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Abstract
This paper considers questions and the objects being asked
about to be a graph and formulates the knowledge goal of a
question-asking agent in terms of connecting this graph. The
game of twenty questions can be thought of as a testbed of such
a question-asking agent’s knowledge. If the agent’s knowledge
of the domain were completely specified, the goal of question-
asking would be to find the answer as quickly as possible and
could follow a decision tree approach to narrow down the can-
didate answers. However, if the agent’s knowledge is incom-
plete, it must have a secondary goal for the questions it plans:
to complete its knowledge. We claim that this secondary goal of
a question asking agent can be formulated in terms of spectral
graph theory. In particular, disconnected portions of the graph
must be connected in a principled way. We show how the eigen-
values of a graph Laplacian of the the question-object adjacency
graph can identify whether a set of knowledge contains discon-
nected components and the zero elements of the powers of the
question-object adjacency graph provide a way to identify these
questions. We illustrate the approach using an emotion descrip-
tion task.
Index Terms: dialog agents, question-asking, graph theory,
emotions

1. Introduction
Consider a dialog agent that must ask a series of questions in
order to identify some unknown object. Whether it be a real,
physical object such as a seat on a flight, or a virtual object,
such as an emotion or a disease, this object will have a set of
attributes that can be described and asked about using natural
language. If the agent knows the complete mapping of objects
to attributes, it will be able to identify the unknown object by
asking a series of questions in the form of a decision tree, where
each successive question aims to evenly partition the space, i.e.,
to “divide and conquer” the space of attributes as quickly as pos-
sible. These type of questions satisfy what we call a task goal.
However, if the agent is acting in a state of incomplete knowl-
edge, it may ask extraneous questions not to identify a partic-
ular object, but rather to satisfy a knowledge goal [1, 2]. For
example, assume that the agent has asked a series of questions
that uniquely identify an object, but has incomplete knowledge
about some attributes of this object. This agent would continue
to ask questions to satisfy a knowledge goal even though the
task goal has been completed. One could imagine a conver-
sational diagnostic agent that knows attributes of the flu and
attributes of diabetes, but that the attributes do not completely
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overlap. For example it might know that fevers are associated
with the flu, but the association of fever with diabetes is unspec-
ified. Even if the agent has asked enough questions to correctly
diagnose diabetes, it may ask another question about fever in
order to increase the coverage of its knowledge. It is this type
of question-asking behavior–questions motivated by an agent’s
knowledge goals–that we turn our attention to in this paper.

This paper uses the game of Twenty Questions as a domain
to study the knowledge goals of a dialog agent. Although this
game is familiar to many and we have observed evidence that it
is played in many cultures, we briefly explain the game to es-
tablish our terminology. The one player, the answerer, picks a
word unbeknownst to the the other player, the questioner, who
attempts to guess the word with twenty or fewer questions. In
human-human versions of this game, the two players switch
roles at the end of each match. In the formulation we present
in this paper, however, we consider the case where the ques-
tioner is a computer agent instead of a human. We could also
think of a computer agent for the answerer role, but we deem
this to be the harder role to automate and look forward to tack-
ling such a problem in future research. The data we analyze is
from a specific version of the game of twenty questions that we
devised as an experiment to study natural language descriptions
of emotions [3]. The basic idea of the Twenty Questions game
is still the same except that the answerers must pick words that
denote emotions. Despite the limitation of the game to emotion
words, the players were not otherwise limited to a fixed emo-
tion vocabulary, in distinction to other emotion research [4, 5, 6]
where fixed emotion vocabularies are typically used. This fact,
combined with the vague, ambiguous nature of emotion terms
led to a difficult task even for the human players. We found
that players required on average 12 questions to correctly guess
the unknown emotions, when failures to guess correctly are av-
eraged in as twenty questions. We also feel that the limitation
of only twenty questions is immaterial from a theoretical and
experimental point of view, but practically necessary to prevent
undue frustration and expense of time by the players. From
other perspectives, the fact that we chose emotions as a domain
for questioning is a relevant topic of research which is treated
in [3], however in this paper we look at the problem more ab-
stractly. If one considers emotions to be subjectively defined
physiological states, such questions could be applied to verbal
examinations by doctors, for example. Furthermore, if we con-
sider objects to be general things that can be represented by a
vector of attributes, then this model can be applied to a wide
range of objects. Emotions, furthermore, have the character-
istics of theoretical objects [7], i.e., objects whose existence is
predicated using natural language that refers to categories of ob-
jects rather than actual physical objects. These categories can



