
DECISION LEVEL COMBINATION OF MULTIPLE MODALITIES FOR RECOGNITION
AND ANALYSIS OF EMOTIONAL EXPRESSION

Angeliki Metallinou, Sungbok Lee and Shrikanth Narayanan

Department of Electrical Engineering, University of Southern California,
Los Angeles, CA 90089-2560

metallin@usc.edu, sungbokl@usc.edu, shri@sipi.usc.edu

ABSTRACT

Emotion is expressed and perceived through multiple modalities. In
this work, we model face, voice and head movement cues for emo-
tion recognition and we fuse classi ers using a Bayesian framework.
The facial classi er is the best performing followed by the voice
and head classi ers and the multiple modalities seem to carry com-
plementary information, especially for happiness. Decision fusion
signi cantly increases the average total unweighted accuracy, from
55% to about 62%. Overall, we achieve average accuracy on the
order of 65-75% for emotional states and 30-40% for neutral state
using a large multi-speaker, multimodal database. Performance anal-
ysis for the case of anger and neutrality suggests a positive correla-
tion between the number of classi ers that performed well and the
perceptual salience of the expressed emotion.

Index Terms�— Multimodal Emotion Recognition, Hidden
Markov Model, Bayesian Information Fusion, Perceptual Salience

1. INTRODUCTION

Emotional expression is a multimodal process. The affective state
may be transmitted by one or more of various channels such as face,
voice, speech content, body movement and posture. Moreover, emo-
tion is perceived by combining those channels that may carry com-
plementary, supplementary or even con icting information. In [1]
it is stated that the semantic content of a message contributes only
7% of the overall impression while the vocal and facial modalities
contribute 38% and 55% respectively. Therefore, an emotion recog-
nition system that takes into account multiple modalities may be
able to achieve robust emotion recognition performance, even un-
der noisy conditions or when subtle emotions are expressed. The
widespread use of cameras and microphones facilitates the use of
audio-visual information for emotion recognition applications.

The state of the art and challenges faced in developing an affect-
sensitive multimodal human computer interface have been discussed
in [2]. Multimodal research on emotion recognition has focused
mostly in combining the face and voice modalities [3] [4]. Re-
searchers have also used face images with markers to minimize the
noise introduced by automatic facial feature detection [5],[6]. In [3]
a multi-stream HMM is used for audio-visual emotion recognition.
In terms of decision fusion, [7] provides an overview of existing
classi er fusion methods, while in [8] authors propose a Bayesian
framework for fusion.
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In this study, we use a multimodal database and model the multi-
ple channels with variable levels of detail. During emotional speech,
the voice and the lower face are modulated by both speech and emo-
tion. We take into account the speech-related modulations by explic-
itly modeling articulation. For the upper face and the head move-
ments we use coarser modeling. In order to combine the individual
classi ers we apply a Bayesian framework for decision-level fusion.
We enrich the Bayesian fusion approach, with in-domain informa-
tion so as to select the informative modalities and improve neutrality
detection. Fusion at the decision level enables us to intrepret the be-
havior of different classi ers, in terms of recognition performance,
and to gain insights about the role of multiple modalities during emo-
tional expression. Finally, we examine the relation between the num-
ber of classi ers that perform well and the perceptual salience of an
utterance in the valence-activation domain.

Results indicate that face is the best performing modality fol-
lowed by voice and head motion. Face and voice seem to carry com-
plementary information, especially for happiness. The orientation
of the head seems to convey important emotional information, espe-
cially for sadness. Fusion of those classi ers signi cantly improves
the overall performance from 55% to about 62%. Neutrality is the
hardest class to recognize, however the proposed extensions to the
Bayes fusion framework result in signi cant improvement in neu-
trality classi cation. Overall, we achieve average accuracies of the
order of 65-75% for emotional states, 30-40% for neutral state and
about 62% for total unweighted performance, using a large multi-
speaker and multimodal database.

