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Digital Ira and Beyond:  
Creating Photoreal Real-Time Digital Characters 

Summar y Statement  
 

This course explains a complete process for creating next-generation realtime digital human characters, 
using the Digital Ira collaboration between USC ICT and Activision as an example, covering highres facial 

scanning, blendshape rigging, video-based performance capture, animation compression, realtime skin 
and eye shading, hair, latest results, and future directions. 

Shor t Over view 
 

This course will present the process of creating "Digital Ira" seen at the SIGGRAPH 2013 Real-Time live 
venue, covering the complete set of technologies from high resolution facial scanning, blendshape 

rigging, video-based performance capture, animation compression, realtime skin and eye shading, and 
hair rendering. The course will also present and explain late-breaking results and refinements and point 
the way along future directions which may increase the quality and efficiency of this kind of digital 



character pipeline. The actor from this project was scanned in 30 high-resolution expressions from 
which eight were chosen for real-time performance rendering. Performance clips were captured using 

multi-view video. Expression UVs were interactively corresponded to the neutral expression, 
retopologized to an artist mesh. An animation solver creates a performance graph representing dense 
GPU optical flow between video frames and the eight expressions; dense optical flow and 3D 

triangulation are computed, yielding per-frame spatially varying blendshape weights approximating the 
performance. The performance is converted to standard bone animation on a 4k mesh using a bone-
weight and transform solver. Surface stress values are used to blend albedo, specular, normal, and 

displacement maps from the high-resolution scans per-vertex at run time. DX11 rendering includes SSS, 
translucency, eye refraction and caustics, physically based two-lobe specular reflection with 
microstructure, DOF, antialiasing, and grain. The course will explain each of processes, mentioning why 

each design choice was made and pointing to alternative components which may have been employed 
in place of any of the steps. We will also cover emerging technologies in performance capture and facial 
rendering. Attendees will receive a solid understanding of the techniques used to create photoreal 

digital characters in video games and other applications, and the confidence to incorporate some of the 
techniques into their own pipelines. 

Pr oject URL 
 

http:/ /gl.ict.usc.edu/Research/DigitalIra/ 

Intended Audience  
 

Digital Character Artists, Game Developers, Texture Painters, and Researchers working on Performance 

Capture, Facial Modeling, and Real-Time Shading research 

Pr er equisites 
 

Some experience with video game pipelines, facial animation, and shading models. The course is 
designed so that attendees with a wide range of experience levels will take away useful information and 
lessons from the course. 

 



Cour se Schedule 

1. Introduction/Overview - von der Pahlen 

2. Facial Scanning and Microgeometry Capture - Debevec 

3. Facial scan correspondence with Vuvuzela (live demo) - Alexander

4. Performance capture and animation solving - Fyffe 

5. Compressing animation to a bone rig - Danvoye 

6. Skin shading - Jimenez 

7. Driving Expression Blending - Danvoye 

8. Rendering Eyes - Jimenez 

9. Rendering Hair - Jimenez 

10. Latest Results and Future Work - von der Pahlen 

12. Q&A - All

Instr uctor  Bios: 

JAVIER VON DER PAHLEN is Director or R&D at Activision Central Studios, leading a photreal character 

program since 2009. Javier started working on computer graphics in the Architecture program at Cornell 
University in the late 80s. Before joining Activision he co-created Softimage Face Robot in 2005, the first 
face commercially available facial animation software.  

JORGE JIMENEZ is a real-time graphics researcher at Activision Blizzard. He received his PhD degree in 

Real-Time Graphics from Universidad de Zaragoza (Spain) in 2012. His interests include real-time 
photorealistic rendering, special effects, and squeezing rendering algorithms to be practical in game 
environments. He has contributions in conferences, books, and journals, including SIGGRAPH and GDC, 

the GPU Pro series, the Game Developer magazine, and the journal Transaction on Graphics. He co-
organized the course "Filtering Approaches for Real-Time Anti-Aliasing at SIGGRAPH 2011. Some of his 
key achievements include Jimenez's MLAA, SMAA, and the separable subsurface scattering technique. 



ETIENNE DANVOYE joined Activision Central Studio’s R&D team in 2009. He has been involved in 
improving every step of the pipeline for realistic characters, from the high resolution scanning hardware 

to the tools to process the animation and texture data into a runtime-ready form. Before that, he spent 
seven years at Artificial Mind&Movement (now Behavior Interactive) as Lead Engine Programmer, with 
focus on animation, particles and physics. Areas of expertise include animation engines, and efficient 

game engine pipelines. 

PAUL DEBEVEC is a Research Professor in the University of Southern California’s Viterbi School of 
Engineering. He has worked on facial capture and rendering research beginning with his SIGGRAPH 2000 
paper "Acquiring the Reflectance Field of the Human Face" which gave rise to the Light Stage systems 

recognized with an Academy Scientific and Engineering Award in 2010. 

GRAHAM FYFFE is a computer scientist in the Graphics Lab of the USC Institute for Creative Technologies. 
He previously worked at Sway Studio in Los Angeles, CA, during which time he received a Visual Effects 
Society award in 2007 for Outstanding Visual Effects in a Music Video. He received his masters in 

computer science at the University of New Brunswick, Canada, which gave him a background in 
computer graphics and artificial intelligence. His research interests include computer graphics, computer 
vision, and physics simulation, especially as applied towards visual effects. His recent work focuses on 

facial geometry scanning and performance capture.  

OLEG ALEXANDER is a technical artist specializing in facial rigging and animation. He received his MFA in 
Computer Arts from Florida Atlantic University. From 2006 to 2009 he was lead technical artist at Image 
Metrics. During this time, Oleg created hundreds of facial rigs for film, game, and TV projects. He 

became an expert in the Facial Action Coding System, facial rigging, and facial animation. In 2008, he 
directed and rigged the Digital Emily project, a demo featuring a photorealistic CG facial performance. 

Currently, Oleg is a technical artist at USC Institute for Creative Technologies.  
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Figure1: (Left) Threeof eight high-res (0.1mm) light stagescansof theactor in static expressions. (Middle) Seven-camera HD performance
recording. (Right) 180Hzvideo-driven blendshape model with screen-space subsurface scattering and advanced eye shading effects.

Overview In 2008, the “Digital Emily” project [Alexander et al.
2009] showed how a set of high-resolution facial expressions
scanned in a light stage could be rigged into a real-time photo-
real digital character and driven with video-based facial anima-
tion techniques. However, Digital Emily was rendered offline, in-
volved just the front of the face, and was never seen in a tight
closeup. This SIGGRAPH 2014 Course will describe in detail the
processes used by USC ICT and Activision to create the ”Digital
Ira” character shown at SIGGRAPH 2013’s Real-Time Live venue,
which achieved a real-time, largely photoreal digital human char-
acter which could be seen from any viewpoint, in any lighting, and
could perform realistically from video performancecaptureeven in
a tight closeup. In addition, the character ran in a real-time game-
ready production pipeline, ultimately achieving 180 framesper sec-
ond for a full-screen character on a two-year old graphicscard. For
2014, the course will show additional character examples, discuss
lessons learned, and suggest directions for future work.

3D Scanning We began by scanning accomodating researcher
Ari Shapiro in thirty high-resolution expressions using the USC
ICT’s Light Stage X system [Ghosh et al. 2011], producing 0.1mm
resoution geometry and 4K diffuse and specular reflectance maps
per expression. Wechoseeight expressionsfor thereal-timeperfor-
mance rendering, maximizing the variety of fine-scale skin defor-
mation observed in thescans. Theexpressionsweremerged onto an
artistically built back-of-the head model. To record performances
for the character, we shot seven views of 30fps video of the actor
improvising lines using the same seven Canon 1Dx cameras used
for the scans. We used a new tool called Vuvuzela to interactively
and precisely correspond all expression texture (u,v) coordinates to
the neutral expression, which was retopologized to a low-polygon
clean artist mesh.

Performance Animation Our offline animation solver creates a
performancegraph from denseGPU optical flow between thevideo
frames and the eight expressions. This graph gets pruned by an-
alyzing the correlation between the video frames and the expres-
sion scansover twelve facial regions. Thealgorithm then computes
denseoptical flow and 3D triangulation yielding per-framespatially
varying blendshape weightsapproximating the performance.

