
Handling Out-of-Grammar Commands in Mobile Speech Interaction  

Using Backoff Filler Models 

Tim Paek
1
, Sudeep Gandhe

2
, David Maxwell Chickering

1
, Yun Cheng Ju

1 

1 
Microsoft Research, One Microsoft Way, Redmond, WA 98052 USA 

2
 USC Institute for Creative Technologies, 13274 Fiji Way, Marina del Rey, CA 90292, USA 

{timpaek|dmax|yuncj}@microsoft.com, gandhe@usc.edu 
 

 

Abstract 

In command and control (C&C) speech in-

teraction, users interact by speaking com-

mands or asking questions typically speci-

fied in a context-free grammar (CFG). Un-

fortunately, users often produce out-of-

grammar (OOG) commands, which can re-

sult in misunderstanding or non-

understanding.  We explore a simple ap-

proach to handling OOG commands that 

involves generating a backoff grammar 

from any CFG using filler models, and util-

izing that grammar for recognition when-

ever the CFG fails.  Working within the 

memory footprint requirements of a mobile 

C&C product, applying the approach 

yielded a 35% relative reduction in seman-

tic error rate for OOG commands.  It also 

improved partial recognitions for enabling 

clarification dialogue. 

1 Introduction 

In command and control (C&C) speech interaction, 

users interact with a system by speaking com-

mands or asking questions.  By defining a rigid 

syntax of possible phrases, C&C reduces the com-

plexity of having to recognize unconstrained natu-

ral language.  As such, it generally affords higher 

recognition accuracy, though at the cost of requir-

ing users to learn the syntax of the interaction 

(Rosenfeld et al., 2001).  To lessen the burden on 

users, C&C grammars are authored in an iterative 

fashion so as to broaden the coverage of likely ex-

pressions for commands, while remaining rela-

tively simple for faster performance.  Nevertheless, 

users can, and often still do, produce OOG com-

mands.  They may neglect to read the instructions, 

or forget the valid expressions.  They may mistak-

enly believe that recognition is more robust than it 

really is, or take too long to articulate the right 

words.  Whatever the reason, OOG commands can 

engender misunderstanding (i.e., recognition of the 

wrong command) or non-understanding (i.e., no 

recognition), and aggravate users who otherwise 

might not realize that their commands were OOG.  

In this paper, we explore a simple approach to 

handling OOG commands, designed specifically to 

meet the memory footprint requirements of a C&C 

product for mobile devices.  This paper is divided 

into three sections.  First, we provide background 

on the C&C product and discuss the different types 

of OOG commands that occur with personal mo-

bile devices. Second, we explain the details of the 

approach and how we applied it to the product do-

main. Finally, we evaluate the approach on data 

collected from real users, and discuss possible 

drawbacks. 

2 Mobile C&C 

With the introduction of voice dialing on mobile 

devices, C&C speech interaction hit the wider 

consumer market, albeit with rudimentary pattern 

recognition. Although C&C has been 

commonplace in telephony and accessibility for 

many years, only recently have mobile devices 

have the memory and processing capacity to 

support not only automatic speech recognition 

(ASR), but a whole range of multimedia 

functionalities that can be controlled with speech.  

Leveraging this newfound computational capacity 

is Voice Command, a C&C application for high-

end mobile devices that allows users to look up 

contacts, place phone calls, retrieve appointments, 

obtain device status information, control 

multimedia and launch applications.  It uses an 

embedded, speaker-independent recognizer and 

operates on 16 bit, 16 kHz, Mono audio. 



OOG commands pose a serious threat to the us-

ability of Voice Command. Many mobile users ex-

pect the product to “just work” without having to 

read the manual.  So, if they should say “Dial Bob”, 

when the proper syntax for making a phone call is 

Call {Name}, the utterance will likely be mis-

recognized or dropped as a false recognition.  If 

this happens enough, users may abandon the prod-

uct, concluding that it or ASR in general, does not 

work. 

