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Abstract
We present an attention shift decoding (ASD) method inspired
by human speech recognition. In contrast to the traditional auto-
matic speech recognition (ASR) systems, ASD decodes speech
inconsecutively using reliability criteria; the gaps (unreliable
speech regions) are decoded with the evidence of islands (reli-
able speech regions). On the BU Radio News Corpus, ASD pro-
vides significant improvement (2.9% absolute) over the baseline
ASR results when it is used with oracle island-gap informa-
tion. At the core of the ASD method is the automatic island-
gap detection. Here, we propose a new feature set for automatic
island-gap detection which achieves 83.7% accuracy. To cope
with the imperfect nature of the island-gap classification, we
also propose a new ASD algorithm using soft decision. The
ASD with soft decision provides 0.4% absolute (2.2% relative)
improvement over the baseline ASR results when it is used with
automatically detected islands and gaps.
Index Terms: speech recognition, decoding, attention, island.

1. Introduction
Human-like speech processing has been an inspiration and mo-
tivation for researchers for many years to improve the perfor-
mance of computational models and machine processing appli-
cations. Humans can successfully recognize speech with high
accuracy despite conditions such as highly variable speaking
styles, noise conditions, overlapping sources, etc. In contrast,
the machine performance typically degrades drastically in such
conditions. Existing automatic speech recognition (ASR) sys-
tems have modeled some parts of the human speech recognition
process and found them to be beneficial; signal processing in
the peripheral auditory system is a good example. There are
however other possibilities that offer promise. One of those that
can be considered within ASR systems is the “attention” mech-
anism human use.

Humans can precisely process and interpret complex scenes
in real time despite the tremendous number of stimuli imping-
ing the senses. One of the key enablers of this capability is
the attention mechanism that selects a subset of available sen-
sory information before fully processing all stimuli at once [1].
Only the selectively attended incoming stimuli are allowed to
progress through the cortical hierarchy for high-level process-
ing to recognize the details of the stimuli. Thus, it is believed
that humans process a scene nonconsecutively in a selective
way. In addition to this, the experiments in [2] have shown that
words segmented from running speech are often unintelligible
even for humans, and they become intelligible when they are
heard in the context of an utterance. Also, the experiments in
[3] showed that humans use a short-term memory buffer (about
1-2 sec long) which when injured causes sentence processing
difficulty. These experiments indicate that i) humans use con-
text information while decoding speech, ii) humans use a buffer
that stores a string of words while recognizing individual words
within a sentence. Based on the attention theory and supporting
experimental findings, it is believed that humans first process
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and recognize salient or prominent parts of speech. Then they
finalize recognition of non-salient parts of speech using the con-
textual information together with their segmental properties.

Prior research that has focused on the notion of attention
in speech understanding dates back to Hearsay system [4]. The
Hearsay speech understanding system is one of the early works
which proposed to resolve uncertainty using many knowledge
sources in a selective structure [4]. One of the limitations of
the Hearsay system is that it was rule-based and it has not been
implemented within the state-of-the art machine learning frame-
work. Human like non-consecutive speech recognition has been
the motivation of some other work in the past. In [5], an island-
driven continuous speech recognition system that uses word
spotting and word verification was proposed. The system de-
scribed in [5] first detects a noun as an island in a small vocabu-
lary continuous speech and then expands the island by verifying
neighboring words predicted by a word pair grammar until all
parts of speech were filled. Island-driven search technique has
been applied to handwriting recognition in [6, 7], and parsing
in [8]. However, [6, 7, 8] followed a different approach than
[5] and used reliable parts of signal (called as island) to deter-
mine unreliable parts of signal (called gaps). Recently, the idea
of island of reliability driven search was applied to continuous
speech recognition in [9], and it was concluded that the speech
recognition performance was highly dependent on the accuracy
of automatic detection of islands of continuous speech.

In this work, we explore the possibility of improving au-
tomatic speech recognition performance by using a human
like attention shift decoding (ASD) approach. The presented
method builds on the ideas proposed in [6, 9]. The method
first finds the islands of continuous speech, and then recog-
nizes them. The islands consist of reliable regions of speech
for an automatic speech recognizer. Then, the islands are ex-
panded by verifying the neighboring words using a statistical
language model within a lattice search algorithm. Thus, the al-
gorithm uses neither left-to-right nor right-to-left consecutive
search paradigm as in the conventional ASR systems. It starts
decoding from the islands of the speech and then fills in the gaps
using the contextual information to make a selection amongst
the word hypotheses obtained from the segmental features.

