over the label set and K is the size of the dialog act vocabulary. Hence,

P ðdjUÞ ¼ ekd :U
PK

m¼1ekm(U
ð5Þ

To find the global maximum of the concave function in Eq. (5), we use Sequential L1-Regularized Maxent
algorithm (SL1-Max) (Dudik et al., 2004). Compared to Iterative Scaling (IS) and gradient descent proce-
dures, this algorithm results in faster convergence and provides L1-regularization as well as efficient heuristics
to estimate the regularization meta-parameters. We use the machine learning toolkit LLAMA (Haffner, 2006)
to estimate the conditional distribution using maxent. LLAMA encodes multiclass maxent as binary maxent
to increase the training speed and to scale the method to large data sets. We use here K one-versus-other bin-
ary classifiers. Each output label d is projected onto a bit string, with components bjðdÞ. The probability of
each component is estimated independently:

P ðbjðdÞjUÞ ¼ 1' P ð!bjðdÞjUÞ ¼ ekj(U

ekj(U
þ ek!j(U ¼ 1

1þ e'ðkj'k!jÞ(U
; ð6Þ

where k!j is the parameter vector for !bjðdÞ.
Assuming the bit vector components to be independent, we have,

P ðdjUÞ ¼
YK

j¼1

P ðbjðdÞjUÞ: ð7Þ

Therefore, we can decouple the likelihoods and train the classifiers independently. In this work, we use the
simplest and most commonly studied code, consisting of K one-versus-others binary components. The inde-
pendence assumption of the bit vector components states that the output labels or classes are independent.
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3. Data

The Maptask (Carletta et al., 1997) and Switchboard-DAMSL (Jurafsky et al., 1998) corpora have been
extensively used for dialog act tagging studies. Maptask (Carletta et al., 1997) is a cooperative dialog task
involving two participants. The two speakers, instruction giver and instruction follower are engaged in a dialog
with the goal of reproducing the instruction giver’s route on the instruction follower’s map. The original dataset
was slightly modified for the experiments of the present study. The raw move information was augmented with
the speaker information while the non-verbal content (e.g., laughs, background noise) was removed. The
Maptask tagging scheme has 12 unique moves; augmented with speaker information this results in 24 labels.
The 12 moves in the corpus are: instruct, explain, check, align, query-yn, query-w, acknowledge, reply-y,
reply-n, clarify and ready. The corpus consists of 128 dialogs and 26181 utterances. The inter-labeler agree-
ment measured using the kappa statistic (j) is 0.83. We used ten-fold cross validation for testing.

The Switchboard-DAMSL (SWBD-DAMSL) corpus consists of 1155 dialogs and 218,898 utterances from
the Switchboard corpus of telephone conversations, tagged with discourse labels from a shallow discourse tag
set. The original tag set of 375 unique tags was clustered to obtain 42 dialog act tags that distinguish mutually
exclusive utterance types (Jurafsky et al., 1998). The inter-labeler agreement for this 42-label tag set is 84%
(j ¼ 0:80), with the labeling performed at the utterance level. In our experiments, we used a set of 173 dialogs,
selected at random for testing. The test set consisted of 29869 discourse segments. The experiments were per-
formed on the 42 tag vocabulary as well as a simplified tag set consisting of 7 tags. We grouped the 42 tags into
7 disjoint classes, based on the frequency of the classes and grouped the remaining classes into an”other” cat-
egory constituting less than 3% of the entire data. This grouping is similar to that presented in Shriberg et al.
(1998). Such a simplified grouping is more generic and hence useful in speech applications that require only a
coarse level of DA representation. It can also offer insights into common misclassifications encountered in the
DA system. Fig. 1 shows the distribution of the simplified tag set in the Switchboard-DAMSL corpus. State-
ments are the most frequent (more than 50%) tags, followed by acknowledgements, abandoned or incomplete
utterances and agreements. Questions and appreciations account for roughly 6% and 4% of the total utter-
ances. In the next section, we describe the maximum entropy modeling framework that is used for automatic
DA identification in the rest of the paper.

4. Features for dialog act classification

In this section, we describe the lexical, syntactic and prosodic cues used with the proposed maximum
entropy modeling framework for DA tagging. The lexical, syntactic and prosodic cues extracted from the
utterance text and speech signal are encoded as n-gram features and used as input to the maximum entropy
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Fig. 1. The distribution of utterances by dialog act tag category in the Switchboard-DAMSL corpus.

410 V.K. Rangarajan Sridhar et al. / Computer Speech and Language 23 (2009) 407–422



framework. We only use features that are derived from the local context of the text being tagged, referred to as
static features here on. One would have to perform a Viterbi search if the preceding prediction context (dialog
act history) were to be used. Using static features is especially suitable for performing dialog act tagging in
lockstep with automatic speech recognition, as the prediction can be performed incrementally instead of wait-
ing for the entire utterance or dialog to be decoded. This is explained in more detail in Section 8.

4.1. Lexical and syntactic features

The lexical features used in our modeling framework are simply the words in a given utterance. We tag the
utterances with part-of-speech tags using the AT&TPOS tagger. The POS inventory is the same as the Penn tree-
bank which includes 47 POS tags: 22 open class categories, 14 closed class categories and 11 punctuation labels.

In addition to the POS tags, we also annotate the utterance with Supertags (Bangalore and Joshi, 1999).
Supertags encapsulate predicate-argument information in a local structure. They are the elementary trees of
Tree-Adjoining Grammars (TAGs) (Joshi and Schabes, 1996). Similar to part-of-speech tags, supertags are
associated with each word of an utterance, but provide much richer information than part-of-speech tags,
as illustrated in the example in Table 1. Supertags can be composed with each other using substitution and
adjunction operations (Joshi and Schabes, 1996) to derive the predicate-argument structure of an utterance.