2.1 OOG frequency 

Given that C&C speech interaction is typically 

geared towards a relatively small number of words 

per utterance, an important question is, how often 

do OOG commands really occur in C&C?  In Pro-

ject54 (Kun & Turner, 2005), a C&C application 

for retrieving police information in patrol cars, 

voice commands failed on average 15% of the time, 

roughly 63% of which were due to human error.  

Of that amount, roughly 54% were from extrane-

ous words not found in the grammar, 12% from 

segmentation errors, and the rest from speaking 

commands that were not active. 

To examine whether OOG commands might be 

as frequent on personal mobile devices, we col-

lected over 9700 commands of roughly 1 to 3 sec-

onds each from 204 real users of Voice Command, 

which were recorded as sound (.wav) files.  We 

also logged all device data such as contact entries 

and media items.  All sound files were transcribed 

by a paid professional transcription service.  We 

ignored all transcriptions that did not have an asso-

ciated command; the majority of such cases came 

from accidental pressing of the push-to-talk button.  

Furthermore, we focused on user-initiated com-

mands, during which time the active grammar had 

the highest perplexity, instead of yes-no responses 

and clarification dialogue.  This left 5061 tran-

scribed utterances. 

2.2 Emulation method 

With the data transcribed, we first needed a me-

thod to distinguish between In-Grammar (ING) 

and OOG utterances.  We developed a simulation 

environment built around a desktop version of the 

embedded recognizer which could load the same 

Voice Command grammars and update them with 

user device data, such as contact entries, for each 

sound file.  It is important to note the desktop ver-

sion was not the engine that is commercially 

shipped and optimized for particular devices, but 

rather one that serves testing and research purposes. 

The environment could not only recognize sound 

files, but also parse string input using the dynami-

cally updated grammars as if that were the recog-

nized result.  We utilized the latter to emulate rec-

ognition of all transcribed utterances for Voice 

Command.  If the parse succeeded, we labeled the 

utterance ING, otherwise it was labeled OOG. 

Overall, we found that slightly more than one 

out of every four (1361 or 26.9%) transcribed ut-

terances were OOG.  We provide a complete 

breakdown of OOG types, including extraneous 

words and segmentation errors similar to Project54, 

in the next section.  It is important to keep in mind 

that being OOG by emulation does not necessarily 

entail that the recognizer will fail on the actual 

sound file.  For example, if a user states “Call Bob 

at mobile phone” when the word “phone” is OOG, 

the recognizer will still perform well.  The OOG 

percentage for Voice Command may also reflect 

the high perplexity of the name-dialing task.  Users 

had anywhere from 5 to over 2000 contacts, each 

of which could be expressed in multiple ways (e.g., 

first name, first name + last name, prefix + last 

name, etc.).  In summary, our empirical analysis of 

the data suggests that OOG utterances for mobile 

C&C on personal devices can indeed occur on a 

frequent basis, and as such, are worth handling. 

2.3 OOG type 

In order to explore how we might handle different 

types of OOG commands, we classified them ac-

cording to functional anatomy and basic edit op-

erations.  With respect to the former, a C&C utter-

ance consists of three functional components: 

 

1. Slot: A dynamically adjustable list repre-

senting a semantic argument, such as {Con-

tact} or {Date}, where the value of the ar-

gument is typically one of the list members. 

2. Keyword: A word or phrase that uniquely 

identifies a semantic predicate, such as Call 

or Battery, where the predicate corresponds 

in a one-to-one mapping to a type of com-

mand.  

3. Carrier Text: A word or phrase that is de-

signed to facilitate naturalistic expression of 

commands and carries no attached semantic 

content, such as “What is” or “Tell me”. 

 



For example, in the command “Call Bob at mo-

bile”, the word “Call” is the keyword, “Bob” and 

“mobile” are slots, and “at” is a carrier word.  

If we were to convert an ING command to 

match an OOG command, we could perform a se-

ries of edit operations: substitution, deletion, and 

insertion.  For classifying OOG commands, substi-

tution implies the use of an unexpected word, dele-

tion implies the absence of an expected word, and 

insertion implies the addition of a superfluous 

word. 