The main contributions of the paper are as follows: as men-
tioned earlier, the performance of an attention shift decoding
algorithm highly depends on the automatic detection of islands
in continuous speech with high accuracy. Hence, one of the
main focuses of the paper is to explore the parameters that will
lead us to achieve high island detection accuracy. Here, we pro-
pose a new set of features that is inspired by both human and
machine recognition of speech for detection of islands. In addi-
tion to this, we propose a novel attention shift decoding method
using soft decision to cope with the imperfect nature of island
detection. Finally, we present continuous speech recognition
experiments and results with attention shift decoding using both
soft and hard decision for completeness.
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Figure 1: Block diagram of Attention Shift Decoding Method

The paper is organized as follows: the ASD method is ex-
plained in Section 2 followed by the automatic island detection
in Section 3. The experimental results and conclusions are pre-
sented in Sections 4 and 5, respectively.

2. Attention Shift Decoding
Here, we present an attention shift decoding method that de-
codes speech nonconsecutively based on reliability criteria in-
spired by human speech recognition. The block diagram of the
ASD system is shown in Fig. 1. The method first decodes each
speech utterance using an automatic speech recognizer and pro-
vides a word lattice output in addition to the 1-best sentence
hypothesis for each utterance. A word lattice may contain a
large number of competing word hypotheses; hence they are
transformed to word confusion networks (CN) to easily obtain
the competing words for each time interval [10]. A word confu-
sion network for a sample utterance together with its transcrip-
tion (TRA) and the ASR 1-best output (HYP) is illustrated in
Fig. 2. In a CN, the words in each time interval or slot (all
of the arcs between two neighbor nodes) are sorted based on
the normalized posterior probability as shown in Fig. 2. The
top words from each time interval form the 1-best output of the
ASR. Then, the correctly recognized words form islands, and
the incorrectly recognized words form gaps. After identifying
islands and gaps for an utterance, the gaps are filled by decod-
ing the utterance with the evidence of neighboring islands. As
mentioned before, we propose a novel ASD method using soft
decision. For sake of clarity, we first present ASD method using
hard decision [9].
2.1. ASD Using Hard Decision

The method first detects islands for an automatic speech rec-
ognizer, and finalizes the recognition of these reliable words
by pruning out the alternative hypotheses for the island words.
For example, in Fig. 2, in the second time interval only the
top hypothesis (the arc that carries word give) will be kept by
pruning out the other three word hypotheses since this is an is-
land. In other words, the recognition of island words is final-
ized, and they cannot be altered in the later steps. At this stage,
the hypotheses for the gaps are left intact. Next, the new pruned
confusion networks are re-scored with a language model (LM).
After re-scoring, the gap words carry new LM scores that are
based on the island words; hence it is believed to be more accu-
rate. Finally, the 1-best recognition output is obtained using the
new LM scores together with the normalized posterior probabil-
ities from the original confusion network since they are intact.

2.2. ASD Using Soft Decision

At the heart of the ASD method is the automatic island-gap de-
tection, which is an inherently challenging problem. Usually
the island-gap detectors are prone to errors, hence using a hard
decision by taking the island-gap detector output as binary de-
cision and pruning the confusion network accordingly may not
benefit enough from ASD. Thus, we propose an alternative ASD
scheme using soft decision to deal with the imperfect nature of
automatic island detection.

The island-gap detector is designed such that it returns the
posterior probability of the top word hypothesis in a time slot
being island given the features; i.e., P (I|F ) where I is the is-

Figure 2: Sample word confusion network with islands and gaps

land label, F is the features explained in Section 3. Then, for
the other alternative word hypotheses in the same time slot, the
probability of being island is computed as 1−P (I|F ); i.e., the
more likely the top word is an island, the less likely the alterna-
tive words in the same slot can be an island (the correct word).
We enrich the confusion networks by embedding a new score of
island by modifying the standard ASR equation such as:

W∗ ≈ arg max
W

P (A|W)AS .P (W)LS .P (I|F)IS (1)

where W stands for the word sequence, P (A|W) is the acous-
tic model score with scale AS, P (W) is the language model
score with scale LS, and IS is the island scale.

