

To appear in Proceedings of the Fifth Conference on Artificial General Intelligence (AGI),
2012.

Extending Mental Imagery in Sigma

Paul S. Rosenbloom

Department of Computer Science & Institute for Creative Technologies

University of Southern California
12015 Waterfront Drive, Playa Vista, CA 90094

rosenbloom@usc.edu

Abstract. This article presents new results on implementing mental imagery
within the Sigma cognitive architecture. Rather than amounting to a distinct
module, mental imagery is based on the same primitive, hybrid mixed,
architectural mechanisms as Sigma’s other cognitive capabilities. The work
here demonstrates the creation and modification of compound images, the
transformation of individual objects within such images, and the extraction of
derived information from these compositions.

Keywords: Mental imagery, cognitive architecture, graphical models,
piecewise continuous functions, affine transformations.

1 Introduction

Mental imagery is a cognitive capacity that enables humans to represent and reason
about spatial information. It includes the ability to construct images from pieces
retrieved from memory; to translate, scale and rotate (parts of) these images; and to
extract new information from the composite and/or transformed results. Although
nominally focused on the spatial aspects of the physical world, Gunzelmann and Lyon
summarize its key role in other areas of human cognitive processing – such as
numerical information processing, problem solving and language [1] – and Cassimatis
has hypothesized that physical reasoning is part of a general cognitive substrate that
underlies all of reasoning [2]. Mental imagery must also clearly relate to perception,
but the focus here is on the connection with cognition rather than perception.

Following an extended debate concerning whether mental imagery is symbolic
versus imagistic – based, for example, on pixel arrays – there is little doubt at this
point that both are implicated in the full picture. Some of the most interesting recent
work on this topic includes how to incorporate such a capacity into a cognitive
architecture, a hypothesis about the fixed structure underlying cognition, and how
these structures combine with each other (and knowledge) to yield intelligent human(-
like) behavior. Imagery modules have been investigated in architectures such as Soar
[3] and ACT-R [4], including ideas for introducing more explicitly hybrid aspects [5].

The Sigma (Σ) architecture is built to be hybrid from the ground up, in service of
satisfying two general desiderata: grand unification and functional elegance. A
traditional unified cognitive architecture attempts to bring together in an integrated

manner the range of cognitive capabilities required for human(-level) intelligent
behavior in the world. A grand unified architecture goes beyond this, in analogy to a
grand unified theory in physics, to attempt to include the crucial pieces missing from
a purely cognitive theory, such as perception, motor control, and emotion. Functional
elegance implies a combination of the broad range of capabilities required in a (grand)
unified architecture with simplicity and theoretical elegance. In Sigma, the aim is
something like a set of cognitive Newton’s laws that yield the required diversity of
behavior from interactions among a small set of very general primitives. Within AGI,
AIXI [6] can be seen as an attempt at an extreme form of functional elegance. The
approach in Sigma is less ambitious, but still strongly in this direction.

Driven by these desiderata, work to date on Sigma has been deliberately broad –
including forms of memory and learning [7-8], problem solving and decision making
[9-10], perception and localization [10], and natural language – with the intent of
determining whether a small set of general mechanisms can in fact be sufficient in
combination. Thus, for mental imagery the natural question to ask became whether
Sigma could provide a sufficient hybrid capacity without either distinct symbolic
versus imagistic modules or distinct representations, memories and processes, as has
been necessary in other architectural approaches.

Earlier work in Sigma showed how 2D images can be
represented, and how translation of image components can
be implemented [11]. The results were used as part of a
hybrid approach to the Eight Puzzle – Fig. 1 – a classic
sliding tile puzzle that is traditionally solved in AI systems
via a symbolically represented board plus internal search
over symbolic operators that model external actions. The
Sigma approach included a hybrid representation of the
board plus normal symbolic problem solving, but now over
imagistic tile translations (implemented as offsets). The
work here extends this via manipulations of Z tetrominos
(Fig. 2), as found in the game of Tetris, to demonstrate:
image composition and component deletion; additional
forms of image transformation, including scaling, reflection
and rotation (by multiples of 90°); and extraction of
perceptual features from composites, such as object overlaps
and collision detection, directionality among objects, and edge detection.

