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Abstract 

 
Rapport between people and virtual human agents is not limited to just speech. 
There are many non-verbal behaviors such as gestures or facial expressions that 
can express feelings or convey a message. One of the challenges in making an 
agent appear more realistic is to make his non-verbal behaviors appear more 
natural.  To accomplish this, it is essential to find out how and when gestures are 
performed.  
 
 In order to determine how gestures are performed, it is necessary to 
assess different appearances of the same gesture and the mapping between 
their respective function. 
 
 To determine when gestures are performed, the key is to find relevant 
contextual features and their links with gestures, which will lead to the prediction 
of the moment they should be performed. 
 
 Finally, both of these issues can now be tackled with the provided toolbox. 
Preliminary results show that we have some gesture pattern. Beside, we were 
able, based on contextual features, to predict when the agent should nod his 
head. Early results appear to show the agent nods at an opportune time. 
Moreover, this toolbox generalizes the results to other kind of gestures than head 
nods, which is the goal of this study. 
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Introduction  
 
The University of Southern California (USC), Institute for Creative Technologies 
(ICT), is a University Affiliated Research Center (UARC) sponsored by the U.S. 
Army. 
  
 The mission of the ICT is to build a partnership among the entertainment 
industry, Army, and academia with the goal of creating synthetic experiences so 
compelling that participants react as if they are real. The result is engaging new 
immersive technologies for learning, training, and operational environments. 
  
 In order to accomplish this goal, the ICT has many research departments 
such Speech Recognition, Graphics Animation, as well as the Virtual Humans 
project. The aim of the Virtual Humans project is to create realistic interactive 
training environments. Currently there are two scenario implementations of this 
project which are Stability and Support Operations - Simulation and Training 
(SASO-ST) and Stability and Support Operations - Extended Negotiation (SASO-
EN). 
  
 One of the objectives of the Virtual Humans-Emotions group is to build 
rapport between people and agents. This can be enhanced by having the agent 
exhibit natural, human-like behaviour such as posture shifts, varying eye gazes, 
head shakes or head nods when responding to the human participant’s actions. 
  
 Our mission here was to improve the head nods performed by the agent 
and to be able to predict them through a link with context features. We had to do 
it in order to make them happening at a suitable time and to classify them by their 
functions. This will give the agent a new dimension by the diversity of its 
gestures. 
  
 This report represents an analysis of the work during our three-month 
internship and documents how to use the toolbox. The report aims to expose the 
way took for the preparation of data for their later use. It also presents the 
different tools used for enhancing the head nods of the agent and gives an 
overview of the work that can be done to improve other non-verbal behaviours. 
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1.1 – Introduction 

 

1.1.1 – Goals 

 
In order to reach the ICT’s virtual humans research group objective, the agent 
had to give more realistic response behaviour. Initially the agent did not give the 
good responses at a good time and most of the time the agent seemed to be 
giving random feedback to the real human he had in front of him. 
 

The main goal was to improve the feedback of the virtual human, starting 
with the head nods. To reach this goal, we developed a toolbox to enable to 
analyze the gestures in order to find out the differences between head nods and 
their respective function, but also with the help of context features, allowed us to 
find a suitable time for the head nods to happen. 
 
 This toolbox supports rapport project goals by providing tools to elicit, 
analyze how gestures are performed and predict when they occur. 

 

1.1.2 – Specifications 

 
This Toolbox had to meet several requirements: 

- Easy to use: To facilitate the use of the Toolbox by future users, the 
overall system has to be well documented.  

- Adaptability: The Toolbox has to be compatible with other kind of 
data. In the future, it will be used later to study other features of the 
agent’s behavior like head-shakes or posture shifts.  

- Intuitive: Visualization helps to give people some intuition about the 
results. Sometimes, it even permits to confirm them. 

- Optimized: Some functions take a while to run, because of the size of 
the data used, or the complexity of the function itself. Given the 
number of experiences that has to be done, it is worth to improve these 
functions 

 

1.1.3 – Working Language: MATLAB 

 
The use of MATLAB (MATrix LABoratory) Software became necessary since our 
work was complementary to some functions developed by Dr. Morency. It is easy 
to create graphical results with this software. Since it was a specification of our 
task, it became natural to use this language. 



 

 

 13 

MATLAB is also very convenient to use when importing text, arrays such as 
Excel sheets or even XML files. Although we previously used C++ Visual Studio 
for several projects, MATLAB appeared easy to handle and quick to understand 
with some programming bases. 
 

The main distinction between the elements treated by this software is their 
structures. Indeed a grand number of elements can be considered as a part of a 
matrix. A grand number is also handled as a 1-by-1 vector. 
Nevertheless, it appears that sometimes a gathering of many elements in the 
same structure is needed. The data we had to treat are often constituted by a 
number of elements which could be of various types. If all the data in a same 
structure have the same length, matrix structure can easily be used to carry 
these information but problems appear when these data do not have the same 
length. Actually one element of the data set can possess more information than 
another it is why we have to use the cell array structure. A cell array is a 
container which can carry more than one type of data. A cell array can also 
contain a text array as well as a matrix or complex vectors. The fact that this 
structure can hold different objects with different shape and size allows working 
with all the data types used during the non verbal feedback studies. 
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1.2 – Context 

 

1.2.1 – Working group 

 
The Virtual Humans research team encompasses several projects which are all 
supervised by Dr. Jonathan Gratch, Associate Director of Virtual Humans 
Research and Lead Research Scientist of the Emotions group. 
 

In our research team, which was named non-verbal gesture recognition, 
Louis-Philippe Morency is the project Leader, so we had to report to him updates 
about the job done during the week. Moreover we kept him informed in case of 
major problems concerning the precise aim of our study, in order to avoid 
wildness.  
 

1.2.2 – Coordination 
 
Nearly every day we had a meeting with Louis-Philippe Morency to check our 
progress, and to reposition it on the global study. It allowed us to work on the 
subtasks and to keep us on track. We also had general briefings to help us 
anticipate possible problems we could encounter, along with moving on to other 
tasks if  we finished earlier. 
  
 Twice a month, Dr. Gratch checked the status of our work, and we 
participated in a general weekly meeting with the SASO team.  
 

1.2.3 – Working environment 

 
In ICT, all is put together to create a favourable working environment. You can 
connect with your laptop to the enterprise wireless network and access the data 
on your workstation or on other servers you are working with. Everyone has a 
powerful workstation connected to the Internet. An Information Technology (IT) 
department is at your service if you have any problems with your machine, from 
installing software to solving networks problems. This is greatly appreciable when 
your mind is concentrated on your job, you do not want to have to deal with minor 
disappointments. 
 
 This workplace was definitely very enjoyable and allowed you to 
concentrate on your work. 
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1.3 – Work organisation 
 

1.3.1 – Tasks subdivision 
 
In fact, although our main goal was to give the virtual human more realistic 
behaviour, this task was given under two sub-tasks, that each of us tackled 
during our internship.  
 
 The first task was to create a gesture pattern analysis toolbox. This 
toolbox has to be able to identify and to classify the different types of head nods, 
and to identify the functions of the found types of head nods. 
 The second task was to create a gesture prediction modelling toolbox 
which has to predict and to create a model for when head nods should happen.  
 The link between these two tasks is illustrated below in Figure 1-1.In fact if 
a gesture pattern was revealed, it could greatly improve the work of the gesture 
prediction modelling toolbox. Indeed the gesture pattern could be used as an 
input for it, in order to create a model for each kind of gesture. 
 The dotted line shows that the use of gesture patterns as an input of the 
gesture modelling toolbox has not been done for the moment, but that could be a 
task for future research.  

Figure 1-1: Overview of the project architecture 
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1.3.2 – Tasks repartition 

 
Since SLT Levasseur worked most on Watson files, which contain the head 
velocities, it appeared natural that he would deal with the analysis of gesture 
patterns.  

The gesture analysis toolbox has also the purpose of finding and selecting 
different types of samples in the velocity data set. These selected samples have 
to be encoded to allow the work of a partitioning function which gives different 
clusters. The clusters will be visualized thanks to MATLAB plotting functions. 
Improving the Predictive toolbox involves that the different selected samples 
possess a type label and that the clusters allow finding different functions for 
these types.  
 

 
Figure 1-2: Gesture analysis toolbox components architecture 

 
Moreover, since SLT Carre has been working on Transcriber files and 

started to have some intuition about when head nods should happen, it was him 
who tackled the Prediction toolbox part. 
 This toolbox represented on Figure 1-3 has to allow the selection of the 
features which will be relevant for the gesture modeling. These features have 
then to be encoded to fit as an input for training of models. In order to see and 
compare the results, visualization tools are finally needed. 
 

 
Figure 1-3: Prediction toolbox components architecture 

1.3.3 – General toolbox use       
  
The use of the Multimodal toolbox can be enlarged to the study of other non 
verbal behaviours such as eye gazes or head shakes. The way we built the 
global toolbox and the way it has to be used for future studies are resumed in 
Figure 1-4.  

Each task implies many subtasks. First, before splitting work, a common 
task is to improve data, extracting them to be usable with MATLAB and organize 
them inside MATLAB. Moreover the creation of a ground truth gesture basis 
(explained in section 2.1) is necessary to keep a link between this study and real 
gestures.  
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Figure 1-4 : Use case diagram of the multimodal toolbox work architecture 

 
The upper part of the diagram, the gesture analysis toolbox, is devoted to 

the finding of gesture types. This action could be divided in a visualization task 
and in a selection task. 

 
 The visualization can be done after the test of different composition of 
elements from the data set. Nevertheless these tests as well as the analysis of 
the type of gestures cannot be done without a selection of the information after 
their filtering. 
The goal of the filtering task was just to remove the interesting elements from a 
data set which was since organised after its extraction. By interesting we mean 
that these elements must be correlated with the ground truth basis.  
 

Concerning the lower part of the diagram, the prediction toolbox, the main 
task could be separated in two major subtasks. First subtask is to select relevant 
features to be implemented in the model and their encoding. This can be done by 
visualizing some statistics about the features, and by testing them. 
Second subtask is to experiment different models by comparing their results. In 
order to do that, creating visualization tools for these results, as well as creating 
logs of our experimentations are necessary, to be able to do these in a 
methodological way, and to keep a trace of previous results. 
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2.1 – Original user study 

 

2.1.1 – Principles 

 
The data used in our study come from a user study realized in October 2006. 
Even if there are many variants of this test (see Appendix A), we will keep our 
focus on the Face-to-Face test (see Figure 2-1) since this was the one during 
which most head nods appeared. 
Principle is quite simple: 
 a) The Speaker watches two video dealing about sexual harassment in the 
workplace.  
 b) His goal is next to tell the story to another person as detailed as 
possible after a bip that tell him when to begin. This element appeared to be very 
important in our project since it was a way to synchronize all the feeds received 
during this exchange.   
 c) At the end the listener has to tell the story again to check he had 
understood well enough the story.  
One of the goals of this user study was to record different body behaviour during 
this oral exchange. Each different recording constituted a sequence in itself. 
 

2.1.2 – Materials 

 
The part that was interesting for this project was the exchange one. Indeed a lot 
of information was recorded during this part, using many different tools: 

Figure 2-1: Face-to-Face Test procedure 
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 -The microphone records in .wav files all the speech of the Speaker and 
the Listener. These audio files will be then used to annotate the words and the 
prosody.  
 -The camera records in .avi files all the video feed (including sound) of the 
Speaker from the chest to the top of the head. The same thing is done with the 
Listener. On the speaker side, the video will be used to annotate eye gazes, 
whereas on the listener side, they will be used to annotate head nods. 
 -The stereo camera, records in two different .avi files (Left and Right side 
of the binocular camera) the same part of Speaker’s and Listener’s body than 
before, thus at a rhythm of 8 frame per second. This will be used later to compute 
head velocities. 
 

 
Table 2-1: Available materials 

 
Table 2-1 sums up the different sensors, their output, the information coming out 
from this data, and in capital italic, the software used to extract (Watson) or 
annotate (ELAN, Transcriber) these informations. 

2.1.3 – Tests description 
 
Only two of the four variants of this test happened to be interesting in the case of 
our study. The first interesting one was the Face-to-Face (see Figure 2-1) 
because it was in these sequences that occurred most of the noticed head nods. 
It seems natural since you give more feedback to a real human than a virtual 
one. 
 

The second one was the Mediated one. In fact in this test, the only 
difference is that instead of having the video feed of the listener in front of him, 
the speaker has the agent in front of him. This means less head nods than 
previously for the listener because the speaker gives less facial expression to an 
agent. Therefore, the listener is indisposed to give feedback to the speaker which 
is less emotive. 
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2.2 – Data Processing 

 
Before working each one on our side, we had to accomplish together some tasks 
in order to prepare our both studies. The raw data had to be improved and 
converted to a MATLAB format. 

 

2.2.1 – Studying video files 

 
One of the first tasks that had been given to us was to study listener’s video 
sequences in order to find there head nods. Indeed this was crucial because all 
the future work will be based upon it. This is what we call our ground truth head 
nod basis. 
 

The first step is to note down every head nod of each sequence. In order 
to realize this thing we have to watch all the video sequences separately and to 
make your own notes for every video. We considered that a head nod appears at 
each time the head makes a motion from the bottom to top or inversely. It 
appeared that a head nod could be mixed with other movements which 
complicated the study of several of them. Afterwards we had to compare the 
head nods we found to be sure we had not forgotten one of them. If we had any 
doubt about some of them we watched the video again and together to be sure of 
its existence. It occurred that some sequences did not include any head nods. 
Then, these video were dropped from our study. That reduced considerably the 
amount of sequences available for our task, going from 48 sequences to only 22.  
All the remaining video sequences are sequences which possess at least one 
head nod and which have been examined twice. These elements constituted the 
future ground truth head nod basis.   
 

Once we agreed on the presence of head nods or not, we had to locate 
them temporally. The remaining part, into we could find 208 head nods, was split 
in two parts since it will allow us to be more efficient. SLT Levasseur studied 
video sequences indexed from number 2 to 97 when SLT Carre studied video 
sequences indexed from number 98 to 116. All the results of this work have been 
summarized in an Excel sheet called Summary. This survey has allowed 
realizing several averages about the studied video sequences since it carries 
information such as length of each head nod, number of head nods in a 
sequence and whether the head nod was made during speech or not.   