As discussed before this is a second-pass decoding, hence
instead of acoustic model score the normalized posterior scales
are used. Enriching the confusion network by adding an island
score does nothing but re-ranking the hypotheses in each time
slot based on the combined posterior and island scores; i.e., for
simplicity consider that the posterior and the island scales are
equal: AS = IS in Eq. 1. In other words, if a first-best word
has high probability of being island then its posterior score will
be boosted, while the alterative words in the same slot will be
penalized, otherwise the top word will be penalized while candi-
dacy of the alternative words in the same slot will be promoted.

In our oracle experiments, where it is assumed that the is-
lands and gaps are known perfectly, i.e., P (I|F ) = 1 for the
islands and P (I|F ) = 0 for the gaps, the soft decision becomes
similar to hard decision with one difference: for the islands the
alternative words in the same time slot are going to be pruned
as in the hard decision; for the gaps the top word hypothesis is
going to be also pruned since P (I|F ) = 0, while the remain-
ing alternative words in a time slot will be left intact, which is
different than the one in the hard-decision.

3. Automatic Island Detection
At the heart of the ASD method is the island detection. The goal
is to detect whether the top word hypothesis in each time slot in
a confusion network is island or not. Here, we propose a new
set of features for the automatic island-gap detection inspired
by both human and machine speech recognition. First, we sum-
marize some key factors taking place in human word recogni-
tion which also lead us to select some features in our island-gap
classifier. The references and a review of the research on spoken
word recognition can be found in [11]. It is not surprising that
there is some commonality between the factors affecting both
human and machine recognition of speech. When it is applica-
ble, these similarities are addressed as this section evolves.

Successful human communication depends on word recog-
nition [11]. There is no doubt that segmental features provide
information about which sounds are in an utterance. For fluent
speakers of a language, the words are usually stored in long-
term memory, and hence lexical access is an essential part of
word recognition [11]. Segmental and suprasegmental informa-
tion are extracted from the signal and used in lexical access to
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activate a set of candidate words in lexicon [11].The factors af-
fecting lexical access and word activation are as follows: It was
found that segmental mismatch is more disruptive of lexical ac-
cess in word initial than in word final position since words with
initial mispronunciation have to recover from a poor start, while
the words with final mispronunciation can be already highly ac-
tivated before the mismatch occurs [11]. This is also valid for
machine recognition of speech from the perspective of search
paradigm. Hence, we compared the first (f syl) and last sylla-
ble (l syl) of the first-best and second-best word hypothesis in a
time slot; i.e., if the first syllables of the top two words are the
same then f syl=1, otherwise f syl=0.

Second, the mismatched segments in short words appear to
be more disruptive than the ones in long words [11]. Hence,
we used three word length measures to capture the informa-
tion for the top word hypothesis in a time slot: word duration
in milliseconds (duration) (obtained from the CN), the number
of phones (n ph) and syllables (n syl) in the word. Syllabifi-
cation software from NIST [12] is used for syllabifying words
using their phoneme strings. The approximate phone duration
(ph dur) is also used (word duration in milliseconds divided by
the number of phones). Third, lexical neighbors play a role in
word recognition; the presence or absence of similar sounding
words influences the effect of segmental mismatch [11]. Thus,
we captured the distance information among the set of word hy-
potheses in a time slot. The phone based distance scores are
computed using the standard Levenshtein distance. We com-
puted minimum (min dist) and maximum (max dist) phone dis-
tance in a time slot after computing phone distances between
all possible pairs of words in a time slot. We also computed the
phone distance between the first-best and second-best hypothe-
sis words in a time slot (compete distance: comp dist), and the
normalized compete distance, (n dist: compete distance divided
by the number of phonemes in the first-best word).

When the number of similar sounding words increases the
word recognition becomes harder and gets delayed for humans
[11]. Similarly, the number of word hypotheses within a time
slot is also a clear indication of the level of difficulty an ASR is
having. For example, it was observed that usually when there is
an out-of-vocabulary (OOV) word in a sentence, the ASR sys-
tem makes mistakes and usually the number of hypotheses in
these time slots is larger. Hence, we used the number of alter-
native word hypotheses within a time slot (ncomp) to capture
the number of candidate words for ASR.

