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Abstract    In this report, first we give a survey of the work in plan recognition field, 

including the evolution of different approaches, their strength and weaknesses. Then we 

propose two decision-theoretic approaches to plan recognition problem, which explicitly 

take outcome utilities into consideration. One is an extension within the probabilistic rea-

soning framework, by adding utility nodes to belief nets. The other is based on maximiz-

ing the estimated expected utility of possible plan. Illustrative examples are given to ex-

plain the approaches. Finally, we compare the two approaches presented in the report and 

summarize the work. 

 

 
 
 
 
 
 
 
 



1. Introduction 
 
1.1 The Plan Recognition Problem 
 
The plan recognition problem refers to the task of inferring the plan (or plans) from the 
observed behavior of the actor. The recognition process involves a mapping from the ob-
served action sequence into some plan representation that identifies the goal of the plan. 
Since there might be multiple plans (i.e. hypotheses) available to explain the observa-
tions, the key challenge is to disambiguate among competing hypotheses. 
 
Schmidt, Sridharan and Goodson [1978, 1976] are the first to identify plan recognition as 
a problem in its own right. Their psychological experiments, together with the experiment 
by Cohen, Perrault and Allen [1982] provide evidence that humans do infer the plans and 
goals of other agents and use these hypotheses in subsequent reasoning. 
 
1.2 Assumptions 
 
Clearly, the nature of the plan recognition process will depend on the assumptions of ac-
tion sequence, plan representation and the role the observed agent plays in the recognition 
task. 
 
Cohen, Perrault and Allen [1982] distinguish between two kinds of plan recognition, key-
hole and intended recognition. In keyhole recognition, the observed agent does not at-
tempt to impact the recognition process, as if the recognizer observes the agent through a 
“keyhole”. In intended recognition, the observed agent deliberately performs actions to 
help the recognition. The latter is typical in cooperative environment. Geib and Goldman 
[2001] propose a third class of recognition, adversarial plan recognition. In adversarial 
recognition, the observed agent attempts to thwart the recognition, typically in competi-
tive environment (e.g. computer games). Among the three kinds of plan recognition, key-
hole recognition is the most common, without any assumption of the recognized agent’s 
role in the recognition process. 
 
There is also a wide range of assumptions regarding what the recognizer observes. Many 
approaches assume a fully-observable action sequence, starting from the first action in the 
plan. This assumption is typical in user modeling, where it is natural to assume that a 
software system can observe all the actions the user performs and the order they occur. 
More general approaches allow for holes in the sequence (partially-observable action se-
quence), where some actions may have gone unobserved, or some actions themselves are 
as unobservable, but with some observable effects [Pynadath and Wellman, 1995]. 
 
For generality, this report will focus on keyhole recognition with partially-observable ac-
tion sequence. 
 
 
 



1.3 Previous Work 
 
Kautz and Allen [1986, 1990, 1991] present the first formal theory of plan recognition. In 
their theory, every observed action is part of one or more top-level plans, and the plan 
recognition task is to minimize the set of top-level actions sufficient to explain the ob-
served actions. Hence the recognition problem becomes a nonmonotonic deduction of 
minimal top-level actions. They use McCarthy’s circumscriptive theory for the formal 
description. Plans are represented as plan graphs, with top-level actions as root nodes and 
other actions as nodes depending on higher-level ones. 
 
Kautz and Allen's work takes minimal covering set as a principle and ignores the priors 
of plans. Some plans are inherently more likely than others, given that they all correctly 
explain the observed actions. It is also not clear whether minimal covering set can be a 
principle of abduction, for example, in some domains, two common causes may better 
explain the evidence than a single uncommon one. Since plan recognition involves ab-
duction, it would best be done using probabilistic inference and ranking different hy-
potheses by their probability values. 
 
Charniak and Goldman [1989, 1991, 1993] build the first probabilistic model of plan rec-
ognition. They use a quantifier-free first-order language as representation and belief nets 
for plan inference. The random variables in the belief net are propositions, whereas the 
root nodes are hypotheses about agent’s plan. The posterior probability of each hypothe-
sis is computed by propagating the values from the evidence in the net. Charniak and 
Goldman apply their plan recognition system to understanding a charater’s actions in a 
story. 
 