Mental imagery in Sigma is grounded in: (1) the architecture’s generalized
language of conditionals, which compiles down to factor graphs for processing via
the summary product algorithm [12]; (2) an inherently continuous piecewise linear
representation for the functions and messages in (1) [13]; and (3) affine
transformations – a generalization of the offsets introduced earlier – and piecewise
linear filters. By demonstrating mental imagery via interactions among more
primitive mechanisms, this work contributes to the breadth of functionality unified
within Sigma, while doing so in a simple and elegant manner. The key to functional
elegance here has been to begin with a small set of very general mechanisms that are
leveraged in combination when possible, and which are (minimally) augmented when
necessary. This combination also supports grand unification, intertwining continuous
perception-related information with general symbol processing.

Fig. 2: Z tetromino.

Fig. 1: Eight Puzzle.

2 Sigma and Mental Imagery

Knowledge representation in
Sigma is based on conditionals – a
generalized form of rule – plus
piecewise linear functions. Fig. 3,
for example, shows a conditional
that uses two conditions and an
action to determine the spatial
overlap between two particular
objects in the image. The Image predicate specifies object locations via three
arguments – o provides a numeric index into a vector of objects (which is specified
by constants here, but can be variables in general), while x and y range over the
continuous image dimensions – to yield a discrete vector of continuous planes, each
element of which provides an
occupancy grid for a single object in
the image. In Fig. 4, for example, the
planes correspond to the Eight Puzzle
tiles, and the grayed regions denote
where the blank and tile 1 are located
in Fig. 1.

Technically, such images are 3D
hybrid functions in Sigma, with one
discrete variable (i.e., dimension) for
objects (tiles here) and two continuous
variables for space. The grayed
regions are where the function has a
value of 1 (or true) while the other
regions are 0 (or false). In Sigma such
functions are represented as piecewise
linear over nD arrays of rectilinear (or
orthotopic) regions (Fig. 5). The nD
space is sliced orthogonally to its axes

to generate an array of regions that are
doubly linked along each dimension, with
each region having its own linear function
over the variables. This can be viewed as
a generalization of a pixel (or voxel) array,
where the pixels can vary in size and have
linear rather than just constant value
functions.

Although Sigma’s function
representation is inherently continuous,
with its piecewise linear approach
allowing arbitrary continuous functions to
be approximated as closely as desired, it

CONDITIONAL Overlap-0-3
 Conditions: (Image o:0 x:x y:y)
 (Image o:3 x:x y:y)

 Actions: (Overlap i:1 x:x y:y)

Fig. 3: Conditional for computing the spatial
overlap between two specific objects.

Fig. 5: Bivariate function as a 2D array of
regions with linear functions.

Fig. 4. Partial visualization of a hybrid
representation for the Eight Puzzle board.

can also be specialized to: discrete representations – to enable, for example, the
vectors of objects we have seen, as well as discrete probability distributions – by
mapping integers in the function’s domain to unit regions; and symbolic
representations by limiting the functions to Boolean (0/T and 1/F) while assigning
symbols to domain integers. A form of hybrid mixed representation is thus proffered
in a manner analogous to how digital circuits are implemented via restrictions on an
underlying substrate that is naturally continuous.