2. METHODOLOGY
2.1. Database

In this study, we use the Interactive Emotional Dyadic Motion Cap-
ture (IEMOCAP) database. This database contains approximately
12 hours of audiovisual data from ve mixed gender pairs of ac-
tors, male and female [9]. IEMOCAP contains detailed face and
head information obtained from motion capture as well as video,
audio and transcripts of each session. Two techniques of actor train-
ing were used; scripts and improvisation of hypothetical scenarios.
The goal was to elicit emotional displays that resemble natural emo-
tional expression. Dyadic sessions of approximately 5 minute length
were recorded and were later manually segmented into utterances.
Each utterance was annotated by at least 3 annotators into categor-
ical (anger, happiness, neutrality, etc) as well as dimensional tags
(valence, activation, dominance). The annotations are a result of the
overall impression of an utterance, since annotators considered au-
dio, video, speech content and the interaction context. Therefore,
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the multimodal expression of emotion was taken into account both
during the collection and the annotation of the database.

We examine all 10 available speakers and use multimodal infor-
mation; the face and head motion capture data, the voice waveform
and the phoneme-level transcripts. We examine classes of anger,
happiness, excitation, neutrality and sadness. We have merged the
classes of happiness and excitation into a single class which we will
refer to as happiness. All utterances examined have been tagged by
at least three annotators across which there was majority consensus
regarding the emotional tag.

2.2. Modeling Individual Modalities
2.2.1. Face Modality

The IEMOCAP database contains detailed facial marker informa-
tion, as illustrated in gure 1. Face markers are normalized for head
rotation and translation and the nose marker is de ned as the local
coordinate center of each frame. We use information from 46 facial
markers, the (x,y,z) coordinates. In a companion paper submitted to
ICASSP10, we examine in detail the facial information stream and
here we apply these results [10].

Fig. 1. Face and head marker positions and separation of face into
upper and lower facial regions

Speaker face normalization smooths individual facial character-
istics, that are unrelated to emotion. Our speaker normalization ap-
proach consists of nding a mapping from the individual average
face to the general average face. This is achieved by shifting the
mean value of each marker coordinate of each speaker to the mean
value of that marker coordinate across all speakers. We use Prin-
cipal Feature Analysis (PFA), to extract the face features [11]. This
method performs Principal Component Analysis (PCA) as a rst step
and selects features (here marker coordinates) so as to minimize the
correlations between them. We average the neighboring facial mark-
ers from 46 to 28, perform PFA, and nally normalize the selected
face coordinates. We select 30 features, because the PCA transfor-
mation explains more than 95% of the total variability, and we ap-
pend the rst derivatives, resulting in a 60-dim representation[10].

In order to reduce the speech-related variability, we explicitly
model articulatory movements. We use the concept of a viseme
which is the lip shape during the voicing of a phoneme. Here, we
use a phoneme to viseme mapping resulting in 14 visemes from the
42 English phonemes [10],[12]. Data corresponding to each viseme
are grouped using the available phoneme-level transcriptions. We
train a Hidden Markov Model (HMM) for each emotional viseme.
During recognition, we condition on the knowledge of the current
viseme and recognize the underlying emotion. For model training,
we use the HTK Toolbox [13].

Alternatively, we split the face into an upper and a lower region,
as shown in Figure 1 and performed feature extraction separately.

The intuition is that upper and lower face movements have low cor-
relation because of different underlying muscles and communicative
functionality and that the lower face is much more affected by artic-
ulation. We extract 20 PFA features from the lower face and 15 fea-
tures from the upper face. The number of features is selected so that
at least 95% of the total data variance is explained. After appending
the rst derivatives, we obtain a 40-dim and a 30-dim representation
for the lower and upper face respectively. The lower face is mod-
eled by HMMs trained for each emotional viseme. The upper face
is modeled by Gaussian Mixture Models (GMMs) with no viseme
information, one for each of the examined emotions.

