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Abstract

We demonstrate that distributed vector representations are ca-
pable of hierarchical reasoning by summing sets of vectors rep-
resenting hyponyms (subordinate concepts) to yield a vector
that resembles the associated hypernym (superordinate con-
cept). These distributed vector representations constitute a po-
tentially neurally plausible model while demonstrating a high
level of performance in many different cognitive tasks. Ex-
periments were run using DVRS, a word embedding system
designed for the Sigma cognitive architecture, and Word2 Vec,
a state-of-the-art word embedding system. These results con-
tribute to a growing body of work demonstrating the various
tasks on which distributed vector representations perform com-
petently.

Keywords: hierarchical reasoning; word embeddings; lan-
guage modeling; concepts; distributed representations

Introduction

In this paper, we demonstrate that distributed vector repre-
sentations are capable of performing hierarchical reasoning
by inferring the appropriate category from a set of category
members (Figure 1). This capability is one among many vari-
eties of tasks that recent methods for learning distributed vec-
tor representations, also known as word embeddings, have
been shown to perform competently. These capabilities in-
clude: language modeling (Bengio et al., 2006; Mikolov,
2012), natural language understanding (Collobert & Weston,
2008; Zhila et al., 2013), machine translation (Mikolov et
al., 2013a; Zou et al., 2013), image labeling (Frome et al.,
2013), paragraph representation (Le & Mikolov, 2014), and
relational extraction (Socher et al., 2013).

In addition to state-of-the-art performance, one major ad-
vantage of these vector models is their supposed neural-
plausibility (Blouw & Eliasmith, 2013). At a gross level
of abstraction, concepts are represented in the brain as dis-
tributed networks of neural activation throughout cortical
and subcortical regions (Rissman & Wagner, 2011). Dis-
tributed vector representations attempt to approximate these
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Figure 1: The normalized summation of the vectors rep-
resenting hyponyms strawberry, blackberry, and raspberry
yields a vector resembling the hypernym berry.

distributed networks of activation. Intuitively, if the seman-
tic discrepancies between two concepts, such as “dog” and
“cat”, can successfully be encoded as distinct patterns of neu-
ral firings, then it follows that the discrepancies could also
be encoded as distinct patterns of values in a vector (Hinton,
1984). Furthermore, Kelly and West (2012) argue that vec-
tor representations constitute both symbolic and subsymbolic
representation, allowing distributed vector representations to
provide a comprehensive analysis of a cognitive process.

An example of the utility of distributed vector representa-
tions as a model of cognitive phenomena is their application
in analogical reasoning. The use of vectors to model ana-
logical reasoning dates back to Rumelhart and Abrahamson
(1973). More recent examples of distributed vector represen-
tations for performing analogy are presented in Zhilia et al.
(2013) and Socher et al. (2013). In these examples, ana-
logical reasoning with distributed vector representations can
be performed by vector arithmetic. For example, the differ-
ence between vectors representing woman and man is approx-
imately the same as the difference between vectors represent-



ing queen and king:
W] —[M]~ [Q] - K] (1

This equation can also be interpreted as an analogy,
woman:man::queen:king.

Analogical reasoning with distributed vector representa-
tions can be incorporated into existing cognitive models.
Upon reorganization, the equation for analogical reasoning
with vectors (Equation 2) successfully maps onto an excerpt
of the cognitive model of analogical reasoning presented in
Holyoak (2012). [W] — [M] maps onto the source; +[K| maps
onto the target; and ~ [Q] maps onto the inference.

W] —[M]+ K]~ 0] 2

In this paper, we demonstrate that distributed vector rep-
resentations can perform hierarchical reasoning in a similar
manner to how they perform analogical reasoning (i.e., with
simple vector arithmetic). The present demonstration con-
tributes to accumulating work exemplifying the capabilities
of distributed vector representations. Additionally, it is un-
clear to what extent distributed vector representations are ca-
pable of modeling human cognition, and hierarchical reason-
ing, like analogical reasoning, is among the features for which
a comprehensive model of human cognition must account.
Thus, the present results lend support for the ability of dis-
tributed vector representations to model human cognition.