be seen as equivalence classes formed by the objects’ attributes.
The main claim of this paper is that knowledge goals for

a question-asking agent can be formulated in terms of com-
pleting connections in a graph structure that connects questions
with objects. Questions can be thought of as propositions that
are assigned true or false values by the answers. These propo-
sitions satisfy, in a model-theoretic sense, a model of the ob-
jects’ attributes. However, naively asking questions to connect
every question to every answer is inefficient and we are inter-
ested in an agent that asks questions that cannot be inferred
from others, and we determine these question/object pairs us-
ing a graph-based approach. To make the distinction between a
lack of knowledge that cannot be inferred and that which can,
we define two terms for this purpose. We call lack of knowl-
edge that cannot be inferred from other knowledge unconnected
knowledge to highlight the fact that it is represented by an un-
connected graph. In the case where the lack of knowledge is
just due to missing attributes of some objects, we call incom-
plete knowledge to distinguish the graphical representation of
this knowledge from a complete graph, where all vertices are
connected to every other vertex. Using this graph-based repre-
sentation, we answer two particular questions: 1) how can an
agent determine if its knowledge is unconnected, and 2) how
can the agent ask targeted questions that will “connect” the dis-
connected sets of propositions in its knowledge.

Other work has looked at dealing with uncertainty in dialog
systems regarding automatic speech recognition (ASR) output,
which results uncertain knowledge. In [8], the problem of deter-
mining additional questions to ask is posed in terms of statistical
uncertainty about the ASR output and hence the dialog state. In
this paper, we simplify the problem by assuming that the dia-
log system has only one state, that of asking questions about a
single object. We also assume that ASR is reliable since it only
needs to process answers to yes/no questions. The range of user
input is thus limited, so we can assume that ASR only needs to
recognize affirmative answers, negative answers, and uncertain
answers. At a meta level, the framework of twenty questions to
explore a conceptual space has been applied to dialog act tax-
onomies [9].

2. Methodology
2.1. Constructing a Graph from Question-Object Pairs
In this section, we describe the notion of a theory from mathe-
matical logic which states that a theory Γ is simply a set of sen-
tences in some language L that is true of a model M [10, 11].
In the case of, Γ is the set of questions that were answered with
“yes” and negations of the questions that were answered with
“no” for given objects, L is the language of propositional logic,
and M is a model of the objects. Using this formulation, we
describe how to construct a graph that can be used to identify
important gaps in the agent’s knowledge.

In this view, each question can be represented as a proposi-
tion p that can be judged true or false of a given object o. The
model of a specific object o is denoted Mo. Assuming now that
the agent has just asked question p, we can say that |=Mo p if the
user answers “yes” or |=Mo ¬p if the player answers “no”. The
previous notation is read “p/¬p is satisfied by Mo”, or equiva-
lently “Mo is a model of p/¬p”. If a proposition p satisfies the
model of object o, Mo, then p ∈ Γo, where Γo is the theory of
object o. If we can enumerate a complete set of P propositions
pn indexed by n = 1 . . . |P |, then we can represent Γo as a
Boolean vector of length |P |. For every question pn asked, the
n-th position of Γo will be true or 1 if the user has answered

yes to pn when the object was o. In this case we can say that pn

is a theorem of Γo. Similarly, false or 0 is assigned to element
n of Γε,i if pn received no as an answer when being questioned
while o was the object in question. In this case, ¬pn is a theo-
rem of Γ.