�debevec@ict.usc.edu yJavier.Pahlen@activision.com

The Game Rig To create the game-ready facial rig, we trans-
ferred themesh animation to standard boneanimation on a4K poly-
gon mesh using aboneweight and transform solver. Thesolver op-
timizes the smooth skinning weights and the bone animated trans-
formsto maximizethecorrespondencebetween thegamemesh and
the referenceanimated mesh.

Real-Time Rendering The rendering technique uses surface
stress values to blend diffuse texture, specular, normal, and dis-
placement mapsfrom thedifferent high-resolution expression scans
per-vertex at run time. Asa result, realistic wrinkles appear around
the actor’s eyes when he squints and on his foreheard when he
raiseshiseyebrows; the color of the skin also changeswith expres-
sion due to shifting blood content. The DirectX11 rendering takes
into account light transport phenomena happening in the skin and
eyes, from large scale events like the reflection of light of the own
face into theeyes, to theshadowing and occlusion happening in the
skin pores. In particular, it includesseparablesubsurfacescattering
[Jimenez et al. 2012] in screen-space, translucency, eye refraction
and caustics, advanced shadow mapping and ambient occlusion, a
physically-based two-lobe specular reflection with microstructure,
depth of field, post effects, temporal antialiasing (SMAA T2x), and
film grain.
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Digital Ira at SIGGRAPH 2013
Real-Time Live
Digital Ira at SIGGRAPH 2013
Real-Time Live
� World’s first (reasonably) photoreal real-time 

digital character, collaboratively developed 
with Activision, debuts at Real-Time Live to 
2000+ attendees

� Leverages Graham et al.’s Measurement-
Based Synthesis of Facial Microgeometry
Eurographics 2013 for skin detail synthesis

� First version with hair!

� NVIDIA shows improved Digital Ira in their 
SIGGRAPH booth on 4K monitor, including 
Digital Ira running on their “Project Logan” 
tablet prototype

� ► Come to “Digital Ira” Project Overview at 
ICT Monday 8/26 featuring Graham Fyffe, 
Oleg Alexander, and Javier von der Pahlen

� World’s first (reasonably) photoreal real-time 
digital character, collaboratively developed 
with Activision, debuts at Real-Time Live to 
2000+ attendees

� Leverages Graham et al.’s Measurement-
Based Synthesis of Facial Microgeometry
Eurographics 2013 for skin detail synthesis

� First version with hair!

� NVIDIA shows improved Digital Ira in their 
SIGGRAPH booth on 4K monitor, including 
Digital Ira running on their “Project Logan” 
tablet prototype

� ► Come to “Digital Ira” Project Overview at 
ICT Monday 8/26 featuring Graham Fyffe, 
Oleg Alexander, and Javier von der Pahlen

Digital Emily – SIGGRAPH 2008 
USC ICT and Image Metrics
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Latest Result: 30 High-Res Expressions Processed in One Week

Latest Result: 30 High-Res Expressions Processed in One Week
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Measurement-Based Synthesis of Facial 
Microgeometry

Presented at

Rendering from Multi-view Scan Photograph Rendering with Enhance 
Microstructure
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Recording skin microstructure

Setup 1

• 12-light hemispherical dome or
• Polarized LED sphere

• higher lighting resolution for 
specular/oily skin

• Canon 1DMark III camera 
• Canon 100mm macro lens

• 24mm by 16mm aperture 
• 7  microns resolution
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Specular Surface Normalsand Displacement Maps

Forehead Temple Cheek Nose Chin

Male Subject

Female Subject
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Vuvuzela: A Facial Scan Correspondence Tool

Ryosuke Ichikari Oleg Alexander Paul Debevec
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(a) (b) (c) (d) (e)

Figure 1: (a) Source. (b) Target. (c) Vuvuzela workflow. (d) Warped source. (e) Difference between warped source and target.

1 Introduction

When scanning an actor’s face in multiplestatic facial expressions,
it isoften desirablefor theresulting scansto all havethesametopol-
ogy and for the textures to all be in the same UV space. Such
“corresponded” scans would enable the straightforward creation
of blendshape-based facial rigs. We present Vuvuzela, a semi-
automated facial scan correspondence tool. Vuvuzela is currently
being used in our facial rigging pipeline, and was one of the key
tools in the Digital Iraproject.

2 Our Approach

Our rig building process begins by scanning an actor’s face in our
Light StageX device[Ghosh et al. 2011]. Wecaptureaset of about
30 static facial expressions, roughly corresponding to Action Units
from the Facial Action Coding System [Ekman and Friesen 1978].
We also capture a master “neutral” expression, which becomes the
target scan in our correspondence pipeline.

Rather than storing our scans as geometry and textures, we choose
instead to storeour scansasimages. Each oneof our scansisstored
asaset of 4K, 32 bit float EXR images, including diffuse, specular,
specular normals, and a high resolution point cloud. The maps are
in a cylindrically unwrapped UV space, representing our ear to ear
data. However, the UV space differs slightly for each expression
scan.

Vuvuzela exploits this image-based scan represantation by doing
the scan correspondence in 2D rather than 3D. Vuvuzela takes as
input two scans: one of the expressions as the source and the neu-
tral expression as the target. Vuvuzela provides an OpenGL UI,
allowing the user to interact with the scans in 3D. The scans are
rendered with the diffuse textures only, and all of the correspon-
dence processing usesonly the diffuse textures.

Theuser clickscorresponding points in thesourceand target scans,
such ascornersof theeyesand lips, and other facial landmarks. We
found that we don’t need to put dots or markers on the face during
scanning, because there is plenty of naturally occuring texture in
the face, especially when over-sharpened. The placement of the
correspondencepointsdoesn’t haveto beexact—thepointsareused
only as an initialization by our algorithm.

Once enough points have been placed, the user presses the Update

button, which triggers our correspondence algorithm. The result
is displayed to the user and the UI offers several modes to pre-
view the quality of the correspondence, including a “blendshape”
slider blending both geometry and/or texture. The user can then
add, delete, or edit points, and repeat the process until a high qual-
ity correspondence is achieved.

Our algorithm has three steps and runs in 2D. First, we construct
a Delaunay triangulation between the user supplied points and ap-
ply affine triangles to roughly pre-warp the source diffuse texture
to the target. Second, weuseGPU-accelerated optical flow to com-
pute a dense warp field from the pre-warped source diffuse texture
to the target. Finally, we apply the dense warp to each one of our
source texture maps, including diffuse, specular, specular normals,
and point cloud. The result is the source scan warped to the tar-
get UV space. The submillimeter correspondence is able to align
individual poresacross the majority of the face.

Some expressions are more challenging to correspond than others.
Especially expressions with lots of occlusions, like mouth open to
mouth closed. In such cases, optical flow will fail to get a good re-
sult. Weassist optical flow in two ways. First, wepaint black masks
around occlusion regions in both sourceand target diffuse textures.
Second, wemark somepointsas “pinned” and thosepointsare ras-
terized into small black dots at runtime. Using both of these tech-
niques in combination usually produces good results even in the
toughest cases.

A useful byproduct of Vuvuzela is the ability to generate blend-
shapes directly from the corresponded scans. First, we remesh the
neutral scan, creating an artist mesh with artist UVs. Then we load
theartist mesh into Vuvuzelaand export theblendshapes for all the
scansby looking up vertex positionsin thewarped point clouds. All
the texture maps are also warped into the artist UV space, which is
simply an additional affine triangles 2D warp. The result is a set of
blendshapesand texturemaps ready to hand off to the facial rigger.
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Driving High-Resolution Facial Scans with Video Performance Capture

Graham Fyffe Andrew Jones Oleg Alexander Ryosuke Ichikari Paul Debevec �

USC Institute for CreativeTechnologies

(a) (b) (c) (d)
Figure1: (a) High resolution geometric and reflectanceinformation frommultiplestatic expression scansisautomatically combined with (d)
dynamic video frames to recover (b) matching animated high resolution performance geometry that can be (c) relit under novel illumination
from a novel viewpoint. In thisexample, theperformance is recovered using only the single camera viewpoint in (d).