It has previously been hypothesized that distributed vector
representations can accurately represent hierarchical informa-
tion (e.g., Lenci & Benotto, 2012; Erk, 2009a; Erk, 2009b;
McDonald & Ramscar, 2001; Geffet & Dagan, 2005). Lenci
& Benotto (2012) define this as the distributional inclusion
hypothesis: “if u is a semantically narrower term than v, then
a significant number of salient distributional features of u is
included in the feature vector of v as well.” Previous experi-
ments have attempted to quantify the phenomenon of vectors
representing hyponyms sharing a common set of characteris-
tic features of the associated hypernym.

A representative example of these previous experiments
is Geffet and Dagan (2005), which developed an automated
word-level feature inclusion testing method, called the Inclu-
sion Testing Algorithm (ITA). For each pair of vectors rep-
resenting a hypernym and a hyponym, ITA computes a set
of characteristic features for the hypernym vector and tests if
those features are also included in the vector of the hyponym.
This inclusion occurred in 86% percent of their tested pairs.
In other words, the vector that represents a category member
contains the information that characterizes it as a member of
the associated category.

The results presented in this paper derive from the same hy-
pothesis as the above results, but further the empirical anal-
ysis. Specifically, instead of comparing a single hyponym
vector with a single hypernym vector, we compare sets of
hyponym vectors with the common hypernym. This is an
advance for cognitive modeling of hierarchical reasoning be-
cause it transitions from purely representational (i.e., that vec-

tors can represent the characteristics) to algorithmic (i.e., de-
riving the hypernym shared among hyponyms).

The results in this paper are derived chiefly from dis-
tributed vector representations learned by DVRS (Ustun et al.,
2014), a word embedding system designed for the Sigma cog-
nitive architecture (Rosenbloom, 2013). DVRS learns real-
valued lexical (meaning) vectors in an unsupervised manner
from large, shallow information sources based chiefly on co-
occurrence and skip-gram algorithms. DVRS is intended to
be implemented within the Sigma cognitive architecture and
thus strives to maximize performance while retaining its in-
tegrity as a cognitive model. As a point of comparison, re-
sults are also presented from vectors learned by Word2Vec
(Mikolov et al., 2013b), a state-of-the-art word embedding
system.

DVRS draws inspiration from BEAGLE (Jones & Me-
whort, 2007), but relies on skip-grams rather than n-grams
and replaces circular convolution with pointwise multiplica-
tion. Representations learned by BEAGLE have been hypoth-
esized to encode hierarchical information. This is suggested
by the tendency of the representations to cluster hierarchically
(e.g., vehicles with other vehicles and birds with other birds),
but no formal demonstration exists, to our knowledge, in the
capacity demonstrated in this paper.

To obtain the present results, vectors of 200 dimensions
were trained for both DVRS and Word2Vec with their respec-
tive default settings on the first 10° bytes of a Wikipedia dump
from March 3, 2006 (enwik9)!. The data were preprocessed
to convert all text to lower case, convert numbers to text, and

eliminate links and other references?.

Experiments

Four experiments were run on three different corpora of
hypernym-hyponym sets to demonstrate hierarchical reason-
ing with distributed vector representations. The first three ex-
periments measure aptitude for hierarchical reasoning with
distributed vector representations. The fourth experiment
measures the number of neighbors for both hyponyms and
their associated hypernyms to evaluate the hypothesis that
more general concepts (i.e., hypernyms) have more neigh-
bors.

In each of the first three experiments, a set of N vectors rep-
resenting hyponyms were summed; the result was normalized
and the closest M vectors in the lexicon, as measured by co-
sine similarity, were considered as potential hypernyms. If
the appropriate hypernym was among the M closest vectors,
then the trial was counted as correct. As with analogical rea-
soning, the vector calculation for hierarchical reasoning can
be expressed by an equation of vector arithmetic:
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1Obtained from http://cs.fit.edu/mmahoney/compression/textdata.html.

2Script provided by Matt Mahoney with the Wikipedia dump.



N is the number of hyponyms being summed, [h,] is the
vector representing the hyponym, and [Acaregory] is the vec-
tor representing the hypernym. For example, the normalized
summation of the vectors for hyponyms strawberry, black-
berry, and raspberry yields a vector resembling the hyper-
nym berry (Figure 1). In other words, the vectors can be used
to judge that strawberry, blackberry, and raspberry are mem-
bers of the category berry.

