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Abstract. This article presents new results on implementing mental imagery 
within the Sigma cognitive architecture.  Rather than amounting to a distinct 
module, mental imagery is based on the same primitive, hybrid mixed, 
architectural mechanisms as Sigma’s other cognitive capabilities.  The work 
here demonstrates the creation and modification of compound images, the 
transformation of individual objects within such images, and the extraction of 
derived information from these compositions. 
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1   Introduction 

Mental imagery is a cognitive capacity that enables humans to represent and reason 
about spatial information.  It includes the ability to construct images from pieces 
retrieved from memory; to translate, scale and rotate (parts of) these images; and to 
extract new information from the composite and/or transformed results.  Although 
nominally focused on the spatial aspects of the physical world, Gunzelmann and Lyon 
summarize its key role in other areas of human cognitive processing – such as 
numerical information processing, problem solving and language [1] – and Cassimatis 
has hypothesized that physical reasoning is part of a general cognitive substrate that 
underlies all of reasoning [2].  Mental imagery must also clearly relate to perception, 
but the focus here is on the connection with cognition rather than perception. 

Following an extended debate concerning whether mental imagery is symbolic 
versus imagistic – based, for example, on pixel arrays – there is little doubt at this 
point that both are implicated in the full picture.  Some of the most interesting recent 
work on this topic includes how to incorporate such a capacity into a cognitive 
architecture, a hypothesis about the fixed structure underlying cognition, and how 
these structures combine with each other (and knowledge) to yield intelligent human(-
like) behavior.  Imagery modules have been investigated in architectures such as Soar 
[3] and ACT-R [4], including ideas for introducing more explicitly hybrid aspects [5]. 

The Sigma (Σ) architecture is built to be hybrid from the ground up, in service of 
satisfying two general desiderata: grand unification and functional elegance.  A 
traditional unified cognitive architecture attempts to bring together in an integrated 



manner the range of cognitive capabilities required for human(-level) intelligent 
behavior in the world.  A grand unified architecture goes beyond this, in analogy to a 
grand unified theory in physics, to attempt to include the crucial pieces missing from 
a purely cognitive theory, such as perception, motor control, and emotion.  Functional 
elegance implies a combination of the broad range of capabilities required in a (grand) 
unified architecture with simplicity and theoretical elegance.  In Sigma, the aim is 
something like a set of cognitive Newton’s laws that yield the required diversity of 
behavior from interactions among a small set of very general primitives.  Within AGI, 
AIXI [6] can be seen as an attempt at an extreme form of functional elegance.  The 
approach in Sigma is less ambitious, but still strongly in this direction. 

Driven by these desiderata, work to date on Sigma has been deliberately broad – 
including forms of memory and learning [7-8], problem solving and decision making 
[9-10], perception and localization [10], and natural language – with the intent of 
determining whether a small set of general mechanisms can in fact be sufficient in 
combination.  Thus, for mental imagery the natural question to ask became whether 
Sigma could provide a sufficient hybrid capacity without either distinct symbolic 
versus imagistic modules or distinct representations, memories and processes, as has 
been necessary in other architectural approaches. 

Earlier work in Sigma showed how 2D images can be 
represented, and how translation of image components can 
be implemented [11].  The results were used as part of a 
hybrid approach to the Eight Puzzle – Fig. 1 – a classic 
sliding tile puzzle that is traditionally solved in AI systems 
via a symbolically represented board plus internal search 
over symbolic operators that model external actions.  The 
Sigma approach included a hybrid representation of the 
board plus normal symbolic problem solving, but now over 
imagistic tile translations (implemented as offsets).  The 
work here extends this via manipulations of Z tetrominos 
(Fig. 2), as found in the game of Tetris, to demonstrate: 
image composition and component deletion; additional 
forms of image transformation, including scaling, reflection 
and rotation (by multiples of 90°); and extraction of 
perceptual features from composites, such as object overlaps 
and collision detection, directionality among objects, and edge detection.  