Starting with both functional anatomy and edit 

operations for classification, Table 1 displays the 

different types of OOG commands we labeled 

along with their relative frequencies.  Because 

more than one label might apply to an utterance, 

we first looked to the slot for an OOG type label, 

then keyword, then everything else.  

The most frequent OOG type, at about 60%, was 

OOG Slot, which referred to slot values that did 

not exist in the grammar.  The majority of these 

cases came from two sources: 1) contact entries 

that users thought existed but did not – sometimes 

they did exist, but not in any normalized form (e.g., 

“Rich” for “Richard”), and 2) mislabeling of most-

ly foreign names by transcribers.  Although we 

tried to correct as many names as we could, given 

the large contact lists that many users had, this 

proved to be quite challenging.  

The second most frequent OOG type was Inser-

tion at about 14%.  The majority of these insertions 

were single words.  Note that similar to Project54, 

segmentation errors occurred quite often at about 

9%, when the different segmentation types are 

added together. 

3 Backoff Approach 

Having identified the different types of OOG 

commands, we needed to devise an approach for 

handling them that satisfied the requirements of 

Voice Command for supporting C&C on mobile 

devices.  

3.1 Mobile requirements 

For memory footprint, the Voice Command team 

specified that our approach should operate with 

less than 100KB of ROM and 1MB of RAM.  Fur-

thermore, the approach could not require changes 

OOGType % Total Description Examples 

Insertion 14.2% adding a non-keyword, non-slot word 
call britney porter on mobile phone [“phone” is 

superfluous] 

Deletion 3.1% 
deleting a non-keyword, non-slot 

word 
my next appointments [“what are” missing] 

Substitution 2.5% 
replacing a non-keyword, non-slot 

word 

where is my next appointment  

[“where” is not supported] 

Segmentation 8.2% incomplete utterance show, call, start 

Keyword 

Substitution 
4.6% replacing a keyword 

call 8 8 2 8 0 8 0 [“dial” is keyword] ,  

dial john horton [“call” is keyword] 

Keyword 

Segmentation 
0.1% incomplete keyword what are my appoint 

Keyword  

Deletion 
2.2% deleting the keyword marsha porter at home [“call” missing] 

Slot  

Substitution 
0.4% replacing slot words 

call executive 5 on desk  

[“desk” is not slot value] 

Slot  

Segmentation 
0.9% incomplete slot call alexander woods on mob 

Slot Deletion 1.0% deleted slot call tracy morey at 

Disfluencies 1.8% disfluencies - mostly repetitions start expense start microsoft excel 

Order  

Rearrangement 
0.6% 

changing the order of words within a 

keyword 

what meeting is next [Should be “what is my 

next meeting”] 

Noise 0.7% non primary speaker 
oregon state home coming call brandon jones 

on mobile phone 

OOG Slot 59.8% 
The slot associated with this utterance 

is out of domain 

Show Rich Lowry [“Richard” is contact entry] , 

dial 0 2 1 6 [Needs > 7 digits] 

 

Table 1. Different OOG command types and their relative frequencies for the Voice Command product. The brack-

eted text in the “Examples” column explicates the cause of the error 



to the existing embedded Speech API (SAPI).  

Because the team also wanted to extend the func-

tionality of Voice Command to new domains, we 

could not assume that we would have any data for 

training models.  Although statistical language 

models (SLM) offer greater robustness to varia-

tions in phrasing than fixed grammars (Rosenfeld, 

2000), the above requirements essentially prohib-

ited them.  So, we instead focused on extending the 

use of the base grammar, which for Voice Com-

mand was a context-free grammar (CFG): a formal 

specification of rules allowing for embedded recur-

sion that defines the set of possible phrases (Man-

ning & Sch!tze, 1999).  