 
The last step was to annotate precisely (meaning to the frame) these head 

nods. This was a huge task, time speaking, which has been made easier by the 
use of annotation software called ELAN (see Appendix B). This Eudico Linguistic 
Annotator was meeting our requirements since it could display video feeds, go 
from frame to frame and supported the different video types used in the study. In 
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the purpose of extracting just the head nod we had to consider the moment 
where the head really began to move. We had already found the approximate 
time of it but thanks to the frame to frame tool of ELAN we were able to pick 
precisely the motion. 

 

2.2.2 – Improving Transcriber annotations 

 
To study the head nods and their context, one of the needed features is the 
speech of the speaker. Indeed, it was flagrant that listener’s head nods came not 
only in response of facial expressions or body language, but also as a feedback 
to the story he was listening to. 
 

All the speech being recorded by the microphone in .wav files had already 
been annotated by some linguists of the ICT. This was done by the help of a 
software named Transcriber (see Appendix B), developed by the DGA 
(Delegation Generale pour l’Armement).  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

However some key features were missing to these files. First step was to 
add to these 22 files the pauses they lacked. Indeed we predicted that there was 
a link between pauses and head nods, which will justify the 10 hours spent on 
adding them in these files. Moreover adding the pauses will help us to locate 

Figure 2-2: Transcription before improvement 

Figure 2-3: Transcription after improvement 
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temporally the words into the utterances more precisely without needing to add a 
timestamp to each word, which would have been a waste of time. Transcriber 
revealed to be quite efficient for this job since we could see the waveform of the 
audio file, which was very useful to detect pauses. 

 
 

The second point was a lack of consistency in these files. For such study, 
this was a requirement, and same events happened to not be annotated the 
same way (see Appendix C). Jillian Gerten, the team’s linguist, had to go through 
all these files again to be more precise with punctuation and speech annotation. 

 

2.2.3 – Reprocess video files with Watson 

 
The two video produced by the stereo camera (left and right views of the same 
person) constituted the input of software called Watson (see Appendix B). This 
one, developed by Louis-Philippe Morency, permits to track head’s position and 
orientation. 
 

The results of this tracking applied to the video sequences already existed 
but they were not enough accurate for the study. Dr Morency has thus adjusted 
the parameters of its software to heighten again the values in output. 
 

Then, one of our tasks was to restart Watson’s work on these video in 
order to obtain useable results for the future study.  
In the purpose of realizing this work we had to create a new file for each video 
sequence which will contain the video on the .avi format filmed by the camera 
and the configuration files for WATSON. These files contain diverse information 
such as the name of the studied sequence, its length or the path to save future 
work (see Appendix B). After the creation of these different elements we had to 
launch again software to obtain more accurate data. 
 This last task was launched on different machines to allow us continuing others 
tasks on our machine, thus for a question of time optimization. 
 

The processing of these video turn out different results such as files which 
contain the values of the velocity, the rotation (around each axis) and the index of 
the time, called timestamp in the rest of the report. The timestamp is the time of 
the recording of an action. It has not a continuous rate. Dr Morency has created 
software which put these entire figures directly in column in a word publisher. 
This last thing facilitates the treatment during the data extraction (see subsection 
2.3.2). A video, where the head of the listener is framed by a square which tracks 
the movement, was also an output of Watson software as parameters files. The 
parameters files contain all the information needed to launch a Watson tracking 
plus all the elements describing the video sequence such as the number of 
frames of the video sequence. 
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But before going ahead, we had to verify the accuracy of this software by 

calculating the number of true positive rate and false positive rate that Watson 
found. A true positive rate means that it is detected by the software and 
corresponding to a ground truth head nod found previously. It can also be seen 
as the precision of software. The false negative rate means it is detected by 
Watson but is not a ground truth head nod. It is most of time considered as the 
error of software. To define these values we had to give a threshold value to 
define it there is a head nod at a certain time. The threshold is just a numeral 
value that the head velocity according to x has to exceed to be considered as a 
nod.  

 
To verify if the accuracy of this software is really good we can not just use 

the output figures of the function which calculates the number of right detection 
and the others. We have plotted these values in a ROC (Receiver Operating 
Characteristic) curve (see Appendix D) which permits the study of the specificity 
and the sensibility of a test according to different threshold values. 

  

 
Figure 2-4: ROC curve 

 

The X-axis represents the value of the False Positive rate whereas the Y-
axis represents the True Positive rate. We plotted this curved with a threshold 
included between -2 and 2 with a step of 0.1. 

 
The examination of this curve proves that Watson software is reliable and 

then we can really found our study on its outputs. For example the point on 
Figure 2-4 shows that for an accuracy of almost 90 percent software makes an 
error of 1 percent. 

 

2.3 – Importing Data with MATLAB 
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2.3.1 – Transcriber files 

 
In order to use words, context and pauses as features, we had first to import 
them from .trs files (Transcriber) to a MATLAB file, containing each utterance, 
their beginning and their end. It turned out that .trs files were in fact XML files 
making it easier to find the needed data. The data was imported as a text sheet 
and thanks to the markups, the data was easily found, with its associated time 
stamp. 
 
 First step was to locate markups that will be useful for us in order to 
understand where to find data. In fact there is a markup for each start of a new 
segment:  
 
<Sync time="4.438"/> 
 
<Sync time="4.66"/> 
um , 
<Sync time="5.131"/> 
 
<Sync time="5.519"/> 

 
It contains the timestamp of this segment. Between each markup are the 
sentences contained in each segment (see Figure 2-3). 
 
 Final step was to organize extracted data. Two variables contained all the 
information: a cell array contained by sequence a matrix where begin and end 
timestamps of segments constituted the columns and the rows were 
corresponding to these segments. Another cell array contained by sequence a 
character array where each row corresponded to a segment. 

 

2.3.2 – Watson files 

 
The extraction of the data produced by software Watson constitutes the 
cornerstone of all the head nods study. Indeed the figures of the head velocity 
and of the rotation will serve for the characterisation of the different categories of 
head nods. 
 
 The purpose of this part was thus to product a database which can be 
easily used in the rest of the internship and even for other users. 
 

MATLAB was a fair tool for this work because it permits the importation of 
data from publisher which product results in rows or in columns. It is why the 
work of Dr Morency was very important forasmuch as all the outputs of this 
software were directly in columns.  
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We focused on the x axis rotation values because it is them which are 
interesting for the head nods but all the other values were extracted too for a 
future study of head shakes or others.  These entire values are contained in 
velocities.txt and nods.txt files which are two of the multiple output files from 
Watson.   
 

The timestamp treatment consists on a transformation of these values in 
seconds and to bring them into a zero set bases.  It was free to put these data in 
a cell array or not but to facilitate the future treatment per session and to be 
portable to the Dr Morency since existing functions we adopted the cell array. 
 

 
Figure 2-5: Axis references in Watson files 

 
A point that appeared later in the study is the needed of tighten these 

values to the so called real head nods. The real head nods correspond to the 
ground truth head nods (see subsection 2.2.1). A function was thus created to 
find the head nods rotations values, the timestamps and the head velocity which 
tally with the head nods found in common.   

 

2.3.3 – Elan files  
 
Elan files were in fact, just as Transcriber files, XML files. However, and although 
it was basically markups for begin and end of annotations, we did not initially 
created a MATLAB function to extract these files into a MATLAB variable format. 
Since both of us were working on these files, we preferred to do it manually, 
which was faster than creating a function to do it automatically.  
However it appeared later to be a wrong choice since in the next studies, the 
time we could have lost in creating this function will be a gain for them. 
This is why, in order to keep up with our initial specifications, it has been decided 
at the end of the internship to fill this lack. 
 
 First step was to select automatically the files corresponding to the study. 
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Then, since these files were XML, we imported them as a text file. Just like 
Transcriber files, first step was to find out which markups could help to locate the 
data we were interested in. This is a sample of the syntax of markups that 
contains begin and end timestamps of two annotations: 
 
   <TIME_SLOT TIME_SLOT_ID="ts1" TIME_VALUE="21443"/> 
        <TIME_SLOT TIME_SLOT_ID="ts2" TIME_VALUE="22813"/> 
        <TIME_SLOT TIME_SLOT_ID="ts3" TIME_VALUE="26680"/> 
        <TIME_SLOT TIME_SLOT_ID="ts4" TIME_VALUE="27470"/> 

 
In fact impair time slots correspond to begin timestamps and pair time slots 
correspond to end timestamps. 
 
 Last step is to organize the data extracted. An array, where rows 
corresponded to each annotation and columns corresponded sequence number, 
begin and end time of each annotation was finally created. 
 

2.3.4 – Elvin reports 

 
Elvin is a software that allows different programs to send messages between 
each other [8]. It was useful for us because it created some log files that 
contained speech analysis outputs. That added some context features to our 
study, which could be clues for detecting when a head nod should happen.  
 

The organisation of these log files made them easier to import, since the 
format was consistent: Each line started with the time stamp of the action in 
milliseconds, and at the tenth column came the caption of the speech analysis 
output. 

 
 
 
 
 
 
 

2.4 – Conclusion 

 
Even if this part was not the trickiest, it came out to be time consuming and 
crucial for the remaining tasks. First the creation of a head nod ground thruth 



 

 

 29 

basis served as a foundation for all the following work since it will be put in nearly 
all MATLAB functions created in Chapter 3 and Chapter 4.  
 
 The events cell array which came from the Transcriber files has also been 
used in the following parts of our study either as a words database or as a 
speech context. 

 
 However, we had to came back later on this part in order to fix some 
issues caused by the way original user study was done. Indeed all sensors did 
not start to record at the same time for each sequence, which forced us to align 
them with offsets. ELAN helped us in this task since it can be run on a 
“Synchronization Mode”. All offsets were then put into a variable which contained 
each offset by media and by sequence. The reference we took were the listener 
video since we started from here with the ground truth which was the basis of all 
this study. 
 

At last, this first part allowed us to become familiar with MATLAB, handling 
every kind of variables and discovering possibilities to optimize the code. This 
including avoiding for loops when it was possible since MATLAB was not meant 
to be efficient for loops. 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 



 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 31 

 
 
 
 
 
 
 
 
 
 

Chapter 3 – Gesture Analysis Toolbox 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.1 – Introduction 
 

3.1.1 – Goal  
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People perform gestures with different amplitude, speed, and length. The 
different gestures patterns can also have different functions. So this section 
shows how to find these different patterns of a gesture and find out if these 
patterns are related to different functions. 

  
 The human being has different way to walk. Indeed we can walk more or 
less fast, with more or less big amplitude or frequency. All these motions can 
also be divided into different groups. What it means it that the same form of 
division can likewise be done with the head motions such as eye gazes, head 
shakes or head nods. We will focus more precisely on the head nods movements 
but the entire study could be adapted for the works on other motions.  
 
 The first goal of this part is to produce a tool that can help improve non 
verbal behaviour generation by the Virtual human. In fact for the moment some 
motion realized by the Virtual human are not always realistic. It means that the 
agent produces some feedbacks not always at the right time and not always as 
human do it. It can for example make a gesture with too high amplitude 
compared with that people usually do.  

 
 To obtain an improvement of the Virtual human non verbal gestures we 
have to search and identify different patterns of head nod motions. First of all the 
existence of these patterns must be underlined. We can easily ascertain that 
there exist several differences between the human head nods at the time of a 
talk. But it is harder to explain these differences. 
These differences could be visual: 

- The speed of the head motion can increase or decrease.  
- The amplitude can be more or less high. 
- The frequency can also vary during the motion 

  Or even be found by the composition of different factors. That means the 
use of mathematical tools to discover hidden correlations. 
 
 
 Second, we had also to find out if these patterns are related to specific 
functions such as: 

-    Continuation: The listener wants the speaker to keep talking and 
may not have understood yet all the meaning of the last spoken 
utterance.  

-  Acknowledgement: The listener understood the meaning of the 
last utterance but may not agree with the speaker. The head nod is 
equivalent to a spoken “ok” 

-  Agreement: The listener understood and agrees with the last 
spoken utterance. This head nod is equivalent to a spoken “yes”. 
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3.1.2 – Correlation: appearance & function 

 
The entire work describes higher has to provide the elements which permits to 
correlate the diverse appearances, called gesture pattern, of the heads nods 
found in the video study with different functions. It will permit in the future to 
improve the agent behaviour because all its head gestures could be adapted to 
the context of the discussion and it will yield a Virtual human sensitively more 
human. If this task was not done the agent could realize different motions but 
these one would not be in correlation with the human behaviours that could 
cause some troubles for the speaker. 

 

3.1.3 – Approach 

 
The continuation of this section is divided into four different parts: 
 
 The first one will explain the different steps we took to find the right 
representation of the different gesture patterns. It means that a data can be 
considered according to different criteria and thus there are several manners to 
represent it.  
 

Second we cluster all these different representation to underline the fact 
that the gesture patterns can be represented thanks to a typical pattern. We 
show there that these gesture patterns possess an average in there 
representation. 

 
Third we compare the prototypical patterns found previously with the 

speaker speech to show the different correlations between the different gesture 
pattern and the fact the human is speaking. To realize the comparison we use 
visual tools which are implemented in MATLAB software. 

 
Finally we create a User Study function. This one permits to find out if the 

patterns are related to functions. This User Study is build on the basis of a 
website infrastructure.  

 
 
 
 

3.2 – Data representation 
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The purpose of this part is to organize and to analyze the data gave by Watson 
software to facilitate the clustering part. One of the software outputs is the 
velocities files which contain the entire information on the head nods. We have 
also built a ground truth basis and we want to find the different gesture patterns. 
In this purpose we try different representations such as the velocity, frequency or 
PCA to extract these patterns. 

3.2.1 – Velocity & length 

 
The first step is to consider the raw original information such as velocity and the 
head nods segmentations. We thus made different functions which can isolate 
the velocity values and the length of elements interesting us. We mean that we 
just considered the figures of the ground truth head nods. The way we extract 
these elements and there duration is detailed more precisely in the Data 
Processing part. 