The Overlap predicate in Fig. 3 is similar to the Image predicate, except that
here there is a vector of object overlaps, rather than of objects. The semantics of
conditionals specifies that the two conditions in Fig. 3 extract the 0th and 3rd objects
from the image, with these two 2D object subimages then being multiplied in a
pointwise manner – like an inner product but without the final summation – to yield a
new 2D plane that is 1 where both input planes are 1 and 0 elsewhere (Fig. 6). Once
message
passing
reaches
quiescence,
actions –
such as the
one in Fig. 3
that stores
the
computed overlap into element 1 of Overlap – may yield changes to working
memory, completing Sigma’s core cognitive cycle. If a predicate has a unique
variable – akin to a classic random variable, where a distribution is provided over all
possible values but only one is ultimately correct – the best value for that variable is
placed into working memory, while if it instead has only universal variables – akin to
classic rule variables, where any subset of the values may be correct, but used here
mainly for occupancy grids – all non-zero values are placed in working memory 14].

The processing of conditionals occurs by running the summary product algorithm
over the factor graph into which they are compiled. Factor graphs are a general form
of graphical model [15] – an approach to computing efficiently over complex
multivariate functions by decomposing them into the product of simpler factors and
then mapping the result onto a graph of nodes and links – that bear a family
resemblance to other forms, such as Bayesian and Markov networks, but are
concerned with arbitrary multivariate functions, not just probabilistic ones. Complex
functions are first decomposed into products of simpler functions, and then mapped
onto bipartite graphs, with variables mapped onto variable nodes and decomposed
factors mapped onto factor nodes. Undirected edges are defined between each factor
node and its variables. Fig. 7 shows an example factor graph for a multivariate
algebraic function along with its solution via summary product, as used in Sigma.

Given evidence about a subset of the variables – as stored in working memory
factor nodes – messages are passed along the links and processed at the nodes to yield
new messages. Each message along a link provides information about the values of
the link’s variable. Incoming messages at variable nodes are combined via pointwise
product to yield outgoing messages, but with each outgoing message omitting from its
product the incoming message on its link. Similar pointwise products occur at factor

Fig. 6: Overlap between two images via conditional in figure 3.

nodes, but with the factor’s
function also included in the
product; and then all variables
not in the outgoing message are
summarized out.
Summarization typically occurs
via summation – or integration
for continuous functions – to
yield marginals, or via
maximum to yield the mode;
however, maximum is also used
in Sigma for marginals of
universal variables. Message
passing ends upon quiescence;
i.e., when no new message is
significantly different from the
previous message along the
same link.

Both conditions and actions can be negated, inverting the resulting function to
yield f = maximum(1-f, 0). True (1) becomes false (0) and vice versa. Intermediate
values are similarly inverted, and functional values greater than 1 are treated as if they
are 1 during the inversion. Fig. 8, for example, shows how an object can be removed
from an image via a negated action that spans the entire plane for object 1.

Both conditions and actions also
limit the direction in which messages
are passed – those within condition
subgraphs only move away from
working memory while those within
action subgraphs only move towards it. This provides the forward momentum central
to procedural memory. Condacts – a neologism for conditions and actions – provide
the bidirectional message passing required for the full generality of factor graphs, as
used for example in probabilistic reasoning, constraint satisfaction, signal processing,
and (partial match in) declarative memory [7]. As condacts are not used in the results
presented here, they aren’t discussed further. We will also omit discussions of other
aspects of Sigma not exploited here, such as learning.

Still, two remaining aspects of Sigma do require explication. The first, and the
only one originally motivated by the needs of mental imagery, is the use of affine
transformations; i.e., combinations of linear transformations with translations. Fig. 9
shows an example, where an affine transformation is used in the action of a
conditional to scale a Z tetromino horizontally, in place. In general, a variable in a
condition or an action may include a coefficient and an offset, where the coefficient
must be a constant and the offset may be either a constant or a variable (although only
constant offsets are used in the work described here). Affine transforms can be used
in conditions, actions and condacts, but with a transformation in a condition (or the
outgoing aspect of a condact) inverting what the same one does in an action (or the
incoming aspect of a condact).

Fig. 7: Summary product computation over the factor
graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) =
fi(x,y)f2(y,z) of the marginal on y given evidence
concerning x and z. Only the messages (and link
directions) involved in computing y are shown.