Abstract

We present a process for rendering a realistic facial performance
with control of viewpoint and illumination. The performance is
based on one or more high-quality geometry and reflectance scans
of an actor in static poses, driven by one or more video streams of
a performance. We compute optical flow correspondencesbetween
neighboring video frames, and a sparse set of correspondences be-
tween static scans and video frames. The latter are made possible
by leveraging the relightability of the static 3D scans to match the
viewpoint(s) and appearanceof theactor in videostaken in arbitrary
environments. As optical flow tends to compute proper correspon-
dence for some areas but not others, we also compute a smoothed,
per-pixel confidence map for every computed flow, based on nor-
malized cross-correlation. These flows and their confidences yield
a set of weighted triangulation constraints among the static poses
and the frames of a performance. Given a single artist-prepared
face mesh for one static pose, we optimally combine the weighted
triangulation constraints, along with a shape regularization term,
into a consistent 3D geometry solution over the entire performance
that isdrift-freeby construction. In contrast to previouswork, even
partial correspondences contribute to drift minimization, for exam-
ple where a successful match is found in the eye region but not
the mouth. Our shape regularization employs a differential shape
term based on a spatially varying blend of the differential shapes
of thestatic posesand neighboring dynamic poses, weighted by the
associated flow confidences. These weights also permit dynamic
reflectance maps to be produced for the performance by blending
the static scan maps. Finally, as the geometry and maps are rep-
resented on a consistent artist-friendly mesh, we render the result-
ing high-quality animated face geometry and animated reflectance
maps using standard rendering tools.

�e-mail:ffyffe,jones,oalexander,debevecg@ict.usc.edu

1 Introduction

Recent facial geometry scanning techniques can capture very high
resolution geometry, including high-frequency details such as skin
pores and wrinkles. When animating these highly detailed faces,
highly accurate temporal correspondence is required. At present,
the highest quality facial geometry is produced by static scanning
techniques, where the subject holds a facial pose for several sec-
onds. This permits the use of high-resolution cameras for accu-
rate stereo reconstruction and active illumination to recover pore-
level resolution surface details. Such techniques also capture high-
quality surface reflectancemaps, enabling realistic rendering of the
captured faces. Alternatively, static facial poses may be captured
using facial casts combined with detail acquired from surface im-
prints. Unfortuately, dynamic scanning techniques are unable to
provide the same level of detail as static techniques, even when
high-speed camerasand active illumination are employed.

The classic approach to capturing facial motion is to use markers
or face paint to track points on the face. However, such techniques
struggle to capture the motion of the eyes and mouth, and rely on
a high-quality facial rig to provide high-frequency skin motion and
wrinkling. The best results are achieved when the rig is based on
high-resolution static scansof thesamesubject. A second approach
isto captureaperformancewithoneor morepassivevideocameras.
Such setupsare lightweight as they use environmental illumination
and off-the-shelf video cameras. As the camera records the entire
face, it should bepossible to recover eyeand mouth motion missed
by sparse markers. Still, by itself, passive video cannot match the
resolution of static scans. Whileit ispossibleto embosssomevideo
texture on the face [Bradley et al. 2010][Beeler et al. 2011][Val-
gaerts et al. 2012], many facial details appear only in specular re-
flectionsand are not visibleunder arbitrary illumination.

We present a technique for creating realistic facial animation from
a set of high-resolution scans of an actor’s face, driven by passive
video of the actor from one or more viewpoints. The videos can be
shot under existing environmental illumination using off-the-shelf

1
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HD video cameras. The static scans can come from a variety of
sources including facial casts, passive stereo, or active illumination
techniques. High-resolution detail and relightable reflectanceprop-
erties in thestatic scanscan betransferred to theperformanceusing
generated per-pixel weight maps. We operate our algorithm on a
performance flow graph that represents dense correspondences be-
tween dynamic frames and multiple static scans, leveraging GPU-
based optical flow to efficiently construct the graph. Besides a sin-
gle artist remesh of a scan in neutral pose, our method requires no
rigging, no training of appearance models, no facial feature detec-
tion, and no manual annotation of any kind. As a byproduct of our
method we also obtain a non-rigid registration between the artist
mesh and each static scan. Our principal contributions are:

� An efficient scheme for selecting a sparse subset of image
pairs for optical flow computation for drift-free tracking.

� A fully coupled 3D tracking method with differential shape
regularization using multiple locally weighted target shapes.

� A message-passing-based optimization scheme leveraging
lazy evaluation of energy terms enabling fully-coupled opti-
mization over an entire performance.

2 Related Work

Asmany systemshavebeen built for capturing facial geometry and
reflectance, we will restrict our discussion to those that establish
some form of dense temporal correspondence over a performance.

Many existing algorithms compute temporal correspondence for a
sequence of temporally inconsistent geometries generated by e.g.
structured light scannersor stereo algorithms. Thesealgorithmsop-
erate using only geometric constraints [Popa et al. 2010] or by de-
forming template geometry to match each geometric frame [Zhang
et al. 2004]. The disadvantage of this approach is that the per-
frame geometry often contains missing regions or erroneous ge-
ometry which must befilled or filtered out, and any details that are
missed in the initial geometry solution are non-recoverable.

Other methods operate on video footage of facial performances.
Methods employing frame-to-frame motion analysis are subject
to the accumulation of error or “drift” in the tracked geometry,
prompting many authors to seek remedies for this issue. We there-
fore limit our discussion to methods that make some effort to ad-
dress drift. Li et al. [1993] compute animated facial blendshape
weights and rigid motion parameters to match the texture of each
video frame to a reference frame, within a local minimum deter-
mined by a motion prediction step. Drift is avoided whenever a
solid match can be made back to the reference frame. [DeCarlo
and Metaxas1996] solves for facial rig control parameters to agree
with sparse monocular optical flow constraints, applying forces to
pull model edges towards image edges in order to combat drift.
[Guenter et al. 1998] tracksmotion capturedotsin multipleviewsto
deform a neutral facial scan, increasing the realism of the rendered
performanceby projecting video of the face (with thedotsdigitally
removed) onto the deforming geometry. The ”Universal Capture”
system described in [Borshukov et al. 2003] dispenseswith thedots
and uses dense multi-view optical flow to propagate vertices from
an initial neutral expression. User intervention is required to cor-
rect drift when it occurs. [Hawkins et al. 2004] uses performance
tracking to automatically blend between multiple high-resolution
facial scans per facial region, achieving realistic multi-scale facial
deformation without the need for reprojecting per-frame video, but
uses dots to avoid drift. Bradley et al. [2010] track motion us-
ing dense multi-view optical flow, with a final registration step be-
tween theneutral mesh and every subsequent frame to reducedrift.
Beeler et al. [2011] explicitly identify anchor framesthat aresimilar

to a manually chosen reference pose using a simple image differ-
encemetric, and track theperformancebidirectionally between an-
chor frames. Non-sequential surface tracking [Klaudiny and Hilton
2012] findsaminimum-cost spanning treeover the frames in aper-
formance based on sparse feature positions, tracking facial geome-
try acrossedges in the tree with an additional temporal fusion step.
Valgaerts et al. [2012] apply scene flow to track binocular passive
video with a regularization term to reduce drift.

Onedrawback to all such optical flow tracking algorithmsisthat the
face is tracked from one pose to another asa whole, and successof
thetracking dependson accurateoptical flow between imagesof the
entire face. Clearly, the human face is capable of repeating differ-
ent posesover different partsof the faceasynchronously, which the
holistic approachesfail to model. For example, if thesubject istalk-
ing with eyebrows raised and later with eyebrows lowered, a holis-
tic approach will fail to exploit similarities in mouth poses when
eyebrow poses differ. In contrast, our approach constructs a graph
considering similaritiesover multiple regionsof the faceacross the
performance frames and a set of static facial scans, removing the
need for sparse feature tracking or anchor frame selection.

