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ABSTRACT: The after-action review is an essential component of military training exercises.  The use of constructive 
simulations for training poses a challenge when conducting such reviews, because behavior models are typically 
designed to simulate satisfactorially, without explicit concern for the interrogation of synthetic entities afterward.  
Ideally, users could obtain knowledge about not only the choices made by a simulator�’s behavior models, but also the 
rationale for those choices.  This requires a rich representation of behavioral knowledge within the software system. 

We have integrated our explainable AI system with behavior models and log information from two simulation systems.  
Selecting examples from these simulators, we identify areas for improvement to facilitate the automation of explanation 
and tutoring. 

1 Introduction 
The after-action review (�“AAR�”) is an essential part of 
any military training exercise, be it live training or 
training via simulation.  Reviews of exercises conducted 
by way of constructive simulation1 pose a particular 
challenge.  Specifically, the introduction of synthetic 
entities, often called computer-generated forces 
(�“CGFs�”), controlled by a simulator�’s artificial 
intelligence (�“AI�”) system, impedes the process of 
understanding what happened, why it happened, and how 
trainees could do better.  U.S. Army Field Manual 25-101 
on �“Battle Focused Training�” states: 

�“The OPFOR2 can provide valuable feedback on the 
training based on observations from their perspectives. 
�…the OPFOR can provide healthy insights on: 

 OPFOR doctrine and plans 
 The unit�’s actions. 
 OPFOR reactions to what the unit did.�” 

What if the OPFOR are either fully or in part computer-
generated?  Current best practice for gathering their 
                                                           

                                                          
1 Constructive simulations are those that involve 
simulated people operating simulated systems. 
2 OPFOR stands for the opposing forces. 

perspectives, feedback, and insights is limited to an 
analysis of the simulation log files by a technical expert.  
Similarly, when validating CGF behaviors, it can be 
difficult for a subject matter expert (�“SME�”) to fully 
comprehend and judge those behaviors based only upon 
examining logs and observing CGFs in a plan-view 
display.3

A fully-capable explanation system is a valuable tool not 
only for AARs and CGF validation, but also for 
debugging, causality analysis, and automated tutoring.  To 
support this wide range of applications, explanations are 
required that go beyond just presenting the available 
logged information.  The generation of more satisfying 
explanation requires additional information be logged, 
plus access to the underlying behavior models that drive 
CGF behavior. 

With such extended logs, an AI system can answer who-, 
what-, where-, and when-style questions.  The behavior 
models are necessary to answer the how- and why-style 
questions that are sometimes the most useful.  Natural 
language generation is a valuable component of our 
explainable AI (�“XAI�”) system, for it allows the system to 
answer questions from trainees, instructors, and SMEs in 

 
3 A plan view is a two-dimensional overhead view. 



easily understandable English, and supports a dialogue-
style interaction with the user. 

The XAI system described herein is able to interface with 
two simulators: Full Spectrum Command (�“FSC�”), and 
the OneSAF Objective System4 (�“OOS�”).  Additionally, 
an earlier XAI implementation of FSC was done at our 
institution under our project leader (van Lent et al., 2004).  
Our experiences in developing these systems has provided 
us with insights into the benefits of designing simulation 
environments and AI systems with explanation in mind, 
rather than attempting to add explanation capabilities after 
the system has already been built. 

In particular, we recommend that simulators intended for 
use in explanation and tutoring contexts provide external 
visibility of the logic that underlies all behaviors, and that 
this be provided in a declarative form that specifies the 
goals of synthetic entities, and the preconditions and end 
effects of their actions.  Detailed reporting of the internal 
state of the simulator throughout execution is also 
necessary.  Furthermore, this reporting should extend to 
user interactions with the simulator in tutoring contexts. 

We begin by describing our current XAI system.  We then 
discuss the necessary extensions made to the behavior 
representations in OOS to support explanation.  Section 
four describes the effects of simulation logging code on 
explanation.  We then discuss additional issues introduced 
by the use of XAI for tutoring, and conclude by 
summarizing our recommendations. 

