
FAAST-R: Defining a Core Mechanic
for Designing Gestural Interfaces

Evan A. Suma

Institute for Creative
Technologies
12015 Waterfront Drive
Playa Vista, CA 90094 USA
suma@ict.usc.edu

David M. Krum

Institute for Creative
Technologies
12015 Waterfront Drive
Playa Vista, CA 90094 USA
krum@ict.usc.edu

Belinda Lange

Institute for Creative
Technologies
12015 Waterfront Drive
Playa Vista, CA 90094 USA
lange@ict.usc.edu

Mark Bolas

Institute for Creative
Technologies
12015 Waterfront Drive
Playa Vista, CA 90094 USA
bolas@ict.usc.edu

Albert Rizzo

Institute for Creative
Technologies
12015 Waterfront Drive
Playa Vista, CA 90094 USA
rizzo@ict.usc.edu

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1016-1/12/05...$10.00.

Abstract

We present a syntax for representing human gestures
using rule sets that correspond to the basic spatial and
temporal components of an action. These individual rules
form primitives that, although conceptually simple on
their own, can be combined both simultaneously and in
sequence to form sophisticated gestural interactions.
Along with a graphical user interface for custom gesture
creation, this approach was incorporated into the Flexible
Action and Articulated Skeleton Toolkit as a recognition
module (FAAST-R). This toolkit can either be used to
facilitate the development of motion-based user interfaces
or to repurpose existing closed-source applications and
games by mapping body motions to keyboard and mouse
events. Thus, this work represents an important step
towards making gestural interaction more accessible for
practitioners, researchers, and hobbyists alike.

Author Keywords

Natural interaction; gesture; video games, middleware

ACM Classification Keywords

H.5.2 [Information interfaces and presentation]: User
Interfaces; K.8.0 [Personal Computing]: General.

General Terms

Design, Human Factors

Introduction

Recent advances in low-cost depth sensing technology has
led to a proliferation of consumer electronics devices that
can sense the user’s body motion. The release of the
Microsoft Kinect in late 2010 has sparked the rapid
formation of a large and active community that has
explored a myriad of uses ranging from informal hobbyist
“hacks” to scientific research projects and commercial
applications. However, despite the widespread accessibility
of full-body motion sensing devices, designing intuitive
and powerful gestural interactions remains a challenge for
developers. In general, though the Kinect holds the record
for the fastest selling consumer electronics device in
history, the sales of many commercial Kinect for Xbox 360
game titles have been poor, which has been partially
attributed to the lack of well-designed games that
integrate body motion seamlessly into the experience [6]
[10]. Indeed, research has shown that performing physical
arm movements and gestures can have a profound impact
on the user’s attitudinal and emotional responses to visual
stimuli [5] [8] [13]. These observations point to the need
for both a theory of “gesture design” as well as the tools
to enable the creation and customization of gestural
interactions for 3D user interfaces and interactive media.

An important motivator for our work is the application of
video game technology towards advances in the areas of
rehabilitation [7] and health [9]. While the clinical value
of leveraging motion gaming technology has received
increased recognition in recent years, these applications
pose several notable challenges for designers. Unlike
commercial games, body-based control in a clinical setting
is not “one-size-fits-all,” and must be customizable based
on individual patient medical needs, range of motion, and
motivation level. For example, a client with impaired arm
movement would require a therapy game that encourages

motion just outside the boundary of comfort, but not so
far that achieving the required body pose becomes overly
frustrating or impossible. Thus, the gestural interactions
need to be designed on a per-client basis by the clinician,
who often may not possess intimate technical knowledge
and programming skills. Furthermore, these interactions
need to be easily and immediately adjustable as the
patient improves or encounters problems.