However, the plan language Charniak and Goldman employ is a predicate-calculus-like 
representation based on collections of actions. The representation is suitable for modeling 
hierarchical action descriptions (i.e. part-of and is-a) as in a story, but it does not support 
many other features of plan representation (e.g. sequences of actions). Huber, Durfee and 
Wellman [1994] use PRS as a general-purpose language for plan specification, which 
supports sequencing, subgoaling, conditional plans, etc. This allows plan recognition re-
uses the same plan representation as that for planning. They give the mapping from PRS 
specification to belief nets, and apply the approach to coordinating multi-agent team. 
 
More recently, Pynadath and Wellman [2000] proposed a plan recognition method that is 
both probabilistic and based on parsing. They represent plan libraries as a probabilistic-
state-dependent grammars (PSDGs). The language they use is more restrictive than prob-
abilistic context-free grammars, but they claim it is more efficient in mapping to dynamic 
belief nets. 
 
Besides the Bayesian probabilistic models mentioned above, there are probabilistic ap-
proaches based on other theories, for example, Carberry [1990] and Bauer [1995] use 
Dempster-Shafer theory in plan recognition to distinguish lack of evidence for a proposi-
tion (i.e. unknown) from knowing evidence against the proposition. 
 



Various plan representation has been utilized in these approaches, such as action taxono-
mies [Kautz & Allen], associative networks [Charniak & Goldman], PRS [Huber, Durfee 
& Wellman], context models [Carberry], etc. Among them, most rely on additional plan 
structures to specifically support the recognition task. These additional structures used are 
different from the plan structures normally used for planning. 
 
For generality and reuse of knowledge, it is important that plan recognition and planning 
share the same representation. 
 
1.4 Plan Recognition: the Missing Part 
 
 Pure action-level recognition 

Current plan recognition systems reason about plan probabilities in terms of observed ac-
tions. Discrimination among competing plan hypotheses is done by comparing plans at 
the level of agent’s actions. World states are not considered in disambiguation. (Some 
work, e.g. [Pynadath & Wellman, Geib & Goldman], considers action effects when ac-
tions themselves are as unobservable, but the purpose is still to identify actions in use for 
the recognition process.) 

 State desirability is not considered 

Pure action-level recognition does not consider state desirability. In the simplest case, 
when each plan has only one desirable outcome (i.e. the goal itself in the plan), this im-
plies that current plan recognition approaches treat all the goals/plans as of the same de-
gree of desirability. In the more complex cases, there might be more than one desir-
able/undesirable outcome in a plan. Actions may also have non-deterministic effects, and 
different outcomes may occur with uncertainty. 

 Outcome utilities are important in real-world applications 

In many real-world applications, an agent who is planning for a course of actions usually 
takes into account that actions may have several different outcomes. Some outcomes are 
more desirable than the others, so the planning agent must balance between different pos-
sible outcomes to maximize the expected utility of goal attainment. 
 
Plan recognition can be viewed as modeling the decision-making strategy of another 
agent. While current probabilistic approaches capture the fact of how well the observed 
evidence supports a particular plan, the missing part is the utility computation. This re-
port is aiming at proposing possible solutions to refine the problem. 
 
The remainder of the report is organized as follows. In section 2, we introduce the plan 
representation adopted in this work. Section 3 illustrates a motivating example from 
MRE virtual training scenario. In section 4, we propose two approaches to extend the 
probabilistic models by incorporating utility nodes into belief nets. The limitations of 
probabilistic approaches in general are discussed in section 5. Then in section 6, we pre-
sent another view of plan recognition, which is based on maximizing the expected utility 
of hypothesized plan. Finally, in section 7 and 8, we show the interrelation of planning 
and plan recognition, and summarize the work. 



2. Plan Representation 
 
2.1 Relaxation of Classical STRIPS Representation 
 
The plan representation we adopt is an extension of classical STRIPS representation, al-
lowing probabilistic and conditional effects, and abstract actions. 

 Probabilistic STRIPS operators 

In classical STRIPS representation, each operator consists of a set of preconditions that 
must hold if the action is to be performed, and a set of effects that describe how the world 
would change if the action were executed. A probabilistic STRIPS operator extends the 
classical STRIPS representation in two ways. First, it allows for actions to have non-
deterministic effects, and second, the effects of actions are not always known with cer-
tainty. 