2 XAI Proof-of-Concept System Overview 
Our XAI system, depicted in Figure 1, requires three 
kinds of information from the simulator.  Firstly, the 
definitions of all behaviors that CGFs may perform must 
be available.  �“Patrol Area�”, �“Ambush�”, and �“Clear 
Building�” are three examples of such tasks from FSC. 

The second kind of required information describes the 
current scenario.  This category includes the initial state 
of the simulated world, the rules of engagement, the types 
and amounts of personnel and equipment that will be 
employed, and the initial assignments of CGFs to tasks by 
the simulation user. 

The third kind is the dynamic state of the simulated 
world.  This includes, for example, the location and status 
of all synthetic agents, manipulable objects, and the 
dynamic state of the world environment.  Items such as 
the location of soldiers may change extremely frequently 
and do not necessarily follow easily-formulated

                                                           
4 We used the Block B release of OOS, which was the 
latest available version at the time. 

Explainable AI System

Explainer Subsystem

XAI Database

Scenario
Definition

Dynamic
StateAI Behaviors

Simulation Environment

GUI Subsystem

Query Manager

Natural 
Language 
Generation

Dialogue 
Manager

Student   

trajectories, so instead of having perfect information at 
our disposal, we require only that it be sampled at regular 
intervals. 

Figure 1: XAI System Architecture Diagram 

The simulator log often does not provide all the required 
information.  We extracted what we could from the log 
into the XAI system�’s relational database, and in certain 
cases, manually augmented that data. 



At program start, the AAR arbitrarily begins with the first 
CGF.  When beginning to speak with a CGF, the 
�‘interesting�’ time point for that CGF are identified.  For 
example, our OOS version deems all task start, mid-point, 
and completion times as interesting, as well as all times 
when the entity fired a weapon.  The time point menu on 
our graphical user interface (�“GUI�”) makes these points 
of interest available to the user. 

The dialogue manager component generates a menu of 
questions based upon the CGF being interviewed and the 
current time point of interest.  Some questions concern the 
state of entities (�“What is your health?�”), while others 
deal with task information (�“What is your unit's task?�”; 
�“How do you execute your task?�”).  Most questions may 
be asked at any time, but certain questions are context-
dependent.  For instance, one may ask �“What are you 
shooting at?�” only when speaking to an entity about a 
moment at which it fired its weapon. 

The database is queried on demand as the user interacts 
with the application; the natural language generator 
component uses domain-specific XSLT templates to 
transform query results into English responses.  The 
dialogue manager records prior questions, answers, and 
other state information about the conversations that take 
place, enabling context-sensitive responses that reduce the 
frequency of repetitious dialogue.  Together, the query 
manager, dialogue manager, and natural language 
generator constitute the explainer subsystem. 

The dialogue manager sends all required information via 
XML to the stateless GUI servlet, which in turn produces 
HTML that is rendered by the user�’s web browser.  Figure 
3, on the following page, is a screenshot of our HTML-
based XAI proof-of-concept GUI.  The top frames contain 
header and simulator information.  The session�’s dialogue 
history is available mid-screen; a vertical scroll bar 
appears when necessary so that the entire dialogue may be 
consulted at any point.  The bottom frame provides menus 
by which the user may guide the dialogue.  The servlet 
submits the user�’s input to the explainer, causing the 
system to prepare a new response, which begins the cycle 
anew. 

3 Behavior Simulation 
Behaviors in OOS are classified either as composite or as 
primitive.  Composite behaviors are constructed by 
visually specifying procedural expressions that reference 
other behaviors; these are represented in XML.  Primitive 
behaviors are directly coded in Java, and are considered to 
be atomic by the behavior composition system.  A thin 
XML wrapping is provided for these, so that they may be 
referenced by OOS�’s visual behavior specification tool.  

Primitive behaviors are always assigned to individual 
entities.  Composite behaviors may also be assigned to 

individuals or to groups of entities, as appropriate.  Figure 
2 shows the composition hierarchy for the �“Fire Team 
Clear Room�” behavior, a task used by fire teams in the 
OOS scenario for our XAI proof-of-concept system.  
Regarding the primitive behaviors: �“Entity Move on 
Route�” is performed by every CGF of the fire team; 
�“Throw Grenade and Wait for Detonation�” is assigned to 
the grenade thrower of the clear room task; �“IC5 Enter and 
Clear Room�” is also assigned to each CGF. 