 
During this phase we encounter two main problems with the velocity data. 

Indeed the entire values of velocity have to be resampled and to be aligned. 
 
Before starting all the other studies we had to bring the entire temporal 

values on the same basis. In fact every recording was made without some 
synchronization with the other. We mean that each recording, wave or video (see 
Chapter 2), has it own temporal beginning. To solve this problem we took all the 
different recording and decided to choose a unique beginning for them. We took 
the end of the “bip” sound played at the beginning of each sequence to realign all 
the recording with ELAN software.  

 
 The other point is that Watson software stores the different values of 

head velocity or head nods with none-constant frame rate. This problem was 
more important because the clustering and the use of Fast Fourier Transform 
explained in future parts need a constant frame rate. The way to fix this problem 
was thus to resample all the time line of each video sequence at the same 
sampling rate. The first intuition was to calculate the mean of these timestamps 
but in fact these terms had not a straight-line rate even in a same sequence.  
Thereof we had built a function which is able to resample all the sequences even 
if there had not an unchanging time rate. The important fact is that this function 
can resample these timestamps at a rate the user can choose to permit a big 
range of study. 

3.2.2 – Frequency 
 

To discover if there are really different classes of motion we can not just limit the 
study to the values given by Watson software. We had thus to consider these 
source of information according to a new way of regarding such as the 
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frequency. The calculus of the Fast Fourier Transform (FFT) gave us one of 
these new perspectives. [2] 

 
The FFT is just a mean to accelerate the calculation of the Fourier 

Transform. In fact the complexity of the Fast Fourier Transform is on O(n ln(n)) 
whereas the complexity of the Fourier Transform is on O(n^2) for a sample of n 
elements. 

 

 
Figure 3-1: Mathematical expression of the FFT 

 
The Fourier Transform which is given for an x input with unchanging time 

rate allows us to find for each frequency the value of the associated energy. To 
find this term we had just to consider the module of the Fourier Transform or FFT 
output. Figure 3-2 represents the FFT absolute value calculation of a particular 
head nod. It permits to visualize the difference between different gesture patterns 
thanks to there frequencies.  

 

 
Figure 3-2 : Extraction of frequency from velocity 

 
 We can also plot this module according to the frequency to obtain the 
frequency spectrum of the studied sequence. 
 
 The calculation of the different head nods frequencies can permit to check 
if the gesture patterns are differenced by their energies or their frequency 
spectrum. We have to consider a window (Yellow in Figure 3-3) around the 
central value of the head nod because the future studies such as the clustering 
part and the PCA part need that the entire values have the same length. It means 
that the clustering can just be done on a matrix. This value was just taken at the 
half of each nod and we added at this time a duration chosen by the user.  
 

We have also to make it because the dimension has to be reduced to 
facilitate the future clustering. It is why we consider a 32 elements vector for each 
head nod in the rest of the study. 

 
 

Figure 3-3: Window around the head nod 
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3.2.3 – Principal Component Analysis  
 

 

The Principal Component Analysis (PCA) is a technique used to reduce the 
dimension of multidimensional data. This tool is based on applied linear algebra 
and uses non-parametric method to extract important information from confusing 
data set. It is a fine tool for making predictive models and for all the data 
analysis. Thus it permits to reduce a complex data set to understandable and 
more visible information. This technique which used linear transformation permits 
to find a new coordinate system. The new coordinate system will be defined by 
the projection direction of the greatest variance of the data for the first axis and 
the second greatest variance of the data set for the second axis.  

 

 
Figure 3-4: Example of points’ projection on first greatest variance direction (blue) and on second 

greatest variance direction (red) 

 
Find a new basis permits to keep just the values of the data set which have the 
more important variance. Thereof it reduces the length of the data set without 
losing elements which have a significant weight for the rest of the work. We used 
a mathematical technique called SVD (Singular Value Decomposition) to do this 
decomposition. The choice of this tool is justified by the fact its use is wide-
spread for this sort of work and because it is since implemented in MATLAB. 
 

- Singular Value Decomposition  
 

The Singular Value Decomposition (SVD) allows us to do a decomposition of the 
information we wanted to treat. It means that SVD calculates the singular values 
and singular vectors of the input. The input of this function must be a matrix 
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where the number of rows is upper than the number of columns. For this study 
we had utilised the frequency of each sequence of ground truth head nods 
because we wanted to know if the different classes of motion are identifiable by a 
particular value of frequency. For example we can imagine that one of the 
gesture patterns is defined by a frequency of 4Hz motion at a particular moment. 
We considered thus a matrix per sequence which comprises the frequency value 
of each resampled head nod.  

 
The SVD function applied on an m-by-n matrix gives us three different 

elements in output: 
- A diagonal matrix of the same dimension as the input matrix. This 

matrix, called S in MATLAB, comports all the singular values. All 
the elements of this matrix are null except the diagonal. 

- An m-by-m U matrix which contains the left singular vectors. 
- An n-by-n V matrix which the right singular vectors. 

 
In our case we considered a matrix which is constituted by 198 rows and 32 
columns. The number 198 corresponds to ground truth head nods found 
previously and 32 is just the window length that can be chose by the user. So 
each row of the matrix is dedicated to a single head nod. 
 
 

The elements of the S matrix present the singularity to be ranged in 
decreasing order. The first singular value has thus the most important weight in 
the decomposition. We used this last property to lead the rest of the study. In fact 
we wanted just to consider the head nods elements which are the most 
important. By important we mean that if we not consider the terms with a little 
weight, it will not greatly change the information carried by the head nods. 

 
 The elements of the V matrix constitute the coordinate of direction vector. 
These vectors, in red and in blue on Figure 3-4, permit to find the direction where 
most of the data set is scattered.  
 

The terms in the U matrix can be defined as being the coordinates of initial 
elements in the new basis made by the vectors of the V matrix. 
 
 

As it is explained previously the elements of the S matrix are arranged in 
order of importance. It becomes so possible to define a threshold of variation 
these elements have to reach to be considered in rest of the work. In our 
experiment we used the value of 95 percent because it permit to consider the 
most relevant terms without restrain or expand too much the study. The threshold 
value can have been chose differently. So in the rest of this study we interested 
in terms whose sum of singular values is larger than ninety five percents.  We 
can speak about percentage after a little operation on the singular values to put 
them in a basis where the sum of elements matches up to hundred. After 
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considering the elements which reach this threshold we set, we can reduce the 
multi-dimensional study to a narrowed field. The goal of all these different actions 
was to focus the rest of work on really determining set of information.  It permits 
also to restrain the dimension of the future clustering since the difficulty of the 
study rises with the size of the dimensions. This last point becomes important 
when we consider that the study will be adapted to the work on head shakes, 
eyes gazes and other human body movement. 
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3.3 – Clustering/Data Analysis 

 
After the processing of the information contained in the velocities files we have to 
find a way to bring together elements which did not at first sight present 
similarities and to automate this analysis. The fact that there is some hidden 
information becomes from the fact we are considering a multidimensional data 
set. To reach this goal we chose to use a tool called clustering which is 
nowadays largely employed in many fields including data mining, image analysis, 
or pattern recognition.   

 

3.3.1 – Goal of clustering (different appearance 
of head nods) 

 
The data clustering consists on a classification of the studied elements in 
different subsets called clusters. It means that all the data set will be partitioned 
in parts which have to share common particularities. These common traits are 
the most often defined by a notion of distance measure [1]. Figure 3-5 shows a 
clustering on three clusters. The X-axis could be considered as the weight of 
studied persons whereas the Y-axis their height. The way of clustering can be 
enlarged to multidimensional elements where each dimension can represent 
something different such as the weight, the height or the age.  

 
 

 
Figure 3-5: Example of clustering 

 
There are different ways to run the data clustering algorithms. You can 

use hierarchical or partitional algorithms to make clustering. The hierarchical one 
consists to find successive clusters using subsets established previously while 
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the partitional algorithm checks all the parts at once. We have more precisely 
studied a hierarchical one called K means clustering in our work.   

 
In fact this method of discovering “natural” groupings in data set allows us 

to ascertain hidden patterns for the classes of motion. We used it at the 
beginning with simple characteristics such as the length of each head nods but 
the K mean clustering algorithm studied in the following subsection allows us to 
study multi dimensional data set. It means that we could cluster data composed 
by different elements as the length, the frequency or even the m-by-n matrix 
studied in the FFT part. 

  

3.3.2 – K means clustering 
 
There are several clustering methods which could have been employed but we 
chose the K means algorithm. 
 

It is used for different reasons: 
- This tool is one of the most simplistic and rapid algorithm. It permits 

thus to work with large data base such as our 208 sequences of 
head nods which possess each hundred of information. 

- We can rapidly find free MATLAB toolbox on the Internet. We had 
to do it because of the lack of time and because of our MATLAB 
version does not owned this toolbox. These entry-level 
functionalities are available in the last version of the software.  

- It is possible to manually choose the number of clusters you want to 
study. It is important if you have already an idea about this one. 

 
We will consider that each head nod of the data base is represented by a 

vector in the rest of this part. It is these vectors which constitute the m-by-n 
matrix where n is always the number of head nods and where m corresponds to 
32 for the velocities and frequencies studies (it is the length of the window) and 
to almost ever to 3 (it is the number of S matrix elements needed to reach the 
threshold). 
 

This algorithm functioning is grounding on the assignment of each vector 
to a cluster whose centroid is nearest. The centroid is the cluster’s centre and it 
is defined by the mean of the entire vectors which are in the subset. Its 
coordinates are specified by the arithmetic average of each dimension over all 
the information elements in the considered cluster.  
 
The K means clustering works by steps: 

- The number of clusters k is chosen. In our study we give it several 
values but it is able to find the optimize number of clusters. The action of 
giving it the number of clusters it has to create comes from the fact we 



 

 

 41 

had a suspicion about the number of head nods types a human being 
can own. 
- It randomly generates the k clusters and calculates the centroid 
coordinates. 
- The algorithm will assign each point to the nearest centroids. 
- All the new cluster centers are recomputed.  
- The K means clustering repeats the two last steps until the position of 
each point is set. 

 
This tool was applied on different characteristics of the head nods such as 

its length, its frequency. For this last study we have also created a file containing 
figures plotted by MATLAB. These figures representing different clusters with 
different sampling rate and different size of windows were made by script to 
automate their creation and can serve to gain time for futures works. 
 
  We even applied the K means algorithm on the output of the SVD to 
determine if the three prototypal head nods we guessed are really existent. We 
aimed to prove that the typical human head nods are composed by different 
values of frequency. For example a “keep going” head nod is perhaps 
determined by a movement composed by sixty percent of 2 Hz frequency and 
forty percent of 4 Hz frequency. 
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3.4 – Experiments 
 

First of all we had to remember that the goal of this part is to create a toolbox 
which will provide the ability of future searchers to find patterns in gestures such 
as the head nods, head shakes or other motion in good condition. We test the 
gesture analysis toolbox across different cases. First we do experimentation on 
the velocity and the length of each nod. Then we consider the frequency found 
thanks to the FFT and finally we focus on the results of the PCA.  
 
 The representation of these results is done by a visual way thanks to 
different MATLAB functions we have created. 

3.4.1 – Velocity 
 

We had begun to visualize the most primary information given by the Watson 
software such as the velocity according to the speech. We did it because we 
believed that a type of head nod is correlated with a time in a sentence. For 
example an agreement head nod can appear during a pause or at the end of the 
sentence. To make it easier for future study we allow users to choose different 
ways to visualize the results. They can select if they want to consider a sole 
video sequence, one session of the recorded video to find out the different 
pattern gestures which composed this sequence (see Figure 3-6). They can also 
decide to consider a head nod type of pattern in all the video. 

 

 
Figure 3-6: Head nod velocity, types of cluster and speech 

                        
 

This plotting shows a particular video session with the time of speech (in 
hatching red) and the three different types of head nods in the first rectangle. The 
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green dotted line is corresponding to the first cluster; the red dotted line is 
corresponding to the second cluster and the blue one to the third cluster. The 
second rectangle is composed by the head velocity (according to x for a nod) 
during the total session. 
 

We used different number to realize the different clusters in the previous 
part but in the following example we will consider the clustering in three different 
groups. 
 

Figure 3-7 is the representation of few head nods from the third cluster 
and for the second cluster. These plotting are also realised with a specific 
sampling rate and a size of window (see subsection 3.2.2) chose by the user. We 
can already see that the head velocity (in blue) is not the same for the two 
clusters. The speech which is red plotted is not present in the two considered 
clusters but just in the right one. We would so consider that there is a correlation 
between one type of pattern gesture and the speech. However the speech on 
this cluster is not present in all the cases. So at first sight it appears that there is 
no singular correlation between the different gesture patterns and the fact people 
are speaking or not. This observation incites us to consider new data given for 
example by the study of the frequency or by those of the SVD. 
 
 

  
Figure 3-7: Two examples of clusters 

 

3.4.2 – Frequency 
 
 The calculation of the FFT and its clustering would allow us to find directly what 
frequencies are the most significant for a type of head nod and perhaps to do a 
correlation between a head nod and the time of speech.  
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Figure 3-8: FFT, velocity and speech for cluster 1 

 

 

 
Figure 3-9: FFT, velocity and speech for cluster 2 

 

 
Figure 3-10: FFT, velocity and speech for cluster 3 

 

 

On the three previous figures, there are the head velocity (in blue) and the 
speech (in red) side by side with the plotting of the FFT for each head nod of a 
particular cluster. These three figures permit to underline that the particular 
clusters seems to look different. However it is not possible to find out a 
correlation between the time of speech and the types of cluster. It is why we 
restricted again the research field and interested more precisely on the frequency 
elements after there decomposition in singular values.  
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3.4.3 – PCA 
 
 
The study of the frequency SVD and its clustering permitted to find that on the 
average two or three frequencies are carrying 95 percent of all the information.  

 
The plotting of each different types of gesture pattern according to their 

frequencies in the U bases which possess the greatest variance (see subsection 
3.2.3) permit to underline that there is gathering of the types of pattern in different 
parts of the figure. Each gesture pattern will possess a frequency average which 
could define it. For example the red points which represent one type of clusters 
on Figure 3-11 below are all grouping together in the left bottom corner.  After 
comes the green points represented another type of clusters and finally the blue 
points which are the most scattered. 