CONDITIONAL Delete-1
 Actions: (Image – o:1 x:* y:*)

Fig. 8: Deletion of object 1.

Although the
affine

transformation
specified in Fig.
9’s conditional
may appear to
involve just
addition and
multiplication of

individual
numbers, the
figure makes it
clear that such

transformations
actually operate on

entire functions. In principle, affine transformation can and should be implemented
by standard factor nodes that represent variants of delta functions [11]. However,
delta functions are awkward and expensive to approximate via axially aligned slices,
so specially optimized factor nodes that directly manipulate message slices, such as
those in Fig. 9, are used instead. An offset shifts a whole piecewise linear function
along a variable’s dimension by modifying the dimension’s slices, while a coefficient
may, once again by modifying slices, expand, contract, or invert a dimension.

Once the slices have been modified, the resulting function may then need to be
cropped and/or padded. Dimensions are not infinite in Sigma; each must be specified
via minimum and maximum values, defining a domain that is closed at its
dimensional minima and open at its corresponding maxima (this same half-open
structure is also shared by regions). When a transformation extends a function
beyond its dimensional bounds, it is cropped to fit back within these boundaries.
When a transformation leaves areas within the boundaries undefined, the function is
padded by assigning values to these areas. By default, closed-world predicates use a
value of 0 and open-world predicates use a value of 1, corresponding for each to the
standard value of unknown. Although originally motivated by mental imagery, affine
transformations have since found important roles in Sigma across such areas as
episodic memory, reflection, and reinforcement learning [11, 8].

The other aspect of Sigma used in the mental imagery results here is a capability
for applying piecewise linear filters – generalizations of the constant tests typically
found in rule conditions – to messages. A constant test is simply a filter that passes
along only the portion of incoming messages matching the constant, via a filter that is
1 where the variable’s domain equals the constant and 0 elsewhere. Sigma’s filters
can more generally specify arbitrary linear functions over regions. For example, in
the condition (Image o:o x:x y:[.01*y]), the computation within the
square brackets defines a filter that increases linearly with (the domain value) of y,
with a slope of .01. The functional values in incoming messages are therefore
pointwise multiplied by .01 times their y domain value. Such filters have been used,
for example, in reinforcement learning to compute expected Q values via
summarization (integration) over a weighted distribution of Q values [8]. They are
leveraged in the next section in computing directional relationships among objects.

 CONDITIONAL Scale-Half-Horizontal
 Conditions: (Image o:0 x:x y:y)

 Actions: (Image o:4 x:x/2+1 y:y)

Fig. 9: Scaling a Z tetromino by half, horizontally, in place.

3 Results

The focus in this section is on key implications for mental imagery of the capabilities
just described. This is not exhaustive, as new implications are continually being
uncovered, but it does span the requirements mentioned in the introduction.

We can begin with the straightforward result that it is possible to translate, scale
(shrink/enlarge), reflect, and rotate objects in images. Translation was covered in [11]
and Fig. 9 demonstrated scaling in place, via a coefficient and an offset. Figs. 10 and
11 both start with the Z tetromino on the left of Fig. 9, with Fig. 10 then
demonstrating reflection in place, via a negative coefficient and an offset, and Fig. 11
demonstrating rotation by 90° in place, via reflection and a swap of the x and y
variables. As presently implemented, Sigma’s affine transformations operate on
individual variables (i.e., dimensions). By swapping variables – and reflecting when
necessary – rotations by multiples of 90° are possible, as here, but not arbitrary-angle
rotations. Two issues stand in the way: (1) Sigma’s limitation to rectilinear, axially
aligned, regions makes it complex and costly to represent the results of such rotations
[11]; and (2) rotations at arbitrary angles require multivariate transforms. We are
considering extending Sigma’s function representation from orthotopic regions to
(convex) polytopic regions – i.e., nD polygons – to allow representation of slices at
arbitrary angles (as well as to enable more compact representations of complex
objects). When this is in place, efficient multivariate transformation will be explored.