Despite the manual effort that CFGs often re-

quire, they are widely prevalent in industry (Knight 

et al., 2001) for several reasons. First, they are easy 

for designers to understand and author.  Second, 

they are easy to modify; new phrases can be added 

and immediately recognized with little effort.  And 

third, they produce transparent semantics without 

requiring a separate natural language understand-

ing component; semantic properties can be at-

tached to CFG rules and assigned during recogni-

tion.  By focusing on CFGs, our approach allows 

industry designers who are more accustomed to 

fixed grammars to continue using their skill set, 

while hopefully improving the handling of utter-

ances that fall outside of their grammar. 

3.2 Leveraging a backoff grammar 

As long as utterances remain ING, a CFG affords 

fast and accurate recognition, especially because 

engines are often tuned to optimize C&C recogni-

tion.  For example, in comparing recognition per-

formance in a statistical and a CFG-based recog-

nizer for the same domain, Knight et al. (2001) 

found that the CFG outperformed the SLM.  In 

order to exploit the optimization of the engine for 

C&C utterances that are ING, we decided to utilize 

a two-pass approach where each command is ini-

tially submitted to the base CFG.  If the confidence 

score of the top recognition C1 falls below a rejec-

tion threshold RCFG, or if the recognizer declares a 

false recognition (based on internal engine fea-

tures), then the audio stream is passed to a backoff 

grammar which then attempts to recognize the 

command.  If the backoff grammar fails to recog-

nize the command, or the top recognition falls 

again below a rejection threshold RBG, then users 

experience the same outcome as they normally 

would otherwise, except with a longer delay.  Fig-

ure 1(a) summarizes the approach. 

In order to generate the backoff grammar and 

still stay within the required memory bounds of 

Voice Command, we explored the use of the built-

in filler or garbage model, which is a context-

independent, acoustic phone loop.  Expressed in 

the syntax as “...”, filler models capture phones in 

whatever context they are placed.  The functional 

anatomy of a C&C utterance, as explained in Sec-

tion 2.3, sheds light on where to place them: before 

and/or after keywords and/or slots.  As shown Fig-

ure 1(b), to construct a backoff grammar from a 

CFG during design time, we simply parse each 

CFG rule for keywords and slots, remove all car-

rier phrases, and insert filler models before and/or 

after the keywords and/or slots.  Although it is 

straightforward to automatically identify keywords 

(words that uniquely map to a CFG rule) and slots 

(lists with semantic properties), developers may 

want to edit the generated backoff grammar for any 

keywords and slots they wish to exclude; for ex-

ample, in cases where more than one keyword is 

found for a CFG rule. 

For both slots and keywords, we could employ 

any number of different patterns for placing the 

filler models, if any.  Table 2 displays some of the 

patterns in SAPI 5 format, which is an XML for-

mat where question marks indicate optional use.  

Although the Table is for keywords, the same pat-

terns apply for slots.  As shown in k4, even the 

functional constituent itself can be optional.  Fur-

thermore, alternate lists of patterns can be com-

posed, as in kn.  Depending on the number and type 

 
 

Figure 1. (a) A two-pass approach which leverages a 

base CFG for ING recognition and a backoff grammar 

for failed utterances. (b) Design time procedure for 

generating a backoff grammar 



of functional constituents for a CFG rule, backoff 

rules can be constructed by adjoining patterns for 

each constituent.  We address the situation when a 

backoff rule corresponds to multiple CFG rules in 

Section 3.4. 

3.3 Domain feasibility 

Because every C&C utterance can be characterized 

by its functional constituents, the backoff filler ap-

proach generically applies to C&C domains, re-

gardless of the actual keywords and slots.  But the 

question remains, is this generic approach feasible 

for handling the different OOG types for Voice 

Command discussed in Section 2.3? 

The filler model is clearly suited for Insertions, 

which are the second most frequent OOG type, 

because it would capture the additional phones.  

However, the most frequent OOG type, OOG Slot, 

cannot be handled by the backoff approach.  That 

requires the developer to write better code for 

proper name normalization (e.g, “Rich” from “Ri-

chard”) as well as breaking down the slot value 

into further components for better partial matching 

of names.  Because new C&C domains may not 

utilize name slots, we decided to treat improving 

name recognition as separate research.  Fortu-

nately, opportunity for applying the backoff filler 

approach to OOG Slot types still exists. 