The use of three different corpora show the robustness of
this effect, independent of any idiosyncrasy of the data. In ad-
dition to using different corpora, three values were varied to
show a range of effectiveness in performing the task: (1) the
word embedding system under consideration (labeled System
in results tables), (2) N, the number of hyponyms to sum (la-
beled #Hypo), and (3) M, the number of closest vectors in the
lexicon that will be considered as potential hypernyms (la-
beled #Hyper). The table shows the number correct out of
the total possible, which varies based on how the categories
were grouped.

Results are shown for both DVRS and Word2Vec in most
cases. DVRS is the focus of these results, because it is
most concerned with explanatory power as a cognitive model.
Word2Vec is shown as a point of comparison, because it
is a state-of-the-art word embedding system. Results from
Word2Vec are shown mostly for the trials in which the best
performance is expected (i.e., #Hypo=10). This allows for
comparison of performance between DVRS and Word2Vec,
while elaborating on several more detailed cases with DVRS
(i.e., cases with fewer summed hyponyms).

The number of hyponyms was varied to demonstrate that,
in principle, it is possible to derive hypernyms from a rela-
tively small set of hyponyms. There are many anecdotal cases
in which the correct hypernym can be derived from only two
hyponyms. Accordingly, even though performance is weaker
with sets of fewer hyponyms, there are still examples of suc-
cessful trials.

The number of closest vectors considered as potential hy-
pernyms is varied to demonstrate that, even if the targeted hy-
pernym vector is not the top result, it is among the top results.
That is, the vector resulting from the summed hyponyms con-
sistently resembles the vector of the hypernym, even though
it may not be the best match.

Experiment 1

The first data set is from McRae et al. (2005), a corpus con-
sisting of human-generated data on semantic feature norms
for 541 basic-level concepts. Seven hundred and twenty-five
participants were recruited to label semantic features for the
concepts. Each concept was labeled with 10 unprompted se-
mantic features by at least 30 of the subjects. A semantic
feature was included as a norm if more than three partici-
pants included the feature for the same concept. Hypernymy
was among the semantic features coded by the researchers. A
subset of 535 concepts were used in the present experiment;
this subset consisted of basic-level concepts for which at least
three shared a hypernym.

The number of hyponyms per hypernym varied from three
(in the case of six hypernyms) to 98 (in the case of one hyper-
nym, animal). For the trials labeled All in the #Hypo column,
every hyponym was summed, regardless of number. For tri-
als with 3 or 10 hyponyms, hyponyms were separated into
appropriately sized subsets. For example, in a trial with 10
summed hyponyms, the hyponyms of animal (with 98 total
hyponyms) were separated into nine different subsets. These
sets were created by alphabetical ordering (e.g., the top 10
in alphabetical order constituted the first set) and remaining
hyponyms were not included in the test.

For the present purposes, this data set contains a small
amount of noise. These data were generated by labeling se-
mantic features that were judged to be associated with basic-
level concepts. That is to say, these features are not necessar-
ily concerned with selecting the canonical hypernym of the
hyponyms, merely a hypernym that is accurate. It does not
necessarily follow that the labeled hypernym is the best hy-
pernym that follows from the associated hyponyms. Thus, the
distributed vector representations may produce an answer that
is acceptable, but merely not listed in these data. While this
ambiguity does not nullify the utility of these data, it presents
an issue that may negatively affect the performance.

Results are shown in Table 1. DVRS performs best, as ex-
pected, in the case of summing 10 hyponyms and considering
10 hypernyms; at 44% the performance is consistent, though
not tremendous. DVRS significantly outperforms Word2Vec
in every case. It is unclear exactly why this discrepancy in
performance occurred.

Table 1: Hierarchical reasoning results on McRae et al.

(2005) data.
System #Hypo #Hyper Corr. Total Acc.
DVRS All 1 9 39 23.1%
DVRS 3 1 18 167 10.8%
DVRS 3 10 54 167  32.3%
DVRS 10 1 8 34 23.5%
DVRS 10 10 15 34 44.1 %
Word2Vec  All 1 3 39 7.7%
Word2Vec 10 1 1 34 2.9%
Word2Vec 10 10 5 34 14.7%

Experiment 2

The second data set is derived from WordNet (Miller, 2005),
a standard database of semantic relationships between words.
One hundred and forty-seven basic-level concepts were cho-
sen as hypernyms for which WordNet supplied hyponym:s.
Though WordNet supplied the hyponyms, these hypernyms
were chosen by the authors under no systematic criterion. For
that reason, this set of basic-level concepts cannot be claimed
to achieve the same standard of empirical disinterest as the
McRae et al. (2005) data set. However, there appears to be



no qualitative difference between the kinds of basic-level con-
cepts that appear in these data versus those from the data in
McRae et al. (2005).