 
Figure 3-11: Plotting of the clusters frequencies according to U bases 

 
 
One of the plotting lets us also predict that each type of cluster contained 

a particular frequency or the composition of a little number of them. It is 
particularly observable on the Figure 3-12 where is plotted for each cluster the 
average frequency. To plot this figure we consider for each cluster the number of 
the V matrix columns needed to reach the 95 percent threshold (see subsection 
3.2.3) and we multiply these columns by a term called “a” which is the mean of 
each of these columns. The fact of considering the “a” term is done to not neglect 
some frequencies values which could have been crushed by the weight of other 
terms. In Figure 3-12 below and for this particular case the number of columns 
we have to consider is three. So we are plotting a1xV1+a2xV2+a3xV3 where a1 is 
the mean of the V1 column. 
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Figure 3-12: Plotting of the studied frequencies in a new basis 

 
 

On Figure 3-12 we can notice that the first cluster (in red) is composed by 
two peaks. The first peak is around the two hertz frequency and the other around 
the four hertz frequency. The second cluster (in blue) seems to have a peak 
around the zero frequency whereas the third cluster (in green) has a little peak 
around the three hertz frequency. 
 

Though this part of the work has not permitted to bring out the link 
between a particular type of head nod and a particular time in the speech such 
as the pauses or the beginning of a sentence, the last plotting permits to obtain 
an important result which is that each gesture patterns represented by a cluster 
is defined by a particular sample of frequency. So it becomes ever since possible 
to create a prototypical head nod for each of the different patterns 

 
The continuation of the study is done in the shape of a user study and will 

permit to find out if the different patterns are related to different functions. 
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3.5 – User study 

 
After the construction of the gesture analysis toolbox we have to find out if the 
different gesture patterns we found have a specific timing and a particular 
function. The prediction of the timing is realized thanks to the Prediction toolbox. 
Its functioning is explained more precisely in the Chapter 4. The correlation 
between a gesture pattern and a specific gesture is underlined thanks to a user 
study. 
 

3.5.1 – Goal 

 
The aim of this part was to create a tool for the head nods study which can be 
easily used by ICT external persons. This tool had different aims. First of all it 
has to verify the fact that the head nods possess different functions such as the 
agreement, understanding or “keep going” head nods. Then it can permit to show 
if people have the same understanding of these different behaviours. It means 
that we wanted to know if people have the same way to label the human 
features. This tool was also created to permit the study of other motions such as 
head shakes or eye gazes and finally, it will be used to find out the link between 
the patterns and the functions. 
 

The better way to ensure that a lot of people can do the User Study is to 
create an online study.  

 

3.5.2 – Data preparation 

 
The preparation of all video sequences has to be done before the study. 
Preparation means that a user will not watch the video one per one and write 
down what he thinks about the head nods he found. Indeed the video has to be 
shorten otherwise the study will take too much time. It can also appear in some 
sequences that there are different head nods which are placed in row. So the 
user can forget to study one or more of them. Thus the work we had to do before 
beginning the creation of the web pages was to extract the chosen duration of 
head nod and to add a visual effect which characterises the time of nodding.  

 

 
 We consider 22 video sequences consist of 208 head nods. To faster the 
study we had to put the studier in the context of the sequence without showing 
him all the video. It would have been a waste of time and the watcher would have 
lost his concentration. We also cut all the sequences with a delay of twenty 
seconds before and two seconds after it. The delay before the nod has no 
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mathematic reason to be picked but the experimentation showed that duration 
under teen seconds did not permit to the studier to understand the situation and 
that a duration upper twenty seconds was too long to permit the study of 
numerous sequences.  The way we do these sequences permits as well to begin 
the watching of the video at the time the user chooses. 
 
 We had also to bring out the studied head nod in the video. Indeed a same 
video sequence can own many head nods and there are some sequences which 
have following head nods in a short time. To solve this problem we chose to add 
a visual effect at each video. We preferred to add visual rather than audio effect 
because the speech during this time is important to understand the reason of the 
nod. Instead of just adding an image during the time of nodding on one of the 
corner of the video we chose to frame the entire screen with green line during the 
head nod. We preferred this way because the studier would be focused on the 
image during its showing rather than on the head nod.  
 

 
Figure 3-13: Frame around the head when nodding 

 
 To realize these actions we chose to use Virtualdub software (see 
Appendix B). This software already used in the data processing part was chosen 
because it is free software easily expendable and which is compatible with a 
scripting language.  The last point was really interesting to create rapidly the 
entire sample for the future studies. 
   

We generated likewise different scripts for the studies. A script is a file 
containing the number of training video sessions, the paths of these video, the 
number of study video sessions and the paths of these video too. 
 
 All script files are generated by a MATLAB function. The specifications to 
realize these scripts are multiple. In the draft version of this tool there were: 

- All the paths have to be randomly chosen. We used a MATLAB 
function which permits to give random numbers functions of the 
time the application was launched.  

- Each script contains 8 training video and 41 or 42 study video. 
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 The scripts were made five per five. In each new series of script a same 
video can not appear twice in different study video sessions and the training 
video sessions can contain video which were already in a study video session 
but which are not ever contained in the considered script. 

3.5.3 – Web pages 
 

We have also created four different web pages in HTML/PHP. These languages 
were used because we had since learnt them before the internship and because 
there are used in other user studies create in ICT. These pages will permit to 
explain the goal of the study to the user, to provide a Training session and a 
Study session. At the end of this last session the studier has also to fill in a little 
survey to improve the future versions and to give new ideas about the head nods 
subject.  

 
The presentation of the Training session and the Study session is the 

same as the one shown on Figure 3-14 below. 
 

 
Figure 3-14: Screen shot of the Training Session 

 
 During the study the user can watch the video as much as he wants. He 
has also the choice to check off one of the four choices for each head nod 
sequence: 
 
- Continuation: The listener wants the speaker to keep talking. The head 

nod is equivalent to a “keep going” gesture. 
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- Acknowledgement: The listener understands the meaning of the last 
utterance. The head nod is equivalent to a spoken “ok”. 

- Agreement: The listener agrees with the last spoken utterance. This head 
nod is equivalent to a spoken “yes”. 

- Other 
 

The last case permits to obtain the user’s opinion via a text area. It can 
improve the study because it gives a new view on some head nods. If there are 
enough information it can also permit to find a new head nods types which was 
not include in the three detailed choices. All the results even those for the training 
session are saved in a file called Log. All the Log files are presented in column 
under the form: 
- The time during the check of the radio button 
- Session number 
- Case (study or training) 
- Time delay before the head (here twenty seconds) 
- Video sequence number 
- Head nod number in the sequence 
- Head nod number in all the video 
- Choice of the user (number of the checked button) 
- The text if the other case is checked    

   
To begin the study the user needs a sole session number sent by us. This 

number permits to log in at the beginning of the work and to remember the 
studier identity during the examination of his responses. Indeed all the surveys 
are saved in the Log file with the user session number as name.  This number 
gives him also access to a particular script.  

 

3.5.4 – User Study results 

 
The User Study will provide some results on the link between the different 
gesture patterns and the functions of the head nods. 
At the end of the internship the lack of time does not permit us to gather some 
results about this study. The future work on this subject will be to create several 
MATLAB functions which collect all the different users’ responses and compare 
them. These functions will permit to underline the rate of agreement among these 
responses and if this rate reaches a particular threshold to really do a correlation 
between the patterns and the functions we studied. 
The other way to consider this study is in an improvement point of view because 
the users can also propose some functions we do not think about. 

3.6 – Conclusion 
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The goal of this entire study was to construct a tool which can permit to analyse 
human non verbal feedback.  We focused just on head nods to improve this first 
virtual human characteristic but all this study can be done with others behaviours 
as eye gazes or head shakes. The principal aim is to permit an enhancement of 
all the Virtual human has fast as possible. So if we had more time we could have 
begun the study of another human compartmental characteristic. Or perhaps 
improve even more our existent functions. It means that the processing time of a 
function can always be enhanced or that the graphical presentation of the 
different figures can also be improve. 

 
 The Analysis gesture toolbox has provides relevant results about the 
gesture patterns. According to this study it becomes also possible to create a 
prototypical head nod for each pattern thanks to the clustering of PCA results. 
Nevertheless the correlation between the speech and the different clusters was 
not revealed by the multiple figures. We have also to remind that all these results 
were generated by the study of just 22 video sequences. So we can think that the 
study of more sequences could have permit to underline more relevant results. 
 
 The User Study which is in use for finding out the correlations between the 
different patterns and the specific functions has not been launched before the 
end of the internship. It is why there different results do not appear in these 
pages. 
 
 We can already ask ourselves on the elements which can be improved to 
enhance the future studies.    
 
 After studying the primary elements given by Watson software we applied 
the FFT on all results. We could have used another mathematical tool as the 
MFCC (Mel Frequency Cepstral Coefficient) to do the head nod frequency study 
[4]. 
 The way we done the clustering could likewise be changed. In fact we 
used the K means clustering which is one of the most rapid and primary mean to 
do clustering. This algorithm has also the disadvantage to not generate the same 
result with each run because all the clusters found in result depend on the 
random assignment of the beginning. This sort of clustering has to find a minimal 
intra-cluster variance but the result has not ever the global minimum of variance 
because this tool has not the means to ensure its different results.  So other 
ways to do clustering such as Fuzzy c-means or Normalized-cut clustering can 
be done by future interns. 
 

The link between the timing of a head nod presented in the next part and 
the different functions can also be done after the study of the future results of the 
User Study.  
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Chapter 4 – Prediction Toolbox 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 – Introduction 
 

4.1.1 – Goal 
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In order to make the agent looking more realistic, one of the requirements is to 
make its gestures coming at an appropriate time. So it becomes natural that one 
of the branches of this study is to be able to predict when head nods are likely to 
happen. Some work has previously been done to attain this goal [8], but it 
seemed that these results could still be improved. Head nods would be the 
starting point of an approach that could be repeated for each kind of gesture. 
 

4.1.2 – Approach 
 
The approach of this prediction toolbox can be described in five steps: 
 

- First we had to familiarize with tools L.P. Morency already created in order 
to be able to use them properly and to modify them if necessary. This 
implies to have a better understanding of machine learning techniques and 
related functions. 

 
- Second, we had to select features. Indeed, a relevant subset of contextual 

events, called features, is needed in order to obtain good results with model 
training. This has been done using both visualisation tools which will give an 
intuition of the selection, and functions that will select automatically a subset 
of relevant features through all contextual events available. 

 
- Then, we had to encode these features to be able to use them with currently 

available training model functions. Moreover the encoding could vary 
depending on the model we will use since each model has its specificities. 

 
- Next, the results had to be compared in order to select the model which fits 

best with the gesture prediction. This has been done by using many 
visualisation tools that will be explained later in this chapter. 

 
- At last, once the best model has been chosen, we had to confirm the 

improvement of previous model by running an evaluation of the new model.  
 

4.1.3 – Available Materials 

 
Starting point of this prediction toolbox are the previously mentioned imported in 
MATLAB as explained in Chapter 2. We have at our disposal the speaker words, 
some clues about its prosody and the gesture ground truth basis of our study. 
Main issue will be to select the good features that will be useful for predictions. 
Moreover, most of the functions concerning machine learning techniques had 
already been developed by Louis-Philippe Morency and need only to be 
optimized to run faster, and to get better visualization of the results. 
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4.1.4 – Specifications  
 
Again, being visual stayed at the top of our preoccupations. Moreover, we tried to 
limit to the minimum the number of functions for the user to launch for having 
results, from the choice of the features, to the launch of each experimentation 
run, this responding to the “Easy of use” specification initially mentioned in 
subsection 1.1.2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 – Machine Learning 

 

4.2.1 – Objective 
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Even you have some intuition of the events which have an impact on increasing 
or decreasing the likelihood that a head nod will happen, you could miss some 
hidden coupled features that may have an impact on the likelihood. 
 

This is the goal of machine learning approaches. Starting from samples 
with events and their results, it allows you to generalize results to the different 
events which could happen. 

 

4.2.2 – Generative vs. Discriminative 

 
Machine learning has two main approaches: Generative models or discriminative 
models. Both of them can be used to classify the data they have in input. 

 
 
 
 

 
 

 

 
 
 

 
 Generative models tries to create a shape 

that will include same type of data. These shapes are mostly Gaussians. In fact, 
it computes the distance to the center of each ellipse and the data will belong to 
the nearer with a probability proportional with this distance.  
 

The second approach is to find the boundary between the different kinds 
of data. The probability of a data belonging to a type will be proportional to the 
shortest path to the boundary and will correspond to the data side next to the 
boundary. 
 

Case showed on Figure 4-3 is an example of the limitations with 
generative approach. One shape is easy to find but the other is much more 
difficult. Indeed it would be easy to create a shape around small circles, but you 
would need a lot of shape mixtures to regroups small squares. However, only 
one line could discriminate both domains. 
 

Figure 4-1: Generative 
approach 

Figure 4-2: Discriminative 
approach 

Figure 4-3: Generative 
approach issue 
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4.2.3 – Available Machine Learning Toolboxes 

 
Our goal is to clarify the differences between the different models used, in order 
to be able to compare them. Please have a look at references for more details. 
 

In this study many toolboxes have been used for modelling. Concerning 
the generative models, we used Hidden Markov Models (HMM), Hierarchical 
Hidden Markov Models (HHMM) whereas discriminative models were Support 
Vector Machines (SVM), Conditional Random Fields (CRF) and Latent-Dynamic 
CRF (LDCRF). 
 
a) SVM: Although this is a discriminative model, it is non-dynamic which means it 
works on instantaneous observations which do not depend from previous states. 
This is why there is no transition matrix on this model [3].  
 
b) CRF: It is the most basic dynamic discriminative model we used. However this 
model does not represent internal substructure [6].  
 

 
Figure 4-4: Conditional Random Fields principle 

 
To explain it, we will use a simplified example of our work. Yi is label that 

corresponds to one state at the i-th frame. In our case it would be 1 if it is a Head 
nod and 0 if it is not. Xi is a vector containing the features status at this same i-th 
frame. A feature is a numerical representation of a contextual event used to train 
the prediction model. Each element of the vector is a feature encoding any action 
from 0 if the feature is not active to 1 if it is (see subsection 4.3.3). 
 