Mental imagery in Sigma is grounded in: (1) the architecture’s generalized 
language of conditionals, which compiles down to factor graphs for processing via 
the summary product algorithm [12]; (2) an inherently continuous piecewise linear 
representation for the functions and messages in (1) [13]; and (3) affine 
transformations – a generalization of the offsets introduced earlier – and piecewise 
linear filters.  By demonstrating mental imagery via interactions among more 
primitive mechanisms, this work contributes to the breadth of functionality unified 
within Sigma, while doing so in a simple and elegant manner.  The key to functional 
elegance here has been to begin with a small set of very general mechanisms that are 
leveraged in combination when possible, and which are (minimally) augmented when 
necessary.  This combination also supports grand unification, intertwining continuous 
perception-related information with general symbol processing. 

Fig. 2: Z tetromino. 

Fig. 1: Eight Puzzle. 



2   Sigma and Mental Imagery 

Knowledge representation in 
Sigma is based on conditionals – a 
generalized form of rule – plus 
piecewise linear functions.  Fig. 3, 
for example, shows a conditional 
that uses two conditions and an 
action to determine the spatial 
overlap between two particular 
objects in the image.  The Image predicate specifies object locations via three 
arguments – o provides a numeric index into a vector of objects (which is specified 
by constants here, but can be variables in general), while x and y range over the 
continuous image dimensions – to yield a discrete vector of continuous planes, each 
element of which provides an 
occupancy grid for a single object in 
the image.  In Fig. 4, for example, the 
planes correspond to the Eight Puzzle 
tiles, and the grayed regions denote 
where the blank and tile 1 are located 
in Fig. 1. 

Technically, such images are 3D 
hybrid functions in Sigma, with one 
discrete variable (i.e., dimension) for 
objects (tiles here) and two continuous 
variables for space.  The grayed 
regions are where the function has a 
value of 1 (or true) while the other 
regions are 0 (or false).  In Sigma such 
functions are represented as piecewise 
linear over nD arrays of rectilinear (or 
orthotopic) regions (Fig. 5).  The nD 
space is sliced orthogonally to its axes 

to generate an array of regions that are 
doubly linked along each dimension, with 
each region having its own linear function 
over the variables.  This can be viewed as 
a generalization of a pixel (or voxel) array, 
where the pixels can vary in size and have 
linear rather than just constant value 
functions. 

Although Sigma’s function 
representation is inherently continuous, 
with its piecewise linear approach 
allowing arbitrary continuous functions to 
be approximated as closely as desired, it 

CONDITIONAL Overlap-0-3 
   Conditions: (Image o:0 x:x y:y) 
               (Image o:3 x:x y:y) 

 Actions: (Overlap i:1 x:x y:y) 
 

Fig. 3: Conditional for computing the spatial 
overlap between two specific objects. 

Fig. 5: Bivariate function as a 2D array of 
regions with linear functions. 

Fig. 4. Partial visualization of a hybrid 
representation for the Eight Puzzle board. 



can also be specialized to: discrete representations – to enable, for example, the 
vectors of objects we have seen, as well as discrete probability distributions – by 
mapping integers in the function’s domain to unit regions; and symbolic 
representations by limiting the functions to Boolean (0/T and 1/F) while assigning 
symbols to domain integers.  A form of hybrid mixed representation is thus proffered 
in a manner analogous to how digital circuits are implemented via restrictions on an 
underlying substrate that is naturally continuous. 

The Overlap predicate in Fig. 3 is similar to the Image predicate, except that 
here there is a vector of object overlaps, rather than of objects.  The semantics of 
conditionals specifies that the two conditions in Fig. 3 extract the 0th and 3rd objects 
from the image, with these two 2D object subimages then being multiplied in a 
pointwise manner – like an inner product but without the final summation – to yield a 
new 2D plane that is 1 where both input planes are 1 and 0 elsewhere (Fig. 6).  Once 
message 
passing 
reaches 
quiescence, 
actions – 
such as the 
one in Fig. 3 
that stores 
the 
computed overlap into element 1 of Overlap – may yield changes to working 
memory, completing Sigma’s core cognitive cycle.  If a predicate has a unique 
variable – akin to a classic random variable, where a distribution is provided over all 
possible values but only one is ultimately correct – the best value for that variable is 
placed into working memory, while if it instead has only universal variables – akin to 
classic rule variables, where any subset of the values may be correct, but used here 
mainly for occupancy grids – all non-zero values are placed in working memory 14]. 

