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Abstract 
The theoretically elegant yet broadly functional capability 
of graphical models shows intriguing potential to span in a 
uniform manner perception, cognition and action; and thus 
to ultimately yield simpler yet more powerful integrated 
architectures for intelligent robots and other comparable 
systems.  This position paper explores this potential, with 
initial support from an effort underway to develop a 
graphical architecture that is based on factor graphs (with 
piecewise continuous functions). 
 
   

Robots require a close coupling of (multiple forms of) 
perception and action.  Intelligent robots go beyond this to 
require a further coupling with cognition.  From the 
perspective of robotics – with its focus on behavior in the 
world – the construction of intelligent robots generally 
emphasizes a tightly integrated perceptuomotor system that 
is then loosely connected to some limited form of cognitive 
system (such as a planner); as for example in (Bonasso et 
al. 1997).  From the perspective of cognitive architectures 
– with their focus on integrated embodiments of 
hypotheses concerning the fixed structure underlying 
intelligent behavior – the construction of intelligent robots 
generally emphasizes a highly functional cognitive system 
that is then loosely connected to limited perceptual and 
motor modules; as for example in (Laird and Rosenbloom 
1990). Neither perspective typically strives for a deep 
integration across the signal-to-symbol divide that 
separates the perceptuomotor and cognitive systems, nor 
even to do full justice to what is on the other side. 
 Other approaches are possible though.  One such is a 
form of graphical architecture that leverages the broadly 
functional yet theoretically elegant construct of graphical 
models (Koller and Friedman 2009) to support, among 
other things, a uniform approach to signal and symbol 
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processing. At their core, graphical models concern 
efficient computation over complex multivariate functions 
by decomposing them into the product of simpler 
subfunctions. Such models have over the years produced 
state-of-the-art capabilities across many aspects of 
perception and robotics under a variety of names, such as 
factor graphs, Markov and conditional random fields, 
Bayesian and Markov networks, hidden Markov models, 
Kalman filters, and the Viterbi algorithm.  Less commonly 
recognized is that they can also yield state-of-the-art 
symbol processing in areas such as constraint satisfaction 
(Dechter 2003) and rule match (Rosenbloom 2011a); and 
are even compatible with full first-order logic (Domingos 
and Lowd 2009).   The key question this raises though is 
whether all of the requisite capabilities can be combined 
into a unified architecture that is based on a single form of 
graphical model capable of exhibiting a superset of the 
requisite functionality. 
 The position staked out here is that graphical models do 
provide a potential basis for the development of integrated 
intelligent robot architectures that uniformly span the 
necessary capabilities across perception, cognition and 
action.  Over the past few years I have been exploring a 
particular graphical architecture that leverages factor 
graphs (Kschischang, Frey and Loeliger 2001) for simpler 
yet more general combinations of capabilities resembling 
those found in existing cognitive architectures, while also 
incorporating additional capabilities that are beyond them 
(Rosenbloom 2011a, 2001b).  Although factor graphs were 
originally developed in coding theory, they are the most 
general form of graphical model so far developed, and 
show promise for broad applicability across AI and 
robotics.  Many of the mechanisms in existing cognitive 
architectures, while not normally cast as factor graphs, are 
in fact amenable to reconceptualization in this form; as are 
many forms of processing central to robotics. 
 This graphical architecture is still in a relatively early 
stage of development, but it has already been shown to 



produce forms of many of the major capabilities found in 
state-of-the-art cognitive architectures, such as Soar (Laird 
2012) and ACT-R (Anderson 2009).  This has included 
both procedural (rule) and declarative (semantic and 
episodic) memories, plus a constraint memory that 
combines procedural and declarative aspects (Rosenbloom 
2010).  Beginnings of mental imagery have also been 
demonstrated (Rosenbloom 2011c), along with preference-
based decision making and the ability to reflect upon 
impasses in decision making (Rosenbloom 2011d). Simple 
forms of statistical language processing have also been 
produced – including word sense disambiguation and 
question answering – as have the beginnings of learning. 
 Even more interesting from the perspective of intelligent 
robotics is that forms of perception (based on a CRF) 
localization (based on the relevant portion of SLAM), and 
probabilistic decision making (based on POMDPs) have 
also been demonstrated; and, in fact, integrated together 
into a single factor graph that performs a simple form of 
navigation in a virtual corridor (Chen et al. 2011).  
Although it still has far to go, this work represents an 
important step in developing the perception and robotics 
capabilities that will be needed to ground the architecture 
in the world. 
 To support the initial plausibility of this paper’s 
position, the next two sections will explain in a bit more 
detail how the existing graphical architecture works, along 
with the structure of the combined factor graph built for 
perception, localization and decision making in virtual 
corridor navigation.  The last section then wraps up with 
some final discussion. 