 Conditional non-deterministic effects 

Since actions may have non-deterministic effects with uncertainty, in the case of action 
with conditional effects, when the operator is applied, based on the conditions that hold, 
action effects are represented in terms of conditional probability. 

 Hierarchical decomposition 

Hierarchical decomposition extends the STRIPS language to allow for abstract operators. 
An abstract operator can be decomposed into a set of steps, each of which is either a 
primitive operator (i.e. an action that can be directly executed by the agent) or another 
abstract operator. There may be more than one way to decompose an abstract action hier-
archically, and each way of decomposition consists of a sequence of abstract or primitive 
sub-actions. 
 
2.2 Utility Types 
 
 State/Outcome utility 

A (world) state can be viewed as a description of the world after an action is executed. 
The utility of the state (or outcome) is computed by summing the utilities of all individual 
action effects (which can be positive, negative or zero). In the case that several action ef-
fects have one utility value, we can partition the set of action effects into several groups. 
The utility of the state is the sum of the utility of each group.  
 
 Plan utility 

Similar to DRIPS [Haddawy & Suwandi, 1994], plan utility is computed based on an ab-
straction hierarchy of operators. For our purpose, since possible plans are given, we com-
pute the exact value of plan utility, rather than estimate a range of utility values for 
searching the plan space. 
 
 
 



3. Motivating Example 
 
Here is an example from the MRE (Mission Rehearsal Exercise) system. In the scenario, 
after the accident happened, the child was wounded. The child’s mother observed the 
troop’s actions, trying to infer the troop’s plan and subsequent actions. 
 
The mother has a simplified model of the troop (comparing with the actual task model of 
the troop). She keeps two likely plans of the troop in her mind. Plan Render-assistance is 
composed of Troop-stay and Treat-child. Plan support-inspection consists of Troop-leave 
and Support-eagle-1-6. Troop-stay and Troop-leave are primitive actions (Treat-child and 
Support-eagle-1-6 are actually abstract actions, but simplified here). Troop-helping, 
Troop-in-transit, Child-cured and 1-6-supported are world states resulted from the action 
execution. For simplicity, the outcomes with zero utility values are omitted from the plan 
representation below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first step in creating the belief net is to create a random variable representing the top-
level plan. The rest of the variables, dependency arcs and probability values all provide 
evidence for or against the proposition that this top plan is being pursued by the observed 
agent. We also need to create a random variable for each action in the plan. Because it is 
the adoption of the top plan that causes the execution of these actions, there is a depend-
ency arc from the top plan to each of the action node in the net. Besides, we add evidence 
variables to represent the dependencies between actions and observed evidence. 
 
Assume initially, plan Render-assistance and plan support-inspection have the same prior 
probability, but different outcome utilities and probabilities to achieve outcomes as 
shown in the plans. As the scenario proceeds, the mother observed half of the troop 
stayed and half left. Since the observed action equally support the two plans, Bayesian 
probabilistic reasoning shows that the two plans have the same posterior probability. The 
belief net computation is shown in Figure 1 and Figure 2. 
 

Plan 1: Render-assistance: 
 
    Current simulation state  
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          Troop-helping 
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Plan 2: Support-inspection: 
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             1-6-supported 
                    

  Troop-stay 

  Treat-child 

Troop-leave 

Support-1-6 

+40+20



But in fact, the outcome of Support-inspection is more desirable to the troop, and this 
outcome is more likely to occur. Even if the two plans have the same prior and posterior 
probabilities, it is reasonable to infer that the troop is more likely to support inspection. 
The current probabilistic approaches to plan recognition could not make this distinction, 
because states and state desirability are not considered in the recognition process (note 
that neither outcome utility nor outcome probability is used). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Extending Belief Nets to Incorporate Utility Nodes 
 
Two types of utility nodes can be incorporated into belief nets, depending on what kind 
of utility we want to use to influence the probabilistic inference. One is plan utility, and 
the other is outcome utility. Some decision-theoretic planning techniques can be reused 
here, for example, computation of expected utility of a plan and computation of possibil-
ity of a plan/goal success. We can add new utility nodes to belief nets and use the com-
puted values as evidence to adjust the probability distributions so as to take outcome de-
sirability into consideration. 
 
