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Abstract

We propose a scalable recognition system for reducing recog-
nition complexity. Scalable recognition can be combined with
scalable compression in a distributed speech recognition (DSR)
application to reduce both the computational load and the
bandwidth requirement at the server. A low complexity pre-
processor is used to eliminate the unlikely classes so that the
complex recognizer can use the reduced subset of classes to
recognize the unknown utterance. It is shown that by using our
system it is fairly straightforward to trade-off reductions in com-
plexity for performance degradation. Results of preliminary ex-
periments using the TI-46 word digit database show that the
proposed scalable approach can provide a 40% speed up, while
operating under 1.05 kbps, compared to the baseline recognition
using uncompressed speech.

1. Introduction

In distributed speech recognition (DSR)[1] speech is acquired at
the client and the speech recognition is performed at a remote
server. A complex recognizer can be implemented on the server
enabling low complexity clients to support speech recognition
applications. Additionally, in application scenarios where the
ambient environment is highly variable, such as those involv-
ing mobile devices, there may be much to be gained in terms of
running more complex schemes at a remote server for improved
recognition. Encoding the feature vectors instead of the raw
speech (using a standard speech encoder like FS-10 or MELP)
for transmission over a channel reduces the problem of recog-
nition degradation when compression has to be used to reduce
bandwidth requirements. Such a system has the added benefit of
splitting the computation between the client and the server with
the client handling the less complex feature extraction and the
server handling the more complex pattern recognition task. We
can imagine several clients, each possibly located in different
environments accessing the server at the same time. Depend-
ing on the (relative) quality of the original captured speech, the
task of recognition can be relatively simple or complex. For ex-
ample, for clients located in relatively noise free environments
(“matched”) recognition can be performed with a high degree
of accuracy while for clients in a noisy environment recogni-
tion accuracy can be improved by interaction between the server
and the client (and/or user). In addition to improved recognition
quality, DSR is desirable in situations where access to secure
data is required. With widespread deployment of DSR we can
expect the number of clients accessing the server to grow sub-
stantially. As the number of clients increases designing efficient
servers becomes more important as it increases the number of
clients that can be supported by one server, and this reduces

the overall cost. High client density imposes not only computa-
tional constraints on the server but it also significantly increases
the network traffic at the server. We propose a novel method to
tackle both these problems by using scalable recognizers along
with scalable encoding schemes. This scheme is shown in Fig-
ure 1. The initial low complexity recognizer operating on coarse
data can provide a reasonable estimate of the class. This de-
cision can be used to restrict the number of potential classes
for the final high complexity recognizer which operates on high
resolution data to provide the final recognition result. Often the
low complexity recognizer itself can make the final decision,
i.e. the number of potential classes is only one, implying that
the high complexity recognizer need not be used and the server
will not request the client for the enhancement data (effectively
reducing the network bandwidth at the server).

/

==
—— ——
\

.
i

Clients §

omplexity =
ecognizer

i

¥
n
\

Speech

\\; Coarse MFCC data eSS

§| _o (‘,Qn\plexlly§
\ Server Request cognizer  Sas
= =

Enhancement ==
MFCC data S

Coarse MFCC data

Figure 1: Scalable recognition system. The top figure shows
the conventional DSR system. The number of clients that the
server can handle is limited by the server computational capa-
bilities and the server bandwidth. The bottom figure shows the
proposed scalable system wherein the computational require-
ments as well as the bandwidth at the server are reduced. In
the scalable system the enhancement data is requested by the
server only if the low complexity recognizer can not make the
recognition decision.

For purposes of scalable recognition, we consider a
template-based dynamic time warping (DTW) recognizer and a
hidden Markov model (HMM) recognizer for the low and high
complexity schemes, respectively. To take full advantage of the
recognizer scalability we require a scalable encoder, which will
enable reduced bandwidth requirements at the server. Feature
vectors are usually derived from speech utterances that have
been segmented using overlapping windows. Due to this over-
lap it is reasonable to expect high correlation between feature
vectors corresponding to adjacent frames. This correlation can
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be exploited by using linear prediction while encoding the fea-
ture vectors. Previous work on scalability in predictive cod-
ing [2] has addressed the issue of designing a layered coder for
video. However this approach requires knowledge (or model-
ing) of the prediction error pdf. We propose a novel scalable
encoder motivated by the multiple description encoder design
(using a fine and coarse DPCM loop) proposed in [3]. Our pro-
posed scheme can easily be combined with the predictive cod-
ing design proposed in [2] if the prediction error pdfis modeled.
Section 2 provides details of the scalable system design. In Sec-
tion 3 the experiments and results are presented. Conclusions
are presented in Section 4.