The processing of conditionals occurs by running the summary product algorithm 
over the factor graph into which they are compiled.  Factor graphs are a general form 
of graphical model [15] – an approach to computing efficiently over complex 
multivariate functions by decomposing them into the product of simpler factors and 
then mapping the result onto a graph of nodes and links – that bear a family 
resemblance to other forms, such as Bayesian and Markov networks, but are 
concerned with arbitrary multivariate functions, not just probabilistic ones.  Complex 
functions are first decomposed into products of simpler functions, and then mapped 
onto bipartite graphs, with variables mapped onto variable nodes and decomposed 
factors mapped onto factor nodes.  Undirected edges are defined between each factor 
node and its variables.  Fig. 7 shows an example factor graph for a multivariate 
algebraic function along with its solution via summary product, as used in Sigma. 

Given evidence about a subset of the variables – as stored in working memory 
factor nodes – messages are passed along the links and processed at the nodes to yield 
new messages.  Each message along a link provides information about the values of 
the link’s variable.  Incoming messages at variable nodes are combined via pointwise 
product to yield outgoing messages, but with each outgoing message omitting from its 
product the incoming message on its link.  Similar pointwise products occur at factor 

Fig. 6: Overlap between two images via conditional in figure 3. 



nodes, but with the factor’s 
function also included in the 
product; and then all variables 
not in the outgoing message are 
summarized out.  
Summarization typically occurs 
via summation – or integration 
for continuous functions – to 
yield marginals, or via 
maximum to yield the mode; 
however, maximum is also used 
in Sigma for marginals of 
universal variables. Message 
passing ends upon quiescence; 
i.e., when no new message is 
significantly different from the 
previous message along the 
same link. 

Both conditions and actions can be negated, inverting the resulting function to 
yield f = maximum(1-f, 0).  True (1) becomes false (0) and vice versa.  Intermediate 
values are similarly inverted, and functional values greater than 1 are treated as if they 
are 1 during the inversion.  Fig. 8, for example, shows how an object can be removed 
from an image via a negated action that spans the entire plane for object 1. 

Both conditions and actions also 
limit the direction in which messages 
are passed – those within condition 
subgraphs only move away from 
working memory while those within 
action subgraphs only move towards it.  This provides the forward momentum central 
to procedural memory.  Condacts – a neologism for conditions and actions – provide 
the bidirectional message passing required for the full generality of factor graphs, as 
used for example in probabilistic reasoning, constraint satisfaction, signal processing, 
and (partial match in) declarative memory [7].  As condacts are not used in the results 
presented here, they aren’t discussed further.  We will also omit discussions of other 
aspects of Sigma not exploited here, such as learning. 

Still, two remaining aspects of Sigma do require explication.  The first, and the 
only one originally motivated by the needs of mental imagery, is the use of affine 
transformations; i.e., combinations of linear transformations with translations.  Fig. 9 
shows an example, where an affine transformation is used in the action of a 
conditional to scale a Z tetromino horizontally, in place.  In general, a variable in a 
condition or an action may include a coefficient and an offset, where the coefficient 
must be a constant and the offset may be either a constant or a variable (although only 
constant offsets are used in the work described here).  Affine transforms can be used 
in conditions, actions and condacts, but with a transformation in a condition (or the 
outgoing aspect of a condact) inverting what the same one does in an action (or the 
incoming aspect of a condact). 

Fig. 7: Summary product computation over the factor 
graph for f(x,y,z) = y2+yz+2yx+2xz = (2x+y)(y+z) = 
fi(x,y)f2(y,z) of the marginal on y given evidence 
concerning x and z.  Only the messages (and link 
directions) involved in computing y are shown. 

CONDITIONAL Delete-1 
   Actions: (Image – o:1 x:* y:*) 

Fig. 8: Deletion of object 1. 



Although the 
affine 

transformation 
specified in Fig. 
9’s conditional 
may appear to 
involve just 
addition and 
multiplication of 

individual 
numbers, the 
figure makes it 
clear that such 

transformations 
actually operate on 

entire functions.  In principle, affine transformation can and should be implemented 
by standard factor nodes that represent variants of delta functions [11].  However, 
delta functions are awkward and expensive to approximate via axially aligned slices, 
so specially optimized factor nodes that directly manipulate message slices, such as 
those in Fig. 9, are used instead.  An offset shifts a whole piecewise linear function 
along a variable’s dimension by modifying the dimension’s slices, while a coefficient 
may, once again by modifying slices, expand, contract, or invert a dimension. 