Blend-shape based animation rigs are also used to reconstruct dy-
namic poses based on multiple face scans. The company Image
Metrics (now Faceware) has developed commercial software for
driving ablend-shaperig with passivevideo based on activeappear-
ancemodels [Cooteset al. 1998]. Weiseet al. [2011] automatically
construct a personalized blend shape rig and drive it with Kinect
depth data using a combination of as-rigid-as-possible constraints
and optical flow. In both cases, the quality of the resulting tracked
performance is directly related to the quality of the rig. Each
tracked frame is a linear combination of the input blend-shapes,
so any performance details that lie outside the domain spanned by
the rig will not be reconstructed. Huang et al. [2011] automati-
cally choose a minimal set of blend shapes to scan based on previ-
ously captured performance with motion capture markers. Recre-
ating missing detail requires artistic effort to add corrective shapes
and cleanup animation curves [Alexander et al. 2009]. There has
been some research into other non-traditional rigs incorporating
scan data. Ma et al. [2008] fit a polynomial displacement map to
dynamic scan training data and generate detailed geometry from
sparse motion capture markers. Bickel et al. [2008] locally inter-
polate a set of static poses using radial basis functions driven by
motion capture markers. Our method combines the shape regu-
larization advantages of blendshapes with the flexibility of optical
flow based tracking. Our optimization algorithm leverages 3D in-
formation from static scans without constraining the result to lie
only within the linear combinationsof thescans. At thesame time,
we obtain per-pixel blend weights that can be used to produce per-
frame reflectance maps.

3 Data Capture and Preparation

Wecapturehigh-resolution static geometry using multi-view stereo
and gradient-based photometric stereo [Ghosh et al. 2011]. The
scan set includes around 30 poses largely inspired by the Facial
Action Coding System (FACS) [Ekman and Friesen 1978], selected
to span nearly the entire range of possible shapes for each part of
the face. For efficiency, we capture some poses with the subject
combining FACS action units from the upper and lower half of the
face. For example, combining eyebrows raise and cheeks puff into
a single scan. Examples of the input scan geometry can be seen in
Fig. 2. A basemesh isdefined by an artist for theneutral posescan.
The artist mesh has an efficient layout with edge loops following
the wrinkles of the face. The non-neutral poses are represented as
raw scan geometry, requiring no artistic topology or remeshing.
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We capture dynamic performances using up to six Canon 1DX
DSLR cameras under constant illumination. In the simplest case,
we use the same cameras that were used for the static scans and
switch to 1920�1080 30p movie mode. We compute a sub-frame-
accurate synchronization offset between cameras using a correla-
tion analysis of the audio tracks. This could be omitted if cam-
eras with hardware synchronization are employed. Following each
performance, we capture a video frame of a calibration target to
calibrate camera intrinsics and extrinsics. We relight (and when
necessary, repose) the static scan data to resemble the illumination
conditionsobserved in theperformancevideo. In thesimplest case,
the illumination field resembles one of the photographs taken dur-
ing thestatic scan process and no relighting is required.

Figure 2: Samplestatic scans (showing geometry only).

4 The Performance Flow Graph

Optical-flow-based tracking algorithms such as [Bradley et al.
2010][Beeler et al. 2011][Klaudiny and Hilton 2012] relate frames
of a performance to each other based on optical flow correspon-
dences over a set of image pairs selected from the performance.
These methods differ in part by the choice of the image pairs to be
employed. We generalize this class of algorithms using a structure
wecall theperformanceflow graph, which isacompletegraph with
edges representing dense 2D correspondences between all pairs of
images, with each edge having a weight, or confidence, of the as-
sociated estimated correspondence field. The graphs used in previ-
ous works, including anchor frames [Beeler et al. 2011] and non-
sequential alignment with temporal fusion [Klaudiny and Hilton
2012], can be represented as a performance flow graph having unit
weight for theedgesemployed by the respectivemethods, and zero
weight for theunused edges. Wefurther generalizetheperformance
flow graph to include a dense confidencefield associated with each
correspondencefield, allowing theconfidenceto vary spatially over
the image. This enables our technique to exploit relationships be-
tween images where only a partial correspondence was able to be
computed (for example, apair of imageswherethemouth issimilar
but the eyes are very different). Thus our technique can be viewed
as an extension of anchor frames or minimum spanning trees to
minimize drift independently over different regionsof the face.

A performance capture system that considers correspondences be-
tween all possible image pairs naturally minimizes drift. However,
this would require an exorbitant number of graph edges, so we in-
stead construct a graph with a reduced set of edges that approxi-
matesthecompletegraph, in thesensethat thecorrespondencesare
representative of the full set with respect to confidence across the
regions of the face. Our criterion for selecting the edges to include
in theperformanceflow graph is that any two imageshaving ahigh
confidence correspondence between them in the complete graph of
possible correspondences ought to have a path between them (a
concatenation of one or more correspondences) in the constructed
graph with nearly as high confidence (including the reduction in

Figure3: performanceflow graph showing optical flow correspon-
dencesbetween static and dynamic images. Red lines represent op-
tical flow between neighboring frameswithin a performance. Blue,
green, and orangelinesrepresent optical flow between dynamic and
static images. Based on initial low-resolution optical flow, we con-
struct a sparse graph requiring only a small subset of high resolu-
tionflowsto becomputed between static scansand dynamic frames.

confidence from concatenation). We claim that correspondences
between temporally neighboring dynamic frames are typically of
high quality, and no concatenation of alternative correspondences
can be as confident, therefore we always include a graph edge be-
tween each temporally neighboring pair of dynamic frames. Cor-
respondences between frames with larger temporal gaps are well-
approximated by concatenating neighbors, but decreasingly so over
larger temporal gaps (due to drift). We further claim that whenever
enough drift accumulates to warrant including a graph edge over
thelarger temporal gap, thereexistsapath with nearly asgood con-
fidence that passes through one of the predetermined static scans
(possibly adifferent static scan for each region of theface). Wejus-
tify this claim by noting the 30 static poses based on FACS ought
to span the space of performances well enough that any region of
any dynamic frame can be corresponded to some region in some
static scan with good confidence. Therefore we do not include
any edges between non-neighboring dynamic frames, and instead
consider only edges between a static scan and a dynamic frame as
candidates for inclusion (visualized in Fig. 3). Finally, as the drift
accumulated from the concatenation described above warrants ad-
ditional edges only sparsely over time, we devise a coarse-to-fine
graph construction strategy using only a sparse subset of static-to-
dynamic graph edges. We detail this strategy in Section 4.1.

4.1 Constructing the Performance Flow Graph

The images used in our system consist of one or more dynamic
sequences of frames captured from one or more viewpoints, and
roughly similar views of a set of high-resolution static scans. The
nodes in our graph represent static poses (associated with static
scans) and dynamic poses (associated with dynamic frames from
one or more sequences). We construct the performance flow graph
by computing a large set of static-to-dynamic optical flow corre-
spondencesat a reduced resolution for only asingleviewpoint, and
then omit redundant correspondences using a novel voting algo-
rithm to select asparseset of correspondencesthat is representative
of the original set. We then compute high-quality optical flow cor-
respondences at full resolution for the sparse set, and include all
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viewpoints. The initial set of correspondences consists of quarter-
resolution optical flows from each static scan to every nth dynamic
frame. For most static scansweuseevery 5th dynamic frame, while
for the eyes-closed scan we use every dynamic frame in order to
catch rapid eye blinks. We then compute normalized cross corre-
lation fields between the warped dynamic frames and each original
static scan to evaluatetheconfidenceof thecorrespondences. These
correspondences may be computed in parallel over multiple com-
puters, as there isno sequential dependency between them. Wefind
that at quarter resolution, flow-based crosscorrelation correctly as-
signs low confidence to incorrectly matched facial features, for ex-
ample when flowing disparate open and closed mouth shapes. To
reduce noise and create a semantically meaningful metric, we av-
erage the resulting confidence over twelve facial regions (see Fig.
4). These facial regions are defined once on the neutral pose, and
arewarped to all other static posesusing rough static-to-static opti-
cal flow. Precise registration of regions is not required, as they are
only used in selecting the structure of the performance graph. In
the subsequent tracking phase, per-pixel confidence is used.

(a) (b) (c) (d)

(e) (f)

Figure 4: We compute an initial low-resolution optical flow be-
tween a dynamic image (a) and static image (b). We then com-
pute normalized crosscorrelation between the static image (b) and
the warped dynamic image (c) to produce the per-pixel confidence
shown in (d). We average these values for 12 regions (e) to obtain
a per-region confidence value (f). This example shows correlation
between the neutral scan and a dynamic frame with the eyebrows
raised and the mouth slightly open. The forehead and mouth re-
gionsareassigned appropriately lower confidences.