WordNet choices for hyponyms, while empirical, contain
significant noise. That is to say, in many cases they do not
represent what could be considered canonical categorizations
of hypernymy as one could imagine might be judged by a hu-
man. For example, schizocarp, pyxis, rowanberry, and drupe
appear as hyponyms for hypernym fruit; shamanism, zoroas-
trianism, mithraism, and hindooism [sic] appear as hyponyms
for hypernym religion; thanatology, cryptanalysis, agrobiol-
ogy, and architectonics appear as hyponyms for hypernym
science. While these categorizations may not be inaccurate,
they do not constitute the most representative set of human
judgments of hypernymy.

Results are shown in Table 2. As with Experiment 1,
DVRS outperforms Word2Vec in every case, though by a
smaller margin. In the best-performance-expected trial (10
hyponyms summed and 10 hypernyms considered), DVRS
obtains 50.0% accuracy, which is comparable to its perfor-
mance of 44.1% under the same criteria in Experiment 1.
In contrast, Word2Vec more than doubles its accuracy for
the same best-performance-expected criteria between Exper-
iment 1 (14.7%) and Experiment 2 (35.4%). Results of hy-
ponym summations begin with sets of five (instead of three)
to adjust for noise associated with WordNet hyponyms.

Table 2: Hierarchical reasoning results on WordNet data.

System #Hypo #Hyper Corr. Total Acc.

DVRS 5 1 24 119 20.2%
DVRS 5 5 36 119  30.3%
DVRS 5 10 55 119 46.2%
DVRS 10 1 19 82 23.2%
DVRS 10 5 27 82 32.9%
DVRS 10 10 41 82 50.0%
Word2Vec 10 1 10 82 12.2%
Word2Vec 10 5 22 82 26.8%
Word2Vec 10 10 29 82 35.4%

Experiment 3

The third data set consists of 58 sets of eight subordinate
concepts selected by the authors to constitute a data set that
would be most likely to result in correct answers from DVRS.
While these data do not represent a randomly selected sam-
ple, they are judged by the authors to be a data set without the
ambiguity of the data from McRae et al. (2005) or the noise
of the data from WordNet. There was no systematic crite-
rion by which these data were selected; they were selected
only by if the authors thought the system should be capable
of producing a category shared by all members. Thus, they
should be interpreted as an upper bound of the capabilities of
hierarchical reasoning with distributed vector representations

in the present paradigm; that is to say, these are the results of
a hand-selected data set and a charitable judging criterion.

For each set of N hyponyms, the result from the closest M
vectors was judged to be correct if it represented any com-
monality between the hyponyms. This could include a com-
mon category, a common entity of which all vectors are mem-
bers, or a common trait. For example, a trial was considered
correct if hyponyms Monterrey, Bakersfield, and Riverside
yield a hypernym such as city, the common entity of which
all are members such as California, or a common attribute
such as Californian. A trial was considered incorrect if the
summation yielded results such as similar category members
(e.g., Merced) or wholly unrelated concepts.

Results are shown in Table 3. While both systems demon-
strated their best respective results, there were still failed in-
stances by both. These failed instances most likely do not
come from a lack of examples by which a sufficient represen-
tation can be learned, but solely a failure to encode hierarchi-
cal information. For example, with the California example
mentioned above, DVRS got the trial incorrect because the
hierarchical information was insufficiently represented, not
necessarily because there were too few encounters with the
associated words. This claim is corroborated by a correct re-
sponse from Word2Vec in the California case.

Qualitative analysis suggests that often when the answer is
completely incorrect, the result is a another hyponym instead
of a hypernym (i.e., a category member rather than the cat-
egory). For example, a set of vectors representing cardinal
directions including north, west, northwest, etc. yields south-
eastern rather than directions or cardinal. This seemed to be
the case for Experiments 1 and 2 as well.

Table 3: Hierarchical reasoning results on data selected by
authors. These results may be considered an upper-bound on
performance for hierarchical reasoning with the present word
embedding systems.

System #Hypo #Hyper Corr. Total Acc.