2.2.2. Voice Modality

We extract Mel Filterbank Coef cients (MFB), since they have been
shown to perform better than Mel-Frequency Cepstral Coef cients
(MFCCs) for emotion recognition tasks [14]. We extract the rst
13 MFB coef cients as well as the pitch and energy values. We
also append the rst and second derivatives, resulting in a 45-dim
representation. Speaker normalization is important since it has been
shown that prosodic features such as pitch and energy are speaker
and gender dependent [15]. We normalize pitch and energy values,
using a similar approach used on the face features; we shift the the
mean value of each feature of each speaker to the mean value of that
feature across all speakers. Using the grouping proposed by [14],
we group the data into 7 broad phonetic categories and we train an
HMM for each emotional phonetic category. During recognition,
we condition on the knowledge of the phoneme and recognize the
underlying emotion.

2.2.3. Head Modality

The head features consist of the head translation in the (x,y,z) direc-
tions as well as the head angles (yaw, pitch and roll). Translations are
derived from the nose marker and head angles are computed from all
the markers using a technique based on Singular Value Decomposi-
tion (SVD), as described in [9]. We also compute the rst and second
derivatives of these features, resulting in an 18-dim representation.
We train a GMM for each emotion.

In order to gain intuition about the inportance of these features
for discriminating between emotional classes, we compute the Fisher
Criterion values for each of the head features. Fisher criterion max-
imizes the between class variability and minimizes the within class
variability [16]. According to this analysis the most discriminating
features are the head angles, especially pitch and yaw. This agrees
with our intuition that tilting or lowering of the head often conveys
affect.

2.3. Bayesian Framework for Multimodal Fusion

Using the decisions of each individual classi er, we obtain a his-
togram with the amount of time that an utterance is classi ed as an-
gry, happy, neutral or sad. We can use this histogram to approximate
the probability that an utterance belongs to each of the emotional
classes [17].

Examining and fusing the modalities at the decision level en-
ables us to gain intuition about how multimodal cues interplay dur-
ing emotional expression and to incorporate in-domain information
in the decision process. Bayesian statistics provide a systematic way
to combine empirical evidence with prior beliefs and to fuse multi-
ple cues. It is argued that human behavior is close to that predicted
by the bayesian decision theory [18].



The Bayesian fusion framework that we apply is proposed in
[8]. It uses the conditional error distributions of each classi er to ap-
proximate uncertainty about that classi er�’s decision. The combined
decision is the weighted sum of the individual decisions. Given a
problem with K classes and C different classi ers, λi, i = 1, . . . , C ,
we like to infer the true class label ω, given the observation x. As-
suming that for each classi er λi we have a predicted class label fωk,
k = 1, . . . , K, then the true class label can be derived as follows:

P (ω|x) ≈
CX

i=1

KX

k=1

P (ω|fωk, λi)P (fωk|λi, x)P (λi|x)

Probabilities P (ω|fωk, λi) and P (λi|x) are used to weight the
combined decision and can be approximated from the confusion ma-
trix of classi er λi. The probability P (fωk|λi, x) of each predicted
emotion, given a classi er and an utterance x is approximated using
the histogram of the utterance.

During affective communication, some of the modalities de-
cribed may not be emotionally activated, thus considering them
introduces noise instead of boosting the performance. The number
and type of activated modalities may change dynamically between
utterances. In practice, for each test utterance we select only the
activated modalities; those where the probability of the most likely
emotion exceeds a threshold (the histogram ressembles a delta func-
tion) [17].

Neutrality detection is problematic because the neutral class is
ill-de ned and contains diverse expressions. One could de ne neu-
trality as absense of any emotion. Accordingly, instead of trying to
recognize neutrality by assessing whether an observation matches a
neutral probability distribution, we could detect neutrality when the
observation does not match any of the emotional probability distri-
butions. The intuition is that the emotional models are better trained
and more reliable because emotional expressions may be better de-
ned and less diverse than neutrality. Here, we detect neutrality
when none of the modalities examined is emotionally activated.

3. EMOTION RECOGNITION EXPERIMENTS
3.1. Experimental Setup

We organize our emotion recognition experiments using 10-fold
leave-one-speaker-out cross validation. The mean and standard de-
viation of the number of test utterances across the folds is 59 ± 28
angry, 79 ± 25 happy, 56 ± 22 neutral and 62 ± 23 sad utterances.
The presented recognition results are the speaker-independent aver-
ages over the 10 folds. For the individual modality classi ers, we
try various number of mixtures, ranging from 4 to 32, and we report
the best performance per utterance. Majority rule is used to obtain
the utterances-level decision. For the classi er fusion, we compute
the weights on each train set and apply them to the corresponding
test set.