3.4 Clarification of partial recognitions 

As researchers have observed, OOG words con-

tribute to increased word-error rates (Bazzi & 

Glass, 2000) and degrade the recognition perform-

ance of surrounding ING words (Gorrell, 2003).  

Hence, even if a keyword surrounding an OOG 

slot is recognized, its confidence score and the 

overall phrase confidence score will often be de-

graded.  This is in some ways an unfortunate by-

product of confidence annotation, which might be 

circumvented if SAPI exposed word lattice prob-

abilities.  Because SAPI does not, we can instead 

generate partial backoff rules that comprise only a 

subset of the functional constituents of a CFG rule.  

For example, if a CFG rule contains both a key-

word and slot, then we can generate a partial back-

off rule with just one or the other surrounded by 

filler models.  Using partial backoff rules prevents 

degradation of confidence scores for ING constitu-

ents and improves partial recognitions, as we show 

in Section 4.  Partial backoff rules not only handle 

OOG Slot commands where, for example, the 

name slot is not recognized, but also many types of 

segmentation, deletion and substitution commands 

as well. 

Following prior research (Gorrell et al., 2002; 

Hockey et al., 2003), we sought to improve partial 

recognitions so that the system could provide feed-

back to users on what was recognized, and to en-

courage them to stay within the C&C syntax.  Cla-

rification dialogue with implicit instruction of the 

syntax might proceed as follows: If a partial recog-

nition only corresponded to one CFG rule, then the 

system could assume the semantics of that rule and 

remind the user of the proper syntax.  On the other 

hand, if a partial recognition corresponded to more 

than one rule, then a disambiguation dialogue 

could relate the proper syntax for the choices.  For 

example, suppose a user says “Telephone Bob”, 

using the OOG word “Telephone”.  Although the 

original CFG would most likely misrecognize or 

even drop this command, our approach would ob-

tain a partial recognition with higher confidence 

score for the contact slot.  If only one CFG rule 

contained the slot, then the system could engage in 

the confirmation, “Did you mean to say, call 

Bob?” On the other hand, if more than one CFG 

rule contained the slot, then the system could en-

gage in a disambiguation dialogue, such as “I 

heard 'Bob'. You can either call or show Bob”.  

Either way, the user is exposed to and implicitly 

taught the proper C&C syntax. 

3.5 Related research 

In related research, several researchers have inves-

tigated using both a CFG and a domain-trained 

SLM simultaneously for recognition (Gorrell et al., 

2002; Hockey et al., 2003).  To finesse the per-

formance of a CFG, Gorrell (2003) advocated a 

two-pass approach where an SLM trained on CFG 

Scheme Keyword Pattern 

k1 <keyword/> 

k2 (…)?  <keyword> 

k3 (…)?  <keyword/>  (…)? 

k4 (…)?  <keyword/>? (…)? 

kn 

<list> 

(…)?  <keyword/>? (…)? 

(…) 

</list> 

 

Table 2. Possible patterns in SAPI 5 XML format for 

placing the filler model, which appears as 

“...”.Question marks indicate optional use. 



data (and slightly augmented) is utilized as a back-

off grammar.  However, only the performance of 

the SLM on a binary OOG classification task was 

evaluated and not the two-pass approach itself.  In 

designing a multimodal language acquisition sys-

tem, Dusan & Flanagan (2002) developed a two-

pass approach where they utilized a dictation n-

gram as a backoff grammar and added words rec-

ognized in the second pass into the base CFG.  Un-

fortunately, they only evaluated the general usabil-

ity of their architecture. 

Because of the requirements outlined in Section 

3.1, we have focused our efforts on generating a 

backoff grammar from the original CFG, taking 

advantage of functional anatomy and filler models.  