2. Scalable encoding and recognition

In this section we present our proposed scalable system, consist-
ing of a scalable encoder providing a coarse base layer and an
enhancement layer. The base layer is used by the initial recog-
nizer to provide an initial “guess” of the final class. In general,
the complexity of the initial recognizer can be reduced by re-
ducing the complexity of the acoustic models and/or language
models and/or pattern recognition schemes. The final recog-
nizer makes use of the initial decision (e.g., hypotheses, word
lattices) and the enhancement bits to provide the final recog-
nition decision. We begin by explaining the scalable encod-
ing scheme and the scalable recognition scheme is explained in
Subsection 2.2.

2.1. Scalable Encoding

In our previous work [4] we had shown that by using one step
linear prediction and uniform quantization of the MFCCs we
can achieve good recognition performance. The coding algo-
rithm was able to trade-off recognition performance for reduc-
tion in rate. However it had the disadvantage of not support-
ing incremental refinement in recognition performance, i.e. the
recognition achieved at a low rate could not be improved by
using refinement bits. Instead to improve the recognition the
encoded bitstream corresponding to the finer resolution had to
be received. To overcome this drawback we propose a layered
scheme wherein the base layer consists of data encoded using
a coarse DPCM loop. In the most straightforward approach the
enhancement layer can be constructed by encoding the quan-
tization error introduced by the coarse DPCM loop. However
it was observed that the bitrate required for the enhancement
layer was comparable to that required for an independent fine
DPCM loop. An alternate approach would be to maintain both
the coarse and fine DPCM loops and use information from the
coarse loop to enable better compression of the fine loop predic-
tion error. We propose a novel scheme based on the consistency
criteria proposed in [3].

For input sample u; let e; and E; be the prediction errors
of the coarse and fine loop DPCMs. Then
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where i;_; and U;—; are the reconstructed samples of the
coarse and fine loop DPCMs. Let z; = (fi;—1 — [7i_1), and
given that e; € [ag, bx], the interval R, in which E; has to lie
can be found as

E; € R = [ak, + az;, by + azi] 2)

Let Qf be the fine loop DPCM quantizer with NV levels,
then only the bins of @ that intersect R, are valid choices for
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Figure 2: Overlapping shifted quantizers. Using information
from the coarse reproduction the number of potential bins for
Q7 is reduced. Only the bins of QQ which overlap the region
R, are valid. The valid bins of @ s are highlighted.

the fine DPCM prediction error. This is illustrated in Figure 2
where the region R, intersects 3 bins (highlighted) of Q. If A,
and A ¢ are the step sizes used in the coarse and fine DPCM loop
quantizer, then the number of valid bins M is at most [ ﬁ; T1+1.
If M << N then significant savings in bitrate can be achieved.

Let 5; and J; respectively, be the quantization index of the
coarse and fine DPCM loops at time ¢. Context information
from previous coarse and fine reproductions can be used to re-
duce the entropy of the current fine DPCM prediction error. We
have already used U;_1 in the fine DPCM loop and 4; to find
the valid bins of Q¢. In addition, we can use the previous re-
constructed value of the coarse DPCM loop #;—1 to bias the
probability of occurrences for the different bins .J; of the fine
DPCM quantizer. While ;1 by itself does not provide explicit
information, the difference |@t;—1 — Ui_1| provides information
about bins J; of the fine DPCM quantizer. Consider the case
when |di;—1 — Uj—1]| is small if 5; = 0, then it is highly likely
that J; = 0 and if j; # 0, then it is highly likely that J; # 0.
On the contrary when |@t;—1 — U;—1| is large, then it is highly
likely that J; # 0. Using this information we can define two
different contexts for J;

1. |’lAL¢71 — [A]l;ll < Tq and ]1 =0 =>p(J1 = 0) >>
p(J; #0)

2. |ttic1—Uiza| > Tyorji # 0= p(Ji # 0) >> p(Ji =
0)

This information can be exploited by using a bitmap to indi-
cate the more probable event in each context, i.e. in context(1)
we transmit a “0” if J; = 0 and a “1” otherwise and in con-
text(2) we transmit a “0” if J; # 0 and a “1”otherwise. This
bitmap, which can be efficiently encoded using run length cod-
ing, can be used by the decoder to find the positions where the
prediction error is zero. So now the encoder only has to trans-
mit the non-zero coefficients (in addition to the bitmap). Using
the information from the coarse loop to find the valid bins and
the context information from #%;_1 and Ui_l we were able to
reduce the bitrate for the enhancement layer by about 36%.