There are two methods for creating a set of supertags. One approach is through the creation of a wide cov-
erage English grammar in the lexicalized tree-adjoining grammar formalism, called XTAG (XTAG, 2001),
wherein supertags are the resulting elementary structures. An alternate method for creating supertags is to
employ rules that decompose the annotated parse of a sentence in Penn Treebank into its elementary trees
(Chen and Vijay-Shanker, 2000; Xia et al., 2000). This second method for extracting supertags results in a lar-
ger set of supertags. For the experiments presented in this paper, we employ a set of 4726 supertags extracted
from the Penn Treebank.

In addition to the lexical and syntactic cues, we also use categorical prosody labels predicted from our pre-
viously developed maximum entropy automatic prosody labeler (Rangarajan Sridhar et al., 2006; Rangarajan
Sridhar et al., 2007b) to tag the utterances with prosodic labels. The prosody labeler uses lexical (words) and
syntactic (parts-of-speech tags and supertags) information to predict binary pitch accent (accent, none) and
boundary tone (btone, none) labels for each word (see Fig. 2). Our prosody labeler was trained on the entire

Table 1
Illustration of POS tags and supertags generated for a sample utterance.

Words But now seventy minicomputer makers compete for customers
POS tags CC RB NN NN NNS VBP IN NN

Supertags

Fig. 2. Illustration of syntax-based prosody predicted by the prosody labeler. The prosody labeler uses lexical and syntactic context from
surrounding words to predict the prosody labels for the current word.
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Boston University Radio News corpus. Even though the domain is not the same as that of our test corpora, we
expect that the syntactic information in the form of POS tags and supertags can offer good generalization to
circumvent the disparity in the domains. Moreover, we expect the syntax-based prosody labeler to offer addi-
tional discriminatory evidence beyond the lexical and syntactic features, as the mapping between prosody and
syntax is non-linear.

4.2. Acoustic–prosodic features

Exploiting utterance level intonation characteristics in DA tagging presumes the capability for automatic
segmentation of the input dialog into discourse segments. Many studies have addressed the problem of auto-
matically detecting the utterance boundaries in a dialog using lexical and prosodic cues (Shriberg et al., 2000;
Liu et al., 2006; Ang et al., 2005; Mrozinski et al., 2006). However, we do not attempt to address the problem
of utterance segmentation in this paper, and assume that we have access to utterance segmentation marked
either automatically or by human labelers. We compute the pitch (f0), RMS energy (e) of the utterance over
10 msec frame intervals. The pitch values in the unvoiced segments were smoothed using linear interpolation.
Both the energy and the pitch were normalized with speaker specific mean and variance (z-norm).

5. Dialog act classification using true transcripts

We first perform DA tagging experiments on clean transcribed data. While this is typically not available in
automated applications, it is a preliminary step and can offer valuable insights into common classification mis-
takes committed by the classifier when trained on lexical information alone. The lexical cues we use are word
trigrams from the current utterance; parts-of-speech, supertagged utterances constitute the syntactic cues, and
prosody tagged utterances comprise prosodic cues. In addition, we use the speaker identity information
(speaker A or B for the particular dialog since our data were from 2 person interactions). The lexical and syn-
tactic cues are encoded as n-gram features and used as input to the maximum entropy classifier. The feature
encoding is illustrated in Fig. 3.

Fig. 3. Illustration of n-gram feature encoding of lexical, syntactic and syntax-based prosody cues. The n-gram features represent the
feature input space of the maximum entropy classifier. ‘‘j” denotes feature input conditioned on the history.

Table 2
Dialog act tagging accuracies (in %) for lexical and syntactic cues obtained from true transcripts with the maximum entropy model. Only
the current utterance was used to derive the n-gram features.

Cues used (current utterance) Maptask SWBD-DAMSL

12 moves 42 tags 7 tags

Chance (majority tag) 15.6 39.9 54.4
Lexical 65.7 69.7 81.9
Lexical + syntactic 66.1 70.0 82.4
Lexical + syntactic + Syntax-based prosody 66.6 70.4 82.5
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Results of DA tagging using lexical and syntactic features from reference transcripts are presented in Table
2. Analysis of the confusion matrix obtained from the 7 way classification of dialog acts in the SWBD-
DAMSL corpus indicates that the most common misclassifications are: agreements as acknowledgments;
questions as statements and, abandoned utterances as statements. 58% of the total agreements in the test
set are misclassified as acknowledgments and 61% of the questions are wrongly classified as statements.
The misclassifications predominantly occur due to the ambiguity in lexical choice for these discourse func-
tions. Table 3 shows an example of misclassification from the Switchboard-DAMSL corpus while using only
lexical information. In the next section, we demonstrate how one can model the intonation characteristics
associated with DA types for improved classification.

6. Dialog act classification using acoustic prosody

Given that most dialog act classification tasks are typically used as downstream applications that operate
on speech input, in this section, we present a maximum entropy framework to model the acoustic–prosodic
features in dialog act tagging. As mentioned earlier in Section 4.2, we do not attempt to address the problem
of utterance segmentation in this paper. The experiments are performed only on the SWBD-DAMSL corpus
since the Maptask corpus is not accompanied by utterance level segmentation. The utterance level segmenta-
tion for the SWBD-DAMSL annotations was obtained from the Mississippi State resegmentation of the
Switchboard corpus (Hamaker et al., 1998). These segmentations were checked for inconsistencies and cleaned
up further. The pitch and energy contour were extracted as explained in Section 4.2.