Fire Team Clear Room

Plan Fire Team Clear Room

Set Speed

Determine Grenade Thrower

Get Subordinates

Determine Entry Order

Determine Clear Room Points

Entity Move on Route

Throw Grenade and Wait for Detonation

IC Enter and Clear Room

 Figure 2: OOS Behavior Hierarchy for 
Fire Team Clear Room 

The composite behavior �“Plan Fire Team Clear Room�” 
consists of several primitive behaviors.  In contrast to 
non-planning behaviors, this behavior does not affect the 
simulation world.  Rather, it binds variables within the 
scope of the main behavior that will be used in the task�’s 
further execution. 

ICT has enjoyed access to early versions of OOS, an 
advantage in that we have visibility into the development 
process.  This allows us to provide feedback to OOS 
developers on ways to improve the suitability of OOS for 
automated explanation of behaviors.  It is also a 
disadvantage in that we must rely upon a behavior 
architecture that is not fully implemented.  Here, we 
discuss three areas where we have encountered challenges 
in the explanation of behaviors with OOS Block B. 

                                                           
5 IC stands for an individual combatant. 



 

 
Figure 3: XAI for OOS Proof-of-Concept Graphical User Interface 



3.1 

3.2 

3.3 

4.1 

Absence of Declarative Information 
While the behavior generation system in OOS represents 
a significant advance over previous simulation 
architectures, it does not include every feature necessary 
for explainable AI.  In OOS, like many other CGF 
architectures, behaviors are derived from the goals of the 
simulation user.  These high-level goals are not directly 
encoded into the behavior model.  Similarly, declarative 
preconditions are not fully specified, as required by 
explanation.  Consequently, it is not possible to reason 
about the long-term motivations of an entity. 

Furthermore, while alternative actions may be specified 
by using conditional expressions within the behavior 
composer, all alternatives must be completely foreseen by 
the behavior designer.  This limits the ability of an XAI 
system to answer �“what-if�” questions; it would be 
preferable if the behavior model could explore unforeseen 
alternatives. 

How can reasoning directly about preconditions, goals, 
and alternative actions that satisfy goals allow for more 
effective explanation?  Consider the example of a fire 
team clearing a room.  Once the fire team is positioned 
outside the room, the grenadier throws a grenade into the 
room to suppress enemy fire before the team enters the 
room.  Currently, XAI cannot answer the question �“Why 
did you throw a grenade into the room?�” because there is 
no representation in the parent composite behavior of the 
goal or motivation for the grenade toss. 

XAI also cannot reason about alternative behaviors that 
could satisfy the goal of suppressing enemy fire, because 
the parent behavior makes no options available.  Generic 
questions about alternatives, e.g. �“What else could you 
have done to suppress enemy fire?�” are therefore not 
supported.  Finally, it is also difficult for XAI to answer 
�“Why not?�” questions, e.g. �“Why didn�’t you use non-
direct fire?�”, because preconditions are implicit in the 
procedural representation of the behaviors, whereas XAI 
requires explicit representation in a declarative form. 

Opacity of Primitive Behaviors 
As previously mentioned, composite behaviors are 
provided in an XML format.  This format is high-level, 
descriptive, and is easily understood.  Consequently, our 
XAI system is able to answer questions such as �“How do 
you perform your task?�”, when the question is asked of a 
composite task. 

In contrast, primitive behaviors are developed in Java, 
and, at least in the Block B version, did not contain 
metadata.  Consequently, our XAI system cannot know 
the preconditions and end effects of actions. 

Currently, some of the most interesting actions for 
explanation, particularly primitive behaviors that perform 
planning behaviors, cannot be reasoned about by the XAI 

system.  For instance, in the �“Fire Team Clear Room�” 
task, we would like to be able to answer the question 
�“Why are Morphy and Bisguier the first ICs in?�”, but to 
answer this question, the XAI system would have to 
comprehend the Java implementation of the behavior. 