If a theory for a specific object can be seen as a long list of
propositions that are true of it, the theory of a set of emotions
can be seen as an matrix Γ where the rows are indexed by the
objects and columns are indexed by the questions/propositions.
If the theory Γ contains objects om for 1 ≤ m ≤ M and
propositions pn for 1 ≤ n ≤ N , then Γ will be an N × M
matrix. Ordinarily, Boolean algebra would dictate that this ma-
trix would consist of ones and zeros. Such a representation has
been explored under the aegis of formal concept analysis [12].
However, we need the matrix to be sparse to represent the fact
that not all of the combinations of questions and emotions have
been encountered due to incomplete knowledge. To this end,
we propose that the matrix be a (1, 0,−1)-matrix, or a signed
matrix/graph, where 1 indicates that the proposition of column-
m is true for the emotion of row-n, −1 indicates that it is false,
and 0 indicates that it has not been seen or that a contradiction
has been encountered. To make the matrix Γ a square, sym-
metric adjacency matrix, we define the adjacency matrix of Γ,
A = A(Γ) to be an M + N ×M + N matrix as follows:

A(Γ) =

»
zeros(M) ΓT

Γ zeros(N)

–

This can be seen as saying that questions and the objects they
are asked of are both nodes in a bipartite graph. This graph con-
nects questions to objects, and vice versa, but does not connect
questions with questions nor objects with objects.

The absolute value |A| of A describes whether questions
have been asked of objects, regardless of whether the answer
was yes or no. It is this graph |A| that gives us information
about the connectivity of an agent’s knowledge.

2.2. Identifying Unconnected Knowledge
Converting the theory Γ to the graph A, as described above, al-
lows us to use methods from collaborative filtering, social net-
work analysis, and spectral graph theory [13, 14]. In this paper,
we use the number of zero eigenvalues of the Laplacian of the
graph A to determine the number of connected components of
the graph. This can be seen as a measure of the sparsity of our
data and can be used to identify the questions that must be asked
of certain emotions in order to connect the graph components.
The Laplacian L of a signed graph is calculated by subtracting
the absolute adjacency matrix |A| from the diagonal absolute
degree matrix D̄ii =

P
j |Aij | :

L = D̄ − |A|
From the matrix L we can tell the number of connected compo-
nents of A by counting the number of zero eigenvalues. Thus,
if there are three eigenvalues that equal zero, the graph is com-
posed of three separate connected components. A graph Lapla-
cian with one zero eigenvalue is a single connected graph.

2.3. Determining Which Questions to Ask
If, from Section 2.2 an agent has identified that it has uncon-
nected knowledge, how can it then plan questions to address the
knowledge goal of connecting the components of A? To answer
this, we must define the notion of a walk on a graph. A walk of
length l on graph A that joins vertices vi and vj is a sequence



of vertices u0 . . . ul of A such that vi = u0, vj = ul, and ut−1

and ut are adjacent for 1 ≤ t ≤ l.
According to [15, Lemma 2.5], the number of walks of

length l in A that join vi to vj is the entry in cell (i, j) of the
matrix Al. Thus, by taking repeated powers of the absolute ad-
jacency matrix |A|, we can determine if nodes vi and vj are
connected by walks of length l. Since the graph is bipartite,
the walks from question nodes to other question nodes or from
object nodes to other object nodes will always be even length,
and conversely, walks between question and object nodes will
be odd length. This behavior is undesirable because we wish
to preserve connectedness properties across repeated powers of
Al. To remedy this undesirable behavior we can augment the
adjacency matrix |A| by adding the identity matrix I to it. At
this point, we can say that vertices vi and vj are connected by
a walk of length l or less if the entry (i, j) of (A + I)l is non-
zero. The proof of this, by contraction, that if we imagine that
vertices vi and vj are connected by some walk of length k < l,
but not of length l, then there must not be self-loop from vj to
itself after the walk of length k. However, since we added the
identity I matrix to A we know that there are in fact self-loops
on all of the vertices.