The word frequency also affects lexical activation; i.e., hu-
mans recognize more accurately the words they use frequently
[11]. This is also true for the ASR systems; the words which
occur more frequently usually have more data samples during
training hence may be recognized more accurately. From the
LM, we used unigram (unigram) probability of the top hypothe-
sis word in a time slot to capture the word occurrence frequency.

Suprasegmental information is another cue used during lex-
ical access by humans. English listeners appear to be sensitive
to whether a syllable is prominent (stressed) or not since they
believe that content words in English tend to begin with promi-
nent syllables [11]. Similarly, content words are more likely
to be recognized correctly than function words in ASR. Hence,
we used prominence (prom) of the top word hypothesis in a
time slot as a feature for island-gap classifier. For this, we used
our previously proposed top-down attention model that can de-
tect the prominent words in speech with high accuracy from the
acoustic signal [13]. As shown in Fig 1, the acoustic signal is
used to extract prominence of the top word hypothesis in each
slot using the boundaries extracted from CN.

Some of the ASR output scores are also inevitable parts of
the island-gap classifier to measure how confident ASR is about
the word hypotheses.The following features are used from the
confusion networks: normalized posterior probability (post),

normalized likelihood score (acoustic score per frame, (as),
language model score (ls), To measure the uncertainty within
a time slot, we also used entropy (entropy) of the probability
distribution of the words within the time interval and compet-
ing posterior probability (comp post: the ratio between poste-
rior probability of the first-best and the second-best hypotheses
within a time interval).

During LM scoring, when there is no entry in the LM for
the higher order statistics of a word sequence, the speech rec-
ognizer uses the available lower order statistics. Hence, this is
an evidence that shows how reliable the LM score is. The LM
back-off values (NG) are printed at the lattice output; i.e., if LM
score is as a result of 3-gram statistics then NG=2, if it is as a re-
sult of unigram statistics then NG=0. We used the following LM
back-off related parameters: value of NG for the top hypothe-
sis word in the time interval (NG); distance to max (max NG)
and min (min NG): the difference between the value of NG that
belongs to the top hypothesis and the maximum/minimum NG
over all the words in a time slot; range of NG (range NG: the
difference between the maximum NG and minimum NG over
all the words in a time slot).

4. Experiments and Results
The Boston University Radio News Corpus (BU-RNC) which
consists of 3 hours read speech from 6 speakers (3 female, 3
male) was used in the experiments [14]. The database has man-
ually labeled pitch accent tags which are only used during train-
ing for the prominence detection (using only training set). After
eliminating story repetitions from the same speaker, the remain-
ing data was split into five folds each with 50% train (14.5K
words), 30% development (8.6K words), and 20% test (5.9K)
sets. The Hidden Markov Model Toolkit (HTK) is used for the
baseline experiments [15]. We adapted context-dependent tri-
phone acoustic models trained from the WSJ and TIMIT tasks
with data from the training partitions of the BU-RNC using
the MAP and MLLR algorithms. The adapted acoustic mod-
els were gender specific (not speaker dependent). The 39-
dimensional standard MFCC features are used as acoustic fea-
tures. A standard back-off trigram language model with Kneser-
Ney smoothing trained with the data from the CSR project was
used. The language model vocabulary contained about 20K
words. The OOV rate on the development and test sets were
3.8% and 3.7% respectively. The development set was used for
tuning the scale parameters. The ASR 1-best hypothesis output
is used as the baseline result. Also, lattices created using HTK
are transformed to word confusion networks using the SRILM
toolkit. The Wilcoxon signed rank test is used to report the con-
fidence level in terms of significance values (p-values) when-
ever we make comparisons.

The development and train sets are used for training island-
gap classifier. A 3-layer neural network is used as a classifier
for island-gap detection. The neural network had D inputs,
(D + N)/2 hidden nodes and N output nodes, where D is
the length of feature vector, and N = 2 since this is a two
class problem. Then, the information gain criteria is used to se-
lect the features using a forward algorithm; i.e., more features
are added until the classifier accuracy starts to decrease. In Ta-
ble 1, the features are ranked based on the information criteria.
Among the features, entropy and prominence were the most and
the least informative features, respectively, about the island-gap
classes. This indicates that even though prominence is an im-
portant cue for humans, since previous stages of ASR ignore
this cue, prominence has no information about the reliability of
the created word hypotheses. The number of selected features
that gives the highest accuracy for each fold varied from nine-
teen to twenty two. In Table 2, the island-gap detection results
are presented. The chance level for the development and test
sets were 79.5% and 78.4% respectively. With the proposed
features, we achieved an overall 84.7% and 83.7% accuracy on
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Table 1: Island-Gap Detection Features Ranked by Information
Rank Feature Rank Feature