Multiple Behavior Sources 
In addition to the behavior execution engine of OOS that 
executes behaviors assigned to units in the task execution 
matrix, OOS also uses behavior agents that are not tied to 
specific orders. Rather, these agents are composite 
attributes of entities that are capable of performing 
reactive actions based upon the current state of the 
simulation world as perceived by the CGF. 

For example, the behavior agent that controls an entity's 
weapon will automatically aim and then fire the weapon 
whenever the CGF holding the weapon perceives an 
enemy soldier, the rules of engagement permit firing, and 
the entity has ammunition.   Thus, the entity's actions are 
not necessarily the consequence of a task that it is 
performing (other than the rules of engagement which 
may be specified as part of the task). 

Behavior agents are implemented similarly to primitive 
behaviors: procedurally, and without hooks to show why 
specific actions are performed.  We do not doubt there are 
valid software design considerations that suggested this 
division of handling behavior.  We merely remark that the 
difficulty of explanation increases when not all sources of 
behavior reflect intent by the entity. 

4 Simulator Record-keeping 
In the previous section, we discussed the challenges of 
supporting explanation in the behavior representation and 
generation components of a simulation.  However, it is 
not enough to represent the necessary information; it must 
also be made available to the XAI system.  While this 
could be done at run-time given sufficient support for 
introspection, our focus is on the use of the XAI system as 
an AAR tool, so we frame this as an issue of information 
logging. 

First, we list several deficiencies with logging that we 
identified while connecting simulators to our XAI system.  
Then, we contrast the information acquired from OOS 
and from FSC, and describe the different sets of questions 
our XAI system can answer as a consequence. 

Logging Issues 
Here we selectively discuss concrete logging issues, 
particularly in cases where an attempt has been made to 
store the information, but what has been stored is, for our 
purposes, incomplete. 

One interesting facet of FSC is that its source code 
contains a considerable degree of debug information �– 



almost all of it disabled.  Much of that information would 
have been valuable to an enhanced XAI system. 

Also, recall that the original XAI implementation of FSC 
was done at our institution under our project leader: in 
this respect, we are learning from our own mistakes. 

4.1.1 Task Execution Matrix 
The step-by-step plans of the forces under the control of 
the trainee are recorded in the task execution matrix.  
Such information is required to ask virtually any question 
relating to the planning of the operation.  This information 
is of course modeled in FSC, but it is not logged.  
Therefore, we have had to go back and modify the source 
code to log this data. 

4.1.2 Event-Driven Architecture 
During the AAR, we may wish to know the route that an 
entity took to a target, and how far along that route it was 
at an arbitrary simulation time point.  However, FSC 
takes an event-driven approach to logging, rather than 
recording log information at fixed time intervals.  
Therefore, we usually cannot even know where an entity 
is, unless an event such as firing a weapon or a shift to a 
new task takes place at that point in time. 3 63233968.000000 3 Assign Roles 4 0 0 -1 0 0 0 0 

3 63234296.000000 3 Assign Roles 4 0 0 -1 0 0 0 0 
3 63234652.000000 3 Assign Roles 4 0 0 -1 1 90052 
0 0 1 50006 
3 63235092.000000 3 Assign Roles 4 0 0 -1 2 90052 
90053 0 0 1 50006 
3 63235548.000000 3 Assign Roles 4 0 0 -1 3 90052 
90053 90054 0 0 1 50006 
3 63236052.000000 3 Assign Roles 4 0 0 -1 4 90052 
90053 90054 90055 0 0 1 50006 

Figure 4: Sample from FSC XAI Text Log 

4.1.3 Composite Behaviors 
Block B of OOS does not log dynamic state information 
regarding composite behaviors that are being executed.  
Therefore, it is impossible to ascertain which composite 
behavior is executing at arbitrary simulation time points. 

To answer questions such as �“What is your unit�’s current 
task?�”, we manually recorded the active mission phases, 
plus their start and end times, then used this information 
in conjunction with the task execution matrix.  However, 
this method is not correct when the scenario does not 
execute according to the original plan, for instance, if a 
unit is forced to withdraw. 