For the CRF model, the transition matrix, which is a link between two 
frames, would be a two-by-two matrix. For each state, you have the probability of 
either staying in this state or change. This is nearly common to each dynamic 
model. The part which diverges most from one model to another is the 
observation model, it means given the features, the way it will calculate the 
probability of having Y state to 0 or to 1.  
 
 
c) Latent-Dynamic CRF: Latent is similar to hidden. Indeed this model adds 
hidden states (h on Figure 4-5) between the features (X) and the labels (Y). The 
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observation model is the same as CRF, and there is a deterministic link between 
labels and hidden states. They are called hidden because you do not know what 
they correspond to; you only set the number of hidden states you want to be 
used [7].  
 

 
Figure 4-5: Latent-Dynamic Conditional Random Fields principle 

 

d) HMM: The structure is the same as LDCRF since this one is inspired from the 
hidden states of HMM. However it keeps the old-fashioned generative model 
which is outperformed by CRF for activity recognition. Moreover the transition 
matrix is slightly different from the LDCRF one [5].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 – Features 
 

4.3.1 – Introduction 
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The meaning of feature as an input for modeling has been explained in the 
previous section. But the meaning of feature in this study has to be explained. In 
this case, available features are words pronounced when the speaker is retelling 
the story (see subsection 2.1.1), punctuation, pauses, or “Actions” logged by the 
Elvin system (see subsection 2.3.4). 
 

Features are a key input in the model experimentation, so we had to take 
some time selecting them, with many tools.  
 

4.3.2 – Importing Actions  
 
The very first step was to generate a more extensive action cell array, adding to 
the previously created one all the Transcriber related features. But this had to be 
organized: 
  -Unigrams: This is just one word in itself, meaning a group of 
characters without spaces in it. The only exception is the character ” ‘ “ since 
“That’s” is saved as “Thats”. The begin and end time of each unigram is taken 
with the first and last character proportionally to the utterance length since the 
only available time data were the beginning and end of each sentence.   
  -Punctuation: Every character which was not a letter is considered 
as punctuation. The temporal situation was done with the same principle as 
unigrams. It was a simple way to do it, but it revealed to be efficient since each 
punctuation put in annotations - except ” ‘ “- reveals a context information (see 
Appendix C). 
  -Pauses: To add pauses, the only thing to do was to take the end 
time of current utterance and start time of the following one when they were not 
equal. 
  -Pairs: This meant every association we could make with two 
consecutive, previously created features. It could be two unigrams, unigrams with 
punctuation, pauses with punctuation, and unigrams with pauses.  
 
 Once all this have been done, this big cell array contained all actions in all 
sequences. So action{i,j} gave as a result in the first column the beginning time, 
and in the second column the lasting time of every iteration of the i-th action - 
whose name was caption{i} – in the j-th sequence. 
 

4.3.3 – Selecting Features 
 
A model performs best on a subset of relevant features. Moreover, too much 
features could cause the model to be over fit, this meaning that the model will not 
be general enough, this causing the model to be best performing only on the 
samples he was trained. This is why this section is a key point in the selected 
approach. Relevant feature is a feature that has an effect on the likelihood of a 
head nod happening. This effect could either be positive or negative. 
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Figure 4-6: Histogram of word appearance statistics 

 
First step is to create some visualisation tools. The two main used graphs 

are the one displayed on Figure 4-6 and the one displayed on Figure 4-7. The 
first one is a histogram showing in blue the number of times the features (words, 
punctuation or Elvin actions) are appearing during a time window before a head 
nod and in red the number of times it appears in total. As input for this function, 
these actions can be filtered by selecting the minimum “Nod Count” and the time 
window before a head nod to be taken or not into the “Nod count”. 
 

This diagram is useful to have an idea of which features are relevant since 
it highlights the link between the moment they appear and the moment when 
appear head nods.  
However a second Visualisation tool has to confirm this intuition. Indeed some of 
these words could have a sufficient number of appearances only because they 
are common words, widely used in English vocabulary. 
 

The graph displayed on Figure 4-7 goes more deeply into the numbers 
shown by the previous one, since it displays the number of nod appearances in a 
given time window around the time the word was spoken. The goal is here to 
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have “peaky” features, meaning we want a maximum or minimum peak around 
the time that a contextual feature happens. 
 

 
Figure 4-7: Nods appearance statistics graph 

 
For example the top graph of Figure 4-7 confirms the intuition about falling 

intonation given by Figure 4-6 at the top since there is a peak reaching its 
maximum around the X-axis 0 value. It means that a head nod is more likely to 
happen around the time this contextual feature occurs than every time during this 
time window. Y-axis is the nods occurrence during each time segment (called 
bins). Moreover, a maximum peak could be as interesting as a minimum one. 
Indeed, a minimum peak around x=0, as displayed on the middle graph of Figure 
4-7, contains the information that at the time this feature appears, it is not likely 
that a head nod could happen, this making our model even finer.  At last this was 
useful to drop commonly spoken words like pronouns (lower part of Figure 4-7), 
which had no minimum or maximum value around the x=0 value. 
 

However, we had to keep close to the specifications which were to be as 
automatic as possible. This is why one of the functions created uses this graph, 
to see for every feature if it is relevant or not. This function filters automatically 
the actions which are more likely to have a link with head nods, using the 
Histogram principle and then selects the best features by the previous graph 
logic. This permits to have quickly a basic feature selection. 
Intuition given by the histogram and automatic selection of the best features lead 
us to this feature selection, which is a mix of both: Long pauses, continuing 
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intonations alone and coupled with pauses, falling intonations alone and coupled 
with pauses, rising intonations alone and coupled with pauses, incomplete words, 
the ELVIN reports of negative speech and up gazes, but also the words “and” 
and “uh” are all the features that finally gave us the best results according to the 
visualisation of the results. 
Intuition gives the first idea of what a feature selection should be, and then the 
automatic features selection enables to confirm or to add unplanned features to 
this selection. 

 

4.3.4 – Encoding Features 
 
In order to create features, two functions are necessary: 
The first one has to convert the Actions file into the final Features file format 
which can be used with the modelling tools L.P. Morency already created. Indeed 
Actions file is a cell array where the cell line corresponds to a specific action and 
cell column is a specific sequence. Each cell contains a line by action 
appearance with its begin and end as explained in section 3.2. The features 
format that needs to be used in input of the prediction models is a cell by 
sequence where each cell contains a matrix where each row corresponds to one 
feature state and each column is a different frame. This implies the creation of 
time stamps for each sequence, in order to be able to have the corresponding 
time for each frame. 
 

Model used for prediction are responsive to the sampling of their features. 
We use three types of encoding for them: The first encoding is the binary one, 
which is the simplest, and which corresponds to a 1 when the feature is active 
and a 0 in other cases. The second encoding is a ramp which reflects the 
intuition of the time needed for the listener to understand and to take into account 
this context feature. The last encoding chosen is a Gaussian encoding, which 
gives a smoother transition than the ramp. The two last can be modelled to be 
descending, ascending or –only for the Gaussian– symmetrical. 
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Moreover it appears that these different encodings can have an important 

impact for the result. Indeed, even if the binary encoding works best after testing 
for nearly every model, it appears that Gaussian encoding gives better results 
than binary on the HCRF model. At last it had to be tested in order to make sure 
that we use the best encoding for each prediction model. 
 

4.3.5 – Conclusion 
 
Features selection and encoding have such an important impact on the results 
that we had to spend most of the time comparing results obtained with different 
features selection and encoding. Although the automatic feature selection gave 
us some unplanned results which proved to be helpful, it also was not sufficient 
for the features selection which gave us best results, and which was a mix of 
these results but also some intuition concerning the features. 
 
 
 
 
 
 
 

Figure 4-8: Different features encoding 
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4.4 – Optimisation 

 
Once all conditions have been met to launch the experimentations, time quickly 
became a problem since a run with LDCRF model could take up to 36 hours. So 
it has been decided to distribute the work charge on the new servers we had at 
our disposal: two computers with two quads core Xeon CPU running at 2.66 
GHz. In order to do that, getting familiar with the Distributed Computing Engine 
was necessary and took some extra time on the planning. However, the time won 
by this work parallelisation will easily catch up with the time lost for learning the 
basis of this Toolbox. 
 
 

 
Figure 4-9: Sequence diagram of work distribution 

 
 This diagram displays the work repartition on a simplified case. In reality 
we had sixteen workers for the second job manager, each workers assigned to 
one core of the two bi-quad core machines. Workers of the first job manager 
were not two but three and they were all assigned to the same core since the 
jobs that took most computation power were the jobs given to the second job 
manager. The presence of multiple job managers is justified by a quick example: 
e.g. if you have a loop launching the same function multiple times with different 
parameters and in each function you have again a loop launching another 
function many times again. The workers associated to the first job manager are 



 

 

 65 

only processing the first function until it comes to the inside loop which launches 
other functions which will process all the work. This is why the workers 
associated to the first job manager are all running on the same CPU which will be 
enough for such simple tasks. 
 

It appeared to be a huge gain of time since for the LDCRF run; it took only 
three hours instead of 36 hours. Moreover, a script allowed launching additional 
runs when the current one was finished. So we could launch multiple 
computations during the night then see and compare the results next morning. 
 

At last, if more machines are available, they can easily be added to the job 
manager, thus reducing computation time. 
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4.5 – Experimentation 
 

4.5.1 – Introduction 

 
Experimentation is the final step before deciding which model to use, with which 
features selection and shape. This process took a lot of time since we had to 
adapt our data to the functions made by Dr. Morency and to get accustomed with 
their mechanism.  
 

4.5.2 – Experimentation protocol 
 
Experimentation is a complicated process which needs some organisation; this is 
why a step by step experimentation protocol is needed for a better 
understanding: 
 

First step is to select and create the features using the method explained 
in section 2.1.4. In order to do that, and since you have a wide diversity of 
features you can select in contextual events, you have to save all the results and 
their comments in a log file. This is an important point given the number of 
different features you will have to test. It will guide you to be able to improve your 
results. 
 

Second step is to test different encoding on the same feature sample for 
different models. Once this will be done, you will be able to know which shape to 
use in function of the model you want to try. In order to do that, you have to train 
for each model all encodings available and compare the results using result 
visualisation tools to choose the encoding which fits best to this model. 
 

Next step is to compare each model, using best encoding for each, and 
the feature selection that was proven to be the most relevant, with the help of first 
step. Visualisation tools exposed in the next section will guide you to the best 
model for gesture prediction. 
 

At last you will have to confirm the improvement these results brought. By 
using the generateNodsScript function (see Appendix E) you will be able to 
create a script to generate agent’s head nods using Smartbody in unreal engine 
[8]. Then, in using a screen capture software, you will be able to generate a 
movie of these head nods. ELAN in synchronization mode will allow playing it 
during the same time than the speaker movie to check it generates natural head 
nods. 
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4.5.3 – Results 
 
Since one of the specifications of the subject was to have visual tools we had to 
create such tools to compare the results. However this was not the only reason 
since visual tools gives you a better intuition of the results and usually, even a 
better understanding of these. 
 

The specifications of these tools were that given the graphics, you will be 
immediately able to decide which result is the best and why. However since 
some models had different outputs we had to keep portability a requirement for 
all the tools we will be using. 
 

 
Figure 4-10: ROC curve 

 
First, the Receiver Operating Characteristic curve (ROC), was the first 

visual output we will have after an experimentation run. A complete description of 
this curve is available in Appendix D, but the principle could be summarized in a 
few sentences.  
 

In this case, it takes the likelihood, which is the raw result of this run as an 
input. Then it creates a vector, which will be the threshold of this likelihood and 
which will be 1000 samples from the minimum value of the likelihood to the 
maximum one. For each sample, it will test for each frame if there is a detected 
head nod, meaning that the likelihood is above the threshold. If there is one, it 
tests whether it is a real (ground truth) head nod during that time or not. If it is 
positive, then you have a true positive head nod, otherwise it is a false positive. 
For the total length it gives you a true positive rate and a false positive rate which 
are the points of this curve. 



 68 

This curve appeared to be very helpful to compare results for different 
features or different encodings for a same feature. However it gave us poor 
feedback to compare the different models.  
 

Indeed, since head nodding is not an exact science, it is difficult to say if 
you have a detected head nod which is not concurrent with a ground truth nod, 
that the detected one is bad. In fact the detected head nod could be well timed, 
but there are several factors, like personal background, that could cause the 
listener to not nod at this precise moment whereas a different person could nod 
at the same moment. This is why we tried to develop another visualisation tool 
which will take results directly from the raw output of model training, which is 
likelihood. 
 

 
Figure 4-11: Likelihood visualization 

 
First step was to create a visual tool which will allow to see and compare, 

during a specified sequence, the likelihood with the features you tested. This 
reveals to be very useful to confirm what the machine learning process learnt. 
Indeed as you can see in Figure 4-11, you can tick the different features you 
want to see and check their influence on the likelihood curve. 
 

Once this was done, next step was to create a visual tool that will enable 
you to see when a head nod is likely to happen, according to the model selected 
(see Figure 4-12). The goal is here to have a maximum number of matching 
predictions with ground truth nods. 
 
 It comes out that the model that gives us the worst results is SVM. Indeed 
since it is a non dynamic model, there is no link between the current frame and 
the previous one. The probability of having a head nod for the current frame is 
only depending on the observation made at this frame. This is why we quickly 
abandonned this model which is really slow and which gave us no usable results. 
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Finally, this is HMM, in opposition to the results ROC curve displayed on 
Figure 4-10, which gave us the best results. Indeed, this prediction model 
provided most matching results with ground truth nods, plus additional 
predictions that needed to be played during the same time than the speaker 
video, in order to check they seem to be appearing at a moment which looks 
opportune, thus looking natural. 
 

 
Figure 4-12: Prediction visualization 
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4.6 – Conclusion 

 
At this point, the prediction toolbox allows going through all steps that leads to 
gesture prediction, from features selection to prediction model choice. All of this 
meeting requirements initially exposed.  
Moreover this toolbox, originally designed to work with head nods, can be used in 
order to predict other kind of gesture like head shakes, posture shifts or even 
facial expressions. 
 