The preceding fact allows us to state an alternative test for
connectedness and also allows us to identify the question-object
pairs that need to be asked to complete the agent’s knowledge.
This test can be stated as follows: the graph A is connected if
and only if

(|A| + I)M+N−1

has no zero entries. This is because the length of a walk with
distinct steps, a path, is at most one less than the number of
vertices in the graph, i.e., M +N − 1, which would be the case
if the graph were a linked list. The question-object pairs that
correspond to zero entries in this matrix are precisely the set of
candidate questions that need to be asked to connect the agent’s
knowledge.

The reader may wonder what is the purpose of using the
graph Laplacian method to determine whether the graph is con-
nected when this can be accomplished using the method of tak-
ing powers of (A + I). While it is true that the latter method
can accomplish the same objective of determining whether the
graph is complete, the Laplacian eigenvalue method tell how
many connected components there are. This information is use-
ful because it can tell us how many questions need to be asked.
For example, if zero is an eigenvalue of the graph Laplacian, as
described in Section 2.2, and this eigenvalue has multiplicity m
(i.e., there are m eigenvalues equal to zero), the minimum num-
ber of questions that need to be asked is the number of edges
to create a spanning tree on m nodes. In this paper, we do not
consider any type of weighting on the added edges, so any min-
imal set of questions that connect the disconnected components
of the graph are satisfactory for the purposes of this paper. This
minimal set of edges is simply any tree that connects the m dis-
connected components. Thus m − 1 questions must be asked
since there are m − 1 edges in a tree of m nodes. One could
imagine additional constraints that further identify a “best” set
of question-object pairs, for example, the set of questions whose
added edges minimizes the diameter of the resulting graph.

3. Data
We collected training data for a question-asking agent using a
wizard of Oz experiment where humans played both the ques-
tioner and answerer roles for the emotion twenty questions
game, as described in Section 1 and in more detail in [3]. We

Table 1: Data processing
Preprocessing step Number of questions
0. Raw text 313
1. Text normalization 297
2. Logical representation 222

collected a total of 26 matches from 13 players. Since each
match has two players, this averaged 4 matches per player and
ranged from 2 to 12 matches. In the data, a total of 23 unique
objects (emotions) were chosen, i.e., only three objects were
observed more than once. Table 1 describes how we processed
the questions from raw text (of which there was a total of 313
unique questions asked) to a logical representation, which re-
sulted in 222 unique question nodes

Since surface forms of the questions vary widely and be-
cause at the current stage we have not developed natural lan-
guage processing techniques to extract the underlying semantics
of the questions, we used manual preprocessing to normalize
the questions to a logical form that is invariant to the wording.
This logical form converted the surface forms to a pseudo-code
language with a controlled vocabulary. This standardization in-
volved converting the emotion names to nouns, if possible, stan-
dardizing attributes of emotions and the relations of emotions to
situations and events. After the standardization, there were a to-
tal of 222 question types.

In a basic conversion of our data to a graph, there are a total
of 23 + 222 = 245 objects, our data results in an adjacency
matrix A of size 245 × 245. We will call this the basic graph.
However, the object identity questions (e.g., “Is it embarrass-
ment?” for our domain of emotion guessing) identify additional
objects. These objects have not been picked as an object but
it have been referred to in a question. So although we have
not seen the object “embarrassment” in our data as the emotion
picked by the answerer, it was referred to in one of the ques-
tioner’s questions. To account for this, we augmented our graph
with new vertices for these objects that were heard of but not ob-
served. This simply involved adding more object vertices to the
graph and connecting them to the object identity question that
referred to them. We call this the derived graph. In this case,
there were 99 objects, which resulted in an adjacency matrix of
321× 321.