6.1. Related work

Before describing our proposed prosodic representation for DA tagging, we present a brief overview of pre-
vious work that has used prosodic cues for dialog act classification. The use of prosodic cues in DA classifi-
cation is contingent on two main factors: the type of prosodic representation (categorical or continuous) and
the framework used to integrate the prosodic representation with lexical and syntactic cues. Three main rep-
resentations of the intonation contour have been used in previous work:

(i) Raw/normalized acoustic correlates of intonation such as pitch contour, duration and energy, or trans-
formations thereof (Stolcke et al., 2000; Shriberg et al., 1998).

(ii) Discrete categorical representations of prosody through pitch accents and boundary tones (Black and
Campbell, 1995; Reithinger et al., 1996).

(iii) Parametric representations of pitch contour (Yoshimura et al., 1996; Taylor et al., 2000).

Stolcke et al. (2000) used prosodic decision trees to model the raw/normalized acoustic correlates of pros-
ody. They used correlates of duration, pause, pitch, energy and speaking rate as features in the classification.
A HMM-based generative model was used for classification. The likelihoods due to multiple knowledge
sources were decoupled and a prosodic decision tree classifier was used to estimate the likelihood (obtained
from the posterior probability through Bayes rule) of the dialog acts during training. On the Switchboard-
DAMSL dataset, they reported a dialog act labeling accuracy of 38.9% using prosody alone (chance being
35%). Using the reference word transcripts and preceding discourse context in an n-gram modeling frame-
work, they obtained 71% accuracy. The combined use of prosody, discourse context and lexical cues from

Table 3
Examples of misclassifications due to lexical ambiguity from the Switchboard-DAMSL corpus.

Utterance Reference tag Hypothesized tag

Yeah Agreement Acknowledgement
Right Agreement Acknowledgement
You just needed a majority Question Statement
Someone had to figure out what was going on Question Statement
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erroneous recognition output resulted in an accuracy of 65%. Ries (1999) and Fernandez and Picard (2002)
have also used raw acoustic correlates of prosody for DA classification with neural networks and support vec-
tor machines, respectively.

Discrete categorical representations can be effective in characterizing pitch excursions associated with sen-
tence types (Pierrehumbert, 1980). Reithinger et al. (1996) and Black and Campbell (1995) have used symbolic
representation of prosodic events as additional features in dialog act tagging for S2S translation and text-to-
speech synthesis, respectively. However, automatic detection of detailed categorical representations is still a
topic of ongoing research.

Parametric approaches that are data-driven provide a configurational description of the macroscopic into-
nation contour. Yoshimura et al. (1996) proposed clustering of utterances based on vector-quantized f0 pat-
terns and regression fits. Taylor et al. (2000) have demonstrated the use of parametric representations of the
pitch contour for dialog act modeling in speech recognition. On a subset of the Maptask corpus (DCIEM
Maptask corpus), they achieved an accuracy of 42% using intonation alone. Using both intonation and dialog
history their system correctly identified dialog acts 64% of the time. The drawback of such an approach is that
it requires segmentation of the prosodic contour into intonational events, which is not easy to obtain automat-
ically. In the next section, we propose an n-gram feature representation of the prosodic contour that is sub-
sequently used within the maxent framework for DA tagging. We also compare the proposed maximum
entropy intonation model with the summative statistics acoustic correlates representation used in previous
work (Shriberg et al., 1998).

6.2. Maximum entropy intonation model

We quantize the continuous acoustic–prosodic values by binning, and extract n-gram features from the
resulting sequence. Such a representation scheme differs from the approach commonly used in DA tagging,
where representative statistics of the prosodic contour are computed (Shriberg et al., 1998). The n-gram fea-
tures derived from the pitch and energy contour are modeled using the maxent framework described in Section
2. For this case, Eq. (3) becomes,

D# & argmax
D

Yn

i¼1

pðdijUðA; iÞÞ ¼ argmax
D

Yn

i¼1

pðdijaiÞ; ð8Þ

where ai ¼ fa1i ; . . . ; a
kui
i g is the acoustic–prosodic feature sequence for utterance ui and the variable kui is the

number of frames used in the analysis, see Fig. 4.
We fixed the analysis window to the last 100 frames (kui ) of the discourse segment corresponding to 1 sec-

ond. The length of the window was empirically determined through optimization on a held-out set. The nor-
malized prosodic contour was uniformly quantized into 10 bins and bigram features2 were extracted from the
sequence of frame level acoustic–prosodic values. Even though the quantization is lossy, it reduces the ‘vocab-
ulary’ of the acoustic–prosodic features, and hence offers better estimates of the conditional probabilities. In
order to test the sensitivity of the proposed framework to errors in utterance segmentation, we also varied the
end points of the actual boundary by ±20 frames. There was no significant degradation in performance for
this window. However, the performance dropped for incorrect segmentation beyond ±20 frames. Thus, the

Fig. 4. Illustration of the quantized feature input to the maxent classifier. ‘‘j” denotes feature input conditioned on the value of the
preceding element in the acoustic–prosodic sequence.

2 Higher order n-grams did not result in any significant improvement.

414 V.K. Rangarajan Sridhar et al. / Computer Speech and Language 23 (2009) 407–422



proposed model can also offer some robustness to errors in utterance segmentation. The results of the maxent
intonation model are presented in Table 5.

6.3. Comparison with acoustic correlates of prosody

Acoustic correlates of prosody refer to simple transformations of pitch, intensity and duration extracted
from the fundamental frequency (f0) contour, energy contour and segmental duration derived from automatic
alignment, respectively. Such features have been demonstrated to be beneficial in disfluency detection (Liu
et al., 2003), topic segmentation (Hirschberg and Nakatani, 1998), sentence boundary detection (Liu et al.,
2006) and dialog act detection (Shriberg et al., 1998). The derived features are also normalized through a vari-
ety of speaker and utterance specific normalization techniques to account for the variability across speakers.
The major drawback of such a representation is that it is lossy and is not consistent with the suprasegmental
theory of prosody that advocates a sequential or continuous model of acoustic correlates over longer dura-
tions (O’Connor and Arnold, 1973).