However, some unexpected events made the delivery of this toolbox came 
later than originally planned. First, the time spent for training models and 
optimizing these functions was not thought to be this long. Furthermore, some 
models, like HMM required a lot of memory to be trained, which has been a 
barrier to our progress at some point. 

 
Even if we did not have enough time to go trough an evaluation process 

which would be necessary to validate these results, tools are already created in 
order to start this process, described in the next Chapter. But preliminary results 
tend to show an improvement of head nods generated by the prediction toolbox, 
since they seem to appear at a time which looks opportune, and they even 
support comparison with original listener ones. 
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Chapter 5 – Future work 
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5.1 – Head nods classification 

 
In order to characterize head nods we had to find the link between the function 
and the type of them.  
 

The function of the head nod is the meaning of the gesture and of the 
motion. We had currently defined different functions of head nods such as 
continuation, acknowledgement or agreement. 
The User study will perhaps add some new functions thanks to the text area 
where the different users can note those which are not in the list. So it is really by 
dint of this last study that the head nods functions will be defined and can be 
used later. 
 
 The type of the head nod is its appearance. In fact a head nod can be 
made rapidly or slowly, with big amplitude or with a small one. It is the clustering 
which permits to reveal all the different types and which can also give a label for 
each of them. The label is just a sort of mean for the physics features such as the 
amplitude or the head nod frequency. Until this point we had just studied the 
correlation between the speech and the type but it has not given evidential 
results. So the same study has to be done with another feature as the prosody 
for example. 
 
 The tie between the type and the function will be effective after the 
examination of the results of the User study. This comes from the fact that the 
different sorts of clusters have since been found in a previous part and that the 
User study has been done knowing the cluster’s type of the head nod. 

 

5.2 – Specific kind of head nod prediction 

 
Once this work will be done, next step would be to retrain our prediction model 
for each kind of head nod function. This means we will have to generate a new 
head nod ground truth for each function. Then, when we will have found a model 
suitable for each one, we would be able to predict when which head nod should 
happen. 
 
 This task should be faster than the basic head nod prediction since we 
already trained the methodology. Moreover there should be less experimentation 
since we already know the best encoding for each feature. Probably some 
features should be added or removed in function of the kind of head nod. Finally 
the best model should be the same, since the models tend to behave in the same 
way with same kind of gestures, even if this has to be confirmed. 

 



 

 

 73 

5.3 – Merging results 

 
These two tasks achieved, we will be able to improve the agent’s non verbal 
feedback by allowing it to do many kind of head nods. Indeed, we would be able 
to predict when a kind of head nod should happen and we would be able to link 
the function of the head nod to its motion pattern.  
 
 In fact, since motion pattern regroup information about head velocity like 
frequency, amplitude and duration, this would allow creating specific animations 
using Behaviour Markup Language (BML) for the SmartBody system, which is 
the link between the BML script and the animation you are able to see on the 
Unreal 3D engine, which is the one used for the agent’s rendering. 

 

5.4 – Portability options 

 
Another thing that could be done to improve agent’s behaviour should be to use 
our toolbox with other non verbal feedback. It could be eye gazes, head shakes, 
posture shifts or even other facial expressions. 
 
 Indeed all our work had as a specification to be portable, so the only thing 
people will have to do is to keep the same format for data input. However for 
gesture analysis toolbox, another requirement that should meet these behaviours 
is that they will have to be detected by Watson. For the moment, Watson is only 
able to give head velocities. But in order to study eye gazes, for example, people 
will need information about eye directions or any information linked to eye 
position. 
 
 This is why, for the moment, the only Virtual human’s movements that 
could be improved would be the head ones, the other ones will depend on the 
gesture detection software improvements. 

 

5.5 – Evaluation work 

 
At this point of the work the results of the user study described in Chapter 3 are 
still not available. Although the entire Web pages and the different scripts are 
usable, the lack of time has not allowed to experiment it with external people and 
to study the outcome of this work.  
 

However since most of the research work concerning displaying a movie 
on a webpage, saving results and creating scripts for randomly picking video for 
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a study has already been done, this could be adapted to evaluate the prediction 
toolbox. 
 

Indeed, it would be interesting to create an evaluation of the prediction 
toolbox on a webpage by comparing previous head nods to the new generated 
ones. The test should be a selection, after seeing two video sequences of the 
agent’s head nods during speaker speech, of the one which looks more natural 
than the other, and why. Moreover, a bunch of functions are already designed to 
create, from predictions obtained by the selected model, a script that can be 
used to replay the head nods in the unreal engine, using Smartbody. This allows 
generating video of the head nods using screen capture software. More than 
that, prediction toolbox already contains tools which make possible the 
regeneration of the original listener head nods in the unreal engine.  
This could be a starting point for an evaluation process which would compare 
previously generated head nods, listener’s ones and the newly generated nods, 
and should only be an adaptation of the HTML code generated for the previously 
mentioned User study. 
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Conclusion 

 
The multimodal toolbox allows users to determine the different appearances of 
the same gesture and find the relevant contextual features and their link to 
gestures. The toolbox also enables you to predict the moment of the nodding and 
the way the head nod should be done. This is relevant to underline that the entire 
study is adaptable to other gestures such as the shakes or the eye gazes. 
 

This toolbox also meets the requirements mentioned in section 1.1.2. Most 
of the results can be displayed with plots which allow a better understanding of 
different gesture patterns and a better intuition of relation between contextual 
features and head nod appearance. We created generic functions to import any 
type of gestures and the architecture of our toolbox can handle these new 
gestures.  We created an extensive documentation of the toolbox (see Appendix 
E) so that future users can easily understand and extend the functions.  
 
 Since the toolbox is going to be used for research, we had to test several 
techniques to reach the same goal. This can be seen as a “code & fix” approach. 
Although this is inefficient for the multimodal toolbox development, this model 
proved to be necessary to build functions that will be a part of ongoing research.  
 
 This internship has allowed us to work in a diverse research environment 
and to explore how to improve the non-verbal behaviours of virtual humans. This 
taught us how to coordinate a large project with many subtasks. We also learned 
how to organize and prioritize our tasks and to be able to present the status of 
our work.  
  
 Finally, working in a research environment gave us the opportunity to 
expand our knowledge beyond engineering and exposed us to other research 
areas, such as psychology and language.  
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Appendix 

A – Tests Details 
 

There are three different ways the original user studies were realized. What 
these three tests have in common is the fact that the two subjects are sat across 
a table. The subjects, the listener and the speaker, are in all conditions posted at 
the same distance from each other. 
 

The first test, called “face-to-face”, shows the listener and the speaker who 
can see each other. In that case there is no screen or monitors between them. 
 

The second and the third tests, called “responsive” and “unresponsive”, 
are characterised by the fact that the listener and the speaker are separated by a 
screen. Thus they can not see them directly but the listener can hear the speaker 
and see the images of him. The speaker can himself see the avatar on his 
monitor. 

 
The main difference between the “responsive” and the “unresponsive” 

conditions is that in the “responsive” condition the avatar is controlled by the 
Rapport agent. The Rapport agent is a Virtual human which is able to establish 
contacts with a human participant thanks to non verbal behaviour feedbacks 
such as posture mirroring, nods or shakes. It means that in this case the speaker 
will speak in front of an avatar which owns human characteristics and which 
applies them at the good time. In the “responsive” case the avatar is able to 
create an impression of listening, by displaying different non verbal behaviours. 
In the “unresponsive” case the avatar is directed by a pre-recorded random 
script. This script is thus totally independent from the speaker’s behaviours.  This 
script has also the particularity that the avatar will do neither head nods nor head 
shakes but just several head turns and postures shifts. This last study permit 
after the comparison with the “responsive” test to check if the speaker is more 
active when he speaks with the Rapport agent than face to an avatar which has 
no real human behaviours. 

B – Software 
 

Transcriber 
 
Transcriber is annotation software developed by the French DGA. It provides you 
a graphical user interface to add annotation to an audio file. Moreover it allows 
you to display the waveform of the audio file, to segment annotations and to 
create context events with an additional line. This extra feature was not used in 
this study. This is free software developed under GNU General Public License, 
and is compatible with Windows, Mac OS X and Linux platforms.  
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Watson 
 
This software was developed by Louis-Philippe Morency while he was working in 
the Vision Interface Group at the Computer Sciences and Artificial Laboratory of 
the MIT (Massachusetts). 
 

It permits to track the head’s position and orientation in real time thanks to 
its own tracking library. This software opens the possibility of detecting the head 
nods and head shakes by use of a head velocities’ vector. This vector is made of 
three values, according to each axis. 

 
The last version of Watson software can also track with bounded drift the 

six degrees-of-freedom of the head for a long period and can use a monocular 
camera to estimate the head’s orientation and position. 
 

File’s organization for each session: 
Each studied session possesses its own file containing: 

• An images file where all the images treated by software are stocked 
• A result file containing .txt documents such as eye.txt (the eye study by 

Watson), nods.txt, poses.txt or velocity.txt. All these documents are made 
in the shape of matrix with well separated columns. It permits to easily 
import all these data in a MATLAB file for the future studies. 

• A callib.ini document which is the document where all the configuration of 
software are saved (colors, brightness…) 

• The output.avi file which is the same video as the input video but a square 
frame around the head is added. 

• Three documents for the uses of Watson: ParamSeq.cfg, 
ParamWatson.cfg and ParamWatsonUser.cfg 

• The shortcut for software running. 
 
 

ELAN 
 
This free available software is a tool witch permits to create annotations of all the 
video and audio data. It can also be used to edit, search or even visualize the 
annotation since existing. This tool was developed by the Max Planck Institute for 
Psycholinguistics, The Netherlands. This software permits to realize some 
different works such as visualize the video data as the same time as the audio 
data, observe the duration of an action thanks to a time line or shift in the video 
or in the audio file easily.  ELAN has no defined numbers of annotations and 
owns a large set of characters that permit to realize some different work on the 
same page. It is also possible to watch more then one video at the same time or 
to choose the audio input. 
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Virtual Dub 
 
Virtual dub is software licensed under the GNU General Public License. It 
permits to capture video and also to process them with the entire 32-bit Windows 
platform. This free software has batch-processing capabilities that allow 
processing a large numbers of files at the same time. It mains goal is to deal with 
the .avi files but it can also read .mpg and work with Bitmap images. 
 

Its principal utilisation is to extract or cut some sequences in a video file 
such as commercial or trailers at the end of films. But it is also used to compress 
with some filters video sequences. You can either add image on your video (such 
as logo) or adjust sound files with the video. 
 Its scripts must be saved on .job files and are directly opened by software 
with “run script”. All the language can easily be found on the Internet. 
 

 
Figure B-1 Virtual dub main page 

 

 As you can see it on the bottom of Figure B-1 it gives the possibility to 
adjust manually the timeline. That permits to extract a sequence in a video close 
to the milliseconds or to the frame. 
 
 The two pictures on this figure are the original video on the right and on 
the left the video after transformation or extraction. 
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C – Transcriptions Symbols Reference 
 
 
INTONATION 
 ,  continuing intonation 
 .  falling intonation 
 ?  rising intonation 
PAUSE 
 /  micro pause (less than 150 milliseconds) 
 //  pause (___ seconds) 
 ///  pause (___ seconds) 
PRONUNCIATION 
 _ ex_a_c_tly slower or emphasized 
 : i li::ke it lengthening; the more colons, the more elongation 
 - jona- incomplete word 
VOLUME 
 *  * *be quiet* softer speech or whisper 
  

D – Receiver operating characteristic (ROC) 
 
A ROC curve is the plotting of the true positive according to the false positive 
values of a study. The True Positive values (TP) are the values which are 
detected and which really appear whereas the False Positive values (FP) are the 
values which are not detected but which really appear. It can be resumed in a 
table where each condition will carry a different name. 
 

 
 

The TP values will be defined by the Y-axis whereas the FP values will be 
defined by the X-axis. 
 
 There are different zones in a ROC curves since this one is cut by a 45 
degrees diagonal line from the left low corner to the right top corner. The line is a 
so called line of no-discrimination. So if you have points on this line you can not 
say if they are good or not. 
All the points above the line of no-discrimination are good results whereas all the 
points below are wrong results. 
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In fact a point which is situated on the left top corner represents the best result 
because it means that this point own 100 percents of the sensitivity and 100 
percents of the specificity. 
The sensitivity is correlate with the number of TP which are found whereas the 
specificity is correlate with the number of FP which are not been found. 
 
 
 
 
 
 
 
 
 
 

 

E – Detail of the API 
 

Original Variables 
 

All these variables can be loaded using load ‘RapportWatson06Vars.mat’ command 
 
CaptionAction: Cell containing the caption of ELVIN actions understudy 
 
CaptionFeats: Cell containing the caption of all used punctuations symbols understudy 
 
Nods: Ground Truth Nods array (for each nod: Seq #, Nod start time, Nod stop time) 
 
OffsetDing: Array containing in the first column the offset of each session for Transcriber files, 
and in the second column the offset of each session for Watson files. These offset are relative to 
the original video files recorded with the DV Camera. 
 