The Graphical Architecture 
The graphical architecture is based on piecewise 
continuous functions, to provide a broad-spectrum 
representational primitive, plus factor graphs that are 
defined over these primitives to provide more complex 
representations and the processing needed over them.  
Together these two techniques enable signals and symbols, 
along with uncertainty about them, to be represented and 
processed in a uniform manner. 
 Piecewise continuous functions partition a 
multidimensional space into regions, and then specify a 
continuous function – which is limited to linear in the 
current architecture – over each region (Figure 1). Such a 
representation can represent arbitrary continuous functions 
as closely as desired, albeit at the cost of more regions.  It 
can also represent discrete functions by introducing region 
boundaries at unit intervals and limiting the functions on 
these regions to constant values; and represent symbols by 
further limiting the constant values to 0/1 (for false/true) 
and adding a symbol table.  

 Factor graphs 
are a flavor of 

undirected 
graphical model 
that replaces the 

potential 
functions from 

Markov 
networks (aka 
Markov random 
fields) with 
factor nodes in 

the graph itself.  Figure 2, for example, shows a simple 
factor graph for a polynomial function, with three variable 
nodes and two factor nodes. 

 Factor graphs can be solved via a range of approaches – 
including message passing, sampling, particle filters, and 
variational methods – to yield either marginals on variables 
or a MAP estimate.  Some of the methods are exact, at 
least for some graphs, while others are approximate. The 
graphical architecture is based on a variant of the summary 
product algorithm, a message passing approach in which a 
message in either direction along a link expresses a 
function over the variable(s) on the link.  At a variable 
node, messages are combined via pointwise product, a 
computation that is similar to an inner product except that 
there is no final summation and the input and output 
functions thus have the same rank.  At a factor node, a 
similar product is computed, but the node’s function is also 
included in the product, and then all variables not to be 
included in the outgoing message are summarized out.  
Summarization may occur via integration – since these are 
continuous functions – to yield marginals, or via 
maximization to yield MAP.  Figure 3, for example, shows 
how the algorithm generates a marginal for the variable y if 
evidence is provided for variables x (=5) and z (=3). 
 In the architecture, factor graphs are specified in a high-
level language of conditionals, with each conditional 
consisting of some combination of conditions, actions, 
condacts, and a function. Conditions and actions are much 
like the same structures in rule-based systems; conditions 
match to patterns of elements in working memory and pass 
matches forward, while actions take information about 

Figure 1: 2D piecewise continuous 
function as an array of linear regions. 

Figure 2: Factor graph for f(x,y,z) = y2+yz+2yx+2xz = 
(2x+y)(y+z) = fi(x,y)f2(y,z) 



matches and convert them into changes in working 
memory.  Figure 4, for example, shows a heuristic rule 
from the Eight Puzzle.  Condacts, a neologism for 
conditions and actions, meld these two functionalities. 
When combined with Boolean functions over their 
variables, condacts enable the bidirectional processing that 
is key to constraint satisfaction.  With numerical functions, 
this same bidirectional activity is central to signal 
processing and probabilistic reasoning.  Figure 5, for 
example, shows a conditional that defines the conditional 
probability of an object’s weight given its category. 

 The architecture’s central processing cycle consists of 
starting with a pool of evidence stored in working-memory 
factor nodes, passing messages until quiescence, and then 
deciding what changes to make in the working-memory 
factor nodes.  Each such cycle can include parallel waves 
of rule firings, access to declarative knowledge, perception, 

and simple forms of reasoning.   

Virtual Corridor Navigation 
The virtual corridor navigation task concerns moving from 
an initial location to a goal location in a one dimensional 
virtual corridor, given: a utility function on locations; noisy 
perception that is limited to detecting rectangles, circles 
and colors in the current location; and a fallible ability to 
move to adjacent locations (Figure 6).  The walls at the end 
of the corridor appear as rectangles, while the three doors 
appear as colored rectangles with circles (doorknobs).  

 Processing during each decision starts with perception 
via a conditional random field (CRF).  Training was 
performed outside of the architecture, since the appropriate 
architectural learning mechanisms have not yet been 
developed, but the results were then added as conditionals 
to the architecture’s knowledge base, yielding a graph like 
that in Figure 7 for three time steps.  For each such time 
step, sensations (S) from three (virtual) sensors arrive at the 
bottom and are passed through perceptual factor nodes (P) 
to yield distributions over the object seen (O). Object-
transition factor nodes (OT) further refine these 
distributions by imposing probabilistic constraints on what 
can be seen on adjacent time steps. 

 The object distributions (O) feed into the localization 
network (Figure 8), whose task is to determine 
distributions over the locations (X), via map factor nodes 
(M) that relate objects to locations, a prior distribution on 
the initial location (Pr), and location-transition factor nodes 
(XT) that probabilistically constrain the locations for 
adjacent time steps. The latter also takes into consideration 

Figure 3: Computation via the summary product algorithm of 
the marginal on y from evidence on x and z. 