3.2. Results and Discussion

In Table 1 we present the emotion classi cation percentages per ut-
terances for each of the individual modalities. We report the mean
of the 10-fold cross validation. For the total unweighted accuracy
(%UW) we also report the standard deviation. We use the following
notation; f=face, uf=upper face, lf=lower face, v=voice and h=head.
The parentheses next to each model name indicate the number of
gaussian mixtures that were used.

We notice that the face modality has the best performance in
terms of total unweighted accuracy, followed by the voice and the

head. The lower face performs signi cantly better than the upper
face and is almost as good as the total face classi er. This suggests
that the lower face (chin, mouth, cheeks) alone conveys most of the
emotional information. The face and voice modality seem to carry
complementary information for the case of happiness. This might
indicate that when the face portrays obvious expressions of happi-
ness (e.g through a smile) the overal impression of happiness can
be transmitted from the face alone, therefore the voice could be less
emotionally modulated. The head classi er has good performance
for the sad and the neutral class. It seems intuitive that the head
angles (lowering, tilting) are correlated with sadness.

Table 1. Single Modality and Bayes Fusion Classi cation Percent-
ages per utterance for 10-fold leave-one speaker out cross valida-
tions.

single %ANG %HAP %NEU %SAD %UW
f-HMM(16) 57.52 76.98 34.79 53.68 55.74± 5.26
uf-GMM(8) 51.18 74.35 25.84 36.43 46.95± 6.66
lf-HMM(8) 53.35 75.62 36.84 50.93 54.19± 4.76
v-HMM(4) 69.68 21.01 35.23 76.84 50.69± 5.14
h-GMM(16) 39.72 27.04 46.55 53.60 41.72± 7.21
Bayes Fusion %ANG %HAP %NEU %SAD %UW

f+v 67.28 68.68 27.61 78.71 60.57± 4.26
uf+lf+v 74.70 74.01 16.33 84.03 62.27± 3.41
uf+lf+v* 67.78 72.24 32.24 72.33 61.15± 3.62
f+v+h 63.93 63.59 33.26 81.94 60.68± 5.22
f+v+h* 63.87 64.37 41.58 77.35 61.79± 3.96
uf+lf+v+h 69.58 72.18 20.86 84.34 61.74± 3.17
uf+lf+v+h* 68.77 72.52 31.48 76.92 62.42± 3.16

In Table 1 we present the average emotion classi cation percent-
ages per utterances across the 10 folds, obtained from Bayes fusion.
In terms of notation, f+v denotes combination of face and voice clas-
si ers and similarly for the rest modalities. Symbol * denotes that
we also applied modality selection and neutrality detection.

Fusing face and voice improves overall performance from about
55% to 62%. Separately modeling upper and lower face improves
recognition of emotional states but impairs neutrality detection. An
explanation could be that none of the single modalities achieves high
neutrality recognition, thus detecting neutrality is an unreliable deci-
sion according to Bayes fusion. Including the head classi er, which
achieves relatively good neutrality performance, slightly improves
overall performance and especially recognition of neutrality. Our
approach of selecting the activated modalities and detecting neutral-
ity as absense of any emotion, signi cantly improves accuracy of
neutral state while overall performance remains about the same. Our
best performance is on the order of 65-75% for emotional states, 30-
40% for neutral state and about 62% in terms of total unweighted
performance.

An analysis of our best performing approach (uf+lf+v+h*) indi-
cates that the number and type of modalities that are selected varies
greatly across utterances. On average, 32% of the time we select four
modalities, 34% three, 24% two modalities. These trends are consis-
tent across emotions and are indicative of the dynamic and diverse
nature of emotional expression. The percentage of neutral utterances
where none of the classi ers appears emotionally activated is 16%
while this percentage is 7%, 9% and 5% for anger, happiness and
sadness respectively. Also out of all utterances where no classi er
appears emotionally activated, 38% are neutral. This explains the
good performance of our neutrality detection and indicates that rec-
ognizing neutral as a lack of emotion may be a viable approach.