Paths:Cell containing the full name of each file understudy (e.g. SES10.N.L) 
 
PathsTranscriber: Cell containing the directory of each session understudy (e.g. 
20061016_130105-10-16-2006-SES10.N) 
 
params: Structure containing all the necessary parameters for the gesture analysis toolbox 
(these parameters remains in the input of all functions) 
 
paramsData : Structure containing all the necessary parameters for the runValidateSpeech 
function to be launched 
 
paramsDistributed: Structure containing all the necessary parameters for the Distributed 
functions to be launched 
 
paramsNodCRF, paramsNodHCRF, paramsNodHHMM, paramsNodHMM, 
paramsNodLDCRF, paramsNodSVM: Structure containing necessary parameters for a specific 
prediction model. 
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Functions 
Data-Processing 

extraction 
This function extracts the ts and the rot values for all the real head Nods 
  INPUT: 

• realNods=  Ground Truth head nods        
• ts= timestamp 
• rot= rot found by Watson      
• params= params.delay (launch script.m) 

  OUTPUT: 

• extractts= the ts of the realNods head 
• extractrot= the rot values of the real head nods   

 

extractNods 
This function returns the real nods (detected by Watson and the Ground Truth one) with the 
timestamp 
  INPUT: 

• rot= degree of rotation (around x...) 
• ts=timestamp  
• realNods= ground truth head nods= nods found by ourselves 

  OUTPUT: 
• rot2=degree of rotation (around x...) 
• ts2=timestamp 
• realNods=Ground Truth Nods file(Seq #,Nod start time, Nod stop time,[True Positive 

Nod]) 
 

findSpeechNods 
This function gives you which Nods are out of speech, during no speech at the beginning or no 
speech at the end of the Nod                 
    INPUT: 

• events=contains begin, end and index of all sentences for each session 
• realNods= Grown Truth Nods file(Seq #,Nod start time, Nod stop time,True Positive Nod) 

    OUTPUT: 
• NoSpeech=Vector which contains for each nod whether it is during speech or not 
• StartNoSpeech=Vector which contains for each nod whether its start it is during speech 

or not 
• EndNoSpeech=Vector which contains for each nod whether its end is during speech or 

not 
 

importArrayToActions 
This function converts into the actions var any feature added with ELAN and imported by 
readELAN 
  INPUT: 

• Array=contains session index, begin and end of all additional feature annotated by ELAN 
for each session 

• NameOfFeature=Name of the additional feature put in the Array var 
• actions=cell array containing the actions of all sessions 
• CaptionAction=cell array containing the caption of all actions 

  OUTPUT: 
• actions=cell {actiontype, session} contains begin and end of all actions for each session 
• CaptionAction=cell array containing the caption of all actions 

 
importEventsBigramsToActions 
This function extracts bigrams and their timestamps from events utterances 
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  INPUT: 
• events=contains begin, end and index of all sentences for each session 
• actions=cell array containing the actions of all sessions 
• utts=contains all sentences for each session 
• CaptionAction=cell array containing the caption of all actions 

  OUTPUT: 
• actions=cell {actiontype, session}contains begin and end of all actions for each session 
• CaptionAction=cell array containing the caption of all actions 

 

 

 
importEventsPausesToActions 
This function extracts pauses and their timestamps from events utterances 
  INPUT: 

• events=contains begin, end and index of all sentences for each session 
• actions=cell array containing the actions of all sessions 
• utts=contains all sentences for each session 
• CaptionAction=cell array containing the caption of all actions 

  OUTPUT: 
• actions=cell {actiontype, session}contains begin and end of all actions for each session 
• CaptionAction=cell array containing the caption of all actions 
 

 

 
importEventsPunctToActions 
This function extracts punctuation and their timestamps from events utterances 
  INPUT: 

• events=contains begin, end and index of all sentences for each session 
• actions=cell array containing the actions of all sessions 
• utts=contains all sentences for each session 
• CaptionAction=cell array containing the caption of all actions 
• CaptionFeat=cell array containing the caption of all used punctuations symbols 

  OUTPUT: 
• actions=cell {actiontype, session}contains begin and end of all actions for each session 
• CaptionAction=cell array containing the caption of all actions 
 

 

 
importEventsToActions 
This function extracts unigrams and their timestamps from events utterances 
  INPUT: 

• events=contains begin, end and index of all sentences for each session 
• actions=cell array containing the actions of all sessions 
• utts=contains all sentences for each session 
• CaptionAction=cell array containing the caption of all actions 

  OUTPUT: 
• actions=cell {actiontype, session}contains begin and end of all actions for each session 
• CaptionAction=cell array containing the caption of all actions 
 
 

 
readWatsonData 
This function extract data ((rotations or head nods) and timestamps) of each file from 
\\Sfs\data\public\RapportWatson\ 
  INPUT: 
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• dirData= the files where data are. Put a "\" at the end of dirData 
• Paths= file containing the path of all sessions you want to study 
• file=name of the studied file ('nods' or 'velocities') 

  OUTPUT: 
• data=degree of rotation (around x...) for 'velocities' and head nods for 'nods'                                                                
• ts=timestamp 

 

 

readELAN 
  This function extracts any feature annotated with ELAN files (.eaf) 
  INPUT: 

• dirData=the directory where .eaf files are. Put a "\" at the end of dirData 
• Paths=file containing the path of all sessions you want to study 

  OUTPUT: 
• importedarray=contains begin, end and sequence number of all annotations made in 

ELAN 
 

 

readElvin 
  This function extracts Elvin events from Elvin logs already existing in \\Sfs\data\rapport\subject-
tests\rapport-oct-2006\ 
  INPUT: 

• dirData=the directory where data are. Put a "\" at the end of dirData 
• PathsTrans=cell array containing the path of all sessions you want to study 
• CaptionAction=cell array containing the caption of all actions 

  OUTPUT: 
• actions=cell {actiontype,sessionnumber}contains begin and end of all actions for each 

session 
 

 

readTrans 
  This function extracts sentences and their timestamps of each .trs file from 
\\Sfs\data\rapport\subject-tests\rapport-oct-2006\  
  INPUT: 

• dirData=the directory where data are. Put a "\" at the end of dirData 
• PathsTrans=file containing the path of all sessions you want to study 

  OUTPUT: 
• events=contains begin, end and index of all sentences for each session 
• utts=contains all sentences for each session 
 

 

shiftTimeStamp 
This function removes the offset (find with the video) from the ts 
  INPUT: 

• ts=timestamp find with readData 
• offset=difference of time between head nods found by Watson and the Ground Truth one 

(in OffsetDing.mat) 
  OUTPUT: 

• ts=ts-offset 
 
window 
This function extracts the ts and the rot values for all the real head Nods in a window (# of frame 
you choose) centered at the head nod 
  INPUT: 

• realNods= ground truth head nods 
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• ts=timestamp 
• rot= rot found by Watson 
• params=params.srate, params.lengthWindows(launch script.m) 

  OUTPUT: 
• windowts=the ts of the realheadnods in an window (# of frame you choose) 
• windowrot=the rot values of the real head nods in an window (# of frame you choose) 

 

windowafterextraction 
This function extracts the ts and the rot values in an window after the extraction     
  INPUT: 

• ts=timestamp 
• rot= rot found by Watson 
• params= params.srate, params.lengthWindows (launch script.m) 

  OUTPUT: 
• windowextracts=the ts of the realheadnods in an window 
• windowextractrot=the rot values of the real head nods in an window 
 

 

Gesture Analysis Toolbox 
 
 

Data Analysis 
 
 

analyseWatsonPerformance 
This function finds the Nods detected by Watson (which are between our Start Nod and End 
Nod), the number of Ground Truth head nods and the false detection of Watson 
  INPUT: 

• realNods= ground truth head nods=nods found by a person 
• ts=timestamp  
• dataNod= head nod of the ‘nods.txt’ file 
• thresh= number you give 

  OUTPUT: 
• nbGestureDetected=find by Watson between our limits    
• nbGestureTotal=ground truth head nod  
• falseDetection= # of time Watson head nods were out of our limits      
• totalFalseGesture= # of frames what are not gesture from ground truth 

 

createROC 
 This function traces the ROC curve TruePositiveRate=f (FalsePositiveRate) 
  INPUT: 

• rangeThresh= give the begin and the end of the study (e.g,  -1:0.1:1) 
• realNods= Ground Truth head nods 
• ts= timestamp 
• rot= degree of rotation (around x...) 
 

 Data Processing 
 

cluster 
This function makes the clustering of a matrix you give in input   
  INPUT: 

• particularot=the rot you want to cluster ( a cell array) 
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• params= params.clusternumber 
  OUTPUT: 

• clusterot= a column where the # of cluster are written 
• index= mask of valid gestures 

 

filterR 
This function filters one column 
  INPUT: 

• data= the variable you want to study(extractrot, sampledrot, windowrot or rot) 
  OUTPUT: 

• particularot= the variable (x, y, z) you want to keep in columns 
 

removeCellMean 
This function calculates the mean of each column of the cell input and subtracts it to each 
column.  
  INPUT: 

• fftrot= the cell you want to remove the mean 
  OUTPUT: 

• fftrotremoved= the input without the mean of each column 
 

removeMatrixMean 
This function calculates the mean of each row of the matrix input and  
subtracts it to each row.  
  INPUT: 

• freq= the matrix you want to remove the mean 
  OUTPUT: 

• freqremoved= the input without the mean of each row 
 

reajustNbCol 
This functions permits to verify if each elements have the same number of terms. And it removes 
them which are overmuch. 
  INPUT: 

• rot= the variable you want to study (extractrot, sampledrot, windowrot or rot) 
  OUTPUT: 

• transrot= the variable after transformation 

 

Resampling 
resample 
This function makes the resampling of values (rot,ts). It uses the function 'sampling.m' created by 
L.P Morency 
  INPUT: 

• rot= the variable you want to resample (extractrot, windowrot...) 
• ts= the ts you want to resample (extractts, windowts...) 
• params= params.srate (launch script.m) 

  OUTPUT: 
• sampledrot= the variables after resampling 
• sampledts= the ts after resampling 

Fast Fourier Transform 
 

 
meancluster 
This function calculates the mean of each column of particularot according to its clusters and 
plots these values 
  INPUT: 
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• particularot= a cell (same length of the values in column) you want to study 
• clusterot=  a column where the # of cluster are written  
• params= params.legthWindows 

  OUTPUT: 
• meanfft= a cell for each cluster with all the means of the columns 

 

 

 
fftrequency 
This function calculates the fft. So we can obtain the frequency value of the input. 
  INPUT: 

• rot= the term you want to study (it is a cell) 
• params= all the parameters of the different functions 

  OUTPUT: 
• frequency= it is a matrix where each column represents a frequency (FE coulumn3=2Hz) 

and each row represents a head nod. 

 
 
 

Principal component Analysis 
 

 
clusterSVD 
This function finds the # of elements of S needed to reach the threshold (called counter), after it 
clusters this # of column of U (coefficient of svd) and plots it with colors (depend on cluster case) 
  INPUT: 

• S= output of svDict, singular values 
• U= output of svDict, called coefficient 
• params= params.clusternumber, params.eigenvect1, params.eigenvect2 

  OUTPUT: 
• clusterSVD= a column which contains the clusters # 
• counter= # of rows needed to reach the threshold (for the function ClusterSVDmean) 
 

 

 
mySVD 
This function calculates the Singular value decomposition 
  INPUT: 

• frequency= the term you want to factorize (spectral theorem) 
  OUTPUT: 

• S= contains the singular values, which can be thought of as scalar "gain controls" 
• U= contains a set of orthonormal "output" basis vector directions 
• V= contains a set of orthonormal "input"  basis vector  
 
 

 Plotting 
 
 

basisplotting 
This function plots the coordinate of 2 bases of the V vector (you choose them in params) 
  INPUT: 

• clusterot= from cluster function 
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• params= params.clusternumber, params.lengthWindows, params.eigenvect1, 
params.eigenvect2 

• V= output of mySVD, gives direction of basis 
 

freqCoefplotting 
This function plots either the frequency of a basis according to the frequency of another basis or 
the coefficient of U matrix (see mySVD) of a basis according to the coefficient of another basis 
  INPUT: 

• clusterot= from cluster function 
• params= params.clusternumber, params.ix, params.iy 
• matrix= the matrix you want to study (e.g, freq or U) 

 
 

plotCluster 
 This function plots the time of speech, the type of Nods and the head velocity 
  INPUT: 

• session= index of desired session 
• events= output of the readTrans function 
• ts= timestamp 
• rot= degree of rotation (around x...) 
• clusterrot= output of cluster 

 

plotRangeNods 
This function plots the time of speech, the head velocity for one case of all the head nods 
  INPUT: 

• realNods= ground truth head nods= the nods found by ourselves 
• events= output of the readTrans function 
• ts= timestamp 
• rot= degree of rotation (around x...) 
• clusterlength(created with kMeansCluster)= must be load in current directory   
• rangeNods= chose the studied HeadNods (FE 10:110-> head nod 10 to head nod 110) 
• cas= the cluster (type of head nod) you want to study 
• params= params.case, paramas.delay, params.column, params.row in script.m 

 

plotSVDmean 
This function calculates the mean of each column of U according to its clusters. And it plots 
a1*V1+a2*V2... according to each cluster (V1 is  the column 1 of V, we consider a # of columns 
gave by counter and a1 is the first term of SVDmean) 
  INPUT: 

• clusterrot= a column which contains the clusters #  (apply on the mySVD output) 
• counter=  # of rows needed to reach the threshold 
• U= output of SVDict, called coefficient 
• V= contains a set of orthonormal "input"  basis vector directions 
• params= params.clusternumber 

  OUTPUT: 
• SVDmean= a cell which contains all the means of the U columns (according to clusters) 

plotvelocitysample (tsample, rotstudied, params) 
This function plots the ts, rx (...) of the head nods found by Watson and by us (the values have to 
be resampled and are in a 'window') 
  INPUT: 

• tsample= ts which have been resampled and are in the 'window' 
• rotstudied= a cell array with 3 columns containing rx, ry and rz (output of extraction) 
• params=params.column, params.row in script.m 

 

plottingVelSpeechFFT 
This function plots on the same figure velocity, speech and fft of a case of head nod 
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  INPUT: 
• clusterot=  a column with the # of the cluster 
• params= all the parameters in script.m 
• events= output of the readTrans function 
• windowextractrot= the rot values of the real head nods in an window 
• windowextracts= the ts of the realheadnods in an window 
• realNods= ground truth head nods 
• particularot= the chosen fft (fft 'x', fft 'y'...) 

index= mask of valid gestures 
 

segmentplot 
This function plots the time of speech, the head velocity for one cluster of head nod 
  INPUT: 

• realNods= the Ground Truth nods 
• session= index of the desired session  
• events= output of the readTrans function 
• ts= timestamp 
• rot= degree of rotation (around x...) 
• clusterrot= output of cluster 
• cas= the cluster (type of head nod) you want to study 
• params= params.case, params.delay  in script.m  

 
 