The primary motivation for this experiment is to compare the n-gram feature representation of the prosodic
contour with previous approaches that have used acoustic correlates of prosody (Shriberg et al., 1998). We
extracted a set of 28 features from the pitch and energy contour of each utterance. These included duration
of utterance, statistics of the pitch contour (e.g., mean and range of f0 over utterance, slope of f0 regression
line) and energy contour (e.g., mean and range of rms energy). The features are directly borrowed from (Shri-
berg et al., 1998) and a decision tree classifier (J48 in WEKA toolkit (Witten and Frank, 2005)) was trained on
the prosodic features for DA classification. The features that were used are summarized in Table 4.

In order to compare the n-gram feature representation (presented in Section 6.2) with that of using acoustic
correlates, we also fit a decision tree to the n-gram features. The results are presented in Table 5. Results
indicate that the n-gram feature representation performs better than using acoustic correlates, and offers an

Table 4
Acoustic correlates used in the experiment, organized by duration, pitch and energy categories.

Features used Description
ling_dur Duration of utterance

f0_mean_good_utt Mean of f0 values above f0_min
f0_mean_n Difference between mean f0 of utterance and mean f0 of convside for f0 values > f0_min
f0_mean_ratio Ratio of f0 mean in utterance to f0 mean in convside
f0_mean_zcv f0 mean in utterance normalized by mean and std dev of f0 values in convside
f0_sd_good_utt Std dev of f0 values in utterance
f0_sd_n Log ratio of std dev of f0 values in utterance and in convside
f0_max_n Log ratio of max f0 values in utterance and in convside
f0_max_utt Maximum f0 value in utterance (no smoothing)
max_f0_smooth Maximum f0 value in smoothed f0 contour
f0_min_utt Minimum value of f0 in utterance (no smoothing)
utt_grad Linear regression slope over all points over utterance
pen_grad Linear regression slope over penultimate 200 ms of utterance
end_grad Linear regression slope over final 200 ms of utterance
end_f0_mean Mean f0 in final 200 ms region
pen_f0_mean Mean f0 in penultimate 200 ms region
abs_f0_diff Difference between mean f0 of end and penultimate regions
rel_f0_diff Ratio of f0 of final and penultimate regions
norm_end_f0_mean Mean f0 in final region normalized by mean and std deviation in convside
norm_pen_f0_mean Mean f0 in penultimate region normalized by mean and std deviation in convside
norm_f0_diff Difference between mean f0 of final and penultimate regions, normalized by mean and std dev of f0 from convside

utt_nrg_mean Mean RMS energy in utterance
abs_nrg_diff Difference between RMS energy of final and penultimate 200 ms regions
end_nrg_mean Mean RMS energy in the final 200 ms region
norm_nrg_diff Normalized difference between mean RMS energy of final and penultimate regions
rel_nrg_diff Ratio of mean RMS energy of final and penultimate regions
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absolute improvement of 6.4% in classification accuracy. The maxent model with the n-gram features offers
further improvement compared to the decision tree classifier. This may be attributed to the integrated feature
selection and modeling offered by the maxent framework.

The results also clearly demonstrate the suitability of the proposed n-gram representation for exploiting
prosody in DA tagging. Closer analysis of the predictions made by the maxent intonational model (for the
simplified SWBD-DAMSL tag set) indicate that majority of the correct predictions are for statements and
acknowledgements, with a per dialog act accuracy of 76% and 56%, respectively. The precision and recall
for the other categories are very low (less than 1%). In other words, even though the maxent intonation model
performs much better than chance, the majority of correct predictions are limited to the two most frequent
tags in the DA vocabulary. To evaluate the complementarity of our intonation model with respect to lexical
information, in the next section, we perform DA tagging on both clean and recognized transcripts in conjunc-
tion with the n-gram prosodic contour representation.

7. Dialog act tagging using recognized transcripts

In most speech processing applications, dialog act tagging is either performed simultaneously with front-
end automatic speech recognition (ASR) or as a post processing step. The lexical information at the output
of ASR is typically noisy due to recognition errors. Thus, modeling the intonational characteristics of dis-
course segments that are independent of the hypothesized words can offer robustness in DA classification.
To evaluate our framework on automatic speech recognition (ASR) output, the 29,869 test utterances were
decoded with an ASR setup. The acoustic model for first-pass decoding was a speaker independent model
trained on 220 hours of telephone speech from the Fisher English corpus. The language model (LM) was inter-
polated from the SWBD-DAMSL training set (182K words) and Fisher English corpus (1.5M words). The
final hypothesis was obtained after speaker adaptive training using constrained maximum likelihood linear
regression on the first-pass lattice. The word error rate (WER) for the test utterances was 34.4%.3 While this
is a relatively high WER, the experiment is intended to provide insights into DA tagging on noisy text.

Table 6 presents DA tagging results using lexical information from reference transcripts (true words) and
recognition hypotheses. The accuracy using recognized words is 55.1% compared to 69.7% using the true tran-
script. The use of prosodic information in conjunction with the words obtained from the recognition output
provides a relative improvement of 5.35%. The maxent models described so far use cues from the current utter-
ance only. In the next section, we demonstrate how dialog context can be exploited in our framework.