4.1.4 Variable Bindings 
Block B of OOS does not store the variable bindings of 
behaviors.6  For example, in the composite behavior �“Fire 
Team Clear Room�”, the unit task roles include �“Team 
Lead�”, �“Grenade Thrower�”, �“First ICs In�”, and 
�“Remaining ICs In�”.  These variables are bound at 
runtime by child planning behaviors, but are not logged, 
necessitating that we observe a simulation run and 
manually add this information. 

                                                           

4.2 

6 Newer versions of OOS do store this information.  This 
may also be true of other items we have listed. 

4.1.5 Pathfinding 
Neither FSC nor OOS log pathfinding details, whether for 
units or individual entities.  Therefore, the XAI system 
cannot answer questions about the planned routes of 
travel.  However, even if this information were logged, it 
is doubtful that the XAI system could provide compelling 
explanations. Variations of the A* search algorithm are 
typically used to compute paths; this algorithm is not 
similar to human methods of tackling the problem. 

4.1.6 Inscrutableness of Log Format 
Figure 4 contains a small sampling of the text version of 
the XAI log emitted by FSC.  During the corresponding 
0.002 seconds of the program run, a task object was 
created, then updated four times.  Conceptually, though, 
the task was merely being defined.  Tracking the 
implementation too closely would lead to the 
misinterpretation that the CGF repeatedly changed its 
mind about what the task ought to encompass.  However, 
once the simulation is underway, it might well be that a 
CGF would exhibit such indecision, so distinguishing 
between the two cases could be problematic. 

After attempting to extend the original XAI logging, we 
found it more useful to write additional, but separate code 
that logs the information we were interested in for our 
current XAI system.  This newer log format uses XML so 
that the data description is implicit in the log itself. 

Answerable Questions 
Figure 5 provides a chart relating the information made 
available to the XAI system with the questions that it is 
therefore able to answer.  The lack of exposure of 
underlying behavior reasoning is reflected in the total 
absence of  why-style questions. 

The information made available to XAI is not the same as 
the information modelled by the simulator.  For instance, 
FSC models stance information, but as we chose not to 
log this, we were unable to answer the two posture 
questions.  Also, we hand-augmented the OOS unit task 
information, as previously discussed. 



entity targeting
status entity landmark entity unit information

What is your health/damage status?
What weapons do you have?
What is your location? (referring to landmark)
What is your location? (referring to coordinates)
What is your unit's task?
What is your current task?
When did you start your current task?
When will you complete your current task?
How do you execute your task?
Who are the other members of your unit?
Which are the other squads in your platoon?
What are the unit roles of the members of your unit?
What are the task assignments of the members of your unit?
Can you give more detail?
What are your rules of engagement?
Who are you shooting at?
What is your posture?
What is your target's posture?

 OneSAF Objective System
 Full Spectrum Command
 Both OOS and FSC

Questions Answered by XAI task informationcoordinate triples

Information Available to XAI

Many questions are available to the user when using 
simulation data from OOS, but not FSC, because OOS 
provides unit task information in a readily-usable form.  
In contrast, while FSC represents platoons and squads to 
the user, its internal code refers to task-oriented elements 
that typically do not coincide with U.S. Army units. 

The differing treatment of the question �“What is your 
location?�” between XAI for OOS and XAI for FSC is also 
of interest.  In the case of FSC, the response is 
rudimentary: the XAI system provides the (x, y, z) 
coordinate triple of the entity.  In the case of OOS, 
information about landmarks and the task objective is 
available, so we can offer a more useful response that 
expresses the distance and angle of the soldier from their 
target, as shown in Figure 3. 

5 Logging for Automated Tutoring 
The presence of or desire for an automated (a.k.a. 
intelligent) tutor is a significant factor when deciding 
what information to record.  Interestingly, many of the 
lessons learned in the construction of an explainable AI 
system also have implications for intelligent tutoring. 

Intuitively, teachers should have the ability to explain 
material in a way that makes sense to the student.  
Additionally, good teachers do not quietly solve problems 

on the board, they engage their students.  They pause to 
ask questions, connect their activities to principles, and 
elicit answers from students rather than just giving them 
away (Leinhardt and Schwartz, 1997).  An automated 
tutor for a training simulator likely must also be able to 
similarly engage the student. 