To address the challenge of facilitating intuitive and
transparent gesture design, we present a syntax for
representing complex gestural interactions using rule sets
that correspond to the basic spatial and temporal
components of an action. These “action primitives” are
represented as plain English expressions so that their
meaning is immediately discernible for both technical and
non-technical users, and are analogous to interchangeable
parts on an assembly line - generic descriptors that can be
reused to replicate similar gestural interactions in two
completely different end-user applications. To facilitate
that goal, this representation was incorporated into the
Flexible Action and Articulated Skeleton Toolkit [11] as
part of a recognition module (FAAST-R). This toolkit
provides a complete end-to-end framework that includes a
graphical user interface for custom gesture creation,
sensor configuration, skeletal tracking, action recognition,
and a variety of output mechanisms to control end-user
applications such as 3D user interfaces and video games.
FAAST can either be used to support development of
original motion-based user interfaces from scratch or to
repurpose existing applications by mapping body motions
to keyboard and mouse events, and thus represents an
important step towards making gestural interaction design
and development more accessible for practitioners,
researchers, and hobbyists alike.

Previous Work

Analysis of human motion typically requires solving three
non-trivial problems: detection, tracking, and behavior
understanding [15]. In this paper, the software libraries
from OpenNI and Microsoft Research provide both user
detection and skeletal tracking, so FAAST subsequently
focuses on recognizing the action being performed by the
tracked user and generating an appropriate output. The
quantity of literature focusing on action recognition is
vast (see [14] for a review). While approaches from the
computer vision and machine learning communities are
often highly sophisticated, they may be too daunting for a
non-technically oriented user such as a clinician to
manipulate, and we suggest that they would often be
treated as “black box” algorithms unless a sufficiently
intuitive user interface could be provided to customize the
action recognition. Thus, in this work, we employed a
conceptually simple action representation to ensure that
the interaction schemes would remain transparent and
easily discernible for our target user population.

The initial version of FAAST was released in late 2010,
shortly after the release of the Microsoft Kinect, and
supported a very limited set of interactions, such as
extending the arm directly forward to activate a key press
[11]. After the initial interest in the toolkit, mouse control
with the user’s hand was subsequently added. The idea
for generating virtual input events was inspired in part by
GlovePIE, a programmable input emulator that maps
signals from a variety of hardware devices such as the
Nintendo Wiimote into keyboard, mouse, and joystick
commands [2]. Another similar solution is Kinemote,
which allows mouse control of Windows applications and
games using a floating hand and a “Palm Click & Drag”
metaphor [3]. However, to the best of our knowledge,
FAAST is the first software toolkit that defines a simple

yet powerful action syntax and provides an interface for
non-technically oriented users to design gesture
recognition schemes in an intuitive way.

System Overview

FAAST is designed as middleware between the
depth-sensing camera skeleton tracking libraries and
end-user applications. Currently supported hardware
devices include the Microsoft Kinect sensor using the
Microsoft Research Kinect SDK and OpenNI-compliant
sensors using the NITE skeleton tracking library from
PrimeSense. Figure 1 illustrates the toolkit’s architecture.
To make the toolkit as device agnostic as possible,
communication with each skeleton tracker is split into
separate modules that are dynamically selected and loaded
at runtime. Each module reads data from its respective
tracker into a generic skeleton data structure. Thus,
FAAST is easily extensible by adding new modules to
support future devices and software libraries.

Once a skeleton has been read from the sensor, FAAST
then processes this data in an action recognition module.
Based on the actions being performed, the core
application then invokes an emulator module that sends
simulated keyboard and mouse events to the active
window. The core FAAST application includes a graphical
interface that allows the user to create custom gesture
schemes and bind these actions to specific emulator
events. For example, the user may choose to send a “left
arrow key down” event when the user leans to the left by
a certain number of degrees. Thus, FAAST allows users
to control off-the-shelf applications and games using body
motion, even though these interfaces only accept input
from standard keyboard and mouse setups. The methods
for depicting actions and designing custom gestures are
described in the following two sections.