Once the slices have been modified, the resulting function may then need to be 
cropped and/or padded.  Dimensions are not infinite in Sigma; each must be specified 
via minimum and maximum values, defining a domain that is closed at its 
dimensional minima and open at its corresponding maxima (this same half-open 
structure is also shared by regions).  When a transformation extends a function 
beyond its dimensional bounds, it is cropped to fit back within these boundaries.  
When a transformation leaves areas within the boundaries undefined, the function is 
padded by assigning values to these areas.  By default, closed-world predicates use a 
value of 0 and open-world predicates use a value of 1, corresponding for each to the 
standard value of unknown.  Although originally motivated by mental imagery, affine 
transformations have since found important roles in Sigma across such areas as 
episodic memory, reflection, and reinforcement learning [11, 8]. 

The other aspect of Sigma used in the mental imagery results here is a capability 
for applying piecewise linear filters – generalizations of the constant tests typically 
found in rule conditions – to messages. A constant test is simply a filter that passes 
along only the portion of incoming messages matching the constant, via a filter that is 
1 where the variable’s domain equals the constant and 0 elsewhere.  Sigma’s filters 
can more generally specify arbitrary linear functions over regions.  For example, in 
the condition (Image o:o x:x y:[.01*y]), the computation within the 
square brackets defines a filter that increases linearly with (the domain value) of y, 
with a slope of .01.  The functional values in incoming messages are therefore 
pointwise multiplied by .01 times their y domain value. Such filters have been used, 
for example, in reinforcement learning to compute expected Q values via 
summarization (integration) over a weighted distribution of Q values [8].  They are 
leveraged in the next section in computing directional relationships among objects. 

       CONDITIONAL Scale-Half-Horizontal 
          Conditions: (Image o:0 x:x y:y) 

        Actions: (Image o:4 x:x/2+1 y:y) 

 

Fig. 9: Scaling a Z tetromino by half, horizontally, in place. 



3   Results 

The focus in this section is on key implications for mental imagery of the capabilities 
just described. This is not exhaustive, as new implications are continually being 
uncovered, but it does span the requirements mentioned in the introduction. 

We can begin with the straightforward result that it is possible to translate, scale 
(shrink/enlarge), reflect, and rotate objects in images.  Translation was covered in [11] 
and Fig. 9 demonstrated scaling in place, via a coefficient and an offset.  Figs. 10 and 
11 both start with the Z tetromino on the left of Fig. 9, with Fig. 10 then 
demonstrating reflection in place, via a negative coefficient and an offset, and Fig. 11 
demonstrating rotation by 90° in place, via reflection and a swap of the x and y 
variables. As presently implemented, Sigma’s affine transformations operate on 
individual variables (i.e., dimensions).  By swapping variables – and reflecting when 
necessary – rotations by multiples of 90° are possible, as here, but not arbitrary-angle 
rotations.  Two issues stand in the way: (1) Sigma’s limitation to rectilinear, axially 
aligned, regions makes it complex and costly to represent the results of such rotations 
[11]; and (2) rotations at arbitrary angles require multivariate transforms.  We are 
considering extending Sigma’s function representation from orthotopic regions to 
(convex) polytopic regions – i.e., nD polygons – to allow representation of slices at 
arbitrary angles (as well as to enable more compact representations of complex 
objects).  When this is in place, efficient multivariate transformation will be explored. 

The conditionals in Figs. 9-11 demonstrate image composition – each adds one 
object (on its own plane) to the overall image – and Fig. 8 demonstrated object 
deletion.  What hasn’t been demonstrated is how the separate objects in an image can 
be combined into a single new plane, enabling hierarchies in which complex images 
can in turn be treated as objects in more complex images.  Fig. 12 demonstrates this, 
with the object variable (o) from the condition – which ranges over the four planes in 
the image – being summarized out via maximum to yield a message to the action that 
is 1 wherever there is a 1 in any of the individual objects in the image. 