Figure 5: Comparison of Information Flow Into and Out from the XAI System 

Behavior models consisting of only procedural 
information and logs containing only the raw events of a 
simulation are insufficient for intelligent tutoring: 
knowledge that is critical for a tutor to have is not present 
in such models.  To produce �“tutoring-friendly�” logs, 
several suggestions derived from our work appear below.  
Before discussing them, however, it is important to note 
one important historical example of the general problem 
of retroactively augmenting an AI system for pedagogical 
purposes (Clancey, 1984). 

5.1 Background 
GUIDON, a tutoring system built on top of the medical 
diagnostic expert system MYCIN, attempts to teach 
students the rules in its knowledge base through limited 
dialogue.  Using a record of the inferences made by the 
MYCIN reasoning engine, GUIDON walks the student 
through each rule application until a final diagnosis is 
reached.  Although it was able interact effectively with 



students on individual problems, there was no 
representation of general skills involved with medical 
diagnosis.  In addition, no higher level organization of the 
rules was made available by MYCIN.  The knowledge 
base was essentially authored, debugged, and applied for 
the sole purpose of producing diagnoses.  With no global 
organization on the set of rules, GUIDON was not able to 
help students synthesize or organize what appeared to 
them to be a large, jumbled body of knowledge (Clancey, 
1984). 

The key lesson from GUIDON was that if pedagogical 
goals are in the horizon for an AI system, its knowledge 
base should be built with these goals in mind from the 
outset.   Not doing so risks overlooking important 
knowledge representation and pedagogical issues.  When 
intent exists for a simulator to be used for pedagogical 
purposes, similar organizational measures ought to be 
taken when authoring its AI behaviors. 

The tutoring component of our research is nascent, so we 
are not yet able to propose specific changes to behavior 
representations beyond those described above in support 
of explanation, but we do explore some additional 
considerations in a general manner below. 

5.2 

5.3 

5.4 

Recording Rationale 
To provide an explanation of actions taken in a traditional 
expert system, it is necessary to record the chain of 
inferences that led to an action or conclusion.  Performing 
an explanation from a log alone implies that not only 
should it include events, but also the �“thinking�” that 
occurred between events.  Just as an explainer requires 
such inference chains, so does a tutor.  In addition to 
selected operators and facts used during the inferences, 
novices often need explanations as to why certain 
operators did not apply, and reminding of what facts are 
true at certain times during a simulation to help the 
student understand why some inferences can or cannot be 
made.  The suggestion for log files, then, is to record in 
great detail, behavior selections and the details of their 
application or non-application.  Armed with such 
knowledge, a tutor would be able to give negative or 
positive feedback about student suggestions and answers, 
lessening any need to persistently run re-simulations in 
the background. 

Alternative Outcomes and Negative Evidence 
Tutorial decision making often involves events that did 
not happen during a problem solving episode (McArthur 
et al., 1990).  In addition, representing events that provide 
negative evidence against some problem solving path or 
critical decision is also very valuable in teaching domain 
knowledge effectively (Suthers et al., 2001).  Knowing 
how different decisions by a user in a simulation may 
have played out could help a tutor defend a suggested 
alternative to the student�’s chosen path.  Similarly, 

pointing out observations that the student should have 
made during a simulation (as negative evidence) has 
pedagogical benefits for teaching decision making. 

Certainly, logging all possible alternative outcomes is not 
feasible, nor is re-simulating everything on-the-fly during 
an AAR.  We suggest pre-compiling common novice 
mistakes and problems encountered during specific 
scenarios, and identifying sets of critical mistakes.  Also, 
the simulator can compute and log alternative outcomes 
as processor availability permits.  An automated tutor can 
exploit even a single instance of such. 