The approach is agnostic about what the actual fil-

ler model is, and as such, the built-in phone loop 

can easily be replaced by word-level (e.g., Yu et 

al., 2006) and sub-word level filler models (e.g., 

Liu et al., 2005).  In fact, we did explore the word-

level filler model, though so far we have not been 

able to meet the footprint requirements.  We are 

currently investigating phone-based filler models. 

Outside of recognition with a CFG, researchers 

have pursued methods that directly model OOG 

words as sub-word units in the recognition search 

space of a finite state transducer (FST) (Bazzi & 

Glass, 2000).  OOG words can also be dynamically 

incorporated into the FST (Chung et al., 2004).  

Because this line of research depends on entirely 

different engine architecture, we could not apply 

the techniques. 

4 Evaluation 

In C&C speech interaction, what matters most is 

not word-error rate, but semantic accuracy and task 

completion.  Because task completion is difficult to 

evaluate without collecting new data, we evaluated 

the semantic accuracy of the two-pass approach 

against the baseline of using just the CFG on the 

data we collected from real users, as discussed in 

Section 2.1.  Furthermore, because partial 

recognitions can ultimately result in a successful 

dialogue, we carried out separate evaluations for 

the functional constituents of a command (i.e., 

keyword and slot) as well as the complete 

command (keyword + slot).  For Voice Command, 

no command contained more than one slot, and 

because the vast majority of single slot commands 

were commands to either call or show a contact 

entry, we focused on those two commands as a 

proof of concept. 

For any utterance, the recognizer can either ac-

cept or reject it.  If it is accepted, then the seman-

tics of the utterance can either be correct (i.e., it 

matches what the user intended) or incorrect.  The 

following metrics can now be defined: 

 

precision = CA / (CA + IA)   (1) 

recall = CA / (CA + R)    (2) 

accuracy = CA / (CA + IA + R)   (3) 

 

where CA denotes accepted commands that are 

correct, IA denotes accepted commands that are 

incorrect, and R denotes the number of rejected 

commands.  Although R could be decomposed into 

correct and incorrect rejections, for C&C, 

recognition failure is essentially perceived the 

same way by users: that is, as a non-understanding. 

4.1 Results 

For every C&C command in Voice Command, the 

embedded recognizer returns either a false 

recognition (based on internal engine parameters) 

or a recognition event with a confidence score.  As 

described in Section 3.2, if the confidence score 

falls below a rejection threshold RCFG, then the 

audio stream is processed by the backoff grammar 

which also enforces its own threshold RBG.  The 

RCFG for Voice Command was set to 45% by a 

proprietary tuning procedure for optimizing 

acoustic word-error rate.  For utterances that 

exceeded RCFG, 84.2% of them were ING and 

15.8% OOG.  For utterances below RCFG, 48.5% 

 
 

Figure 2. The semantic accuracies comparing the 

baseline CFG against both the BG (backoff grammar 

alone) and the two-pass approach (CFG + Backoff) 

separated into functional constituent groups and fur-

ther separated by ING and OOG commands. 



were ING and 51.5% OOG.  Because a 

considerable number of utterances may be ING in 

the second pass, as it was in our case, RBG requires 

tuning as well.  Instead of using a development 

dataset to tune RBG, we decided to evaluate our 

approach on the entire data with RBG set to the 

same proprietary threshold as RCFG.  In post-hoc 

analyses, this policy of setting the two thresholds 

equal and reverting to the CFG recognition if the 

backoff confidence score falls below RBG achieved 

results comparable to optimizing the thresholds. 

Figure 2 displays semantic accuracies separated 

by ING and OOG commands.  Keyword evalua-

tions comprised 3700 ING and 1361 OOG com-

mands.  Slot and keyword + slot evaluations com-

prised 2111 ING and 138 OOG commands.  Over-

all, the two-pass approach was significantly higher 

in semantic accuracy than the baseline CFG, using 

McNemar's test (p<0.001).  Not surprisingly, the 

largest gains were with OOG commands.  Notice 

that for partial recognitions (i.e., keyword or slot 

only), the approach was able to improve accuracy, 

which with further clarification dialogue, could 

result in task completions.  Interestingly, the ap-

proach performed the same for keyword + slot as it 

did for slot, which suggests that getting the slot 

correct is crucial to recognizing surrounding key-

words.  Despite the high percentage of OOG Slots, 

slot accuracy still increased due to better handling 

of other OOG types such as deletions, insertions 

and substitutions.   