DVRS 8 1 28 58 48.3%
DVRS 8 10 50 58 86.2%
Word2Vec 8 1 6 58 10.4%
Word2Vec 8 10 36 58 62.1%

Experiment 4

A subset of the WordNet hypernym-hyponym sets used for
testing hierarchical reasoning in Experiment 2 were used to
compare the number of neighbors between hypernyms and
hyponyms in the associated vector space. This subset con-
sisted of 39 hypernym-hyponym sets which DVRS got correct
in Experiment 2 (i.e., hierarchical information was success-
fully encoded) and 39 hypernym-hyponym sets which DVRS
did not get correct in Experiment 2 (i.e., hierarchical informa-
tion was not successfully encoded). We hypothesized that, in



comparison between a category and a subcategory, the more
general concept would have more neighbors (Figure 3). Ad-
ditionally, for sets in which the relevant hierarchical informa-
tion was shown to be successfully encoded in Experiment 2,
the effect should be more consistent than those sets that did
not demonstrate success in Experiment 2. The present results
support this hypothesis.

Philosopher Aristotle

Figure 2: In this example, Philosopher is more general than

Aristotle; thus, its vector would be hypothesized to have more
neighbors.

For each trial, the number of neighbors within a cosine
similarity of 0.7 was compared between the hypernym and
the average of three corresponding hyponyms. The three hy-
ponyms were randomly selected from the set of all WordNet
hyponyms corresponding to the hypernym. If the number of
neighbors was higher for the hypernym than the average hy-
ponym, then the trial was counted as correct.

Results are shown in Table 4. As expected, vectors repre-
senting hypernyms consistently have more neighbors within
a cosine similarity of 0.7 than their hyponyms. In the case of
hypernym-hyponym sets where the hierarchical relationship
is demonstrated to be encoded (i.e., correct in Experiment 2),
this effect was seen in 89.7% of tested cases. If the hierar-
chical relationship was demonstrated to not be successfully
encoded (i.e., incorrect in Experiment 2), this effect is closer
to chance (66.7%). According to our hypothesis, if the hierar-
chical information is not encoded, then the probability of the
hypernym having more neighbors should be the same as in a
comparison with any other word (i.e., 50%). Thus, it appears
that some hierarchical information is encoded in those cases
that are unsuccessful in Experiment 2, but not sufficient for
robust performance.

Table 4: Vectors representing hypernyms consistently have
more neighbors within a cosine similarity of 0.7.

System Hierarchy encoded? Corr. Total Acc.

DVRS  Yes 35 39 89.7%

DVRS No 26 39 66.7%
Discussion

The present experiments demonstrate that distributed vector
representations can successfully encode hierarchical informa-

tion. The discrepancy in performance between DVRS and
Word2Vec suggests that not all methods of learning such vec-
tors yield equally successful representations. Additionally, an
intriguing relationship has been uncovered between concept
generality and the number of neighbors in the associated vec-
tor space.

Proposed Geometric Intuition

What is the intuition behind how distributed vector represen-
tations are capable of representing this hierarchical informa-
tion? One plausible explanation is that this effect is merely
a function of word frequency. In this case, Philosopher has
more neighbors than Aristotle simply because it is more fre-
quent in the corpus on which the vectors were learned. An-
other explanation which may also contribute is that more gen-
eral concepts take on properties of a hyperplane on which
subordinate concepts lay (Figure 2).

Plato (1,0,0)
2 Philosopher (1,1,0)

Homer Simpson

Descartes  (0,1,0)

Figure 3: More general concepts may take on features of a
hyperplane on which the associated subordinate concepts lay.

In the 3-dimensional case depicted in Figure 3, the hy-
pernym Philosopher encodes relevant feature information re-
lated to its hyponyms Plato and Descartes. Philosopher may
be thought of as having hyperplane-like properties because
its vector is yielded by the summation of its hyponyms. Re-
lated concepts, such as Plato and Descartes, lay on the hyper-
plane created by Philosophy while unrelated concepts, such
as Homer Simpson, do not. While in three dimensions this is
an implausible scenario for a complex ontology of concepts,
it is plausible for a high dimensional space (e.g., 200), as with
distributed vector representations.

This interpretation appears to be in line with the afore-
mentioned distributional inclusion hypothesis, in which sub-
ordinate concepts include features of their superordinate con-
cepts. More results will be necessitated to explore this con-
nection.
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