Generic
Skeleton
Model

OpenNI
Reader

Microsoft
Kinect SDK
Reader

Action
Recognition
Module

Emulator
Module

FAAST
Core

VRPN Server

Target
Application

network
connection

keyboard/mouse
events

Figure 1: The FAAST architecture consists of modules that
read skeleton data from depth sensing camera libraries, an
action recognition module, an emulator module that sends
simulated keyboard and mouse events to the active window,
and a VRPN server to broadcast the position and orientation
of each skeleton joint to networked applications.

In addition to simulating keyboard and mouse events,
FAAST also streams the position and orientation of each
skeleton joint using a Virtual Reality Peripheral Network
(VRPN) server, which is a network interface that has
become a popular standard for facilitating communication
between VR applications and physical tracking devices
[12]. This allows developers to read skeleton data into
their applications in a device-independent manner using
the same standard protocols that are commonly used by
the community. FAAST is currently being officially
supported by two commercial virtual world development
environments for this purpose, 3DVIA Studio [1] and the
Vizard virtual reality toolkit from WorldViz [4].

Decomposing Gestures

In order to enable users to design custom gestural
interactions, we considered how to decompose complex
body movements into atomic components. These simple
action primitives form the conceptual “building blocks”
that can be combined in FAAST to form more
complicated gesture recognition schemes. To make these
actions comprehensible and intuitive for non-technical
users, they are formed by selecting terms from drop down
boxes to form plain English expressions, similar to the way
they might be described in everyday conversation (see
Figure 2). For example, to design an action that activates
when the user extends the left hand directly out in front
of the body, the user would select parameters to form an
expression such as: “left hand in front of torso by at least
16 inches.” For each action specified, the user must also
specify the comparison (either “at least” or “at most”),
the numeric threshold for activation, and the units of
measurement.

Figure 2: Rules are defined using drop-down boxes that form
plain English expressions. These action primitives form the
basis for more complicated gestures.

Position Constraints

Position constraints refer to the relative spatial
relationship between any two skeletal joints, depicted as
follows:

{body part} {relationship} {body part}
by {comparison} [threshold] {units}

{body part} = head, neck, torso, waist, left shoulder, left
elbow, left wrist, left hand, right shoulder, right elbow,
right wrist, right hand, left hip, left knee, left ankle, left
foot, right hip, right knee, right ankle, right foot

{relationship} = to the left of, to the right of, in front of,
behind, above, below, apart from

{units} = centimeters, meters, inches, feet

Angular Constraints

It is also useful to consider cases when users flex or
straighten one of their limbs, determined by calculating
the angle of intersection between the two vectors
connecting the limb’s joint locations. Angular constraints
are depicted as follows:

{limb} flexed

by {comparison} [threshold] {units}

{limb} = left arm, right arm, left leg, right leg

{units} = degrees, radians

Velocity Constraints

Velocity constraints refer to the speed at which a
particular body part is moving, depicted as follows:

{body part} {direction}
by {comparison} [threshold] {units}

{body part} = head, neck, torso, waist, left shoulder, left
elbow, left wrist, left hand, right shoulder, right elbow,
right wrist, right hand, left hip, left knee, left ankle, left
foot, right hip, right knee, right ankle, right foot

{direction} = to the left, to the right, forward, backward,
up, down, in any direction

{units} = cm/sec, m/sec, in/sec, ft/sec

Body Constraints

In addition to the constraints listed above, it is also useful
to consider body actions that are more “global,” i.e.
movements of the whole body relative to the camera, as
opposed to positioning individual body parts relative to
one another. We define two angular body actions, lean
and turn, depicted as follows:

lean {left, right, forward, backward}
by {comparison} [threshold] {units}

turn {left, right}
by {comparison} [threshold] {units}

{units} = degrees, radians

Additionally, we also define a jump action. Measuring the
height of a jump is not immediately obvious, however,
because the height value of each skeleton joint is relative
to the sensor, not the floor. Thus, to detect jumps, we
leverage the fact that these actions occur very quickly,
and consider the lowest height value of the feet over a
previous window of time to be the height of the floor
(experimentally determined to be 0.75 seconds). The
jump action activates when both feet rise above this floor
height value by the specified distance threshold. We found
that when the user stands in one spot, which is frequently
the case when interacting with depth sensors due to the
restricted field of view, jump detection is quite reliable.
Jump actions are depicted as follows:

jump by {comparison} [threshold] {units}

{units} = centimeters, meters, inches, feet

Time Constraints

The last type of constraint we consider is the temporal
delay between the individual actions that constitute a
gesture. In informal testing, we determined that it can be
useful to be able to define action timing based on either
previous action’s start time or stop time, depending on
the specific gesture being designed. Thus, time
constraints are depicted as:

wait for [minimum] to [maximum] seconds
after action {starts, stops}

Designing Custom Gestural Interactions

The atomic actions described in the previous section are
intentionally simple, and as a result the interaction
possibilities provided by each individual constraint are
limited. However, by combining these “action primitives”
both simultaneously and in sequence, sophisticated

gestural interactions can be represented. Thus, we
developed a graphical user interface for designing custom
gestures using these atomic actions as conceptual building
blocks (see Figure 3). New gestures are defined using a
tree structure, with each gesture containing a list of input
actions and a list of output events. Input actions and
output events are added through dialog boxes with simple
drop-down menus, and can be reorganized in the tree
structure by clicking and dragging.

Figure 3: A screenshot of FAAST’s gesture creation interface.
The specified “wave” gesture activates when the user’s right
hand move rapidly back and forth relative to the elbow. When
the action is detected, an ’x’ key press event is sent to the
selected end-user application.

When the emulator is running, FAAST queries the action
recognition module to determine if all the input conditions
are met, after which the emulator module is called to
invoke the output events. To ensure that gesture does not
reactivate too quickly, the user can also specify an
optional timeout value. After a gesture activates, it will
remain inactive until the timeout has elapsed.

Simultaneous Actions

Any input actions that are added without a time
constraint separating them are treated as simultaneous
events. The overall gesture will only be activated when all
of the input conditions are simultaneously true at a given
moment in time. For example, to create an interaction
that requires the user to move both hands together in a
quick “push” action out in front of the body, one could
specify the following gesture:

position: right hand in front of torso
by at least 16 inches

position: left hand in front of torso
by at least 16 inches

position: right hand apart from left hand
by at most 10 inches

velocity: right hand forward
by at least 5 ft/sec

velocity: left hand forward
by at least 5 ft/sec

Action Sequences

By combining position, angular, velocity, and body
constraints simultaneously, users can finely tune body
pose and movement for a given moment in time.
However, many gestures require multiple actions to be
performed in sequence. In FAAST, this behavior is
represented using time constraints as separators between

actions. When a time constraint is encountered, the
action recognizer waits until the minimum time has
elapsed (which may be zero), and then starts checking for
the next group of simultaneous input actions to activate.
If the actions do not activate before the maximum time
has elapsed, the gesture resets and action recognition
resumes from the very beginning of the sequence. Figure
3 shows an example of a “wave” gesture that uses
sequential actions to detect when the user’s right hand
moves rapidly back and forth relative to the elbow.

Discussion

The combination of simultaneous and sequential actions
allows users to design complex gestures that FAAST can
recognize in real-time. There is no predetermined bound
on the complexity or number of gestures that users may
build, and so ultimately they are limited only by their own
creativity. Furthermore, because the gestures are created
by combining rules that are individually simple, the
process of tweaking the parameters of the action is easily
discernible. This is a notable advantage for non-technical
users, such as physical therapy clinicians, who may not
have the technical expertise to manipulate action
recognition approaches that use computer vision or
machine learning algorithms. However, this action
representation may not be appropriate for more “organic”
gestures that are not easily broken down into definable
rule sets. Additionally, FAAST relies on two skeletal
tracking libraries that do not have sufficient fidelity to
segment fingers, so more subtle hand gestures such as
sign language are not currently recognizable. As the
fidelity of consumer depth-sensing technology matures, we
expect to add new sensor modules that will support a
wider range of hardware devices, so this limitation may be
surmountable in the future.