The result of the processing in Fig. 12 is a new composite object that can be treated 
like any other object.  For example, the left edge of this object – the slivers 

Fig. 11: 90° rotation of Z tetromino. Fig. 10: Horizontal, in place, reflection of Z 
tetromino. 



immediately to the right of blank areas – can be determined as in Fig. 13.  This is an 
elementary perceptual operation that can extract useful information from images.  Just 
as with the other imagery operations though, it occurs via a standard conditional that 
compiles down to a factor graph.  In this instance, the conditional uses an offset in a 
negated 
condition to 
shift the 
image by ε 
(.0001 in this 
case) and 
then to 
invert it 
before 
multiplying 
by the 
original 
image.  The 
result is 1s 
only for the sliver of the original image that is within ε to the right of a blank area.  
This approach turns out to perform edge detection without previously pixelating the 
image; instead, the thickness of the edge is a function of the offset. 

A second example of extracting useful information from a combination of objects 
was shown in Figs. 3 and 6, where conditions for separate image planes compute their 
overlap via the product aspect of summary product.  It is then a simple step from there 
to a third example, where colliding pairs are detected via summarizing – by maximum 
– the two spatial dimensions in the vector of overlap planes (Fig. 14). 

As a fourth and final 
example of information 
extraction from mental 
imagery, consider the problem 
of determining directional 

Fig. 12: Combining four object planes (top) into a single new plane (bottom left). 

Fig. 13: Computation of left edge of composite object. 

CONDITIONAL Collision 
   Conditions: (Overlap i:i x:x y:y) 
   Actions: (Collision i:i value:true) 

Fig. 14: Determine which objects collide. 



information among 
objects, such as whether 
object 1 is to the right of 
object 2, or which object 
is topmost.  Fig. 15 shows 
a conditional for the latter computation, where the topmost object is defined to be the 
one whose topmost point is above the topmost points of all of the other objects.  It 
uses a filter in the condition to weight points in objects by their y (domain) values, 
decreasing as y increases.  In generating a message for the action, by summarizing 
out x and y via maximum, this computes a function value for the object equal to the 
weight of its topmost point.  The action then uses a unique variable in the Topmost 
predicate to select the most highly valued object; that is, the one whose topmost point 
is highest among all of the objects in the image.   

Together these last four examples start to show how Sigma can extract useful 
information from the spatial interactions among objects in images, as the earlier 
examples show how to compose images from multiple objects, turn these composites 
into new objects, delete objects from images, and transform objects within images.  

4   Conclusion 

The mental imagery results presented here derive from a combination of: Sigma’s 
core nD piecewise linear representation for functions/messages; its use of conditionals 
with conditions, actions and negations to define a factor graph; the generalization 
from constants to piecewise linear filters in conditionals; the addition of (optimized 
factor nodes for) affine transformations; and how the functions/messages are 
combined and reduced via the summary product algorithm.  This combination enables 
the componential representation of continuous 2D images in terms of vectors of 
region-based objects; the addition and deletion of objects from these images; 
translation, scaling, reflection and (limited forms of) rotation of these objects; and the 
ability to extract implications from interactions among objects. 

Although not a focus here, it is trivial via additional predicates to symbolically 
annotate these continuous objects.  The initial step in extending this all from 2D to 3D 
imagery is also trivial, involving merely the addition of a z dimension.  However, this 
hasn’t yet been pursued because of the computational cost of processing these larger 
images.  We are presently modifying Sigma’s core representation so that slices need 
not span the entire space, and default-valued regions can be represented implicitly.  
These changes should reduce the size of the imagery functions and improve the 
efficiency of their processing.  This should not only enable efficient exploration of 3D 
imagery, but also provide an important step in moving from orthotopes to polytopes 
(which should further simplify the representation of complex objects, while enabling 
exploration of arbitrary-angle rotations).  We are also exploring the possibility of 
allowing more direct incorporation of Gaussians, or comparable functions, for more 
efficient representation of spatial, and other forms, of uncertainty. 

Beyond these extensions, we need to look at incorporating these basic capabilities 
into naturalistic tasks that are tightly coupled with true perception; and, in the process, 

Fig. 15: Determine which object is topmost. 

CONDITIONAL Above 
   Conditions: (Image o:o x:x y:[1-.1*y]) 
   Actions: (Topmost o:o) 



evaluate whether this functionality is both sufficient and sufficiently efficient.  Still, 
the results presented here do demonstrate a significant mental imagery capability that 
is built upon a set of more primitive mechanisms that are common to other cognitive 
capabilities within Sigma; for example, reinforcement learning [8] also leverages all 
of the capabilities listed at the beginning of this section (except for negation).  It thus 
represents a significant step towards a functionally elegant grand unification. 
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