CONDITIONAL GoalReject 
 Conditions: (Operator id:o state:s x:x y:y) 
             (Goal state:s x:x y:y tile:t) 
             (Board state:s x:x y:y tile:t) 
 Actions: (Selected - state:s operator:o) 
 Figure 4: Eight Puzzle heuristic that rejects from consideration 
operators that move tiles out of place. 

CONDITIONAL ConceptWeight 
 Conditions: (Object state:s object:o) 
 Condacts: (Concept object:o concept:c) 
           (Weight object:o weight:w) 

w\c Walker Table … 
[1,10> .01w .001w … 
[10,20> .2-.01w “ … 
[20,50> 0 .025-

.00025w 
… 

[50,100> … … … 
 

Figure 5: Specification of the conditional probability of an 
object’s weight given its category. Figure 7: Factor graph for conditional random field (CRF). 

Figure 6: Task environment with two walls, three doors, an 
initial location (I) and a goal location (G).  The relative values of 
the utility function can be seen in the square shading. 
 



evidence concerning what action has been performed at 
each time step (A).  The distribution for the current 
location (X0) then feeds into a partially observable Markov 
decision problem (POMDP), as shown in Figure 9, which 
projects forward over possible future actions (A) and 
locations (X), while consulting the utility factor functions 
(U) for the values of the locations.  By the time quiescence 
is reached, a distribution is generated over the current 
action (A0) from which the best choice can then be 
selected. 

 Although three distinct factor graphs have been shown 
for this task in Figures 7-9, they are in fact all integrated 
into a single graph within the architecture, and all 
processed together within a single central cycle.  They are 
shown separately here for simplicity, and because of the 
limitations of these narrow article columns. 

Final Discussion 
Both the graphical architecture and the virtual navigation 
task obviously have many limitations at present.  The 
architecture is still, for example, missing part or all of 
several important capabilities, such as learning and motor 
control.  Work has only begun on learning, but an 
implementation of episodic learning is in hand, and 
promising approaches are in sight for other varieties.  
While nothing has yet been done on motor control, others 

have investigated both optimal control and motor control 
via graphical models (Kappen, Gomez and Opper 2009; 
Toussaint and Goerick 2010), so there is at least a 
plausibility case for this ultimately fitting into the 
architecture as well. 
 The task environment 
in the previous section 
was quite limited as 
well, being for example 
discrete and spanning 
only one dimension.  
However, work on 
mental imagery in the 
architecture has 
demonstrated facility 
with continuous 2D 
environments, including 
for example a continuous representation of the 2D Eight 
Puzzle board (Figure 10).  As shown in Figure 11, this 
board can be represented via nine continuous 2D planes, 
one for each tile and the empty cell.  The region of each 
plane within which the corresponding tile sits is assigned a 
value of 1, while the rest of the plane is set to 0.  The 
figure shows the location of the blank (right middle) in the 
first (0th) plane and tile 1 (top right) in the next (1st) plane.  

 There are of course many other limitations in the work 
to date, including the fact that this is all virtual, rather than 
occurring within a physical robot interacting with the real 
world.  But the main point of presenting this example task, 
and for the description of the graphical architecture, has 
been to help establish the initial plausibility of the position 

Figure 8: Factor graph for localization via part of simultaneous 
localization and mapping (SLAM). 

Figure 9: Factor graph for the partially observable Markov 
decision problem (POMDP). 

Figure 11. Partial visualization of the hybrid (discrete tiles 
and continuous x and y dimensions) representation of the Eight 
Puzzle board. 

Figure 10. The Eight Puzzle Board. 



that graphical models offer an intriguing basis for the 
development of integrated architectures for intelligent 
robots.  Hopefully it has been successful at this. 
 The position advocated here is closest in spirit to a 
recent effort to leverage graphical models in integrating 
together “motor control, planning, grasping and high-level 
reasoning” to yield a “coherent, control, trajectory 
optimization, and action planning architecture” (Toussaint, 
Plath, Lang and Jetchev 2010).  Toussaint’s work, which 
comes out of robotics, appears to have independently 
reached the same conclusion that has been arrived at here 
via a path from cognitive architectures. 
 The idea of a graphical architecture also shares features 
with general languages that are being developed for 
statistical relational AI, such as Alchemy (Domingos and 
Lowd 2009), Blog (Milch et al. 2007) and Church 
(Goodman et al. 2008), but the former focuses on full, 
integrated architectures rather than on just languages or 
toolkits.  As such, it provides a potential path towards a 
reintegration of AI for intelligent robots, virtual humans, 
and other forms of artificially intelligent systems that must 
perceive and behave in complex and uncertain 
environments. 
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