8. Dialog act tagging using history

The dialog act tags that characterize discourse segments in a dialog are typically dependent on preceding
context. For e.g., Questions are usually followed by Statements or Acknowledgments, and, Agreements often
follow Statement-opinions. This aspect of dialog acts is usually captured by modeling the prior distribution of
dialog act tags as a kth order Markov process, k being the number of preceding dialog act labels. Such an
n-gram discourse model of DA tags coupled with locally decomposable likelihoods can be viewed as a kth
order hidden markov model (HMM). An HMM-based representation of DA tagging, with the states

Table 5
Accuracies (%) of DA classification experiments on the Switchboard-DAMSL corpus for different prosodic representations.

Prosodic representation 42 tags 7 tags

Chance (majority tag) 39.9 54.4
Acoustic correlates + decision tree 45.7 60.5
n-gram acoustic features + decision tree 52.1 66.3
n-gram acoustic features + maxent 54.4 69.4

3 The decoding was performed on all of 29K utterances for comparison across experiments. The standard deviation of WER was 14.0%.
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corresponding to DAs and observations corresponding to utterances, coupled with a discourse LM, facilitates
efficient dynamic programming to compute the most probable DA sequence using the Viterbi algorithm (Stol-
cke et al., 2000; Taylor et al., 2000; Ji and Bilmes, 2005). Mathematically, the HMM-based DA tagging can be
expressed as,

D# ¼ argmax
D

P ðDjUÞ ¼ argmax
D

PðU jDÞ * P ðDÞ: ð9Þ

The main drawback of such an approach is that one has to wait for the completion of entire conversation
before decoding. Thus, optimal decoding can be performed only during offline processing. One way to over-
come this problem is by using a greedy decoding approach that uses a discourse LM over the predictions of
DA tags at each utterance. However, such an approach is clearly suboptimal and can be further exacerbated
when applied to noisy ASR output. The results of such a greedy decoding scheme is presented in Tables 7 and
8.

In contrast to the above methods, we argue for a DA tagging model that uses context history in the form of
only n-gram lexical and prosodic features from the previous utterances. Our objective is to approximate dis-
course context information indirectly using acoustic and lexical cues. Such a scheme facilitates online DA tag-
ging and consequently, the decoding can be performed incrementally during automatic speech recognition.
Even though the proposed scheme may still be suboptimal, it offers robustness in the decoding process, unlike
greedy decoding schemes that can potentially propagate errors. We compare the proposed use of ‘‘static” con-
textual features with the scenario where one has accurate knowledge of previous DA tag. Such a comparison
illustrates the gap between the best case scenario (optimal decoding with a bigram discourse LM using the
Viterbi algorithm, will be less than or equal to this performance; the greedy approach maybe be worse)
and the performance that can be achieved by using only the lexical and prosodic cues from previous utter-
ances. The results are presented in Table 7.

The best case scenario, assuming accurate knowledge of words and the previous dialog act tag (bigram dis-
course context), results in a DA classification accuracy of 74.4% (see Table 7). A greedy decoding approach
with the HMM-based framework and bigram discourse language model yields an DA tagging accuracy of
54.4%, which is much lower than the case when oracle information about previous dialog act tag is accurately
known. On the other hand, using only the lexical and prosodic information from 1 previous utterance, yields
71.2% accuracy. The use of only static features from previous utterances is computationally inexpensive and
the framework is more robust compared to using greedy DA predictions for each utterance. Adding context
from 3 previous utterances4 results in a classification accuracy of 72%. Similar trends can be observed for DA
classification using the ASR output. It is interesting to observe that there is an accuracy drop of only 3% to 4%
when using context in terms of lexical and prosodic content from previous utterances, compared to accurate
(oracle) knowledge of previous DA. Such a scheme is clearly beneficial in speech applications that require
online decoding of dialog act tags.

Table 6
Dialog act tagging accuracies (in %) using lexical + syntactic + prosodic cues for true and recognized transcripts with the maximum
entropy model. Only the current utterance was used to derive the n-gram features.

Cues used (current utt) Features used SWBD-DAMSL

42 tags 7 tags

True transcripts Lexical 69.7 81.9
Lexical + syntactic + Syntax-based prosody 70.4 82.5
Lexical + syntactic + Syntax-based prosody + acoustics 70.4(3) 82.5(4)

Recognition output Lexical 52.3 65.7
Lexical + syntactic + Syntax-based prosody 53.1 66.8
Lexical + syntactic + Syntax-based prosody + acoustics 55.1 69.9

4 Context beyond 3 previous utterances did not result in any significant improvement.
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9. Dialog act tagging using right context

Conventional dialog act tagging schemes (Jurafsky et al., 1997; Stolcke et al., 2000; Ji and Bilmes, 2005)
typically use a dialog act grammar to predict the most probable next dialog act based on the previous ones.
Exploiting discourse context in such a manner offers a convenient way of modeling the prior distribution of
dialog acts in a generative model for dialog act tagging. Often, an n-gram model is chosen as a computation-
ally convenient type of discourse grammar, as it allows for efficient decoding in the HMM framework. While
the HMM-based approach to DA tagging is certainly intuitive and desirable in many left-to-right decoding
systems, in this section, we are interested in evaluating the usefulness of right context in DA tagging. Since,
our maximum entropy decomposes the sequence labeling problem into local classification problems, we can
exploit right context of a current utterance during the tagging. In this case, Eq. (2) becomes,

D# ¼ argmax
D

P ðDjUÞ & argmax
D

Yn

i¼1

P ðdijUðui; . . . ; uiþlÞÞ

¼ argmax
D

Yn

i¼1

P ðdijUðW i; . . . ;W iþl; Si; . . . ; Siþl;Ai; . . . ;AiþlÞÞ; ð10Þ

where W i is the word sequence, Si is the syntactic feature sequence and Ai, the acoustic–prosodic observation
belonging to utterances ui. The variable l denotes right context.