4.1 Plan Utility as Evidence 
 
A straightforward solution is to directly incorporate plan utility node into the belief net. 
The process involves the following steps: 
 

 Create a variable representing plan utility in the belief net, and compute the ex-
pected utility of the plan 

 
 
Figure 1. Belief Net of Plan “Render-assistance” 

 
 
Figure 2. Belief Net of Plan “Support-inspection” 



 Add a dependency arc from the plan utility node to the top-level plan, and con-
struct the CPT (conditional probability table) for the top plan 

 Use the computed utility value of the plan as evidence in the belief net 
 
The idea is to use the computed plan utility value as evidence to adjust the prior probabil-
ity of the top-level plan in the belief net. For the example in Section 3, the priors of Plan 
1 and Plan 2 are 0.5. After computation, the expected utilities of Plan 1 and Plan 2 are 15 
(moderately high) and 36 (very high), respectively. We can construct a CPT for top-level 
plan as follows: 
 

Plan-Utility (U) P(Plan) P(Not(Plan)) 
Very high (U>30) 0.9 0.1 
Fairly high (30>=U>20) 0.8 0.2 
Moderately high (20>=U>10) 0.7 0.3 
Slightly high (10>=U>1) 0.6 0.4 
Middle (1>=U>=-1) 0.5 0.5 
Slightly low (-1>=U>-10) 0.4 0.6 
Moderately low (-10>=U>-20) 0.3 0.7 
Fairly low (-20>=U>-30) 0.2 0.8 
Very low (-30>=U) 0.1 0.9 

 
Let  be the adjustment ratio.  is the prior probability of plan. S is the scale used for dis-
crimination, and n is the total number of probability values. In the table above, =0.5, 
S=10, n=9 and =0.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The adjusted prior of plan is given by: 
 

 
 
Figure 3. Belief Net of Plan 1 after Adjustment 

 
 
Figure 4. Belief Net of Plan 2 after Adjustment 
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The higher the value of , the more the probability of plan is influenced by plan utility. 

 is bounded by: 
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4.2 Incorporating Outcome Utility and Probability 
 
Instead of adjusting the utility of top plan, a more detailed treatment is to associate out-
come utility nodes with the relevant actions in the belief net, and use the posi-
tive/negative outcome utilities to increase/decrease the conditional probability of the ac-
tion nodes. The adjusted probability values are then propagated to the top plan through 
the net. 
 
The process involves the following steps: 
 

 For each outcome with non-zero utility, create a variable representing outcome 
utility in the belief net, and compute the probability of outcome occurrence 

 Add a dependency arc from the top plan to each outcome utility node, and use the 
computed probability value to construct the CPT for the node 

 Add dependency arcs from each outcome utility node to each associated action 
node, and construct the CPT for each associated action 

 Use the non-zero utility value of each outcome as evidence in the belief net 
 
The idea of computing the probability of outcome occurrence is similar to that of comput-
ing the probability of plan/goal success in decision-theoretic planning [Blythe, 1999]. 
Typically, forward projection or more compact structure – belief nets are used for the 
computation. 
 
Which action is associated with an outcome utility node? The primitive action that di-
rectly leads to the outcome should be associated. Besides, all the actions in the plan that 
causally support the execution of this primitive action should be associated. For example, 
in plan Render-assistance, action Treat-child is directly associated with the outcome 
Child-cured. Since the effect of action Troop-stay enables action Treat-child, Troop-stay 
should also be associated with the outcome. For actions with conditional effects, the 
treatment is similar. 
 
The outcome utility node is used to adjust the conditional probability of actions. The 
formula is similar to those in plan utility case, except that we need an additional parame-
ter d, to describe the distance between the action and the outcome. For example, in plan 
Render-assistance, the distance between action Treat-child and outcome Child-cured is 



d=1, whereas the distance between Troop-stay and Child-cured is d=2. We use the ad-
justment ratio ,d  although one can think of other forms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Discussion of Limitations 
 
The approach of extending belief net to incorporate utility nodes forces the probabilistic 
reasoning to prefer plans with desirable outcomes and less prefer plans with undesirable 
outcomes. Though this is an improvement comparing with pure probabilistic approaches, 
the extension is still within the probabilistic reasoning framework. So it suffers from the 
common weaknesses of probabilistic approaches. As with any system based on Bayesian 
inference, it requires large number of prior and conditional probabilities. There is no 
good answer for where these numbers come from. 
 