4. MULTIMODAL EMOTION IN THE PERCEPTUAL
DOMAIN

We analyze the behavior of our best performing classi ers, that is
the face and the voice classi er, by computing how many times the
decisions of these classi ers agree with the global utterance tag. The
average percentages across the 10 folds are presented in Table 2.

Table 2. Percentages of each modality agreement with the global
utterance tag.

agree with tag %ANG %HAP %NEU %SAD %TOTAL
f or v 80.78 81.75 53.64 88.87 77.05
f and v 45.75 15.97 12.26 41.80 28.26
f xor v 35.03 65.78 41.39 46.95 48.79

The rst line of this table can be interpreted as the upper bound
of the performance that can be achieved by fusing our face and voice
classi ers. The percentages per emotion follow the same trends as
the classi cation percentages of the previous section. The count is
low for neutrality explaining in part the low classi cation accuracy
of the neutral class. Inability to recognize the emotion using cer-
tain modalities could be attributed to inadequate features and mod-
eling. It may also be the case that the emotion is transmitted by
other modalities, rather than the ones that we examine. Looking at
the lines 2-3 of Table 2, we notice that most of the time less than
2 of the face and voice modalities recognize the emotion. This in-
dicates that classi er fusion is very important so as to amplify the
weaknesses of individual classi ers and resolve cases when not all
modalities are emotionally modulated.

We examine the relation between the perceptual salience of an
utterance and the the number of classi ers that correctly recognize
the emotion of the utterances. Perceptual salience is described by
the valence (positive v.s negative) and activation (calm v.s excited)
ratings. Those properties are rated on scales 1-5 and are averaged
across at least 3 annotators. Low valence (V) denotes negative and
low activation (A) denotes calm. For example, we would expect
angry utterances to correspond generally to high activation and low
valence and neutral utterances to have medium values for both at-
tributes.

We nd that from all angry utterances that are tagged as highly
salient (V<2 and A>4) 82% are recognized as angry by both face
and voice, 18% by one and 0% by no classi ers. These percent-
ages change to (2,1,0) classi ers = (51,37,12)% for utterances in the
perceptual area of medium salience (2≤V<3 and 3<A≤4), and to
(13,43,44)% for utterances in the perceptual area of low salience
(V≥3,A≤3). We notice a clear tendency that the more salient ut-
terances are recognized by more classi ers. This agrees with our
intuition that when the angry emotion is perceived as salient from
the receiver, it is likely that the transmitter strongly modulates both
face and voice expression and therefore it is easier to automatically
recognize anger from both modalities. Similarly, for neutrality, the
percentage of utterances that are recognized by both classi ers in-
creases for utterances towards the center of the perceptual domain
(V and A close to 3). Such tendencies are not supported by our data
for happiness and sadness.

5. CONCLUSION AND FUTUREWORK

In this work, we have examined multimodal expressions of emotion
for the purpose of recognition and analysis. We have modeled face,

voice and head cues with variable levels of detail and used them indi-
vidually or after applying late fusion for emotion recognition. Clas-
si er fusion signi cantly outperforms individual classi ers since it
may resolve cases when not all examined modalities are emotionally
activated or some modalities are noisy. Overall, we achieve average
performance on the order of 65-75% for emotional states, 30-40%
for neutral state and about 62% in terms of total unweighted perfor-
mance.

Possible future directions include taking into account additional
modalities such as content of speech, i.e. detection of emotionally
salient words as well as context of the interaction, i.e past emotional
state. Moreover, as indicated by the difference between the upper
bounds of performance in the previous section and the actual classi-
cation performance, there is further room for improvement as far as
multimodal fusion is concerned. Finally, analyzing the dynamic rela-
tions between the multiple complementary or supplementary modal-
ities during emotional expression is an interesting and challenging
problem.
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