Conclusion and Future Work

In this paper, we describe a core mechanic for designing
and customizing gestural interactions and present an
integrated toolkit that enables existing games and
applications to be repurposed for body-based control. In
the near future, we will begin evaluating the gesture
creation interface with clinicians to gather feedback on its
usability for rehabilitation. Additionally, there are many
ways the toolkit may be extended and improved. For
example, instead of entering the threshold values
manually, the user will be able to pose in front of the
sensor, and these values will be calculated automatically.
We also plan to implement other types of action
representations that may augment our base rule set, such
as depicting keyframes with a poseable model.

FAAST is free software. The most exciting consequences
that we observed when the toolkit was initially released
were the novel uses of the toolkit by members of the
community. Building on FAAST’s existing user base, we
believe that our easy-to-understand rule-based gesture
creation paradigm will further empower hobbyists,
researchers, and practitioners to design rich gestural
interactions in novel ways that we have not expected.

References

[1] http://www.3dvia.com/studio/.
[2] http://www.glovepie.org/.
[3] http://www.kinemote.net/.
[4] http://www.worldviz.com/products/vizard/.
[5] J. T. Cacioppo, J. R. Priester, and G. G. Berntson.

Rudimentary Determinants of Attitudes. II: Arm
Flexion and Extension Have Differential Effects on
Attitudes. Journal of Personality and Social

Psychology, 65(1):5–17, July 1993.
[6] D. Hughes. Microsoft Kinect shifts 10 million units,

game sales remain poor. Huliq, Mar. 2011.

[7] B. Lange, E. A. Suma, B. Newman, T. Phan, C.-y.
Chang, A. Rizzo, and M. Bolas. Leveraging
Unencumbered Full Body Control of Animated
Virtual Characters for Game-Based Rehabilitation. In
HCI International, pages 243–252, 2011.

[8] B. P. Meier and M. D. Robinson. Why the
Associations Between Affect and Vertical Position.
Psychological Science, 15(4):243–247, 2004.

[9] A. Rizzo, B. Lange, E. A. Suma, and M. Bolas.
Virtual reality and interactive digital game
technology: new tools to address obesity and
diabetes. Journal of Diabetes Science and

Technology, 5(2):256–264, Jan. 2011.
[10] S. Stein. Kinect, 2011: Where art thou, motion?

CNET, June 2011.
[11] E. A. Suma, B. Lange, A. Rizzo, D. M. Krum, and

M. Bolas. FAAST : The Flexible Action and
Articulated Skeleton Toolkit. In IEEE Virtual Reality,
pages 245–246, 2011.

[12] R. M. Taylor, T. C. Hudson, A. Seeger, H. Weber,
J. Juliano, and A. T. Helser. VRPN: a
device-independent, network-transparent VR
peripheral system. In ACM Virtual Reality Software

and Technology, pages 55–61, 2001.
[13] D. Tucker. Towards a theory of gesture design.

M.F.A. thesis, University of Southern California,
2012.

[14] P. Turaga, R. Chellappa, V. S. Subrahmanian, and
O. Udrea. Machine Recognition of Human Activities:
A Survey. IEEE Transactions on Circuits and Systems

For Video Technology, 18(11):1473–1488, 2008.
[15] L. Wang, W. Hu, and T. Tan. Recent developments

in human motion analysis. Pattern Recognition,
36(3):585–601, Mar. 2003.

	Introduction
	Previous Work
	System Overview
	Decomposing Gestures
	Position Constraints
	Angular Constraints
	Velocity Constraints
	Body Constraints
	Time Constraints

	Designing Custom Gestural Interactions
	Simultaneous Actions
	Action Sequences
	Discussion

	Conclusion and Future Work
	References