2.2. Scalable Recognition

Speech recognition by HMMs has increasing become popular
since they provide good recognition results. However, with
complex acoustic and language models, they can become a
computational bottleneck at the server, when the server is ac-
cessed by many clients. The idea here is to consider scalable



recognition where we can trade-off complexity versus accuracy.
Consider the simple task of isolated digit recognition. Every
unknown utterance needs to be scored with 10 models before
deciding the best match. One method to reduce the computa-
tion would be to speed up the HMM (for example using small
model sizes). Another method, which we adopt in this paper,
is to build scalable recognizers to restrict the number of the
models the recognizer has to operate upon at any time. Usu-
ally when an unknown utterance is scored against the different
models, only a few of the model scores will be high; this fact
can be used to eliminate some of the models from consideration.
A low complexity pre-processor can be used to find the N most
likely models and the HMM recognizer can be used to choose
the best model from these N models. In our example system
we choose to use a DTW recognizer as the pre-processor. Since
the DTW finds the distance of the unknown utterance from the
known templates and the distance is usually minimum between
utterances of the same class, we can use a distance threshold to
find the N most likely models. An adaptive threshold is used for
every utterance based on the lowest distance obtained after tem-
plate matching. Adaptive threshold in contrast to a fixed thresh-
old has the desirable feature of selecting more models when the
distance (likelihood) between the best and other models is close,
and selecting a few (sometimes only one) models when the dis-
tance between the best and other models is far. The procedure
for recognizing an unknown utterance using the above system
is

Algorithm 1 (Scalable Recognizer : System A)

Step 1: Find the distance D(k) between the unknown utterance
and the L templates using DTW.

Step 2 : Select the models with distance D(k)/D(0) < T.
Step 3 : Use HMM to find the best model among the chosen
models in Step 2.
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Figure 3: Observe that the average number of models increases
with threshold and the probability of word error monotonically
decreases with threshold. At threshold of 2.4 the probability of
word error becomes zero but the average number of models is
reduced from 10 to 8, i.e, a 20% reduction in HMM running
time with no difference in recognition performance. In general
it is not required to use a threshold as high as 2.4, a smaller
value between 1.2 to 1.8 will suffice, because utterances very
difficult to distinguish by DTW are most likely to be in error for
the HMM also.

Figure 3 shows the average number of models retained af-
ter the initial DTW stage and the probability of word error in the
N-best list of the DTW as a function of the threshold T. The av-
erage number of models monotonically increases with threshold
and the probability of word error monotonically decreases with

threshold. This fact can be used to trade-off between complex-
ity and recognition-performance. A low threshold would imply
that the WER would be high but the complexity would be low
and vice-versa. A simple observation is that with a threshold of
2.4 we get no word error however the average number of models
is reduced from 10 to 8 by the use of the initial DTW stage.
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Figure 4: The different scalable recognizer schemes used. In
System A we use a DTW as the initial recognizer and a HMM
as the final level recognizer. In System B we use two levels of
DTW as the initial recognizer and a HMM as the final recog-
nizer.

To further reduce the complexity we can use 2 stages of
DTW before using the HMM recognizer. The initial DTW stage
uses the MFC coefficients deemed more important to generate
an N best list. The second DTW operates on these N1 models
and the distance is refined with the remaining MFCCs to gen-
erate an N2 best list. The HMM makes its decision from these
N> models. This procedure is summarized below.

Algorithm 2 (Scalable Recognizer : System B)

Step 1: Find the distance D(k) between the unknown utterance
and the L templates using m of the M MFCCs.

Step 2 : Select the models with distance D(k)/D(0) < T}.
Step 3 : Refine the distances D(k) for the models chosen in
Step 2 using the remaining M — m MFCCs.

Step 4 : Select the models with distance D(k)/D(0) < T>.
Step 5 : Use HMM to find the best model among the chosen
models in Step 4.