Ideally we want the performance flow graph to be sparse. Besides
temporally adjacent poses, dynamic poses should only connect to
similar staticposesandedgesshouldbeevenly distributedover time
to avoid accumulation of drift. We propose an iterative greedy vot-
ing algorithm based on the per-region confidence measure to iden-
tify good edges. Theconfidenceof correspondencebetween thedy-
namic framesand any region of any static facial scan can beviewed
as a curve over time (depicted in Fig. 5). In each iteration we iden-
tify the maximum confidence value over all regions, all scans, and
all frames. We add an edge between the identified dynamic pose
and static poseto thegraph. Wethen adjust therecorded confidence
of the identified region by subtracting a hat function scaled by the
maximum confidenceand centered around themaximum frame, in-
dicating that theselected edgehasbeen accounted for, and temporal
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Figure 5: A plot of the per-region confidence metric over time.
Higher numbers indicate greater correlation between the dynamic
frames and a particular static scan. The cyan curve represents the
center forehead region of a brows-raised static scan which is ac-
tive throughout the later sequence. The green curve represents the
mouth region for an extreme mouth-open scan which is active only
when themouth opensto its fullest extent. Thedashed linesindicate
the timing of the sampled framesshown on the bottom row.

neighbors partly so. All other regions are adjusted by subtracting
similar hat functions, scaled by the (non-maximal) per-region con-
fidenceof theidentifiedflow. Thissuppressesany other regionsthat
are satisfied by the flow. The slope of the hat function represents a
lossof confidence as thisflow iscombined with adjacent dynamic-
to-dynamic flows. We then iterateand choose thenew highest con-
fidencevalue, until all confidencevaluesfall below athreshold. The
two parameters (the slope of the hat function and the final thresh-
old value) provide intuitive control over the total number of graph
edges. We found a reasonable hat function falloff to be a 4% re-
duction for every temporal flow and a threshold value that is 20%
of the initial maximum confidence. After constructing the graph,
a typical 10-20 second performance flow graph will contain 100-
200 edges between dynamic and static poses. Again, as the change
between sequential frames is small, we preserve all edges between
neighboring dynamic poses.

After selecting the graph edges, final HD resolution optical flows
arecomputed for all activecamerasand for all retained graph edges.
We directly load video frames using nVidia’s h264 GPU decoder
and feed them to the FlowLib implementation of GPU-optical flow
[Werlberger 2012]. Running on a Nvidia GTX 680, computation
of quarter resolution flowsfor graph construction take less than one
second per flow. Full-resolution HD flows for dynamic-to-dynamic
images take 8 seconds per flow, and full-resolution flows between
static and dynamic images take around 23 seconds per flow due to
a larger search window. More sophisticated correspondence esti-
mation schemes could be employed within our framework, but our
intention is that the framework be agnostic to this choice and ro-
bust to imperfections in the pairwise correspondences. After com-
puting optical flows and confidences, we synchronize all the flow
sequences to a primary camera by warping each flow frame for-
ward or backward in time based on the sub-frame synchronization
offsetsbetween cameras.

We claim that an approximate performance flow graph constructed
in thismanner ismorerepresentativeof thecompleteset of possible
correspondences than previous methods that take an all-or-nothing
approach to pair selection, while still employing a number of opti-
cal flow computations on the same order as previous methods (i.e.
temporal neighbors plusadditional sparse image pairs).
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5 Fully Coupled Performance Tracking

The performance flow graph is representative of all the constraints
we could glean from 2D correspondence analysis of the input im-
ages, and now we aim to put those constraints to work. We formu-
late an energy function in terms of the 3D vertex positions of the
artist mesh as it deformsto fit all of thedynamic and static poses in
the performance flow graph in a common head coordinate system,
aswell astheassociated head-to-world rigid transforms. Wecollect
thefreevariables into avector �= (x p

i ; R p ; t p jp 2 D [ S; i 2 V),
where x p

i represents the 3D vertex position of vertex i at pose p
in the common head coordinate system, R p and t p represent the
rotation matrix and translation vector that rigidly transform pose p
from the common head coordinate system to world coordinates, D
is theset of dynamic poses, S is theset of static poses, and V is the
set of mesh vertices. The energy function is then:

E(�) =
X

( p;q) 2 F

(Epq
cor r + Eqp

cor r ) + �
X

p2 D [ S

jF p jEp
shap e

+ �
X

p2 S

jF p jEp
w r ap + �jF g jEgr ound ; (1)

whereF is theset of performanceflow graph edges, F p is thesub-
set of edges connecting to pose p, and g is the ground (neutral)
static pose. This function includes:

� dense correspondence constraints Epq
cor r associated with the

edges of the performanceflow graph,

� shape regularization terms Ep
shap e relating the differential

shape of dynamic and static poses to their graph neighbors,

� “shrink wrap” terms Ep
w r ap to conform the static poses to the

surfaceof the static scan geometries,

� a final grounding term Egr ound to prefer the vertex positions
in aneutral poseto becloseto theartist mesh vertex positions.

We detail these terms in sections 5.2 - 5.5. Note we do not em-
ploy astereo matching term, allowing our technique to berobust to
small synchronization errors between cameras. As the number of
poses and correspondences may vary from one dataset to another,
the summations in (1) contain balancing factors (to the immediate
right of each �) in order to have comparable total magnitude (pro-
portional to jF j). The terms are weighted by tunable term weights
�, �and �, which in all examples we set equal to 1.

5.1 Minimization by Lazy DDMS-TRWS

In contrast to previous work, we consider the three-dimensional
coupling between all termsin our formulation, over all dynamic and
static posessimultaneously, thereby obtaining arobust estimatethat
gracefully fills in missing or unreliable information. This presents
two major challenges. First, the partial matches and loops in the
performance flow graph preclude the use of straightforward mesh
propagation schemes used in previous works. Such propagation
would produce only partial solutions for many poses. Second (as a
result of thefirst) we lack a complete initial estimate for traditional
optimization schemes such as Levenberg-Marquadt.

To address these challenges, we employ an iterative scheme that
admits partial intermediate solutions, with pseudocode in Algo-
rithm 1. As some of the terms in (1) are data-dependent, we
adapt the outer loop of Data Driven Mean-Shift Belief Propagation
(DDMSBP) [Park et al. 2010], which models theobjective function
in each iteration as an increasingly-tight Gaussian (or quadratic)
approximation of the true function. Within each DDMS loop, we

use Gaussian Tree-Reweighted Sequential message passing (TRW-
S) [Kolmogorov 2006], adapted to allow the terms in the model to
be constructed lazily as the solution progresses over the variables.
Hence we call our scheme Lazy DDMS-TRWS. We define the or-
dering of thevariables to bepose-major (i.e. visiting all thevertices
of one pose, then all the vertices of the next pose, etc.), with static
poses followed by dynamic poses in temporal order. We decom-
posetheGaussian belief asaproduct of 3D Gaussiansover vertices
and poses, which admits a pairwise decomposition of (1) as a sum
of quadratics. We denote the current belief of a vertex i for pose p
as �x p

i with covariance �p
i (stored as inverse covariance for conve-

nience), omitting the i subscript to refer to all vertices collectively.
We detail the modeling of the energy terms in sections 5.2 - 5.5,
defining �y p

i = R p �x p
i + t p as shorthand for world space vertex

position estimates. We iterate the DDMS loop 6 times, and iterate
TRW-S until 95% of the verticesconverge to within 0.01mm.

Algor ithm 1 Lazy DDMS-TRWS for (1)

8p; i : (�p
i )� 1  0.

for DDMSouter iterationsdo
// Reset the model:
8p;q : Epq

cor r ; E p
shap e; Ep

w r ap  undefined (effectively 0).
for TRW-S inner iterations do

// Major TRW-Sloop over poses:
for each p 2 D [ S in order of increasing o(p) do

// Update model wherepossible:
for each qj(p; q) 2 F do

if (�p)� 1 6= 0 and Epq
cor r undefined then

Epq
cor r  model fit using (2) in section 5.2.

if (�q)� 1 6= 0 and Eqp
cor r undefined then

Eqp
cor r  model fit using (2) in section 5.2.

if (�p)� 1 6= 0 and Ep
w r ap undefined then

Ep
w r ap  model fit using (8) in section 5.4.

if 9( p;q) 2 F j(�q)� 1 6= 0 and Ep
shap e undefined then

Ep
shap e  model fit using (5) in section 5.3.