Table 9 shows the results of using right context (words, part-of-speech tags, supertags, syntax-based pros-
ody and acoustics-based prosody of future utterances) in the maximum entropy framework. Just as explained
in Section 8, we use only the lexical, syntactic and prosodic information instead of using the actual dialog act
tags. The results indicate that trends in improvement when right context is added to the current utterance is
similar to that of adding left context for the Switchboard-DAMSL corpus. However, the addition of right

Table 7
Dialog act tagging accuracies (in %) using preceding context. current utterance refers to lexical + syntactic + prosodic cues of the current
transcribed utterance. prev utterance refers to the lexical + syntactic + prosodic cues from the previous utterance.

Model Cues used Maptask SWBD-DAMSL

12 moves 42 tags 7 tags

Greedy decoding Current utterance + bigram discourse LM 60.1 54.4 76.4
Current utterance + trigram discourse LM 58.2 54.9 76.8

Maxent Current utterance 66.6 70.4 82.5
Current utterance + 1 prev DA tag (oracle) 74.3 74.4 82.9
Current utterance + 2 prev DA tags (oracle) 75.1 75.8 83.0
Current utterance + 3 prev DA tags (oracle) 75.2 76.0 83.1
Current utterance + 1 prev utterance 70.1 71.2 82.7
Current utterance + 2 prev utterances 70.0 71.8 82.6
Current utterance + 3 prev utterances 69.9 72.0 82.6

Table 8
Dialog act tagging accuracies (in %) using preceding context. Recognized utterance refers to lexical + syntactic + prosodic cues of the
current ASR hypothesized utterance. prev utterance refers to the lexical + syntactic + prosodic cues from the preceding ASR hypotheses.

Model Cues used SWBD-DAMSL

42 tags 7 tags

Greedy Decoding Recognized utterance + trigram discourse LM 47.63 57.27

Maxent Current utterance 70.4 82.5
Recognized utterance 55.1 69.9
Recognized utterance + 3 prev DA tags (oracle) 59.7 73.9
Recognized utterance + 3 prev utterances 56.2 70.8
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context (1 next utterance) results in a degradation of about 2.6% in DA tagging accuracy in comparison with
the use of left context (1 previous utterance) for the Maptask corpus. Hence, the experimental results indicate
that right context is not as beneficial in DA tagging in comparison with left context.

10. Discussion

The maximum entropy framework for DA tagging presented in this work is not restricted to the data sets
used in this paper. The framework is generalizable and can be used for multiple tasks that may require the
joint use of lexical, syntactic, prosodic and additional cues for identifying dialog acts. Previous work on auto-
matic DA tagging has mainly used lexico-syntactic information in the form of orthographic words and parts-
of-speech. In this work, we exploited richer syntactic information such as supertags and prosody predicted
from lexical and syntactic cues. These features offer a relative improvement of about 1.0% to 3.0% over using
lexical information alone.

The proposed n-gram representation of the prosodic contour is trained using a regularized maximum
entropy classifier. Thus, the proposed scheme avoids overfitting. In previous work, we have also demonstrated
the suitability of such a representation for categorical prosody detection (Rangarajan Sridhar et al., 2007b)
and achieved state-of-the-art results. The prosodic representation coupled with the maxent model achieves
an accuracy of 54.4% on the SWBD-DAMSL corpus. Previous work on SWBD-DAMSL corpus with into-
national cues (Stolcke et al., 2000) achieved an accuracy of 38.9% (chance being 35%). While a direct compar-
ison with our work is not possible due to different training and test splits of the data, our test set consists of
about 29K utterances, much larger than the 4K test set used in Stolcke et al. (2000).

To evaluate the complementarity of the lexico-syntactic and prosodic evidence, we performed a correlation
analysis on the DA predictions using the two streams of information. We computed Yule’s Q statistic (Kun-
cheva and Whitaker, 2003) for the two classifiers with different features. The value of Q can vary between '1
and 1, with Q taking a value of 0 for statistically independent classifiers. Classifiers that tend to recognize the
same samples correctly will thus have positive values of Q. The value of Q for classifiers using lexico-syntactic
(true transcripts) and prosodic evidence is 0.85, indicating that the outputs of the two classes are highly cor-
related. This also explains the relatively small improvement (0.7%) when the prosodic features are added to the
classifier using only lexical and syntactic cues. On the other hand, the Q value between recognized transcripts
and prosodic cues is 0.64, which in turn can be attributed to the higher improvement (2.8%) when prosodic
features are added to the recognition output.

The DA tagging experiments reported on ASR output were performed on the entire test set for consistency
across experiments. Our primary motivation was to evaluate the contribution of our intonation model when
used with noisy text. We were not concerned with tuning the recognizer to obtain the best performance. How-
ever, it is easy to see that the DA tagging accuracy is directly related to the WER of the recognition system.
For example, the DA tagging accuracy on a subset of SWBD-DAMSL utterances with 22.0% WER was
64.6%, in comparison with 52.3% accuracy on the entire test set with 34.4% WER.

The proposed use of dialog context from lexical, syntactic and prosodic cues of previous utterances per-
forms well in comparison with previous work (Stolcke et al., 2000) that used the entire conversation for offline
optimal decoding. On the SWBD-DAMSL corpus, Stolcke et al. (2000) achieved DA tagging accuracy of

Table 9
Dialog act tagging accuracies (in %) using preceding context. current utterance refers to lexical + syntactic + prosodic cues of the current
transcribed utterance. Next utterance refers to the lexical + syntactic + prosodic cues from the succeeding utterance and recognized
utterance refers to utterance hypothesized by ASR.