The conditionals in Figs. 9-11 demonstrate image composition – each adds one
object (on its own plane) to the overall image – and Fig. 8 demonstrated object
deletion. What hasn’t been demonstrated is how the separate objects in an image can
be combined into a single new plane, enabling hierarchies in which complex images
can in turn be treated as objects in more complex images. Fig. 12 demonstrates this,
with the object variable (o) from the condition – which ranges over the four planes in
the image – being summarized out via maximum to yield a message to the action that
is 1 wherever there is a 1 in any of the individual objects in the image.

The result of the processing in Fig. 12 is a new composite object that can be treated
like any other object. For example, the left edge of this object – the slivers

Fig. 11: 90° rotation of Z tetromino. Fig. 10: Horizontal, in place, reflection of Z
tetromino.

immediately to the right of blank areas – can be determined as in Fig. 13. This is an
elementary perceptual operation that can extract useful information from images. Just
as with the other imagery operations though, it occurs via a standard conditional that
compiles down to a factor graph. In this instance, the conditional uses an offset in a
negated
condition to
shift the
image by ε
(.0001 in this
case) and
then to
invert it
before
multiplying
by the
original
image. The
result is 1s
only for the sliver of the original image that is within ε to the right of a blank area.
This approach turns out to perform edge detection without previously pixelating the
image; instead, the thickness of the edge is a function of the offset.

A second example of extracting useful information from a combination of objects
was shown in Figs. 3 and 6, where conditions for separate image planes compute their
overlap via the product aspect of summary product. It is then a simple step from there
to a third example, where colliding pairs are detected via summarizing – by maximum
– the two spatial dimensions in the vector of overlap planes (Fig. 14).

As a fourth and final
example of information
extraction from mental
imagery, consider the problem
of determining directional

Fig. 12: Combining four object planes (top) into a single new plane (bottom left).

Fig. 13: Computation of left edge of composite object.

CONDITIONAL Collision
 Conditions: (Overlap i:i x:x y:y)
 Actions: (Collision i:i value:true)

Fig. 14: Determine which objects collide.

information among
objects, such as whether
object 1 is to the right of
object 2, or which object
is topmost. Fig. 15 shows
a conditional for the latter computation, where the topmost object is defined to be the
one whose topmost point is above the topmost points of all of the other objects. It
uses a filter in the condition to weight points in objects by their y (domain) values,
decreasing as y increases. In generating a message for the action, by summarizing
out x and y via maximum, this computes a function value for the object equal to the
weight of its topmost point. The action then uses a unique variable in the Topmost
predicate to select the most highly valued object; that is, the one whose topmost point
is highest among all of the objects in the image.

Together these last four examples start to show how Sigma can extract useful
information from the spatial interactions among objects in images, as the earlier
examples show how to compose images from multiple objects, turn these composites
into new objects, delete objects from images, and transform objects within images.

4 Conclusion

The mental imagery results presented here derive from a combination of: Sigma’s
core nD piecewise linear representation for functions/messages; its use of conditionals
with conditions, actions and negations to define a factor graph; the generalization
from constants to piecewise linear filters in conditionals; the addition of (optimized
factor nodes for) affine transformations; and how the functions/messages are
combined and reduced via the summary product algorithm. This combination enables
the componential representation of continuous 2D images in terms of vectors of
region-based objects; the addition and deletion of objects from these images;
translation, scaling, reflection and (limited forms of) rotation of these objects; and the
ability to extract implications from interactions among objects.