// Minor TRW-Sloop over vertices:
Pass messagesbased on (1) to update �x p; (�p)� 1.
Update R p ; t p as in section 5.6.

// Reverse TRW-Sordering:
o(s)  kD [ Sk + 1 � o(s).

5.2 Modeling the Correspondence Term

The correspondence term in (1) penalizes disagreement between
optical flow vectors and projected vertex locations. Suppose we
havea2D optical flow correspondencefield between posesp and q
in (roughly) the same view c. We may establish a 3D relationship
between x p

i and x q
i implied by the 2D correspondencefield, which

we model as aquadratic penalty function:

Epq
cor r = 1

j Cj

X X

c2 C
i 2 V

(x q
i � x p

i � f c
pq
i

)TF c
pq
i

(x q
i � x p

i � f c
pq
i

); (2)

where C is the set of camera viewpoints, and f c
pq
i

; F c
pq
i

are respec-

tively the mean and precision matrix of the penalty, which we es-
timate from the current estimated positions as follows. We first
project �y p

i into the image plane of view c of pose p. We then warp
the 2D image position from view c of pose p to view c of pose q
using the correspondence field. The warped 2D position defines a
world-space view ray that the same vertex i ought to lie on in pose
q. We transform this ray back into common head coordinates (via
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�t q, R T
q ) and penalize the squared distance from x q

i to this ray.
Letting r c

pq
i

represent the direction of this ray, this yields:

f c
pq
i

= (I � r c
pq
i

r c
pq
i

T )(R T
q (cc

q � t q) � �x p
i ); (3)

where cc
q is the nodal point of view c of pose q, and r c

pq
i

= R T
q dc

pq
i

with dc
pq
i

the world-space direction of the ray in view c of pose

q through the 2D image plane point f c
pq[Pc

p (�y p
i )] (where square

brackets represent bilinearly interpolated sampling of afield or im-
age), f c

pq the optical flow field transforming an image-space point
from view c of pose p to the corresponding point in view c of pose
q, and Pc

p(x ) the projection of a point x into the image plane of
view c of pose p (which may differ somewhat from pose to pose).
If we were to use the squared-distance-to-ray penalty directly, F c

pq
i

would be I � r c
pq
i

r c
pq
i

T , which is singular. To prevent the problem

from being ill-conditioned and also to enable the use of monocular
performance data, we add a small regularization term to produce
a non-singular penalty, and weight the penalty by the confidence
of the optical flow estimate. We also assume the optical flow field
is locally smooth, so a large covariance �p

i inversely influences
the precision of the model, whereas a small covariance �p

i does
not, and weight the model accordingly. Intuitively, this weighting
causes information to propagate from the ground term outward via
thecorrespondencesin early iterations, and blendscorrespondences
from all sources in later iterations. All together, this yields:

F c
pq
i

= min(1; det (�p
i )�

1
3 )vc

p
i
�c

pq[Pc
p (�y p

i )](I �r c
pq
i

r c
pq
i

T+ �I ); (4)

where vc
p
i

is a soft visibility factor (obtained by blurring a binary

vertex visibility map and modulated by the cosine of the angle be-
tween surface normal and view direction), �c

pq is the confidence
field associated with the correspondence field f c

pq, and �is a small
regularization constant. We use det (�)�1=3 as a scalar form of
precision for 3D Gaussians.

5.3 Modeling the Differential Shape Term

Theshape term in (1) constrains thedifferential shapeof each pose
to aspatially varying convex combination of thedifferential shapes
of the neighboring poses in theperformanceflow graph:

Ep
shap e =

X

( i ; j ) 2 E

�
�x p

j � x p
i � lp

i j

�
�2

; (5)

l p
i j =

�(gj � gi ) +
P

qj ( p;q) 2 F wpq
i j (�x q

j � �x q
i )

�+
P

qj (p;q) 2 F wpq
i j

; (6)

wpq
i j =

wpq
i wpq

j

wpq
i + wpq

j

; (7)

where E is the set of edges in the geometry mesh, wpq
i =

det ( 1
j Cj

P
c2 C F c

pq
i

+ F c
qp
i

)1=3 (which is intuitively the strength of

the relationship between poses p and q due to the correspondence
term), g denotes the artist mesh vertex positions, and �is a small
regularization constant. The weights wpq

i additionally enable triv-
ial synthesis of high-resolution reflectance maps for each dynamic
frame of the performance by blending thestatic posedata.

5.4 Modeling the Shrink Wrap Term

The shrink wrap term in (1) penalizes the distance between static
pose vertices and the raw scan geometry of the same pose. We

model this asa regularized distance-to-plane penalty:

Ep
wr ap =

X

i 2 V

(x p
i � dp

i )Tgp
i (np

i np
i
T + �I )(x p

i � dp
i ); (8)

where (np
i ; dp

i ) are the normal and centroid of a plane fitted to the
surface of the static scan for pose p close to the current estimate
�x p

i in common head coordinates, and gp
i is the confidence of the

planar fit. We obtain the planar fit inexpensively by projecting �y p
i

into each camera view, and sampling the raw scan surface via a
set of precomputed rasterized views of the scan. (Alternatively, a
3D search could be employed to obtain the samples.) Each surface
sample (excluding samples that are occluded or outside the raster-
ized scan) provides a plane equation based on the scan geometry
and surface normal. We let np

i and dp
i be the weighted average

values of the plane equations over all surfacesamples:

np
i =

X

c2 C

! c
p
i
R T

p n̂ c
p [Pc

p (�y p
i )] (normalized); (9)

dp
i =

�X

c2 C

! c
p
i

�� 1X

c2 C

! c
p
i
R T

p (d̂ c
p [Pc

p (�y p
i )] � t p ); (10)

gp
i = min(1; det (�p

i )�
1
3 )

X

c2 C

! c
p
i
; (11)

where (n̂c
p ; d̂ c

p ) are the world-space surface normal and position
imagesof therasterized scans, and ! c

p
i

= 0 if thevertex isoccluded

in view c or lands outside of the rasterized scan, otherwise ! c
p
i

=

vc
p
i

exp(�kd̂c
p [Pc

p (�y p
i )] � �y p

i k
2
).

5.5 Modeling the Ground Term

The ground term in (1) penalizes the distance between vertex po-
sitions in the ground (neutral) pose and the artist mesh geometry:

Egr ound =
X

i 2 V

�
�
�x g

i � R T
g gi

�
�
�

2
; (12)

where gi is the position of the vertex in the artist mesh. This term
is simpler than the shrink-wrap term since the pose vertices are in
one-to-one correspondence with the artist mesh vertices.

5.6 Updating the Rigid Transforms

We initialize our optimization scheme with all (�p
i )� 1 = 0 (and

henceall �x p
i moot), fully relying on thelazy DDMS-TRWSscheme

to propagate progressively tighter estimates of the vertex positions
x p

i throughout the solution. Unfortunately, in our formulation the
rigid transforms (R p; t p ) enjoy no such treatment as they always
occur together with x p

i and would produce non-quadratic terms
if they were included in the message passing domain. There-
fore we must initialize the rigid transforms to some rough ini-
tial guess, and update them after each iteration. The neutral pose
is an exception, where the transform is specified by the user (by
rigidly posing the artist mesh to their whim) and hence not up-
dated. In all our examples, the initial guess for all poses is sim-
ply the same as the user-specified rigid transform of the neutral
pose. We update (R p; t p ) using a simple scheme that aligns the
neutral artist mesh to the current result. Using singular value
decomposition, we compute the closest rigid transform minimiz-
ing

P
i 2 V r i

�
�R pgi + t p � �R p �x p

i � �t p

�
�2

, where r i is a rigidity
weight value (high weight around theeyesocketsand temples, low
weight elsewhere), gi denotes the artist mesh vertex positions, and
( �R p ; �t p ) is theprevious transform estimate.
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5.7 Accelerating the Solution Using Keyframes

Minimizing theenergy in (1) over theentiresequencerequiresmul-
tiple iterations of the TRW-S message passing algorithm, and mul-
tiple iterations of the DDMS outer loop. We note that the perfor-
mance flow graph assigns static-to-dynamic flows to only a sparse
subset of performance frames, which we call keyframes. Corre-
spondences among the spans of frames in between keyframes are
reliably represented using concatenation of temporal flows. There-
fore to reduce computation time we first miminize the energy at
only the keyframes and static poses, using concatenated temporal
flowsin between keyframes. Each iteration of thisreduced problem
is far cheaper than the full problem, so we may obtain a satisfac-
tory solution of the performance keyframes and static poses more
quickly. Next, we keep the static poses and keyframe poses fixed,
and solve thespansof in-between frames, omitting theshrink-wrap
and grounding terms as they affect only the static poses. This sub-
sequent minimization requires only a few iterations to reach a sat-
isfactory result, and each span of in-between framesmay besolved
independently (running on multiple computers, for example).