Usage Data 
Many tutoring systems model the student�’s evolving 
knowledge of the domain, learning characteristics, and 
skill using the interface.  This assists the tutor when 
deciding which tutoring strategies to employ and when 
formulating appropriate feedback messages.  When 
tutoring is based on a log of previous use of a simulation, 
as is the case with OOS and FSC described above, it is 
important this log include as much information about the 
user�’s state as possible to initialize a student model for 
use during the tutored AAR.  For example, knowing if an 
execution matrix was correct upon its initial design, but 
changed to a sub-optimal plan for some reason would 
enable the tutor to remark that the student�’s first 
impression was correct.  Depending on how advanced the 
tutorial model is, a discussion of the importance of 
following one�’s instincts could even follow. 

A second example of logging user usage data is to record 
all interface activities (e.g. menu selections, typed input, 
button clicks) and the timings thereof.  This permits the 
detection of floundering, the almost random exploration 
in response to an impasse.  Knowing that a student has 
struggled in this way, and what events during the 
simulation preceded, or possibly caused such a response 
can be of great help in building a more accurate student 
model. 

6 Planning for Explanation and Tutoring 
External visibility of the logic that underlies synthetic 
entity behavior, plus detailed reporting of internal 
simulation state, are necessary to enable an XAI system to 
answer a full range of AAR questions.  Detailed reporting 
of user interaction with the user interface will contribute 
to achieving tutoring objectives. 

Specific recommendations for �“XAI-friendly�” logs 
include: 

 Employ a rich behavior model within the simulator, 
and make it visible to external software.  Include 
declarative representations of goals, preconditions, 
end effects, and conditional and repetition constructs 
within tasks. 



 Produce a high-fidelity log file. 
o Include all scenario information, including the 

initial state of the world, and all predefined 
orders to entities. 

o Distinguish between reactive behaviors, planned 
behaviors, and orders. 

o Include details regarding the satisfied conditions 
that caused reactive behaviors to occur. 

o Record the specific subgoals that planned 
behaviors are intended to fulfill; include details 
of the satisfied conditions that cause them to be 
aborted. 

o Log changes to state variables that appear in 
behavior preconditions and end effects. 

o Delimit meta-events in the log, i.e., indicate the 
set of actions that together denote an action at a 
higher level of abstraction. 

 Use a self-documenting log file format that is easy to 
comprehend by both humans and machines. 

 Include the consequences of what-if scenarios, as 
processor time permits. 

If there are multiple ways to execute a behavior, the XAI 
system needs to know why one approach was chosen over 
another.  If a behavior consists of a series of repeated 
actions, the XAI system needs to know why the repetition 
ended. 

These design considerations are crucial not only for why-
style questions, but also for queries about how to perform 
behaviors and queries about entity state.  If the simulator 
does not provide task decompositions, or the log file does 
not contain the relevant data about entity state, then such 
queries cannot be answered. 

As discussed in section five, the inclusion of automated 
tutoring introduces additional considerations.  Events that 
did not happen may be more important than those that 
did, for instance, the trainee failed to provide adequate 
troop cover.  For a particular domain, subject matter 
experts need to identify these common mistakes so that 
simulation builders can design logging capabilities to 
capture them. 

The trainee�’s interaction with the simulator is not limited 
to the orders given to CGFs.  Even if perfect orders are 
given, ongoing activities such as monitoring the progress 
of troops under the user�’s command are also important.  
As a first step, simulation designers should log the 
trainee�’s interaction with the user interface; future work 
would involve recognizing user activities, such as when 
the user observes the progress of synthetic entities under 
the user�’s command, plan recognition, and real-time 
pedagogical support. 

7 Conclusion 
Explainable AI and intelligent tutoring have been active 
topics of research in the AI community.  Both 
technologies have a great deal of promise to increase the 
effectiveness of constructive simulations that include 
complex behavior models as training tools.  However, in 
order to support automated explanation and tutoring, 
simulation and behavior model developers must take 
these features into account early in the development 
process.  Adding the necessary features retroactively is 
not feasible without extensive system revision. 

We hope that the recommendations presented here, as 
well as previous research on the topic (Swartout, Paris 
and Moore, 1994), will be of benefit to the modeling and 
simulation community as they design and develop new 
simulation systems and behavior architectures for 
automated explanation and tutoring applications. 
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