1 entropy 12 as

2 posterior 13 n ph

3 comp post 14 min dist

4 ls 15 f syl

5 ncomp 16 ph dur

6 unigram 17 range NG

7 NG 18 n syl

8 max dist 19 duration

9 max NG 20 min NG

10 comp dist 21 l sylv

11 n dist 22 prom

Table 2: Island-Gap Detection Results
System Overall Acc Island Acc Gap Acc

Dev. Test Dev. Test Dev. Test
Predic. 84.7 83.7 93.9 94.5 48.9 44.9

the development and test sets, which are well above the chance
level. The results are significantly higher than the previously re-
ported results on island-gap detection; 63.47% island-gap clas-
sification accuracy was obtained in [9], however they used a
different database.

In Table 3, the baseline results using the standard ASR 1-
best output are presented. 18.6% and 18.4% word error rates
(WER) were obtained on the development and test sets, respec-
tively. We also tried rescoring the word confusion networks
with the LM without using island-gap information, and this pro-
vides only 0.1% improvement over the baseline in both devel-
opment and test sets as shown in Table 3.

In Table 4, the results obtained with using ASD with hard
decision are presented. In the oracle experiments, where it is
assumed that all the islands and gaps are known perfectly, the
WER is reduced to 15.9% and 15.8%, providing 2.7% and 2.6%
absolute improvements over the baseline in development and
test sets, respectively. When the predicted island-gap informa-
tion is used from the classifier, we obtained 18.2% and 18.0%
WER on the development and test sets, respectively. This pro-
vides 0.4% (2.2% relative) improvement over the baseline in
both sets, which is significant at p ≤ 0.001.

In Table 5, the results obtained with using ASD with soft
decision are presented. In the oracle experiments, the WER is
further reduced to 15.4% and 15.5%, providing 3.2% and 2.9%
absolute improvements over the baseline in development and
test sets, respectively. The improvement over the hard decision
oracle results is attributed to the pruning of the top word hy-
pothesis, which is wrong, for gaps. When the automatically
detected island-gap information is used from the classifier, we
obtained 18.2% and 18.0% WER on the development and test
sets, respectively. Similar to hard decision, this provides 0.4%
(2.2% relative) improvement over the baseline in both sets, and
the improvement is significant at p ≤ 0.001. We observed that
ASD with soft decision performed better than using hard deci-
sion with the automatically detected islands, however the im-
provement was not significant enough.

5. Conclusion
We presented an attention shift decoding method inspired by
human speech recognition. In contrast to traditional ASR sys-
tems, ASD decodes speech inconsecutively using reliability cri-
teria; the gaps (unreliable speech regions) are decoded with the
evidence of islands (reliable speech regions). In the experiments
with oracle information, ASD provides significant improvement
(2.9% absolute) over the baseline ASR results confirming the
promise of the method. At the heart of the ASD method is

Table 3: The Baseline ASR
System Dev. WER Test WER
Baseline 18.6 18.4

CN Rescoring 18.5 18.3

Table 4: The Results Using ASD with Hard Decision
System WER Improvement Relative Improv.

Dev. Test Dev. Test Dev. Test
Oracle 15.9 15.8 2.7 2.6 14.5% 14.1%
Predic 18.2 18.0 0.4 0.4 2.2% 2.2%

Table 5: The Results Using ASD with Soft Decision
System WER Improvement Relative Improv.

Dev. Test Dev. Test Dev. Test
Oracle 15.4 15.5 3.2 2.9 17.2% 15.8%
Predic 18.2 18.0 0.4 0.4 2.2% 2.2%

the automatic island-gap detection. Hence, we proposed a new
feature set for island-gap detection and obtained 83.7% accu-
racy which is significantly higher than previously reported re-
sults. To cope with the imperfect nature of island-gap classifi-
cation, we proposed a new ASD algorithm using soft decision
rather than hard decision. The ASD with soft decision provided
2.2% relative improvement over the baseline which is signifi-
cant (p ≤ 0.001). As part of future work, we plan to explore
more features to improve the island-gap detection accuracy.
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