6 Handling Arbitrary Illumination and Motion

Up to now, we have assumed that lighting and overall head motion
in the static scans closely matches that in the dynamic frames. For
performances in uncontrolled environments, the subject may move
or rotate their head to face different cameras, and lighting may be
arbitrary. We handle such complex cases by taking advantage of
the 3D geometry and relightable reflectance maps in thestatic scan
data. For every 5th performanceframe, wecomputearelighted ren-
dering of each static scan with roughly similar rigid head motion
and lighting environment as the dynamic performance. These ren-
derings are used as the static expression imagery in our pipeline.
The rigid head motion estimate does not need to be exact as the
optical flow computation is robust to a moderate degree of mis-
alignment. In our results, we (roughly) rigidly posed the head by
hand, though automated techniques could be employed [Zhu and
Ramanan 2012]. We also assume that a HDR light probe measure-
ment [Debevec 1998] existsfor thenew lighting environment, how-
ever, lighting could be estimated from the subject’s face [Valgaerts
et al. 2012] or eyes [Nishino and Nayar 2004].

Thecomplex backgroundsin real-world uncontrolled environments
pose a problem, as optical flow vectors computed on background
pixelscloseto thesilhouetteof thefacemay confusethecorrespon-
dence term if the current estimate of the facial geometry slightly
overlaps the background. This results in parts of the face “stick-
ing” to the background as the subject’s face turns from side to side
(Fig. 6). To combat this, we weight the correspondence confidence
field by a simple soft segmentation of head vs. background. Since
head motion is largely rigid, wefit a 2D affine transform to the op-
tical flow vectors in the region of the current head estimate. Then,
we weight optical flow vectors by how well they agree with the
fitted transform. We also assign high weight to the region deep
inside the current head estimate using a simple image-space ero-
sion algorithm, to prevent large jaw motions from being discarded.
The resulting soft segmentation effectively cuts the head out of the
background whenever thehead ismoving, thuspreventing theopti-
cal flow vectors of the background from polluting the edges of the
face. When thehead isnot moving against thebackground theseg-
mentation is poor, but in this case the optical flow vectors of the
face and background agree and pollution is not damaging.

(a) (b) (c) (d)

Figure 6: (a, b) Two frames of a reconstructed performance in
front of a cluttered background, where the subject turns his head
over the course of ten frames. The silhouette of the jaw “ sticks”
to the background because the optical flow vectors close to the jaw
arestationary. (c, d) A simplesegmentation of theoptical flow field
to exclude the background resolves the issue.

7 Results

We ran our technique on several performances from three differ-
ent subjects. Each subject had 30 static facial geometry scans cap-
turedbeforetheperformancesessions, though theperformanceflow
graph construction often employs only a fraction of the scans. An
artist produced a single face mesh for each subject based on their
neutral static facial scan.

7.1 Performances Following Static Scan Sessions

Wecaptured performancesof threesubjectsdirectly following their
static scan sessions. The performances were recorded from six
camera views in front of the subject with a baseline of approxi-
mately 15 degrees. Our method produced the performance anima-
tion results shown in Fig. 19 without any further user input.

7.2 Performances in Other Locations

We captured a performance of a subject using four consumer HD
video cameras in an officeenvironment. An animator rigidly posed
ahead model roughly aligned to every 5th frameof theperformance,
to produce the static images for our performance flow graph. Im-
portantly, this rigid head motion does not need to be very accurate
for our method to operate, and we intend that an automated tech-
nique could be employed. A selection of video frames from one of
theviews isshown in Fig. 7, along with renderingsof the resultsof
our method. Despite thenoisy quality of thevideosand thesmaller
size of the head in the frame, our method is able to capture stable
facial motion including lip synching and brow wrinkles.

7.3 High-Resolution Detail Transfer

After tracking a performance, we transfer the high-resolution re-
flectance maps from the static scans onto the performance result.
As all results are registered to the same UV parameterization by
our method, thetransfer isasimpleweighted blend using thecross-
correlation-based confidence weights wpq

i of each vertex, interpo-
lated bilinearly between vertices. We also compute values for wpq

i
for any dynamic-to-static edge pq that was not present in the per-
formance flow graph, to produce weights for every frame of the
performance. This yields detailed reflectance maps for every per-
formance frame, suitable for realistic rendering and relighting. In
addition to transferring reflectance, we also transfer geometric de-
tails in the form of a displacement map, allowing the performance
tracking to operate on a medium-resolution mesh instead of the
full scan resolution. Fig. 8 compares transferring geometric details
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Figure 7: A performance captured in an office environment with uncontrolled illumination, using four HD consumer video cameras and
seven static expression scans. Top row: a selection of frames from one of the camera views. Middle row: geometry tracked using the
proposed method, with reflectancemapsautomatically assembled fromstatic scan data, shaded using a high-dynamic-range light probe. The
reflectance of the top and back of the head were supplemented with artist-generated static maps. The eyes and inner mouth are rendered as
black as our method does not track these features. Bottom row: gray-shaded geometry for the same frames, from a novel viewpoint. Our
method produces stable animation even with somewhat noisy video footage and significant head motion. Dynamic skin details such as brow
wrinkles are transferred from the static scans in a manner faithful to the video footage.

(a) (b) (c)

Figure8: High-resolution detailsmay be transferred to a medium-
resolution tracked model to save computation time. (a) medium-
resolution tracked geometry using six views. (b) medium-resolution
geometry with details automatically transferred from the high-
resolution static scans. (c) high-resolution tracked geometry. The
transferred details in (b) capturemost of the dynamic facial details
seen in (c) at a reduced computational cost.

from thestatic scansonto amedium-resolution reconstruction to di-
rectly tracking ahigh-resolution mesh. Asthehigh-resolution solve
is more expensive, we first perform the medium-resolution solve
and use it to prime the DDMS-TRWS belief in the high-resolution
solve, making convergencemorerapid. In all other results, weshow
medium-resolution tracking with detail transfer, as the results are
satisfactory and far cheaper to compute.

Figure9: Resultsusing only a singlecamera view, showing thelast
four frames from Fig. 7. Even under uncontrolled illumination and
significant head motion, tracking is possible from a single view, at
somewhat reduced fidelity.

7.4 Monocular vs. Binocular vs. Multi-View

Our method operates on any number of camera views, producing
a result from even a single view. Fig. 9 shows results from a sin-
gle view for the same uncontrolled-illumination sequence as Fig.
7. Fig. 10 shows the incremental improvement in facial detail for
a controlled-illumination sequence using one, two, and six views.
Our method is applicable to a wide variety of camera and lighting
setups, with graceful degradation as less information is available.

7.5 Influence of Each Energy Term

The core operation of our method is to propagate a known facial
pose (the artist mesh) to a set of unknown poses (the dynamic
frames and other static scans) via the ground term and correspon-
dence terms in our energy formulation. The differential shape term
and shrink wrap term serve to regularize the shape of the solution.
We next explore the influence of these terms on thesolution.

8
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(a) (b) (c)

Figure 10: Example dynamic performance frame reconstructed
from (a) one view, (b) two views and (c) six views. Our method
gracefully degradesas less information isavailable.

Figure 11: The artist mesh is non-rigidly registered to each of the
other static expression scans as a byproduct of our method. The
registered artist mesh is shown for a selection of scans from two
different subjects. Note the variety of mouth shapes, all of which
are well-registered by our method without any user input.