Finally, as a comparison, for the keyword + slot 

task, an upper bound of 74.3% ± 1.1% (10-fold 

cross-validated standard error) overall semantic 

accuracy was achieved using a small footprint sta-

tistical language modeling technique that re-ranked 

CFG results (Paek & Chickering, 2007), though 

the comparison is not completely fair given that the 

technique was focused on predictive language 

modeling and not on explicitly handling OOG ut-

terances.  Also note that in all cases, the backoff 

grammar alone performed worse than either the 

CFG or the two-pass approach.   

Table 3 provides a more detailed view of the re-

sults for the just OOG commands as well as the 

relative reductions in semantic error rate (RER).  

Notice that the approach increases recall, which 

signifies less non-understandings. However, this 

comes at the price of a small increase in misunder-

standings, as seen in the decrease in precision.  

Overall, the best reduction in semantic error rate 

achieved by the approach was about 35%. 

Decomposing RER by OOG types, we found 

that for keyword evaluations, the biggest im-

provement (52% RER), came about for Deletion 

types, or commands with missing carrier words.  

This makes sense because the backoff grammar 

only cares about the keyword.  For slot and key-

word + slot evaluations, Insertion types maintained 

the biggest improvement at 38% RER. 

Note that the results presented are those ob-

tained without tuning.  If application developers 

wanted to find an optimal operating point, they 

would need to decide what is more important for 

their application: precision or recall, and adjust the 

thresholds until they reach acceptable levels of per-

formance.  Ideally, these levels should accord with 

what real users of the application would accept. 

4.2 Efficiency 

Given that the approach was aimed at satisfying 

the mobile requirements stated in Section 3.1, 

which it did, we also compared the processing time 

it takes to arrive at a recognition or false 

recognition between the CFG alone and the two-

pass approach.  Because of the filler models, the 

backoff grammar is a more relaxed version of CFG 

with a larger search space, and as such, takes 

slightly more processing time. The average 

processing time for the CFG in our simulation 

environment was about 395 milliseconds, whereas 

the average processing time for the two passes was 

about 986 milliseconds.  Hence, when the backoff 

grammar is used, the total computation time is 

approximately 2.5 times that of a single pass alone.  

In our experiments, a total of 1570 commands (i.e. 

31%) required the two passes, while 3491 of them 

were accepted after a single CFG pass. 

 CFG 2-PASS RER 

Prec 85.0% 79.0% -39.7% 

Recall 36.8% 58.6% 34.5% Keyword 

Acc 34.5% 50.7% 24.7% 

Prec 89.3% 88.2% -10.3% 

Recall 58.1% 77.6% 46.5% Slot 

Acc 54.4% 70.3% 34.9% 

Prec 89.3% 88.2% -10.3% 

Recall 58.1% 77.6% 46.5% 
Keyword 

+ Slot 
Acc 54.4% 70.3% 34.9% 

 

Table 3. Relative reductions in semantic error rate, or 

Relative Error Reduction (RER) for OOG commands 

grouped by keyword, slot and keyword + slot evalua-

tions. “2-PASS” denotes the two-pass approach. 



4.3 Drawbacks 

In exploring the backoff filler approach, we 

encountered a few drawbacks that are worth 

considering when applying this approach to other 

domains.  The first issue dealt with false positives.  

In the data collection for Voice Command, a total 

of 288 utterances contained no discernable speech.  

If these were included in the data set, they would 

amount to about 5% of all utterances.  As 

mentioned previously, these were mostly cases 

when the push-to-talk button was accidentally 

triggered.  When we evaluated the approach on 

these utterances, we found that the CFG accepted 

36 or roughly 13% of them, while the proposed 

approach accepted 115 or roughly 40% of them.  