Using Bayesian inference, it seems that the result of probability computation is not sensi-
tive to the order of observed actions. In other words, if the actions occur in a totally dif-
ferent order, belief net computation will draw exactly the same conclusion. This is a limi-
tation in some applications where orders of actions are important. For incremental plan 
recognition, to accommodate new observations in the recognition, the update of belief net 
is known to be exponential of the number of entries in the CPTs. 
 
Since the plan recognition problem is the modeling of decision-making strategy of an-
other agent, it seems more reasonable to assume a rational agent will adopt a plan that 
maximizes the expected utility (given the evidence so far) rather than using probability as 
the only criterion. 
 
Plan recognition based on maximizing expected utility has some key advantages. First, it 
is suitable for modeling the decision-making process of the observed agent, and compati-

 
Figure 5. Belief Net of “Render-assistance” after adding outcome utility node 



ble with the idea of decision-theoretic planning. Second, it eases the burden of defining 
large number of priors as in previous probabilistic models. Finally, it can make better use 
of action theory (i.e. knowledge about actions, their preconditions and effects), which is 
not fully explored in previous probabilistic approaches. 
 
6.     Alternative View of Plan Recognition: Maximizing Expected Utility 
 
In order to apply the approach to the problem, besides a probabilistic action representa-
tion introduced in Section 2, the following information is also needed for recognition. 
 

 Prior probabilities of preconditions of actions 
 Execution probability of an action given all its preconditions are satisfied 

 
The prior probabilities of ground literals can be obtained from calculating a large sam-
pling set of the domain. The execution probability captures the likelihood of suc-
cess/failure of action execution given preconditions are true. We denote the execution 
probability of an action A as exec_prob(A). In probabilistic action representation, actions 
can have deterministic or non-deterministic effects. We denote the probability of an ef-
fect e of an action A as effect_prob(A, e).  
 
6.1 State Changes via Action Observation 
 
E is the evidence. When an action A is observed, we can also infer the following state 
probabilities based on action theory (“rationality assumptions”): 
 

 For x(x preconditions(A)  x del_effects(A)) , P(x|E) = 1.0 
 For x(x add_effects(A)), P(x|E) = effect_prob(A, x) 
 For x(x del_effect(A)), P(x|E) = 1.0  effect_prob(A, x) 

 
6.2 Expected Utility Computation 
 
For each possible plan, the computation of expected utility is based on the evidence of 
observed actions as well as the evidence of state changes. 
 
If an effect x is observed, then P(x|E) = 1.0. If an action A is observed, then P(A|E) = 1.0 , 
else the probability of A given E is computed as 
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Let Oi be the set of outcome of a plan Pi, oj  Oi. A1, …, Ak is the action sequence in Pi 
that leads to oj. The probability of oj is computed as 
 

),(_))|(()|(
,...,1

jk

ki

ij oAprobeffectEAPEoP  

 



The estimated expected utility of plan Pi given E is computed as 
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In hierarchical task representation, if the abstract action is an And-node (i.e. only one way 
to decompose the action), the expect-utility of the abstract action is the sum of the utili-
ties of its sub-actions. If the abstract action is an Or-node (i.e. multiple way to decompose 
the task), the expected-utility of the abstract action is the maximum of the utilities of its 
sub-actions (because we assume the agent tries to maximize the expected utility). The 
utility of the root (action) node of the hierarchical plan structure is the expected utility of 
the abstract plan. 
 
6.3 Illustrative Example 
 
Consider again the plans in Section 3. Assume initial states are Troop-at-aa (i.e. Troop-
at-accident-area) and Child-at-aa (i.e. Child-at-accident-area) (the effect of Troop-leave 
is actually a delete effect of Troop-at-aa). Initially, the prior probabilities and execution 
probabilities are as follows. 
 