 Web Pages 
 
 
 
headnodpersession 
This function gives in a column vector the number of head nods per sessions. The result is used 
during the Virtualdub script creation. 
  INPUT: 

• realNods= ground truth head nods= nods found by ourselves 
  OUTPUT: 

• numberheadnod= a matrix where each element represents the number of head nod for a 
session 

 
 

scriptVirtualdubCreator 
This function permits to create the scripts for Virtualdub (to extract just head nods and put a 
frame around the head) 
  INPUT: 

• Paths= where all the paths of the sequences (e.g, SES 2) are 
• realNods= ground truth head nods= nods found by ourselves 

 
videoStudy 
This function permits to extract the time of beginning, end and duration of the real head nods (in 
ms) for the Virtualdub script. 
  INPUT: 

• Paths= where all the paths of the sequences (e.g, SES 2) are 
• realNods= ground truth head nods= nods found by ourselves 

  OUTPUT: 
• start= time of the start of the head nod (in ms) 
• stop= end of the head nod from the end of the sequence (in ms) 
• time= duration of the head nod 
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webScript 
This function permits to create the scripts needed in the web page study 
  INPUT: 

• Paths= where all the paths of the sequences (e.g, SES 2) are 
• realNods= ground truth head nods= nods found by ourselves 
• params= params.nbrofseq, params.nbroscript, params.delayVideo, 

params.nbroftrainvideo (launch script.m) 
 
 
 

Prediction Toolbox 

 
  Select and visualize Features 
 

computeHistogram 
This function traces histograms of actions happening before Nods 
  INPUT: 

• realNods=Ground Truth Nods array(Seq #,Nod start time, Nod stop time,[True Positive 
Nod]) 

• actions=cell array containing the actions of all sessions 
• window=time before the Nod to allow the action to be taken into account 
• CaptionAction=cell array containing the caption of all actions 
• NbofElvinFeats=Number of Elvin features in the CaptionAction cell array 
• mincount=minimum occurrence in total before nods to be taken into account 

 
 

computeWordGraph 
This function computes the number of Nods occurring during the time window before and after 
the words which are in wordlist. The final output is the bin index of maximum and minimum peak  
  INPUT: 

• realNods=Ground Truth Nods array(Seq #,Nod start time, Nod stop time,[True Positive 
Nod]) 

• wordlist=cell array of all the words you want to study (e.g. {‘and’,’”PauseLong”’}) 
• actions=cell array containing the actions of all sessions 
• window=time before and after the words which are in wordlist to take Nods into account 
• CaptionAction=cell array containing the caption of all actions 
• bincount=number of subdivisions in the time window (resolution of the window) 

  OUTPUT: 
• maxis=bin index of maximum peak 
• minis=bin index of minimum peak 

 
plotWordGraph 
This function traces the number of Nods occuring during the time window before and after the 
words which are in wordlist 
  INPUT: 

• realNods=Ground Truth Nods array(Seq #,Nod start time, Nod stop time,[True Positive 
Nod]) 

• wordlist=cell array of all the words you want to study 
• actions=cell array containing the actions of all sessions 
• window=time before and after the words which are in wordlist to take Nods into account 
• CaptionAction=cell array containing the caption of all actions 
• bincount= number of subdivisions in the time window (resolution of the window) 
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createTopFeatures 
This function selects automatically the top features from the ones that appears most frequently 
before a nod 
  INPUT: 

• nbTop=number of features you want to be selected 
• actions=cell array containing the actions of all sessions 
• realNods=array containing ground truth basis of the head nods 
• timeStamps=Timestamps created with Create Timestamps or previously created ones 
• window=time before the Nod to allow the action to be taken into account 
• CaptionAction=cell array containing the caption of all actions 

  OUTPUT: 
• features=cell array containing all the top features generated by this function 
• wordlist=cell array containing the caption of associated features 

 

selectFeatures 
This function selects automatically the best features from top50features created previously 
  INPUT: 

• nbFeats=number of features you want to be selected 
• top50features=top features created with createTopFeatures function 
• machineName=machine on which the computations will be done 
• paramsData, paramsNodCRF=files containing all parameters for runValidateSpeech 
• realNods=array containing ground truth basis of the head nods 
• timeStamps=Timestamps created with Create Timestamps or previously created ones 
• nbIterations=number of iterations for the model testing 
• wordlist=cell array containing all the features contained in top50features 

  OUTPUT: 
• features=cell array containing all the extracted features from actions 
• files with the wordlist selection 

 

selectFeatures2 
This function selects automatically the best features from top50features created previously. This 
one selects using the computeWordGraph function 
  INPUT: 

• nbFeats=number of features you want to be selected 
• top50features=top features created with createTopFeatures function 
• machineName=machine on which the computations will be done 
• paramsData, paramsNodCRF=files containing all parameters for runValidateSpeech 
• realNods=array containing ground truth basis of the head nods 
• timeStamps=Timestamps created with Create Timestamps or previously created ones 
• nbIterations=number of iterations for the model testing 
• wordlist=cell array containing all the features contained in top50features 

   
OUTPUT: 

• features=cell array containing all the extracted features from actions files with the wordlist 
selection 

 

 
selectFeaturesDistributed 
This function selects automatically the best features from top50features previously, distributed 
computing version 
  INPUT: 

• nbFeats=number of features you want to be selected 
• top50features=top features created with createTopFeatures function 
• machineName=machine on which the computations will be done 
• paramsData, paramsNodCRF=files containing all parameters for runValidateSpeech 
• realNods=array containing ground truth basis of the head nods 
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• timeStamps=Timestamps created with Create Timestamps or previously created ones 
• wordlist=cell array containing all the features contained in top50features 
• paramsDistributed=parameters containing all necessary info to run in distributed mode 
• nbIterations=number of iterations for the model testing 

  OUTPUT: 
• features=cell array containing all the extracted features from actions files with the wordlist 

selection 

  

  Encode Features 
 

createActions 
This function creates actions from elvin files and from unigrams, bigrams, punctuation and 
pauses of events 
  INPUT: 

• dirData=directory where all session files containing elvin files are. Put a "\" at the end of 
dirData 

• PathsTrans=cell array containing the path of all sessions you want to study 
• events=contains begin, end and index of all sentences for each session 
• utts=contains all sentences for each session 
• CaptionAction=cell array containing the caption of all actions 
• Gazes=array containing the annotation of all Gazes or any other  annotation array 

imported with the readELAN function 
  OUTPUT: 

• actions=cell {actiontype, session}contains begin and end of all actions for each session 
• CaptionAction=cell array containing the caption of all actions 

 
 

createBinaryFeatures 
This function creates features from actions cell array, selecting only the items contained in the 
wordlist 
  INPUT: 

• Wordlist=cell array containing all the features you want to be extracted from actions cell 
array 

• timeStamps=Timestamps created with Create Timestamps or previously created ones 
• CaptionAction=cell array containing the caption of all actions 
• actions=cell array containing the actions of all sessions 

  OUTPUT: 
• features=cell array containing all the extracted features from actions files with the wordlist 

selection 
createFeatureShape 
This function creates different shape for the features from the binary original one 
Binary original one 
  INPUT: 

• features=cell array containing all the extracted features from actions files with the wordlist 
selection (binary shape) 

• shapetype=0 corresponds to binary (no change),1 corresponds to ramp shape and 2 
corresponds to Gaussian shape 

• window=number of frames you want for the Gaussian or ramp duration (put 0 to have 
proportional with the size of original binary feature) 

• side=0 corresponds to symmetrical feature, -1 Left side and 1 Right side. 
  OUTPUT: 

• features=gives you back the features files with the new selected shape. 

 

 



 94 

  Generate Models 
 
 
 
createLabels 
This function creates labels in the same format that the ones generated by the function 
createTrainTestAndValidationData in runValidateSpeech function 
    INPUT: 

• actions=cell array containing the actions of all sessions 
• Nods= Ground Truth Nods array (Seq  #,Nod start time, Nod stop time) 
• framerate =Number of frame per seconds you want to be generated 

    OUTPUT: 
• labels=cell array where each cell is a  sequence and every cell contains  the same 

number of frames that are  contained in the  corresponding  feature cell array 
 

 

 
createTimeStamps 
This function simply create timestamps for every sessions for a given length and frame rate 
  INPUT: 

• actions=cell array containing the actions of all sessions 
• framerate=number of frame per second you want for your timestamps 
• Length=array containing all the length of each sequence 

  OUTPUT: 
• timeStamps contains all timestamps by sequence where each sequence is a cell. 

 

 

 
launchExperimentations 
This script is only a launcher for different runs, with multiple features, models and params, in 
order to see put the results in a same BR variable, and to see the differences on a ROC graph 
 

 

 
 
runValidateSpeechDistributed 
This function is a distributed version of the original function developed by Louis Philippe Morency 
to generate (Train, test and validate) models using machine learning techniques  
    INPUT: 

• params=configuration structure containing  parameters specific to each kind of machine 
learning techniques you  will be using(HMM,CRF,SVM...) 

•    paramsData = configuration structure containing parameters that are needed by this 
function, and non specific to the kind of technique used 

• features= cell array containing the features used for the generation of this model. Same 
kind of cell array that the one generated by the function createFeatures 

• realNods= Ground Truth Nods array (Seq #,Nod start time, Nod stop time,True Positive 
Nod) 

• timestamps = TimeStamps corresponding to the features and labels vars 
• paramsDistributed= configuration file containing the parameters required to run on a 

distributed mode 
• nbIterations=keep empty by default 

    OUTPUT: 
• BR=Best result of all the runs  conducted by this function 
• R=Every result of each run conducted by this function 
• D=Data associated to the best result cell array containing details about the different runs 
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and how they were conducted 
 
 

 

 
testCombinations 
This function, called by trainTestAndValidateDistributed, is a distributed version of the original 
function developed by Louis Philippe Morency to generate (Train, test and validate) models using 
machine learning techniques. This one is only one part of the original trainTestAndValidate 
function which has been implemented in a function in order to make work distribution easier. 
    INPUT: 
      n/a 
    OUTPUT: 

• R=Every result of each run conducted by this function 
 
 

 

 
trainTestAndValidateDistributed 
This function, called by runValidateSpeechDistributed, is a distributed version of the original 
function developed by Louis Philippe Morency to generate (Train, test and validate) models using 
machine learning techniques  
    INPUT: 

• Data=Data containing details about the different runs and how they are going to be 
conducted 

• params=configuration file containing parameters specific to each kind of machine 
learning techniques you will be using(HMM,CRF,SVM...) 

• externaltag=tag corresponding to the string of the iteration number 
• paramsDistributed=configuration file containing the parameters required to run on a 

distributed mode 
    OUTPUT: 

• BR=Best result of all the runs conducted by this function 
• R=Every result of each run conducted by this function 
• bestIndex=contains the index of the best results 

 
 
 

  Visualize Results 
 

 

 
compareResults 
This function compares the likelihood of the different results to the Head Nod Ground Truth 
  INPUT: 

• BR1=Best Results from the first experience you want to compare 
• BR2=Best Results from the second experience you want to compare 
• BR3=Best Results from the third experience you want to compare 
• D1=Output from createTrainTestAndValidationData in the first experience 
• D2=Output from createTrainTestAndValidationData in the second experience 
• D3=Output from createTrainTestAndValidationData in the third experience 
• timeStamps=TimeStamps corresponding to the features and labels vars 
• seq=The sequence number you want to see 
• labels=Cell array created with createLabels fonction 
• tresh=Vector containing different thresholds you want to put on likelihood 
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•  
 

 
createNodsPrediction 
This function creates, with the help of a model, a certain number of head nods predictions. This 
function is coupled with the generateNodsScript function 
  INPUT: 

• BR=Best Results from the model you want to use 
• D=Output from createTrainTestAndValidationData in the model generation function 
• seq=The sequence number you want to study 
• timeStamps=Timestamps corresponding to the features and labels vars, format is the 

same as the output of createTimeStamps function 
• nbheadnods=number of head nods you want to be generated 

  OUTPUT: 
• probs=Represents the head nod prediction, depending of the time 
• ll= Represents the likelihood of a head nod, depending of the time 
• xindex=timestamp for the x axis 
•  

 

 
generateNodsScript 
This function creates the script that will be used to replay the head nods generated with the 
function createNodsPrediction 
  INPUT: 

• probs=first output variable of CreateNodsPrediction 
• seq=The sequence number you want to study 
• timeStamps=TimeStamps corresponding to the features and labels vars, the format is the 

same as the output of createTimeStamps function 
  OUTPUT: 
     A file will be generated in the same path that you are working on, with the following title format: 
yyyymmdd_hhmmss-mm-dd-yyyy-test-elvin_log.txt 
 

 

 
plotLikelihood 
This function plots the raw likelihood coming from a run of runValidateSpeech (Distributed or not) 
compared to the features appearances on a time scale 
  INPUT: 

• BR=Best result of all the runs conducted by runValidateSpeech(Distributed) 
• D=Data associated to the best result cell array containing details about the different runs 

and how they were conducted 
• exp=the number of the iteration(i in BR{i,x}) 
• seq=The sequence number you want to see 
• features=cell array containing the features used for the generation of this model. Same 

kind of cell array that the one generated by the function createFeatures 
• timeStamps=third output variable of CreateNodsPrediction 
• wordlist=cell array of characters containing caption of the features, in the same order 

they were in the input of function createFeatures 
 

 

 
plotNodsPrediction 
This function plots the result of the function CreateNodsPrediction 
  INPUT: 

• probs=first output variable of CreateNodsPrediction 
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• ll=second output variable of CreateNodsPrediction 
• timeStamps=third output variable of CreateNodsPrediction 
• labels=Cell array created with createLabels function 
• seq=The sequence number you want to see, this should be the same as the input of 

CreateNodsPrediction 
 

 

 
reGenerateNodsScript 
This function creates the script that will be used to replay listener’s head nods contained in the 
realNods array 
  INPUT: 

• realNods=Ground Truth Nods array(Seq #,Nod start time, Nod stop time, True Positive 
Nod) 

• seq=The sequence number you want to study 
  OUTPUT: 
     A file will be generated in the same path that you are working on, with the following title format: 
yyyymmdd_hhmmss-mm-dd-yyyy-test-elvin_log.txt 

 

 