For our domain, this problem can be avoided by 

instructing users to lock their devices when not in 

use to prevent spurious initiations.  For other C&C 

domains where unintentional command initiations 

occur frequently, this may be a serious concern, 

though we suspect that users will be more 

forgiving of accidental errors than real errors. 

Another drawback dealt with generating the 

backoff grammar.  As we discussed in Section 3.2, 

various patterns for placing filler models can be 

utilized.  Although we did explore the possibility 

that perhaps certain patterns might generalize 

across domains, we found that it was better to 

hand-craft patterns to the application.  For Voice 

Command, we used the kn pattern specified in Ta-

ble 2 for keywords, and the identical sn pattern for 

slots because they proved to be best suited to the 

product grammars in pre-trial experiments. 

5 Conclusion & Future Direction 

In this paper, we classified the different types of 

OOG commands that might occur in a mobile 

C&C application, and presented a simple two-pass 

approach for handling them that leverages the base 

CFG for ING recognition and a backoff grammar 

OOG recognition.  The backoff grammar is gener-

ated from the original CFG by surrounding key-

words and/or slots with filler models.  Operating 

within the memory footprint requirements of a 

mobile C&C product, the approach yielded a 35% 

relative reduction in semantic error rate for OOG 

commands, and improved partial recognitions, 

which can facilitate clarification dialogue. 

We are now exploring small footprint, phone-

based filler models.  Another avenue for future 

research is to further investigate optimal policies 

for deciding when to pass to the backoff grammar 

and when to use the backoff grammar recognition. 

References 

I. Bazzi & J. Glass. 2000. Modeling out-of-vocabulary 

words for robust speech recognition. In Proc. ICSLP. 

G. Chung, S. Seneff, C.Wang, & I. Hetherington. 2004. 

A dynamic vocabulary spoken dialogue interface. In 

Proc. ICSLP. 

S. Dusan & J. Flanagan. 2002. Adaptive dialog based 

upon multimodal language acquisition. In Proc. IC-

MI. 

G. Gorrell, I. Lewin, & M. Rayner. 2002. Adding intel-

ligent help to mixed initiative spoken dialogue sys-

tems. In Proc. ICSLP. 

G. Gorrell. 2003. Using statistical language modeling to 

identify new vocabulary in a grammar-based speech 

recognition system. In Proc. Eurospeech. 

B. Hockey, O. Lemon, E. Campana, L. Hiatt, G. Aist, J. 

Hieronymus, A. Gruenstein, & J. Dowding. 2003. 

Targeted help for spoken dialogue systems: intelli-

gent feedback improves naive users’ performance. In 

Proc. EACL, pp. 147–154. 

S. Knight, G. Gorrell, M. Rayner, D. Milward, R. Koel-

ing, & I. Lewin. 2001. Comparing grammar-based 

and robust approaches to speech understanding: A 

case study. In Proc. Eurospeech. 

A. Kun & L. Turner. 2005. Evaluating the project54 

speech user interface. In Proc. Pervasive. 

P. Liu, Y. Tian, J. Zhou, & F. Soong. 2005. Background 

model based posterior probability for measuring 

confidence. In Proc. Interspeech. 

C.D. Manning & H. Sch¨utze. 1999. Foundations of 

Statistical Natural Language Processing. MIT Press, 

Cambridge,Massachusetts. 

Paek, T. & Chickering, D. 2007. Improving command 

and control speech recognition: Using predictive us-

er models for language modeling. UMUAI, 17(1):93-

117. 

Rosenfeld, R. 2000. Two decades of statistical language 

modeling: Where do we go from here? In Proc. of the 

IEEE, 88(8): 1270–1278. 

R. Rosenfeld, D. Olsen, & A. Rudnicky. 2001. Univer-

sal speech interfaces. Interactions, 8(6):34–44. 

D. Yu, Y.C. Ju, Y. Wang, & A. Acero. 2006. N-gram 

based filler model for robust grammar authoring. In 

Proc. ICASSP. 