Cues used Maptask SWBD-DAMSL

12 moves 42 tags 7 tags

Current utterance 66.6 70.4 82.5
Current utterance + 1 next utterance 67.4 71.4 82.8
Current utterance + 2 next utterances 67.3 71.4 82.7
Current utterance + 3 next utterances 67.0 71.3 82.6
Recognized utterance + 3 next utterances – 56.1 70.7
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71.0% with a bigram discourse model on true transcripts, while our framework achieves 72.0% accuracy. The
best accuracy of 70.1% reported on the Maptask corpus also compares favorably to previous work (Carletta
et al., 1997) reported on this corpus. The results indicate that exploiting discourse history information through
actual lexical, syntactic and prosodic evidence is as good as representing them through a dialog act discourse
model. Further, such a discourse context is limited to about 3 previous utterances. Adding further context
does not offer additional knowledge in predicting the dialog act tag of the current utterance.

11. Conclusion and future work

We presented a maximum entropy discriminative model that jointly exploits lexical, syntactic and prosodic
cues for automatic dialog act tagging. First, we presented a novel representation scheme for exploiting the
intonational properties associated with certain dialog act categories. The n-gram feature representation of
the prosodic contour, coupled with the maximum entropy learning scheme is effective for the task of distin-
guishing dialog acts based on intonation alone. The proposed feature representation outperforms conven-
tional techniques such as extracting representative statistics such as mean, slope, variance, etc., from the
acoustic correlates of prosody. It also supports the suprasegmental theory of prosody that advocates a sequen-
tial or continuous model of acoustic correlates over longer durations. Specifically, the n-gram feature repre-
sentation resulted in an absolute improvement of 6.4% over using the acoustic correlates used in most
previous work (Shriberg et al., 1998; Stolcke et al., 2000).

We also demonstrated the use of preceding context in terms of lexical, syntactic and prosodic cues from
previous utterances for facilitating online DA tagging. Our maximum entropy framework approximates the
previous dialog act state in terms of observed evidence and hence is not limited to offline DA classification
that uses the entire conversation during the decoding process. Such a scheme also offers more robustness com-
pared to greedy decoding procedures, which use a discourse model over DA tag predictions at each state. The
proposed maxent model achieves DA tagging accuracy of 72% on the SWBD-DAMSL corpus, comparable to
the 71% accuracy reported in Stolcke et al. (2000) using offline optimal decoding with a discourse model. Thus,
the proposed framework can be used in a variety of speech applications that require online decoding of DA
tags.

The methods and algorithms presented in this work were supervised. We plan to investigate unsupervised
classification of dialog acts with the help of intonation as part of our future work. Another limitation of the
current work is that we assume the knowledge of utterance boundaries for DA tagging. The problem of auto-
matic sentence boundary detection has been well addressed in the literature and we intend to evaluate our
framework on boundaries hypothesized by such a detector. Finally, the HMM-based framework and maxi-
mum entropy model (with left context) for DA tagging can be applied directly to ASR lattices and thus
can enrich the lattices. Such an enriched lattice could be potentially used in applications such as speech-to-
speech translation (Rangarajan Sridhar et al., 2008a; Rangarajan Sridhar et al., 2008b). We plan to perform
DA tagging on ASR lattices as part of future work.
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Gravano, A., Benus, B., Chávez, J., Hirschberg, Wilcox, L., 2007. On the role of context and prosody in the interpretation of okay. In:

Proceedings of ACL, Prague, Czech Republic.
Haffner, P., 2006. Scaling large margin classifiers for spoken language understanding. Speech Communication 48 (iv), 239–261.
Hamaker, J., Deshmukh, N., Ganapathiraju, A., Picone, J., 1998. Resegmentation and transcription of the SWITCHBOARD corpus. In:

Proceedings of Speech Transcription Workshop.
Hirschberg, J., Litman, D., 1993. Empirical studies on the disambiguation of cue phrases. Computational Linguistics 19 (3), 501–530.
Hirschberg, J., Nakatani, C., 1998. Acoustic indicators of topic segmentation. In: Proceedings of the International Conference on Spoken

Language Proc., pp. 976–979.
Ji, G., Bilmes, J., 2005. Dialog act tagging using graphical models. In: Proceedings of ICASSP.
Joshi, A., Schabes, Y., 1996. Tree-adjoining grammars. In: Salomaa, A., Rozenberg, G. (Eds.), Handbook of Formal Lanaguages and

Automata. Springer-Verlag, Berlin.
Jurafsky, D., Bates, R., Coccaro, N., Martin, R., Meteer, M., Ries, K., Shriberg, E., Stolcke, A., Taylor, P., Van Ess-Dykema, C., 1997.

Automatic detection of discourse structure for speech recognition and understanding. In: Proceedings of ASRU, Santa Barbara, CA,
pp. 88–95.

Jurafsky, D., Bates, R., Coccaro, N., Martin, R., Meteer, M., Ries, K., Shriberg, E., Stolcke, S., Taylor, P., Van Ess-Dykema, C., 1998.
Switchboard discourse language modeling project report, Center for Speech and Language Processing, Johns Hopkins University,
Baltimore, MD, Technical Report Research Note 30.

Jurafsky, D., Shriberg, E., Fox, B., Curl, T., 1998. Lexical, prosodic, and syntactic cues for dialog acts. In: Proceedings of the ACL/
COLING Workshop on Discourse Relations and Discourse Markers, Montreal, Canada, pp. 114–120.

