
Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

I Want My Virtual Friends to be Life Size! Adapting Second Life to
Multi-Screen Projected Environments

Kip Haynes* Jacquelyn Morie Eric Chance

USC’s Institute for Creative Technologies

Overview
Second Life (SL) is a popular 3D online virtual world designed for
human interaction (also known as a MUVE, or multi-user virtual
environment). It typically supports 60-70 thousand concurrent
users. The assets and physical environments within SL are easy to
create and use, and the environments themselves are very much part
of the human interaction experience. However, the typical means of
accessing SL is through a single computer screen, which lessens the
immersion that is inherent in such a rich 3D world. Because of this,
the SL virtual world is a good candidate for adaptation to large scale
immersive displays such as a CAVETM or other multi projector
systems.

We wanted to provide a solution that would utilize direct communi-
cation between SL viewers and have minimal dependence on 3rd
party libraries or interfere with the OpenGL rendering pipeline
While there are several ongoing efforts to adapt SL to a stereo-
scopic display, there are no freely available native adaptations to a
CAVETM like or other multi-screen environment at the time of this
writing. There are several methods to distribute OpenGL based
applications onto multiple computers and displays such as Chro-
mium, [Humphreys et al. 2002] or VRizer [Berger et al. 2004].
However, most of these streaming applications either require
changes to the rendering code or are no longer available or sup-
ported.

Approach
Our implementation uses multiple concurrent SL logins across an
unlimited number of machines. A client-server relationship exists
between the SL viewer that the user interacts with (leader) and all
other viewers (followers). Inside the open source SL viewer, each
viewer synchronizes whenever updateCamera() is called. Simulta-
neously the leader will broadcast the position, rotation and focus of
the camera.

Data and Display Synchronization
The follower viewers receive the position of the leader camera and
synchronization signal. Each follower reads its assigned rotation

from a local config file and performs the proper translation and
rotation. A customized 2D rotation was written to handle the trans-
lation and rotation of the camera about the X axis. Some simple
real time configuration functions have been added to assist in
achieving the proper orientation and alignment. Additionally, each
node reads its own FOV (field of view) info from a local config,
because the Second Life FOV adjustment is difficult to set with any
accuracy (slider bar).

The above described approach provides a well synchronized multi-
viewer environment using direct communication between the cli-
ents. However, Second Life consists of multiple regions or “sims,”
which are sections of land that are often controlled by different
servers. Initial tests revealed that when the leader crosses a sim
boundary, the followers remain mapped to the original sim coordi-
nates and show the camera positions in the old sim. This is because
the local coordinates of each region or sim in Second Life only form
a square grid whose coordinates number from 0 – 255 meters. This
required a fix on the native scripting side, enabling the follower
avatars to subtly follow the leader around the environment and into
the next sim. Crossing sim boundaries is an elusive and undocu-
mented process, and essentially means that a user is switching from
one simulation server to another. To solve this problem, we created
a vehicle object that the follower avatars could sit on and ride in
order to follow the leader’s camera around. In order to achieve a
proper sim crossing, the movement of the leader is always cached
and used as a trajectory for the follower vehicle to be able to cross
the sim. In most cases this works well, but if the leader zigzags back
and forth across a boundary, the follower can miscalculate the tra-
jectory.

Requirements
Our implementation uses the Message Passing Interface (MPI) to
handle all data and frame synchronization, remote launching and
session management. It is multi-platform and is considered a low
latency interconnect for high performance distributed systems.

Limitations
Currently the system is specifically designed for a large, three
screen VR theater and only supports vertical rotation of the follower
cameras. However, it would be very simple to add additional rota-
tions for additional display environments. Also due to the rapid
prototype of this project, the user currently has limited control of
some of the native Second Life camera functions. This will be made
available in a future release.

References
HUMPHREYS, G. HOUSTON, M. NG, R. FRANK, R. AHERN,
S. KIRCHNER, J. KLOSOWSKI, P. Chromium: A Stream Proc-
essing Framework for interactive Rendering on Clusters. In ACM
Transaction on Graphics 2002

BERGER, F. LINDINGER, C. ZIEGLER, W. VRizer -- Using
Arbitrary OpenGL Software in the CAVE or other Virtual -- Envi-
ronments. In IEEE Virtual Reality 2004

Figure 2: Diagram of interaction between SL viewers

*e-mail: haynes@ict.usc.edu

Figure 1: Screenshot of Second Life in a synchronized three projector display