Importance of the MFCCs can be determined by dropping one
MFCC at a time and finding the effect on N best recognition
by DTW. The MFCC that introduces the most error in recogni-
tion is declared as the most important and so on. From our ex-
periments the coefficients were ordered from most important to
least important as [2,3,0,1,6,7,4,8,5,10,11,9]. Note that for both
the algorithms the number of models retained at each interme-
diate step can be variable depending on the unknown utterance.
Also if at any intermediate step the number of models retained
is only one, then the subsequent recognizers need not be used
and the unknown utterance is classified as the digit correspond-
ing to the retained model. As before, thresholds 77 and T
can be varied to trade-off between complexity and recognition-
performance. Since the initial stage(s) is(are) used primarily to
speed up the recognition operation, we can use the base layer
for the decision process. During refinement by the HMM the
enhancement layer can be used to enable more accurate repre-
sentation of the feature vectors. The DTW computation can be
reduced by exploiting the fact that the input data has been pre-
dicted and quantized. If the prediction error for the entire frame



is quantized to zero, we do not need to find the distance of this
frame from all the reference frames, instead the distance com-
puted for the previous frame can be repeated without incurring
significant degradation. When the proposed scalable system is
used the computational load at the server is reduced. In addi-
tion this can be advantageous even from the users perspective
if often the DTW recognizer is able to make the final decision
since the latency from uttering the speech to recognizing it is
reduced. Figure 4 shows the recognition system for System A
& B. The recognition performance obtained by the above meth-
ods is shown in Figure 5 and Figure 6 shows the complexity
(in sec) for these methods.

3. Experiments and Results

The TI46-Word digit database was used for evaluating the pro-
posed scalable system. An HMM (HTK 3.0) based recognizer
was used as the final recognizer. The speech utterance was seg-
mented using overlapping Hamming window of length 24 ms,
with adjacent windows separated by 12 ms. 12 MFCCs de-
rived from each segment of the speech utterance was used as
the front-end. A left to right HMM with 5 states and 2 Gaussian
mixtures was trained for every digit using unquantized MFCCs
from about 800 utterances from 8 male speakers. Test utter-
ances were from the same speakers of the training data, but dif-
ferent utterances. The training and test utterances have silence
periods before and after the digit. To model this a five state
silence HMM was trained. The word network included the si-
lence HMM before and after every digit HMM. The baseline
WER and complexity were determined by recognizing speech
with unquantized MFCCs using only the HMM.
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Figure 5: Recognition performance for the scalable recognition
schemes. The coarse bitrate is 0.72 kbps. The fine bitrate (Ry)
is indicated in the figure. The baseline WER of 0.24% is shown
as a dotted line.

Figure 5 shows the WER as a function of average rate for
System A & System B (the results for two different A./Af
ratios is shown). We observe that the WER is 0.32% and
0.24% at 1.13 kbps and 1.11 kbps for System A and System
B respectively, when compared to the baseline WER of 0.24%.
The recognition-rate trade-off is better when A, /A is smaller,
however larger A./Ay provides a superior reconstruction of
the enhancement layer enabling lower WER. Figure 6 shows
the trade-off in complexity and WER for both the Systems. Us-
ing only the HMM we required about 28 sec to recognize 1267
digit utterances (approximately 1400 sec of speech). We re-
duced the complexity by 21% and 25% by using System A and
System B respectively with no degradation in WER. However if
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Figure 6: The time required for the scalable recognition
schemes. The baseline computational time of 28 sec is shown
as a dotted line. Notice the computational scalability wherein
reduced complexity can be achieved at the expense of WER.

we are willing to tolerate more error we can reduce the running
time by 53% (i.e. more than halve the running time) by using
System B while incurring a WER of 0.63% (163% increase over
the baseline performance).

4. Conclusions

We have proposed the use of scalable recognizers and scalable
encoders for distributed speech recognition. Eliminating un-
likely candidates using a simple pre-processor before perform-
ing the recognition with a more complex HMM enables signif-
icant savings in computation. The added advantage of such a
system is that it allows a fairly straightforward method to trade-
off between complexity and recognition performance. When
a scalable encoding scheme is available the scalable recogniz-
ers can be used in a DSR application to reduce both the com-
putation and the bandwidth requirements at the server. This
would naturally translate into the server being able to support
more clients with the same resources. The WER degradation
introduced by compression can be reduced by alleviating the
“mismatch” between the testing and training phases by the use
of model transformations to optimize classification by ensuring
that the adapted models are more likely to have produced the
observed data [5].
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