Although not a focus here, it is trivial via additional predicates to symbolically
annotate these continuous objects. The initial step in extending this all from 2D to 3D
imagery is also trivial, involving merely the addition of a z dimension. However, this
hasn’t yet been pursued because of the computational cost of processing these larger
images. We are presently modifying Sigma’s core representation so that slices need
not span the entire space, and default-valued regions can be represented implicitly.
These changes should reduce the size of the imagery functions and improve the
efficiency of their processing. This should not only enable efficient exploration of 3D
imagery, but also provide an important step in moving from orthotopes to polytopes
(which should further simplify the representation of complex objects, while enabling
exploration of arbitrary-angle rotations). We are also exploring the possibility of
allowing more direct incorporation of Gaussians, or comparable functions, for more
efficient representation of spatial, and other forms, of uncertainty.

Beyond these extensions, we need to look at incorporating these basic capabilities
into naturalistic tasks that are tightly coupled with true perception; and, in the process,

Fig. 15: Determine which object is topmost.

CONDITIONAL Above
 Conditions: (Image o:o x:x y:[1-.1*y])
 Actions: (Topmost o:o)

evaluate whether this functionality is both sufficient and sufficiently efficient. Still,
the results presented here do demonstrate a significant mental imagery capability that
is built upon a set of more primitive mechanisms that are common to other cognitive
capabilities within Sigma; for example, reinforcement learning [8] also leverages all
of the capabilities listed at the beginning of this section (except for negation). It thus
represents a significant step towards a functionally elegant grand unification.

Acknowledgments. This effort has been sponsored by the Air Force Office of
Scientific Research and the U.S. Army. Statements and opinions expressed do not
necessarily reflect the position or the policy of the United States Government, and no
official endorsement should be inferred.

References

1. Gunzelmann, G. Lyon, D.R.: Representations and processes of human spatial competence.
Topics in Cognitive Science, 3, 741-759 (2011)

2. Cassimatis, N.: Polyscheme: A Cognitive Architecture for Integrating Multiple
Representation and Inference Schemes. Ph.D. Dissertation. MIT Media Laboratory (2002)

3. Lathrop, S.D., Wintermute, S., Laird, J.E.: Exploring the functional advantages of spatial
and visual cognition from an architectural perspective. Topics in Cognitive Science, 3,
796-818 (2011)

4. Trafton, J.G., Harrison, A.M.: Embodied spatial cognition. Topics in Cognitive Science, 3,
686-706 (2011)

5. Chandrasekaran, B., Banerjee, B., Kurup, U., Lele, O.: Augmenting cognitive
architectures to support diagrammatic imagination. Topics in Cognitive Science, 3, 760-
777 (2011)

6. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic
Probability. Springer-Verlag, Berlin (2005)

7. Rosenbloom, P.S.: Combining Procedural and Declarative Knowledge in a Graphical
Architecture. In: 10th International Conference on Cognitive Modeling (2010)

8. Rosenbloom, P.S.: Deconstructing reinforcement learning in Sigma. In: Fifth Conference
on Artificial General Intelligence (2012)

9. Rosenbloom, P.S.: From memory to problem solving: Mechanism reuse in a graphical
cognitive architecture. In: Fourth Conference on Artificial General Intelligence (2011)

10. Chen, J., Demski, A., Han, T., Morency, L-P., Pynadath, P., Rafidi, N., Rosenbloom, P.S.:
Fusing symbolic and decision-theoretic problem solving + perception in a graphical
cognitive architecture. In: Second International Conference on Biologically Inspired
Cognitive Architectures (2011)

11. Rosenbloom, P.S.: Mental imagery in a graphical cognitive architecture. In: Second
International Conference on Biologically Inspired Cognitive Architectures (2011)

12. Kschischang, F.R., Frey, B. J., Loeliger, H.: Factor Graphs and the Sum-Product
Algorithm. IEEE Transactions on Information Theory, 47, 498-519 (2001)

13. Rosenbloom, P.S.: Bridging dichotomies in cognitive architectures for virtual humans. In:
AAAI Fall Symposium on Advances in Cognitive Systems (2011)

14. Rosenbloom, P.S.: Implementing first-order variables in a graphical cognitive
architecture. In: First International Conference on Biologically Inspired Cognitive
Architectures (2010)

15. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge (2009)