4. Results
The Laplacian eigenvalue analysis of the basic object-question
graph showed us that there were 35 zero valued eigenvalues, and
hence 35 separate subgraphs of our 245×245 adjacency matrix
A. Although this shows a high degree of sparsity in the graph,
analyzing the repeated powers of A + I showed that all of the
disconnected components were all single question vertices that
represented infrequently asked questions that were answered
without a clear yes or no. Since these were not connected to
any of the emotions, asking them of any emotion could serve
to connect them to the main part of the graph. However, since
these were already asked at least once without a clear yes or no
answer, this might actually suggest questions not to ask. There
were no unconnected object nodes due to four highly used ques-
tions that connected all the object nodes. Thus, the power series
analysis of A + I showed that there were rows and columns
of zeros in elements (i, j) and (j, i) for each question i that
was unconnected and the set of vertices corresponding to ob-
jects was connected.

The Laplacian eigenvalue analysis of the 321 × 321 de-



rived graph showed use that this expanded graph actually had
the same number of disconnected components, although these
components were larger because the unconnected fragments in-
cluded question-object pairs instead of single questions vertices.

The fact that the number of unconnected components did
not increase from the case of the basic graph to the derived
graph is an important result. Even though the number of objects
more than tripled (from 23 to 99) and no additional questions
were asked, the derived graph has similar connectivity charac-
teristics.

5. Discussion
In studying the spectra of the question-object graphs, we were
expecting to find large disconnected subgraphs that could be
connected with strategically chosen questions. What we actu-
ally found was that, in the basic graph, the disconnected sub-
graphs were trivially single question vertices, which represent
knowledge that is only unconnected in the question vertices.
The main body of the graph was connected due to several fre-
quently used questions. Therefore, the answer to the question
that we set out to answer, “what questions should an agent ask
when dealing with unconnected knowledge?”, is that the agent
could ask any of these questions of the any objects since in
the basic graph the objects are all connected. One possibility
that must be considered though is that these questions may be
disconnected for a reason: they could be irrelevant. However,
the data we based our graphs on is from human-human inter-
action data, so we must assume that these disconnected ques-
tions were relevant for the players who asked them. We discuss
player-specific theories at greater length in [3], the conclusion
of which is that it is useful to model individual players who may
differ in knowledge and question-asking strategies. Thus, if an
agent is designed to play Twenty Questions as a human would,
then it makes sense to ask these questions, while for best task
performance it it would be best for an agent to simply prune
away these disconnected nodes. For modeling human perfor-
mance these questions capture the fact that humans are not op-
timal question askers with complete knowledge, at least for our
task of asking questions about emotions.

In the derived graph, which had additional vertices added
for unseen objects that were referred to in questions, the situa-
tion was different. The derived graph had disconnected object
vertices as well as question vertices. If the agent is free to pick
any object-question pair to generate a question, then whether
the unconnected vertices are questions or objects is not impor-
tant. However, in the Twenty Questions game, the other player
chooses the object, so the agent will have less opportunities to
ask questions about specific objects for which its knowledge is
unconnected. However, if the object is connected to other ques-
tions that are also disconnected from the main body of knowl-
edge, then the agent can ask these questions about any other
object that is connected with the main body of knowledge be-
cause this will result in the unconnected object being connected
via the question.

6. Conclusion
This paper presented a way for a question-asking agent to deal
with incompleteness in its knowledge. We found that the eigen-
values of the graph Laplacian and the power series of the ad-
jacency matrix give information that an agent can use to deter-
mine which questions to pick in order to complete it’s knowl-
edge. In particular we found that the knowledge that was un-
connected in the basic object-question adjacency matrix was

knowledge about individual questions. When we included data
about unobserved objects, those that had been asked about but
not seen, we found that the object nodes were also disconnected,
but that the number of disconnected components remained the
same.

In this work, we considered only questions that were ob-
served in our data. However, questions are often of a type that
can be generalized. For example, “Is the emotion similar to
happy?”, can be generalized to “Is the emotion similar to X?”
where X could be any word for an emotion. Expanding ques-
tions of these types would lead to even more extensive incom-
plete knowledge, but could lead to better abilities to make in-
ference between the questions, an issue that we will examine in
future work.
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