P(Troop-at-aa) = P(Child-at-aa) = 0.8 
P(Troop-helping) = P(Troop-in-transit) = 0.5 
exec_prob(Troop-stay) = exec_prob(Troop-leave) = 0.95 
exec_prob(Treat-child) = exec_prob(Support-1-6) = 0.95 
 
From the graphs in Section 3, we also know 
effect_prob(Troop-stay, Troop-helping) = 1.0 
effect_prob(Troop-leave, Troop-in-transit) = 1.0 
effect_prob(Treat-child, Child-cured) = 0.75 
effect_prob(Support-1-6, 1-6-supported) = 0.9 
 
Given that the observation equally supports two actions, Troop-stay and Troop-leave, i.e. 
P(Troop-stay|E) = P(Troop-leave|E) = 1.0, we have 
P(Child-at-aa|E) = 1.0 
P(Troop-helping|E) = 1.0 
P(Troop-in-transit|E) = 1.0 
 
Now compute the probabilities of Treat-child and Support-1-6 given the evidence 
P(Treat-child|E) = 0.95 
P(Support-1-6|E) = 0.95 
 
Now compute the outcome probabilities 
P(Child-cured|E) = 0.7125 
P(1-6-supported|E) = 0.855 
 



Now compute the estimated expected utilities of plan1 and plan2 given current observa-
tion 

EU(Plan1|E) = 14.25 
EU(Plan2|E) = 34.2 

 
So the algorithm recognizes that the troop is pursuing the plan Support-eagle-1-6. 
 
Although the example here is oversimplified, for the more complex examples that include 
conditional probabilities, multiple outcomes, abstract actions, etc, the algorithm is appli-
cable the same way. 
 
6.4 Difference from Previous Probabilistic Approaches 
 
 Using maximum expected utility as criterion 

Previous probabilistic models view plan recognition as a kind of abduction, and use 
Bayesian rules to compute the best plan candidate. The approach here views plan recog-
nition as modeling the decision-making process of another agent, takes agent’s prefer-
ences into consideration, and uses maximum expected utility as criterion for disambigua-
tion. 

 Focusing on influence of actions on states 

Previous probabilistic approaches are action-level recognition in general, focusing on 
how well the observed (or unobserved) actions support the hypothesis that a particular 
plan is being pursued by the observed agent. The approach here focuses on the influence 
of actions on state changes, making use of the knowledge about actions, preconditions 
and effects that is typically available in a plan-based system. 

 Sensitive to the order of the observed actions 

In the approach, observed actions are used as evidence to change the probabilities of ac-
tion preconditions and effects. The state changes are closely coupled to the action theory. 
So the resulting computation is sensitive to the order of observed actions. 
 
7. Planning and Plan Recognition 
 
Plan recognition is a problem closely related to planning. In planning, the goal is given. 
The task of planning is to generate plans to achieve the goal. In plan recognition, possible 
plans are given. The task of plan recognition is to find the goal/plan of the agent. That’s 
way plan recognition is generally perceived as the inverse problem of planning. 
 
Planning helps construct the plan library used by plan recognition. Plan recognition helps 
multi-agent planning and coordination, especially when explicit communication is impos-
sible or too expensive. Planning and plan recognition not only can share the same plan 
represent, they can also benefit each other by sharing some underlying techniques, for 
example, in this report, we utilize the ideas of decision-theoretic planning to help plan 
recognition task. 
 



In applications like user modeling and user-adapted interaction, mixed-initiative systems, 
natural language understanding and some help systems, it is also interesting to explore 
how to combine both planning and plan recognition in the same system, so as to allow the 
system interleaving between planning and inferring plans, depending on the task at hand. 
In such situation, planning and recognition can also share some intermediate results. 
Some work on active acquisition of user models suggests combining plan recognition, 
domain planning and dialogue planning into the same system architecture [Wu, 1991]. 
 
8. Summary 
 
The first part of the report is a survey of the work in plan recognition field, including the 
evolution of different approaches, the assumptions have been made, and strength and 
weaknesses of different approaches. The second part of the report is our extension to the 
problem, based on the known utilities of outcomes. Two solutions are proposed. One is 
the extension of belief nets, to explicitly incorporate utility nodes and allow them to in-
fluence Bayesian reasoning by adjusting prior or conditional probabilities in CPTs. This 
extension is within the probabilistic reasoning framework. Another solution is based on 
maximizing the expected utility of possible plan given current evidence. The observed 
actions are used to change the probabilities of states, which are then used to compute the 
probabilities of action execution and outcome occurrence. As a criterion for disambigua-
tion, maximizing expected utility is a different view from choosing the plan with the 
highest probability as in previous probabilistic models. 
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