Kuncheva, L.I., Whitaker, C.J., 2003. Measures of diversity in classifier ensembles. Machine Learning 51, 181–207.
Lavie, A., Levin, L., Qu, Y., Waibel, A., Gates, D., Gavalada, M., Mayfield, L., Taboada, M., 1996. Dialogue processing in a

conversational speech translation system. In: Proceedings of ICSLP, pp. 554–557.
Liu, Y., Shriberg, E., Stolcke, A., 2003. Automatic disfluency identification in conversational speech using multiple knowledge sources. In:

Proceedings of the Eurospeech, Geneva, pp. 957–960.
Liu, Y., Shriberg, E., Stolcke, A., Hillard, H., Ostendorf, M., Harper, M., 2006. Enriching speech recognition with automatic detection of

sentence boundaries and disfluencies. IEEE Transactions on Audio, Speech and Language Processing 14 (5), 1526–1540.
Mrozinski, J., Whittaker, E.W.D., Chatain, P., Furui, S., 2006. Automatic sentence segmentation of speech for automatic summarization.

In: Proceedings of ICASSP, vol. 1, pp. 14–19.
Murray, G., Renals, S., Moore, J., Carletta, J., 2006. Incorporating speaker and discourse features into speech summarization. In:

Proceedings of HLT-NAACL, New York City, USA.
O’Connor, J.D., Arnold, G.F., 1973. Intonation of Colloquial English, second ed. Longman.
Pierrehumbert, J., 1980. The Phonology and Phonetics of English Intonation. Ph.D. Thesis, MIT.
Rangarajan Sridhar, V.K., Bangalore, S., Narayanan, S. Dec. 2006. Acoustic-syntactic maximum entropy model for automatic prosody

labeling. In: Proceedings of IEEE/ACL Spoken Language Technology, Aruba.
Rangarajan Sridhar, V.K., Bangalore, S., Narayanan, S., 2007. Exploiting prosodic features for dialog act tagging in a discriminative

modeling framework. In: Proceedings of InterSpeech, Antwerp.
Rangarajan Sridhar, V.K., Bangalore, S., Narayanan, S., 2007. Exploiting acoustic and syntactic features for prosody labeling in a

maximum entropy framework. In: Proceedings of NAACL-HLT.
Rangarajan Sridhar, V.K., Bangalore, S., Narayanan, S., 2008. Enriching spoken language translation with dialog acts. In: Proceedings of

ACL.
Rangarajan Sridhar, V.K., Bangalore, S., Narayanan, S., 2008. Factored translation models for enriching spoken language translation

with prosody. In: Proceedings of Interspeech, Brisbane, Australia.
Reithinger, N., Engel, R., Kipp, M., Klesen, M., 1996. Predicting dialogue acts for a speech-to-speech translation system. In: Proceedings

of ICSLP, vol. 2, pp. 654–657.
Ries, K., 1999. HMM and neural network based speech act detection. In: Proceedings of ICASSP, vol. 1, pp. 497–500.
Shriberg, E., Bates, R., Stolcke, A., Taylor, P., Jurafsky, D., Ries, K., Coccaro, N., Martin, R., Meteer, M., Van Ess-Dykema, C., 1998.

Can prosody aid the automatic classification of dialog acts in conversational speech? Language and Speech 41 (3–4), 439–487.

V.K. Rangarajan Sridhar et al. / Computer Speech and Language 23 (2009) 407–422 421



Shriberg, E., Stolcke, A., Hakkani-Tur, D., Tur, G., 2000. Prosody-based automatic segmentation of speech into sentences and topics. In:
Speech Communication, No. 32 in Special Issue on Accessing Information in Spoken Audio, pp. 127–154.

Stolcke, A., Ries, K., Coccaro, N., Shriberg, E., Bates, R., Jurafsky, D., Taylor, P., Martin, R., Van Ess-Dykema, C., Meteer, M., 2000.
Dialogue act modeling for automatic tagging and recognition of conversational speech. Computational Linguistics 26 (3), 339–373.

Taylor, P., King, S., Isard, S., Wright, H., 2000. Intonation and dialogue context as constraints for speech recognition. Language and
Speech 41 (34), 493–512.

Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco.
Wu, C.H., Yan, G.L., Lin, C.L., 2002. Speech act modeling in a spoken dialog system using a fuzzy fragment-class Markov model. Speech

Communication 38 (1–2), 183–199.
Xia, F., Palmer, M., Joshi, A., 2000. A uniform method of grammar extraction and its applications. In: Proceedings of Empirical Methods

in Natural Language Processing.
XTAG, 2001. A lexicalized tree-adjoining grammar for English, Tech. Rep., University of Pennsylvania. <http://www.cis.upenn.edu/xtag/

gramrelease.html>.
Yoshimura, T., Hayamizu, S., Ohmura, H., Tanaka, K., 1996. Pitch pattern clustering of user utterances in human–machine dialogue. In:

Proceedings of ICSLP, vol. 2, pp. 837–840.
Zimmermann, M., Liu, Y., Shriberg, E., Stolcke, A., 2005. A* based joint segmentation and classification of dialog acts in multiparty

meetings. In: Proceedings of the IEEE Speech Recognition and Understanding Workshop, San Juan, Puerto Rico, pp. 215–219.

422 V.K. Rangarajan Sridhar et al. / Computer Speech and Language 23 (2009) 407–422

http://www.cis.upenn.edu/xtag/gramrelease.html
http://www.cis.upenn.edu/xtag/gramrelease.html

	Combining lexical, syntactic and prosodic cues for improved online dialog act tagging
	Introduction
	Maximum entropy model for dialog act tagging
	Data
	Features for dialog act classification
	Lexical and syntactic features
	Acoustic-prosodic Acoustic–prosodic features

	Dialog act classification using true transcripts
	Dialog act classification using acoustic prosody
	Related work
	Maximum entropy intonation model
	Comparison with acoustic correlates of prosody

	Dialog act tagging using recognized transcripts
	Dialog act tagging using history
	Dialog act tagging using right context
	Discussion
	Conclusion and future work
	AcknowledgementAcknowledgements
	References