Correspondence Term The correspondence term produces a
consistent parameterization of the geometry suitable for texturing
and other editing tasks. As our method computes a coupled solu-
tion of performance frames using static poses to bridge larger tem-
poral gaps, the artist mesh is non-rigidly registered to each of the
static scansasabyproduct of theoptimization. (See Fig. 11 for ex-
amples.) Note especially that our method automatically producesa
completehead for each expression, despiteonly having static facial
scan geometry for thefrontal facesurface. Asshown in Fig. 12, this
consistency is maintained even when the solution is obtained from
a different performance. Fig. 13 illustrates that the use of multiple
static expression scans in the performance flow graph produces a
moreexpressiveperformance, with moreaccentuated facial expres-
sion features, as there are more successful optical flow regions in
the face throughout the performance.

Differential Shape Term In our formulation, the differential
shapeof aperformanceframeor pose is tied to ablend of itsneigh-
bors on the performance flow graph. This allows details from mul-
tiplestatic posesto propagate to related poses. Even when only one

Figure12: Top row: neutral mesh with checker visualization of tex-
ture coordinates, followed by three non-rigid registrations to other
facial scans as a byproduct of tracking a speaking performance.
Bottom row: the same, except the performance used was a series
of facial expressions with no speaking. The non-rigid registration
obtained from the performance-graph-based tracking is both con-
sistent across expressions and across performances. Note, e.g. the
consistent locationsof thecheckersaround thecontoursof the lips.

static pose is used (i.e. neutral), allowing temporal neighbors to in-
fluence thedifferential shapeprovides temporal smoothing without
overly restricting the shape of each frame. Fig. 13 (c, d) illustrates
the loss of detail when temporal neighbors are excluded from the
differential shape term (compare to a, b).

Shrink Wrap Term The shrink wrap term conforms the static
posesto theraw geometry scans(Fig. 14). Without thisterm, subtle
details in the static scans cannot be propagated to the performance
result, and the recovered static poseshave lessfidelity to the scans.

7.6 Comparison to Previous Work

Weran our method on thedatafrom [Beeler et al. 2011], using their
recovered geometry from the first frame (frame 48) as the “artist”
mesh in our method. For expression scans, we used the geome-
try from frames 285 (frown) and 333 (brow raise). As our method
makes useof the expression scansonly via image-spaceoperations
on camera footage or rasterized geometry, any point order infor-
mation present in the scans is entirely ignored. Therefore in this
test, it is as if the static scans were produced individually by the
method of [Beeler et al. 2010]. We constructed a simple UV pro-
jection on the artist mesh for texture visualization purposes, and
projected thevideo framesonto each frame’sgeometry to producea
per-frameUV texturemap. To measurethequality of texturealign-
ment over the entire sequence, we computed the temporal variance
of each pixel in the texture map (shown in Fig.15 (a, b)), using
contrast normalization to disregard low-frequency shading varia-
tion. The proposed method produces substantially lower temporal
texturevariance, indicating amoreconsistent alignment throughout
the sequence, especially around the mouth. Examining the geome-
try in Fig.15 (c-f), the proposed method has generally comparable
quality as the previous work, with the mouth-closed shape recov-
ered more faithfully (which is consistent with the variance analy-

9
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(a) (b) (c) (d)

Figure 13: Using multiple static expressions in the performance
flow graph produces more detail than using just a neutral static
expression. Multiple static expressions are included in the perfor-
mance flow graph in (a, c), whereas only the neutral expression is
included in (b, d). By including temporal neighborsand static scans
in determining thedifferential shape, details fromthevariousstatic
scans can be propagated throughout the performance. Differential
shapeisdetermined by thestatic expression(s) and temporal neigh-
bors in (a, b), whereas temporal neighbors are excluded from the
differential shape term in (c, d). Note the progressive loss of detail
in e.g. thebrow region from (a) to (d).

sis). We also compared to [Klaudiny and Hilton 2012] in a similar
manner, using frame 0 as the artist mesh, and frames 25, 40, 70,
110, 155, 190, 225, 255 and 280 as static expressions. Again, no
point order information is used. Fig. 16 again shows an overall
lower temporal texture variance from theproposed method.

7.7 Performance Timings

We report performance timings in Fig. 17 for various sequences,
running on a16-core2.4 GHz Xeon E5620 workstation (someoper-
ationsaremultithreaded across thecores). All tracked mesheshave
65 thousand vertices, except Fig. 8(c) and Fig. 15 which have one
million vertices. We report each stage of the process: “Graph” for
theperformancegraph construction, “Flow” for thehigh-resolution
optical flow calculations, “Key” for theperformance tracking solve
on key frames, and “Tween” for the performance tracking solve
in between key frames. We mark stages that could be parallelized
over multiplemachineswith an asterisk (*). High-resolution solves
(Fig. 8(c) and Fig. 15) take longer than medium-resolution solves.
Sequences with uncontrolled illumination (Fig. 7 and Fig. 9) take
longer for the key frames to converge since the correspondence ty-
ing thesolution to the static scans has lower confidence.

7.8 Discussion

Our method producesaconsistent geometry animation on an artist-
created neutral mesh. The animation is expressive and lifelike, and
the subject is free to make natural head movements within a cer-
tain degree. Fig. 18 shows renderings from such a facial perfor-
mance rendered using advanced skin and eye shading techniques
as described in [Jimenez et al. 2012]. One notable shortcoming of
our performance flow graph construction algorithm is the neglect
of eye blinks. This results in a poor representation of the blinks
in the final animation. Our method requires one artist-generated
mesh per subject to obtain results that are immediately usable in
production pipelines. Automatic generation of this mesh could
be future work, or use existing techniques for non-rigid registra-
tion. Omitting this step would still produce a result, but would re-
quire additional cleanup around the edges as in e.g. [Beeler et al.
2011][Klaudiny and Hilton 2012].

(a) (b) (c)

(d) (e) (f)

Figure 14: The shrink wrap term conforms the artist mesh to the
static scan geometry, and also improves the transfer of expressive
details to the dynamic performance. The registered artist mesh is
shown for two static poses in (a) and (b), and a dynamic pose that
borrowsbrow detail from(a) and mouth detail from(b) isshown in
(c). Without theshrinkwrap term, theregistration to thestaticposes
suffers (d, e) and the detail transfer to the dynamic performance is
less sucessful (f). Fine-scale details are still transferred via dis-
placement maps, but medium-scale expressive details are lost.

8 Future Work

One of the advantages of our technique is that it relates a dynamic
performance back to facial shape scans using per-pixel weight
maps. It would be desirable to further factor our results to cre-
ate multiple localized blend shapes which are more semantically
meaningful and artist friendly. Also, our algorithm doesnot explic-
itly track eye or mouth contours. Eye and mouth tracking could
be further refined with additional constraints to capture eye blinks
and more subtle mouth behavior such as “sticky lips” [Alexander
et al. 2009]. Another useful direction would be to retarget perfor-
mances from one subject to another. Given a set of static scans
for both subjects, it should be possible to clone one subject’s per-
formance to the second subject as in [Seol et al. 2012]; providing
more meaningful control over this transfer remains a subject for
future research. Finally, as our framework is agnostic to the par-
ticular method employed for estimating 2D correspondences, we
would like to try more recent optical flow algorithms such as the
top performers on the Middlebury benchmark [Baker et al. 2011].
Usefully, the quality of our performance tracking can be improved
any time that an improved optical flow library becomesavailable.
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(a) (b)

(c) (d) (e) (f)

Figure 15: Top row: Temporal variance of contrast-normalized
texture(falsecolor, whereblueislowest and red ishighest), with (a)
theproposed method and (b) themethodof [Beeler et al. 2011] . The
varianceof theproposed method issubstantially lower, indicating a
moreconsistent texturealignment throughout thesequence. Bottom
row: Geometry for frames 120 and 330 of the sequence, with (c, d)
the proposed method and (e, f) the prior work.
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Figure16: Temporal varianceof contrast-normalized texture(false
color, whereblueislowest and red ishighest), with (a) theproposed
method and (b) the method of [Klaudiny et al. 2010] . As in Fig.15,
the varianceof the proposed method isgenerally lower.
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